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 Origin of biogeochemical cycles 

C

1

1

Reference: Morowitz [1] 

1.1 The carbon cycle 

1.1.1 The biological cycle 

The carbon cycle may be viewed in various ways. In its most familiar mani
festation, one has the reaction 

CO2 + H2O � CH2O + O2 

Photosynthesis goes to the right, respiration to the left. CH2O is shorthand 
for organic carbon, i.e., a carbohydrate “fixed” by photosynthesis from CO2. 
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Roughly half this reaction takes place on land, the other half at sea. But 
nearly all of the CO2 in the atmosphere and oceans is in the oceans. 

This is the essence of the biological carbon cycle, which is nearly a closed 
system: about 99.9% of the carbon fixed by photosynthesis returns back to 
the oceans and atmosphere via respiration. 

1.1.2 The rock cycle 

The other 0.1% of the organic carbon which is fixed is eventually buried. 
Some (inorganic) CO2 is also buried, as carbonate. A rough picture looks 
like this: 

photosynthesis

respiration
CO2+H2O CH2O+O2

atmospheric CO2

oceanic C

organic carbon
burial

volcanos

weathering

inorganic carbon
burial (carbonate)

If CO2 in the atmosphere and oceans is not to be depleted, there must be 
a source to counter the sink of burial. The source is volcanism (and related 
metamorphic and hydrothermal processes). 

Weathering processes (i.e., erosion) provide a means, via the so-called “Urey 
reactions,” of extracting CO2 from the atmosphere and transporting some of 
it to the oceans. Then, assuming no other changes, it is eventually buried 
again. This is the geochemical, or “rock” cycle. 

Schematically, CO2 concentrations evolve as 

d[CO2] � volcanism − (weathering + burial) 
dt 
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If there were no volcanic source, weathering and burial would deplete the 
6CO2 in t  5he oceans and atmosphere in about 10 –10  years. So it turns out 

that we owe our existence to mantle convection and plate tectonics! 

The field of (bio)geochemical cycles is devoted to the study of all elemental 
cycles, not just that of carbon. Prominent among them are the oxygen, 
nitrogen, sulfur, and phosphorous cycles. In detail they differ from the carbon 
cycle but the basic theme—cycling through organisms at fast time scales and 
rocks at slow time scales—remains the same. 

The various cycles are not independent: they are instead coupled into a kind 
of “supercycle,” with prominent subcycles, like that of carbon, oxygen, and 
sulfur, identifiable within the supercycle. 

1.2 Energy flow 

The existence of biogeochemical cycles such as the carbon cycle raises a nat
ural question: Why do cycles exist? 

Morowitz proposes an answer: the flow of energy through a chemically react
ing system requires the existence of chemical cycles, i.e., 

cycles
energy sinkenergy source

The cycles occur in any intermediate system. The Earth is one such exam
ple: the energy source is (dominantly) solar radiation; the energy sink is outer 
space. 

The “energy flow” may be generalized to any flow from a higher to lower 
potential (e.g., rock movement, or chemical diffusion). 

Morowitz’s theory is essentially an application of fundamental principles 
in irreversible thermodynamics as they apply to non-equilibrium stationary 
states. 
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1.3 Two-reservoir model 

We start with a very simple model and proceed to somewhat less simple (but 
still highly idealized) systems. Consider a gas placed in a box between two 
reservoirs, one side of which is held at temperature T1 and the other at T2: 

T1 1n n2 T2

X

The gas has average density Ψ. 

The barrier is at the midpoint and contains pores that are small compared 
to the mean-free-path of the particles so that the residence times within the 
reservoirs are much longer than the time it takes to traverse the barrier. 

In steady state, there is a flow of heat from the hotter to the colder side. We 
assume each side is perfectly mixed and in equilibrium with their respective 
reservoirs. Then the steady state is characterized by 

n1, n2 = number density of atoms on sides 1 and 2 

T1, T2 = temperature on sides 1 and 2 

In steady state the mass fluxes in each direction must be equal. These fluxes 
are proportional to 

1/2�mv 2/2� ∝
√

T , 

leading to Prigogine’s solution 

n1 T1 = n2 T2. 

As expected, the density is inversely related to temperature. The sum of the 
densities is constrained by mass conservation: 

n1 + n2 = 2Ψ 

We thus have the (obvious) result that the flow of heat through the system 
has resulted in a concentration difference. 
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We now replace the perfect gas by two chemical species A and B which react 
as: 

k1(T ) 
A �������������������� B

k2(T ) 
The system is therefore characterized by concentrations 

[A1], [B1], [A2], [B2] 

The evolution of the system follows the kinetic equations of the form 

d[A1] 
= reactions B1 

�A1
dt

− reactions A1�B1 

+ flow of A2 from box 1 

− flow of A1 to box 2. 

The flow rate through the barrier barrier is proportional to the thermal ve
locity of the molecules. Take the� transfer rates to be 

 
ν12 ∝ �T1 flow 1 → 2 

ν21 ∝ T2 flow 2 → 1

The explicit equations for [A1] and [B1] are then 

d[A1] 
= k2(T1)[B1] − k1(T1)[A1] + ν21[A2] − ν12[A1] (1)

dt

d[B1]


Now imagine if the system were entirely isolated by adiabatic—i.e., insulating— 
walls. Then the system would come to an equilibrium state characterized by 

n1 = n2. 

Consequently the non-equilibrium state is more ordered (i.e., it has lower 
entropy). The order is maintained by the flow of energy through the system. 

1.4 Reactive species 

= −k2(T1)[B1] + k1(T1)[A1] − ν12[B1] + ν21[B2] (2)
dt 

along with similar equations for [A2] and [B2]. 

We proceed to the following points: 
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1.4.1 No equilibrium solution 

In the absence of flow, thermal equilibrium would predict 

k1(T1)[A1] = k2(T1)[B1] 

or 
[B1] k1(T1) 

= 
[A1] k2(T1) 

≡ K(T1) 

where K(T1) is the equilibrium constant of the reaction. 

A similar result must hold for box 2: 

[B2] k1(T2) 
= 

[A2] k2(T2) 
≡ K(T2) 

But 

• A1 and B1 each flow from side 1 to 2 at rate ν12. 

• A2 and B2 each flow from side 2 to 1 at rate ν21. 

If there were no thermal gradient (i.e., if T1 = T2), the steady-state ratios 
[B]/[A] would be equal on each side: 

[B1] [B2] 
= . 

[A1] [A2] 

But these ratios cannot be equal in general, because T1 = T2 and, in general, 

K(T1) = K(T2). 

Thus there is no thermal equilbrium, and non-equilibrium concentrations are 
expected. 

1.4.2 Cycles 

We now show the existence of cycles. Adding (1) and (2) in steady state, we 
obtain � � � � 

ν21 [A2] + [B2] = ν12 [A1] + [B1] 
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As expected, there is


no net flow of [A] + [B] across the boundary. 

Consequently any net flow of A must be balanced by an equal and opposite 
flow of B. 

Because there is no equilibrium solution, we have 

k1(T1)[A1] − k2(T1)[B1] = 0 �

From equation (1), we have that in steady state, the quantity above must 
balance the flow of A: 

k1(T1)[A1] − k2(T1)[B1] = ν21[A2] − ν12[A1] 

But the RHS above must also be non-zero, requiring 

ν21[A2] =� ν12[A1] 

Consequently 

There must be a finite net flow of A in one direction. • 

• This flow must be balanced by an equal and opposite flow of B. 

We therefore find a cycle. We conclude that 

• The steady state is out of equilibrium. 

• Energy flow leads to internal organization. 

• The organization includes a cyclic flow of material. 

1.5 Cycles and the breaking of detailed balance 

Consider a vat in contact with a isothermal reservoir, with the chemical 
reactions 

k1 k3 k5 
A �������� B �������� C ������� A��� � ���� ����� 

k2 k4 k6 
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The equilibrium concentrations satisfy 

k1[A] = k2[B] 

k3[B] = k4[C] 

k5[C] = k6[A] 

The specific equilibrium concentrations [A], [B], [C] follow from the condition 
that mass is conserved: 

[A] + [B] + [C] = const. 

Equilibrium follows from microscopic reversibility: each process must have 
the same probability as the reverse process. 

Thus there must be no flow (or cycle) around the system in equilibrium. 

Note, however, that we could maintain a steady state but still have a net flow 
F around the system, such that 

k1[A] − k2[B] = k3[B] − k4[C] = k5[C] − k6[A] = F . 

This is one example of a cycle. We proceed to provide a general condition 
for such a cycle to exist. 

Consider a (canonical ensemble of) system(s) at equilibrium. Define 

fi = Prob(system is in state i ) 

tij = Prob(system in state i will change to state j in unit time) 

In equilibrium we have detailed balance: 

fitij = fjtji 

Assume that the system is in contact with an isothermal reservoir, and irra
diate the system with a constant flux of electromagnetic radiation, such that 
there is net absorption of radiation. 

The steady state will be characterized by a flow of heat to the reservoir: 

radiation system heat to reservoir.→ → 
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The steady state will be characterized by new occupation numbers and tran
sition probabilities 

f � and t�i ij. 

If detailed balance were to hold, for every transition involving absorption of 
radiation, a reverse transition would exist in which the system would radiate 
a photon. 

But there would then be no net absorption of energy and flow of heat. Con
sequently detailed balance does not hold in general for the steady state: 

fi
�t� =� fj

�t�ij ji 

In the steady state the occupation numbers are time independent. Therefore 
“incoming” transitions balance “outgoing” transitions: 

dfi
� � 

dt 
= 0 = Prob(j → i) − Prob(i → j) (3) 

j 

= fj
�t� i

�t� (4) ji − f ij 
j 

Equation (1.5) shows that at least for one fi
�, fj

� pair, the term above in 
parentheses is non-zero. Thus other terms in the sum must also be non-zero. 

We therefore identify cycles: For at least some states i, j, the paths from i to 
j and from j to i are not equal; i.e., states leave by one path and return by 
another. 

We thus obtain Morowitz’s cycling theorem: 

In steady state systems, the flow of energy through the system from 
a source to a sink will lead to at least one cycle in the system. 

1.6 Summary 

These general considerations should apply to ecosystems at all scales, and 
perhaps even the evolution of life. In summary: 
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•	 The Earth’s surface receives energy from a source (the Sun) and gives it 
up to a sink (outer space). 

•	 Energy flow causes a cyclic flow of matter; and a cyclic flow of matter 
requires an energy flow. 

•	 Energy flow led to life and biogeochemical cycles. “Thus the problem 
of the origin of life and the development of the global ecosystem merge 
into one and the same problem” (Morowitz, p. 120). 
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