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ABSTRACT

This thesis addresses the use of quantitative modeling techniques in the

evaluation of criminal justice programs. An overview of evaluation and

evaluation methodology is presented, followed by a review of the limita-

tions of these methods. Model-Based Evaluation (MBE) is introduced as

a means of resolving some of the difficulties discussed. The major advan-

tages of MBE are presented with examples drawn from the criminal justice

evaluation literature.

Some recent evaluations performed in the area of police patrol are pre-

sented. The statistical shortcomings of these studies are illustrated,

and reasons for the existence of such errors are suggested.

Two concrete applications of MBE are discussed in detail. The first ex-

ample presents a MBE of one- versus two-officer patrol staffing. Postu-

lated arguments for and against each strategy are outlined as they appear

in the literature. Performance measures are elicited from this discussion.

Several models are constructed which allow for a comparative analysis using

these performance measures; equal cost staffing options are considered.

The second example presents a discussion of methods available for conduct-

ing MBEs of treatment-release corrections programs. A general model of

rearrest patterns over time is described along with a numerical example

illustrating model behavior under alternative assumptions. Classical and

Bayesian methods for the estimation ofC model parameters are reviewed, as

are complementary MBE procedures.

Richard C. Larson, Thesis Supervisor
Associate Professor of Electrical Engineering and Urban Studies

Co-Director, Operations Research Center
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CHAPTER 1

MODEL-BASED EVALUATIONS

I. INTRODUCTION

Each year, millions of dollars are spent on the design and delivery of

social service programs. With such massive expenditures in mind, the need

for assessing the worth of these programs has become imperative. Increasing

attention must be paid to the evaluation of public programs.

However, there are several ways in which evaluation may be approached,

ranging from audit-oriented input studies to rigorous experimental designs.

To understand the strengths and weaknesses of program evaluation, one needs

to understand the strengths and weaknesses of the tools that evaluators

employ. If evaluations are to be more effective, the development of more

effective evaluation methods is in order.

This thesis addresses the problems which accompany current methods

used in the evaluation of criminal justice programs. In particular, a

different approach--Model-Based Evaluation--is proposed for application to

evaluation problems. The intent of the thesis, then, is to define and dis-

cuss Model-Based Evaluation, and illustrate its applicability to situations

in criminal justice evaluation.

This chapter serves to set the pace by presenting an overview of

evaluation and evaluation methodology. A review of the limitations of

these methods follows, and Model-Based Evaluation is introduced as a means

of resolving some of the difficulties discussed. The major advantages of

Model-Based Evaluation are presented with examples drawn from the criminal

justice evaluation literature. Finally, an example of a recently performed
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Model-Based Evaluation is discussed. The chapter concludes with a guide to

Chapters 2, 3 and 4 of this thesis.
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II. INTRODUCTION TO PROGRAM EVALUATION

Perhaps the best way to begin a discussion of program evaluation is

to present some general definitions of evaluation as stated in the litera-

ture.

1. "Evaluation is the appraisal of the extent to which a

program realizes certain goals." (Weiss and Rein,

1972: 247)

2. "'Program evaluation' is the systematic examination

of specific government activities to provide infor-

mation on the full range of the program's short and

long term effects on citizens." (Hatry et al., 1973:

8)

3. "...evaluation research is the application of social

science methodologies to the assessment of human

resource programs, so that it is possible to deter-

mine, empirically and with the confidence that results

from employing scientific procedures, whether or not

they are useful." (Freeman, 1976: 14)

4. "...evaluation is a pronouncement concerning the ef-

fectiveness of some treatment or plan that has been

tried or put into effect." (Deming, 1975: 53)

5. "The starting point of any evaluation study is the

question of whether or not a particular social policy

'works'." (Rossi and Wright, 1977: 7)

6. "Evaluation reserach is a rational enterprise. It

examines the effects of policies and programs on

their targets (individuals, groups, institutions, com-

munities) in terms of the goals they are meant to

achieve. By objective and systematic methods, evalu-

ation research assesses the extent to which goals are

realized and looks at the factors associated with

successful or unsuccessful outcomes." (Weiss, 1975:

13)

All of these definitions are in agreement that the function of evalu-

ation is to assess the performance of particular programs or policies.

Rossi and Wright state that:

"In all cases, the basic assumption of evaluation

research is that the program itself, its goals, and
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the criteria for its success are sufficiently well-
defined so as to allow an appropriate research plan
to be designed." (Rossi and Wright, 1977: 7)

This does not imply that issues such as program goal selection are not

problematic; it does imply that such issues fall elsewhere within the

broad realm of policy analysis, and are not considered here as problems

of program evaluation.
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III. EVALUATION METHODOLOGY: NORNATIVE APPROACHES

A generic social program may be conceived as consisting of input,

process and outcome components as illustrated in Figure 1, hence it is

useful to classify evaluations according to the program element being

evaluated. We will now proceed to discuss three approches to program

evaluation and the methodological issues that accompany each:

1. Input Evaluation

2. Process Evaluation

3. Outcome Evaluation

i. Input Evaluation

Input evaluations examine the resources which constitute a given

social program; as such, input evaluations are not able to answer the

question

"Did the program meet its goals?"

without the assistance of other evaluation approaches. However, input

evaluations are important in that they serve to summarize the resource con-

straints under which a program is expected to operate, and whether or not

the program did in fact function within these constraints.

In some ways, input evaluations are similar to feasibility studies.

However, while input evaluations might specify levels of program operation

given fixed resources, feasibility studies attempt to discover which re-

source mixes are capable of achieving requisite levels of program operation.

Feasibility studies are normally associated with the program design process

and tend to be somewhat exploratory; input evaluations are less exploratory

in nature.
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Program Process

Program Program

Inputs Outputs

Figure 1

A Generic Social Program
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Program auditing is perhaps the most common form of input evaluation

regularly practiced. The typical program audit matches program-espoused

funding allocations to staff, facilities and equipment with actual pro-

gram expenditures to see if the program was initially implemented as

designed. While such audits cannot be expected to completely answer this

question, they do provide useful information to both evaluators and deci-

sion makers.

ii. Process Evaluation

While input evaluations identify the resources available to a social

program, process evaluations examine the actual utilization of these re-

sources by studying what the program physically does (as opposed to what

the program accomplishes--this is an issue of outcome evaluation to be

discussed later). As Weiss and Rein (1972) suggest, the essence of proc-

ess evaluation revolves around the question

"When such a program is introduced, what then happens?"

Richard Larson (1977) has offered the following definition:

"A process evaluation of a program seeks to under-

stand the causal mechanism that translates program in-

puts into program outputs. Or, if program outputs are

unobtainable, it seeks to understand the mechanism
whereby program inputs are translated into action.

"It utilizes a mixture of qualitative and quan-
titative techniques to understand the usually multi-
faceted nature of the process. These include analysis

of process-related performance measures, and utiliza-
tion of participant observers, interviews, question-
naires, and other methods for understanding the total
environment of the program. The outlook is 'Bayesian'

rather than statistical, meaning that impressionistic
information can play a role equally as important as
statistical information."
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Howard Freeman writes that process evaluation attempts to answer two

questions: (Freeman, 1976: 15)

1. Has the program been directed at the appropriate and

specified target population or target area?

2. Were the various practices and intervention efforts

undertaken as specified in the program design or

derived from the principles explicated in that
design?

Freeman's conception of process evaluation is somewhat similar to our

earlier presentation of input evaluation. However, while in input evalu-

ation we were concerned that resource allocations as described in the pro-

gram design and observed in the program implementation be congruent, proc-

ess evaluation searches for congruence in the manner that the resources

were utilized. As an example, consider a crime-control program where ten

officers were to be utilized for special saturation patrols. Whether or

not ten officers were available would be determined via input evaluation;

whether or not ten officers actually engaged in saturation patrol would be

determined via process evaluation. While this example is admittedly con-

trived, it does serve to illustrate a conceptual difference between input

evaluation and process evaluation.

Several of the techniques associated with process evaluation are in-

cluded in Larson's statement presented earlier. In order to determine

"what happens" after a program is introduced, process evaluators may

utilize a number of social science survey and interview methods to obtain

information from program officials, staff and clients. Or, evaluators

might choose to "live in the system" to see if their "case" is handled as

it should be according to the program design. Another monitoring method

includes the review of program statistics to see if they match the figures
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anticipated in the program design (e.g., are service times as anticipated;

are caseloads as anticipated).

Process evaluation can yield information which helps to establish the

degree of program influence on observed outcomes (this point is especially

pertinent to experimental designs; we will return to it later on). Process

evaluation may also identify unintended side effects of the program through

the methods of inquiry already discussed. What process evaluation does not

attempt to determine is whether or not the program achieved its stated

goals. This question is addressed via outcome evaluation.

iii. Outcome Evaluation

Outcome evaluations, or impact evaluations, specifically address the

question of whether or not social programs have accomplished what they were

designed to accomplish. In short, outcome evaluations ask the question

"Did the program meet its goals?"

There are several methodologies available for performing an outcome

evaluation. However, from the evaluation literature it is clear that ex-

perimental/quasi-experimental designs currently constitute the preferred

approach to outcome evaluation. Since many of the ideas of this thesis

refer back to experimental situations, this method of evaluation will be

reviewed in some detail.

Experimental Design

As mentioned, experimental design (Campbell and Stanley, 1966;

Campbell, 1975; Lamar, 1978) has become the dominant approach suggested

for application to the evaluation of public programs. In general,
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experiments may be thought of as consisting of the following five steps:

1. Selection of hypotheses to be tested

2. Selection of performance measures by which to test the
stated hypotheses

3. Design of an experimental mechanism for testing purposes

4. Execution of the experimental mechanism

5. Analysis of the experimental results

It is advantageous to briefly discuss each of these steps.

1. Selection of hypotheses to be tested. In evaluation, the basic

hypothesis to be tested often has the perverse form

"The program had no effect"

This assertion is termed the "null hypothesis." The substantive form taken

by experimental evaluation hypotheses, is, in principle, determined by the

stated goals of the program. For example, if the purpose of a saturation

patrol program is to reduce the crime rate in an area, then the null hypo-

thesis

"Saturation patrol had no effect on the crime rate"

would be employed.

2. Selection of performance measures. The evaluator's problem is not

so much one of identifying hypotheses; rather the evaluator must be able to

operationalize conceptual hypotheses in testable terms. The testing of

specific hypotheses requires their redefinition in quantitative terms via

the use of performance measures. Selected performance measures should sat-

isfy certain criteria:

a. Deterministic criterion - performance measures should be

able to gauge the desired phenomena under known conditions
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b. Probabilistic criterion - performance measures should

behave in predictable fashion under conditions of uncer-

tainty

c. Observability criterion - performance measures should

be based on available or collectable data

The first of these points implies that the conditional values taken on

by the performance measures are known given different levels of program

performance (i.e., the deterministic behavior of the performance measures

is well understood). The second point implies that the random behavior

of the phenomena under study can be accounted for (i.e., the probabilistic

behavior of the performance measures is well understood). This point is

important, as it allows one to determine whether or not observed fluctua-

tions in a performance measure may be plausibly attributed to chance (as

opposed to the presence of an experimental program). The third point im-

plies the obvious--a performance measure is of no use if it cannot be ob-

served and recorded.

In social evaluation research, it is difficult to satisfy the first

two points mentioned above. Thus, it is important to utilize a family of

measures for any given study rather than rely solely on one or two vari-

ables. According to Hatry et al.:

"Rarely are a single objective and a single evalu-

ation criterion sufficient to describe the impacts

of a program. Inevitably, a program involves
numerous objectives, and numerous evaluation cri-

teria will be needed to measure their effects."

(Hatry et al., 1973: 31)

The performance measures which are chosen for any given evaluation

study are of course dependent upon the hypotheses being examined. However,

for a given class of studies, the same measures almost always appear to
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surface. Some examples from the evaluation of police patrol are presented

in Table I.

3. Designing an Experiment. The key concern with the design of so-

cial experiments rests with the formation of "experimental" and "control"

groups (Campbell and Stanley, 1966). Theoretically, both experimental and

control groups should be identical in character. However, while control

groups function exactly as before the initiation of the experiment, experi-

mental groups partake in new experimental programs. The presence of the

experimental program should be the only difference between the experimental

and control groups.

For example, an experiment in the corrections area might consist of

two equivalent groups of offenders who have been randomly allocated to con-

trol or experimental groups. The control group would be released via con-

ventional parole, while the experimental group would participate in a new

program (e.g., work release) upon release from prison. The program being

evaluated is the work release program, with standard parole providing a

basis for comparison and assessment.

Over the duration of the experimental period (for example, typical

experiments in police patrol have had durations of about one year), the

levels of predetermined performance measures are continuously monitored.

At the end of the experimental period, the control and experimental groups

are compared statistically (this will be further discussed under the anal-

ysis of experimental results).

In many evaluations, it has not proved possible to obtain a con-

trolled situation of the type described above. Several quasi-experimental
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TABLE I

Common Performance Measures Found in Police Patrol Evaluation

Type of Study Associated Measures

Crime Prevention

Police Response Time

Patrol Productivity/
Manpower Allocation

UCR Index

Locally, reported crime rates
Victimization rates (survey)

Probability of crime interception
Patrol visibility

Citizen-perceived fear of crime

Citizen-perceived level of safety

Travel time (with/without dispatch time)

Travel distance

Apprehension probability
Citizen satisfaction with response time

Frequency of patrol passings
Patrol officer workload

Patrol officer safety (injuries)
Crime/Victimization rates

Travel time
Citizen complaints

Officer complaints
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designs are popular in the evaluation field for examining such situations

(Campbell and Stanley, 1966; Campbell, 1975; Hatry et al., 1973). These

quasi-experiments rely on less powerful comparison groups and/or before-

and-after observations. Some quasi-experimental designs incorporate

statistical models1 of the relevant performance measures into the evalua-

tion design (e.g., time-series models, regression models). Such models

attempt to predict levels of the performance measures that would have

occurred in the absence of the experimental treatment, and hence serve the

same function as that of a control group. Of course, the strength of these

designs is largely dependent upon the accuracy of the statistical models

involved.

4. Maintaining an Experimental Design. In the previous section on

the design of experiments, the importance of obtaining good experimental

and control groups was stressed. While actually conducting an experiment,

the emphasis shifts toward the maintenance of good experimental and control

groups.

While the laboratories of the physicist or chemist allow desired con-

ditions to be prolonged almost indefinitely, the designs of social experi-

ments are only approximations of these laboratories. Hence, there is good

reason to be concerned about problems such as the contamination of the

experimental and/or control groups. The conduct of a successful experi-

ment requires that the general conditions in the control and experimental

groups remain the same throughout the course of the experiment.

. To achieve this, it is advisable to monitor the experiment for the en-

tirety of its duration. The ideas of process evaluation discussed earlier
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are useful here. The potential payoffs of process evaluation are more

pronounced when the evaluation is of the quasi-experimental variety.

Without the controls that normally accompany a true experimental design,

one has an accountability problem with respect to the true determinants

of program outcomes. Was it the program or some other environmental condi-

tion that caused the observed results? The collection of process informa-

tion will not guarantee an answer to this, but such information may surely

provide clues not available elsewhere.

5. Analysis of Experimental Results. The evaluation of experimental

results in program evaluation has relied heavily upon the use of classical

statistical procedures. The use of such procedures is predicated on the

control group/experimental group design discussed earlier. If it is in

fact true that the sole difference between experimental and control groups

rests with the presence of an experimental program (or "treatment") in the

experimental group, then observed differences in the levels of performance

measures between the two groups may be attributed to one of two sources:

(a) chance, or

(b) the experimental treatment

Statistical procedures along the lines of hypothesis testing check to see

if observed differences can be plausibly attributed to chance. If plau-

sible attribution to chance cannot be established, then the experimental

treatment is assumed to be responsible for the observed differences through

the logic of elimination.

Similarly, quasi-experimental procedures utilize statistical routines

to examine program performance in the light of comparison groups, "before-



- 26 -

and-after" periods, or a statistical model as discussed earlier. However,

as the design of a test program deviates from that of the classic experi-

ment, the rationale behind the use of statistical evaluation devices is

weakened. In such cases (which constitute the majority of social evalua-

tion efforts), the collection of process data is extremely important, as

such information aids in determining whether or not it was the experimen-

tal innovation or some other combination of factors which was responsible

for observed outcomes.

This description of experimentation/quasi-experimentation has been

the preferred approach to program evaluation within recent years. Rossi

and Wright claim that:

"There is almost universal agreement among evaluation

researchers that the randomized controlled experiment

is the ideal model for evaluating the effectiveness

of a public policy." (Rossi and Wright, 1977: 13)

However, experimental evaluations are not problem free; indeed most evalu-

ation efforts, whether input, process or outcome, have been fraught with

difficulties. Some of these difficulties stem from misapplications of

evaluation techniques (see Chapter 2 for several examples of this sort),

while other difficulties seem more attached to the choice of evaluation

approach. The limitations of the three approaches to evaluation reviewed

here are important to recognize, and it is toward the problematic aspects

of popular evaluation methodology that our attention is now directed.
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IV. LIMITATIONS OF CURRENT APPROACHES

To understand the difficulties associated with evaluation methodology,

it is useful to first ask the question

"What type of information should be produced by the
ideal evaluation under ideal circumstances?"

By focusing on the type of information desired from an evaluation effort,

it is possible to consider whether or not current evaluation designs are

capable of producing such information.

At this point, the reader may protest that we have already discussed

this matter; surely the information desired from an evaluation is whether

or not the relevant social program achieved its goals. However, one might

be inclined to argue that the situation is more complex.

Let us reconsider Figure 1. The inputs to a social program may be

viewed as an initial allocation of resources. The manner in which these

resources are allocated is controllable. If, for example, one wishes to

use saturation patrol methods to reduce crime rates, one may specify

whether two, five, or fifteen officers are to participate.

Similarly, the manner in which these resources are utilized in the

program itself is controllable. Are the officers to be deployed simultane-

ously in "burst" patrols? Are the officers to patrol overtly or covertly?

These questions may be answered by program officials.

When a program is evaluated, it is not sufficient to merely state

"Yes, it works" or "No, it doesn't work." In the ideal situation, deci-

sion makers will want to know:

"What are program outcomes as a function of program

inputs?"
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In our patrol example, decision makers will want to know not only the crime

rate as related to a patricular patrol configuration; rather, decision

makers will want some idea of how the crime rate varies under alternative

allocations and utilizations of patrol resources.

Consider Figure 2. Points X, and X2 denote the observed crime rate

as a function of number of officers on patrol in a hypothetical patrol pro-

gram. If Xi and X2 are the only pieces of information presented to deci-

sion makers, then one could hypothesize relationships A, B and C, all of

which are consistent with Xi and X2 , and all of which have radically dif-

ferent implications toward the deployment of patrol resources.

Thus, an ideal evaluation would provide information explaining how a

particular program process (or theory) translates program inputs into pro-

gram outcomes, and whether or not the resultant program outcomes are com-

mensurate with stated program goals. According to this reasoning, any

evaluation which fails to examine program inputs and program process and

program outcomes will not produce the type of information which is expected

of an evaluation. Input evaluations alone do not examine how program re-

sources are translated into observable impacts. Process evaluations

alone do not determine whether or not programs are meeting their goals.

Outcome evaluations alone do not examine impacts in the light of program

inputs and process.

In particular, it is important to examine experimental evaluation

designs. If experimental designs could be perfectly implemented, then

through replication, statistical relations between inputs and outcomes

could be established. Rather than attempting to examine program structure
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analytically, experimental methods would build descriptive relationships

between inputs and outcomes.

However, in the area of social policy in general, and the field of

criminal justice in particular, experimentation as a means of evaluation is

difficult to implement in a credible fashion. The most serious problem

with experimentation relates to the nearly impossible task of establishing

experimental controls. As discussed, the presence of controls is essen-

tially intended to reduce the number of explanatory factors for a parti-

cular outcome from infinity to two (chance and the experimental program).

In social settings, this type of rigidity is often not obtainable.

For example, a recent LEAA-funded study
2 of two hundred evaluations

in criminal justice asked the question

"Can outcomes directly be attributed to program

activities?"

The answer to this question was "no" for 72% of those studies where this

question was answered! (Larson et al., 1979: 49) The most frequent

reason stated for this finding was that "...the study was essentially un-

controlled (in the sense of research design)." (Larson et al., 1979: 49)

Another problem with experimental-style evaluations has to do with

a built-in bias toward the "null hypothesis" (i.e., the no-change option)

present in such studies. Rather than attempting to determine how well an

innovation or intervention functions, the emphasis is on a double nega-

tive: disprove the hypothesis that the program does not work (see

Fienberg, Larntz and Reiss, 1976). It is simple to construct hypothetical

cases where a perfectly healthy program with a high probability of success

would be declared a failure according to a classical statistical test.
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There is every reason to suspect that such cases occur in the evaluation

of social programs.

Finally, it should be noted that experimental evaluations are very

expensive research designs to implement (Hatry et al. (1973) refer to

experimental design as the "Cadillac of program evaluations"). Given

this cost, the problems accompanying social experimentation cannot be ig-

nored.

It would be useful if a different approach could be developed with a

sensitivity toward the comprehensive linkage of program inputs, process

and outcomes, and a recognition of structural weaknesses in current ex-

perimental methodology. One such approach is proposed in the next section.
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V. MODEL-BASED EVALUATION: CONCEPTS

The approach presented here and illustrated in Chapters 3 and 4 of this

thesis is referred to as Model-Based Evaluation (MBE). As is suggested by

its name, MBE involves the use of one or more models in the evaluation

process. With reference to MBE, Richard Larson states that

"The term model here suggests axiomatically derived

model in contrast to statistically 'discovered'

model." (Larson, 1978: 4)

Thus, the types of models found in MBE are not statistical models such as

regression equations. We also do not intend to address mental or other

non-mathematical modeling methods within the context of MBE (though such

conceptual modeling is important to any evaluation). Rather, the models

we are interested in for evaluation purposes are formal models. According

to Drake:

"...a formal model is an explicit abstraction that

represents the more significant features of an

issue to be considered, identifies the variables

of primary interest, and (usually) proposes measures

of effectiveness for the comparison of alternative

policies." (Drake, 1972: 76)

We may now combine the notions of formal models and program evaluation

in an attempt to define MBE. One such definition has already been suggested

by Larson (1979: 12):

"...a model-based evaluation is one in which a com-

prehensive evaluation (i.e., one studying inputs,
process and outcome) is aided by the use of conjec-

tured models that predict one or more process or

outcome variables as a function of one or more pro-

gram inputs."

This definition, it will be shown, is adequate for the most powerful forms

of MBE. However, in order to allow less powerful but frequently occurring
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scenarios to be included, we will modify Larson's definition as follows:

A model-based evaluation is one in which an evalu-
ation is aided by the use of conjectured models

that predict one or more process or outcome meas-

ures as

(i) a function of one or more program
inputs, and/or

(ii) a result of systematically examin-

ing the implications of alternative
hypotheses governing program per-
formance, without necessarily mak-
ing reference to program inputs.

We will refer to MBEs following (i) and (ii) as Full MBEs, while

evaluations which are MBEs by virtue of (ii) alone will be termed Partial

MBEs. If (i) is satisfied, then it is always possible to explore alter-

native hypotheses of program performance via sensitivity analysis

(changing the parameters of fixed-structure models), structural analysis

(altering the form of fixed-parameter models), or both. However, it is

sometimes not possible to examine program performance explicitly includ-

ing program inputs in the analysis, yet models may still prove useful in

such instances.

The ensuing paragraphs present the major issues which MBEs are

expected to address. It is useful to categorize these issues under the

following five headings:

1. Linkage of Program Inputs, Process and Outcomes

2. Systematic Generation and Examination of Alternative

Hypotheses of Program Performance

3. Determination of the Time Frame Necessary for Evalu-

ation

4. Identification and Understanding of Alternative Per-

formance Measures
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5. Determination of the Cost-Effectivess of Alternative

Programs

Each of these issues will now be discussed.

i. Linking Program Inputs, Process and Outcomes

This is the primary incentive for pursuing MBEs. By examining how

program inputs are translated into program outputs, decision makers may

be provided with information which causally links program activities to

observed results. Perhaps an example will make matters clearer.

Consider a saturation patrol program which operates with the objec-

tive of reducing observable street crime (i.e., crimes which can be

detected by the police patrol). For this example, the only input we

consider is the number of patrol units allocated to the program, N. To

determine program effectiveness, it would appear appropriate to utilize

the probability of on-scene apprehension, PA, as a performance measure.

The question asked by MBE is, can we build a model which will pre-

sent PA (outcome) as a function of N (input)? Without deriving a model

here, we may quickly state some assumptions and a result:

(i) Let Xbe the rate at which a single unit patrols the

experimental area, and assume that all N units

patrol independently with identical rates X.

(ii) Let b be the fraction of time a single unit would

be busy (or out of service) if a single unit

patrolled the entire experimental area alone.

(iii) Let y be the rate at which observable street crimes

are committed in the experimental area (i.e., the

length of the average street crime is 1/y--see

Chapter 3, Section VII).

(iv) Assume that the locations of street crime are

uniformly distributed throughout the experimental

area.
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(v) Let PI be the probability of intercepting a randomly

occurring crime in progress (i.e., the probability

of a patrol unit being in the vicinity of a crime

while the crime is being committed).

(vi) Let PAII be the probability of apprehending a ran-

domly occurring crime given interception.

Using probabilistic reasoning coupled with assumptions (i) through (vi)

yields a "back-of-the-envelope" formulation for PA in terms of N:

PA(N~b, X, Y, P AII I AI * PI

P NX-Xb
AII NA-Xb+y

Of the variables listed on the right hand side of equation (1) above, N,

X, and to a degree b and PAII are controllable. While N is strictly an

input measure, X, b and PAII are process measures. By raising patrol

speeds, for example, X may be increased; by changing reporting practices,

b may be reduced, and through alternative search procedures, PAI may be

increased. All of these changes would serve to increase PA'

Indeed, equation (1) yields a method by which prior expectations of

program performance may be computed. These expectations are logically

derived through a model which takes the program's input and process

explicitly into account. A model similar to that proposed in equation (1)

has actually been used in conjunction with an evaluation in the field of

police patrol (Elliott and Sardino, 1971).

The application of Full MBEs enhances the comprehensiveness of evalu-

ations by definition. Data collection will be required at all three

stages of program functioning in order to implement Full MBEs. A Full
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MBE may even be viewed as a framework for comprehensive evaluation in

general--by explicitly stating input, process and outcome variables

within the model structure, Full MBEs dictate what types of data need to

be collected for evaluation purposes, and indicate how such data should

be related.

ii. Systematic Examination of Alternative Hypotheses

Sometimes it is very difficult to explicitly state functional rela-

tionships between program inputs and program outputs. Consider a correc-

tions program such as work-release which provides an alternative to tradi-

tional parole. It is not known to this author if a relationship between

the number of counsellors and ultimate recidivism rates can be estab-

lished, nor is it clear how time spent by a certain number of program

workers and the same time spent by the same number of parole officers

differentially affect the length of time until clients commit another

offense.

In such cases where the existence of causal relationships is not at

all obvious, it may be worthwhile to pursue a range of conceivable hypo-

theses governing program performance. Some of these hypotheses would be

rooted in theories which are pro-program success, while others would be

rooted in theories which are anti-program success. The emphasis would

then be on the determination of which hypotheses are most consistent with

observed outcomes.

Note that this approach lies in contrast to the pure experimental

approach where one hypothesis, the null hypothesis of program failure,
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is scrutinized to the exclusion of possible competing hypotheses exhibiting

varying degrees of program success or failure. Although the approach of

systematic hypothesis generation and analysis is consistent with the

notion of controlled field experiments, the emphasis has shifted to the

identification of plausible hypotheses for what is observed, rather than

the establishment of credibility for or against the null hypothesis.

Models provide a method for systematically generating and studying

hypotheses. In the corrections example discussed earlier, alternative

theories governing the recidivism patterns of released clients may be

expressed as models, and these models may be tested against actual data

for their relative credibilities. Chapter 4 of this thesis develops

Partial MBE methods for this class of problems.

A good example of the use of models as hypothesis generators/

analyzers stems from recent work in the deterrence area performed by

Barnett (1979). In attempting to determine the effect of capital punish-

ment on homicide levels, Barnett examined several models of homicide

rates including some models which assume a deterrent effect, and some

models which assume no deterrent effect of capital punishment. The pre-

dictions of these models were compared with observed homicide levels to

determine the relative credibilities of the models. Using the stringent

"Region I" admissibility criterion,3 Barnett reported that the group of

models consistent with observed data was "...composed predominantly of

models that attribute a noticeable but not gigantic deterrent effect to

capital punishment. But--and it is a crucial but--certain models assuming

no deterrence at all.. .are also present in Region I." (Barnett, 1979: 25)

Our interest here is not in the actual results stated by Barnett, but
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rather in the creative fashion that he has employed models to evaluate

the effect of capital punishment on homicide levels. The logic of

Barnett's approach is the logic to be employed when conducting Partial

MBEs.

iii. Determining the Time Frame for Evaluation Research

Many evaluations involve some type of pre/post-program comparison,

where dates of program implementation and completion, and lengths of

follow-up data collection periods are fixed. However, it is possible that

by the workings of the program process, major points in the life of the

evaluation may not at all coincide with complementary points in the dy-

namic manifestation of program effects. If this is true, the evaluation

is not likely to produce accurate information.

An example of this is discussed in detail in Chapter 4, but we will

briefly discuss this same example now. Consider a corrections program

where clients are released following a period of treatment. An evalu-

ation is to take place after twenty-four months have gone by. It has been

pre-specified that if 40% or less of program clients have been rearrested

after twenty-four months, then the program is a success. Figure 3 pre-

sents rearrest patterns over time for three models which all are consis-

tent with the first six months of data collection.

As can be seen from Figure 3, Model C demonstrates a plausible

behavior in which less than 40% of program clients have been rearrested

by twenty-four months, but more than 40% of all clients are rearrested

in the long run. In this case, assuming that 40% rearrested is still the



- 39 -

PF (t)
1.0

% of

Population

Rearrested

PF (t) .40

0.0

t = 24 t

Time From Release

Figure 3

Rearrest Patterns over Time: Three Models

A

B

6
I
I
I
I

I
£
U
S
S



- 40 -

desired standard, the evaluation should have continued at least until the

time that Model C predicted 40% of all program clients would be rearrested.

Models also allow one to project the long-term consequences of pro-

grams. In the same example just discussed, Model A actually predicts the

rearrest of all program clients in the long run, while Models B and C pre-

dict an eventual 50% rearrest rate. Predictions of this sort are valuable

to decision makers who are interested in the ultimate impacts of the

programs and policies they choose to adopt.

iv. Identification and Understanding of Alternative Performance Measures

In Section III of this chapter, we identified three criteria for per-

formance measures: the deterministic, probabilistic and observability

criteria. Models are an invaluable aid toward the satisfaction of the

deterministic and probabilistic criteria. In some cases, models even help

to satisfy the observability criterion by manipulating easily gathered in-

formation to produce performance measures whose direct observation would

be rather difficult. An example of the latter phenomenon is the use of

modeling methods to predict queueing delays and other statistics pertain-

ing to the police emergency response system from simply gathered informa-

tion like call-for-service rates and service times. Some examples of this

are shown in Section IV of Chapter 3.

Returning to the deterministic and probabilistic criteria, and the

identification of alternative performance measures, models of the per-

formance measures indicate what behavior to expect under alternative as-

sumptions. A good example involves a model built by Blumstein and Larson

(1971) of the recidivism process. This model identifies a new performance



- 41 -

measure n , the average number of future crimes committed, as a function

of r, the recidivism probability. The simple relation discovered was

(Blumstein and Larson, 1971)

- 1
n (r) = (2)
c 1l-r

This measure is interesting. Equation (2) tells us that as the recidivism

rate decreases from .9 to .8, a difference of 11%, the number of future

crimes committed decreases from 10 to 5, a decrease of 50% (Blumstein and

Larson, 1971: 128). The performance measure n c(r) is sensitive to small

changes in r when r is near 1.0, and is perhaps a better performance

measure for this reason.

Equation (2) satisfies the deterministic criterion; if we know that

r = .5, then we know that n (r) = 2. Suppose, however, that the recidi-
c

vism probability varies from individual to individual according to some

distribution f(r). For example, if the assumption is that individuals

recidivate independently of each other, then the beta distribution
4

f(t) - ra-1 (1 - r) c~- (3)
r r(a) )

0 < r < 1, at, S > 0

could well describe the probabilistic behavior of r. How about the

probabilistic behavior of nc (r)? One could derive the probability dis-

tribution of n (r) using change of variable methods. In particular, the
c

expected value of n c(r) may be computed as

a + -1
E[n (r)] = + (4)

c -1
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Thus, the probabilistic criterion may also be satisfied for n (r) through

the use of a mathematical model.

Research into the behavior of performance measures is clearly an

important task for any evaluation. One of the major outcomes of such

research relates back to the notion of prior expectations of program per-

formance as discussed earlier. It is obviously to the advantage of the

evaluator to know that observed results are in line with certain situations

made explicit via MBE.

v. Determination of Program Cost-Effectiveness

One last use of MBE which should be mentioned--models of social pro-

grams can be used to determine their costs, and program effectiveness can

be explored by subjecting models of alternative programs to equal cost

budget constraints. Although techniques of cost benefit analysis have

been developed separately from MBE, the existence of a model provides a

convenient framework for costing out a program. It is not the purpose of

this thesis to discuss model-based methods of cost-benefit or cost-

effectiveness analysis, but a simple example is provided in Section IX of

Chapter 3.

* * * * * * *

This tour of MBE has suggested that a different style of evaluation

may help to resolve some, but not all, of the problems discussed in

Section IV of this chapter. While we have presented scattered examples

throughout, it would be useful to examine an actual MBE that was performed

and disseminated. Such an example is presented in the next section.
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VI. MODEL-BASED EVALUATION: FORMAL MODELS AND THE KANSAS CITY PREVENTIVE

PATROL EXPERIMENT

The Kansas City Preventive Patrol Experiment (KCPPE) is perhaps the

most well-known social experiment performed in the area of criminal jus-

tice. The intent of this study was to determine the effect of varying

levels of preventive patrol on outcome measures such as the crime rate.

Basically, the experiment attempted to implement three levels of patrol

activity:

(i) Reactive Beats - no preventive patrol was to be

performed in these areas

(ii) Control Beats - preventive patrol was to be car-

ried out as usual

(iii) Proactive Beats - two to three times the normal

level of patrol was to be implemented

The major finding of the study was that variations in the level of preven-

tive patrol had no effect on the relevant outcome measures (crime rate,

citizen's feelings of safety, etc.). The details of this experiment may

be found in Kelling et al. (1974).

The implications of these results could be far reaching. Indeed, if

it really is true that patrol has little influence on the incidence of

crime, then perhaps the amount of resources allocated to the patrol func-

tion should be seriously questioned. However, before any such steps are

taken, it is important to question the validity of the experimental re-

sults from Kansas City.

In 1975, an article by Richard Larson appeared in the Journal of

Criminal Justice entitled "What Happened to Patrol Operations in Kansas

City? A Review of the Kansas City Preventive Patrol Experiment." This
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article constituted a reanalysis of the KCPPE. Using data generated by

the experiment, Larson probed the likely results one could have expected

if the experimental design was properly implemented. He also examined

the maintenance of the experimental design, and determined several serious

threats to the experimental set-up. More interesting to us here, though,

is the method by which Larson carried out his analysis. Throughout his

paper, Larson employed probabilistic models to aid him in his investiga-

tion. Although the idea of MBE was not fully developed at the time Larson

wrote his paper, his work provides a shining example of Full MBE as applied

to the evaluation of an evaluation.

To see what it was that Larson was able to show with his models, we

will quote from the abstract to his paper (Larson, 1975: 267):

"Where appropriate, simple probabilistic models

are employed to estimate frequencies of preventive

patrols and response times in each of the experi-

mental areas. These models, together with experi-

mental data, demonstrate that (1) typical patrol

intensities in Kansas City are not large enough to

encompass the range of patrol intensities experi-

enced in other cities, and (2) patrol visibility in

the depleted areas (the reactive beats) due to

responding calls for service is relatively quite

large, perhaps even equalling the pre-experimental

levels during high workload periods. Such models

also demonstrate that travel distances into the

reactive beats should not be markedly increased, as

the researchers had expected.

"Based on models and experimental data, the

analysis indicates that the particular experimental

design used in Kansas City resulted in a signifi-

cant continued patrol presence in the depleted

areas, with little increase in travel times in

those areas."

Rather than repeat all of Larson's analysis here, the reader is invited

to read Larson's paper itself. However, it should be noted that Larson's
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work does respond to some of the issues discussed in the last section. By

examining process-oriented models which utilized input variables as

predictive factors, Larson was able to establish a comprehensive link

between program inputs and outputs. In some of his models, Larson

examined alternative hypotheses governing program performance, establishing

a plausible range of likely outcomes (for example, the use of "liberal"

and "conservative" estimates in his model of patrol frequency--Larson

(1975: 278)). Of course, by constructing models of various performance

measures, the behavior of these measures becomes clearer. Larson's

models enable his performance measures to satisfy the deterministic and

probabilistic criteria as discussed in Section III of this chapter.

The appearance of Larson's work has sparked a controversy in the

evaluation field. The evaluators of the KCPPE, following the traditional

norms of social program evaluation, devoted much energy to the collection

and analysis of empirical data. Larson, a theoretician, attempted to

introduce explanatory models to the debate. The two procedures are not

mutually exclusive, but they should be recognized as different approaches

to problems of evaluation research.

The overall impact of Larson's research appears to have reduced the

credibility of the KCPPE results. This is perhaps best evidenced by the

Law Enforcement Assistance Administration's (LEAA) recent Request for

Proposals to design an experiment to effectively determine the deterrent

effect of preventive patrol (see The Effectiveness of Police Preventive

Patrol, 1979). There are those who still support the KCPPE results in
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spite of Larson's work. Nonetheless, Larson has demonstrated the feasi-

bility of using models in evaluation; his work remains the best example

of MBE to date.
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VII. SUMMARY AND GUIDE TO THE THESIS

This chapter introduced the reader to the field of evaluation re-

search, and to the methodologies currently employed in the evaluation of

public programs. After discussing the limitations of these methodologies,

we presented an alternative approach in the form of Model-Based Evaluation.

In review, we argued that Full and Partial MBEs could be expected to

address five issues:

1. Linkage of Program Inputs, Process and Outcomes

2. Systematic Generation and Examination of Alternative

Hypotheses of Program Performance

3. Determination of the Time Frame Necessary for Evalu-

ation

4. Identification and Understanding of Alternative Per-

formance Measures

5. Determination of the Cost-Effectiveness of Alterna-
tive Programs

We ended by discussing an example of MBE that was performed in response to

a large-scale social experiment.

The discussion in this chapter was somewhat abstract. It is the pur-

pose of the following three chapters to motivate, illustrate and apply the

ideas we have presented here in specific instances of criminal justice

evaluation. These three chapters taken in conjunction with this intro-

ductory chapter should give the reader a strong sense of what it means to

develop and utilize models within the context of criminal justice evalua-

tion.

Chapter 2 presents some recent evaluation research performed in the

police patrol area. The statistical shortcomings of these studies are il-

lustrated, and reasons for the existence of such errors are suggested.
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The studies examined in Chapter 2 could well have benefited from the ideas

of MBE, and it is intended that the problems observed in that chapter serve

as motivating examples of the need for a more structured approach to evalu-

ation. Such an approach is available through MBE.

Chapter 3 presents an in-depth Full MBE of one- versus two-officer

patrol units. Utilizing actual data generated by a recent social experi-

ment in San Diego, the models of that chapter examine the implications of

staffing policies on performance measures such as expected area covered by

patrol, response time, patrol frequency, patrol visibility, probability of

crime interception, and injury probability. In addition, equal-cost

staffing options are examined. From this MBE, the advantages of one-officer

patrol become strikingly apparent.

Finally, Chapter 4 develops and discusses a class of models applicable

to the evaluation of treatment-release programs. The use of these models

is appropriate in situations involving experimental designs, as the models

are valuable generators and analyzers of alternative theories of program

performance. Statistical procedures derived from the models are presented,

and examples of their use in program evaluation are discussed. That

chapter concludes with a brief discussion of possible extensions to the

models described.
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FOOTNOTES

'These statistical models are not to be confused with axiomatically

derived "formal models." Indeed, most of this thesis will center around

the role of formal models in evaluation.

2The study is "An Empirical Study of Methods Used in Criminal Justice

Evaluations," Richard C. Larson, Principal Investigator.

3A model is deemed statistically credible if it is admitted to

Region I. "A homicide model should be included in Region I if its ob-

served systematic error is smaller than the effect it attributes to

capital punishment." (Barnett, 1979: 21)

4 See Freund (1971), page 114.
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CHAPTER 2

RECURRENT TECHNICAL DIFFICULTIES IN PATROL EVALUATION:

MOTIVATING EXAMPLES

I. INTRODUCTION

The world of criminal justice evaluation is characterized by con-

strained studies with limited budgets attempting to analyze the complex

consequences of broad reforms. In the areas of the courts, corrections

and policing, studies can be found ranging from the effects of jury selec-

tion on sentencing, to the effects of community treatment programs on

rearrest probabilities, to the effects of team policing on crime rates.

To determine the effectiveness of these programs, evaluators are often

placed in the position of having to examine data via some form of quan-

titative analysis.

Of the three subcomponents (police, courts, corrections) of the

criminal justice system, quantitative methods are most easily applied

to the logistical problems of the police. Police patrol evaluation in

particular has been pursued from a quantitative point of view.

A current LEAA-funded study of 200 criminal justice evaluations

included 46 studies in the "police logistics" area; many of these 46

studies involved well-known evaluations of alternative patrol strategies.

Of these 46 studies, 42 relied heavily on numerical data, and 32 invoked

some form of quantitative method (e.g., hypothesis testing, regression)

beyond the tabular display of raw data. 2 When these studies were sub-

jected to methodological scrutiny, some disappointing findings emerged.

- 52 -
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Many studies examined exhibited low technical quality. Inappropriate

methods were used in some cases, while reasonable techniques were poorly

applied in other instances. Since conclusions regarding program effec-

tiveness are reached through such analysis, the credibility of these

studies becomes questionable.

This chapter presents four examples of misapplied methodology in

police patrol. Since patrol studies tend to be more sophisticated (in a

technical sense) than other criminal justice evaluations, the difficul-

ties described in these examples are not felt to be peculiar to patrol

evlauations; the problem of misapplied evaluation methodology is of broad

concern to criminal justice system evaluators and decision-makers. We

conclude by attempting to account for these technical shortcomings, and

formulating the case for a different approach to quantitative evaluation.
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II. EXAMPLES OF RECENT PATROL EVALUATION ANALYSES

The four examples which follow are in many ways typical of the analy-

tical difficulties found in patrol evaluation. Though the tone of this

section may sound highly critical, it must be remembered that these ex-

amples stem from state-of-the-art patrol evaluations; in fact, the studies

mentioned here are without a doubt among the most rigorous patrol evalua-

tions performed to date. Thus, the comments which follow should not be

interpreted as premeditated assaults against specific studies; rather

these examples are meant to illustrate a general problem which currently

troubles the entire patrol (and criminal justice!) evaluation fields.

i. Injuries in San Diego

The San Diego One-Officer/Two-Officer Patrol Experiment was conducted

to compare the performance of one- versus two-officer patrol (Boydstun et

al., 1977). While there were many issues tackled in this experiment (most

of which are reviewed in Chapter 3), one major reported finding surrounded

the issue of safety. Patrol officers were not in favor of one-officer

patrol primarily due to the feeling that one-officer patrol is simply

more dangerous than two-officer patrol, yet the final evaluation report

Patrol Staffing in San Diego: One- or Two-Officer Units stated that in

general, one-officer patrol was as safe as, if not safer than, two-officer

patrol (Boydstun et al., 1977: 69-70). The basis for such a statement

stems from a number of statistical tests performed on measures such as

assaults, resisting arrests, and officer injuries (Boydstun et al., 1977:

62). For this example, we will only consider injury levels as the other

measures may be approached in a similar fashion.
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The San Diego evaluators examined the average number of injuries per

unit that occurred during the experimental period for both one- and two-

officer patrol. These two figures were compared statistically using the

well-known Student's t-test (Freund, 1971: 319), and it was concluded

that at a significance level of at = 0.05, there was no significant dif-

ference between these figures, and hence no difference between the like-

lihoods of injury resulting from one-officer or two-officer patrol

(Boydstun et al., 1977: 62). Ignoring the question of whether or not

the t-test is appropriate for the data generated by this study, this

finding appears to have been reasonably derived. Or was it?

The average number of injuries per unit is not as interesting a

measure as the average number of injuries per officer. Assume for the

moment that a priori, an officer in a one-officer unit has a fixed proba-

bility of injury (over time, type of call and particular officer) given

involvement in an incident (this assumption should not be troublesome

to supporters of the San Diego study; a comparable assumption is neces-

sary to invoke the t-test). If each of the officers in a two-officer

unit has this same officer specific probability of injury, then our in-

tuition would lead us to expect twice as many injuries from two-officer

units as from one-officer units. In Section VIII of Chapter 3, we show

that this intuitive notion is in fact true.

What we have learned is that a test of the null hypothesis

H * Injuries _ Injuries (1)
o One-Officer unit Two-Officer Unit

is not equivalent to testing the null hypothesis

H : Pr{officer specific injury one-officer unit}
i s(2)

= Pr{officer specific injury two-officer unit}.
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Rather, to test (2), one would examine

H - Injuries _ Injuries (3)

Inure op___n_________

o One-Officer Unit Two-Officer Unit

. njuries Injuries ,then in fact oei oelkl
One-Officer Unit Two-Officer Unit on'smrelkl

to be injured when patrolling in a one-officer unit than when patrolling

in a two-officer unit. From the San Diego study, we see that 19 injuries

were incurred by officers in 22 one-officer units, as opposed to 31 injur-

ies in the same number of two-officer units for equivalent exposures to

dangerous incidents (Boydstun et al., 1977: 63). Since 38 > 31, we see the

evidence suggesting that two-officer patrol is safer than one-officer patrol,

if only slightly so (this is addressed in Section VIII of Chapter 3).

ii. Aggregating Data: Patrol Visibility in Kansas City

The Kansas City Preventive Patrol Experiment (KCPPE) is probably the

most well-known of all research efforts in the criminal justice field.

In this experiment, 15 Kansas City police beats were divided into three

groups of five beats. The first of these groups consisted of five "pro-

active" beats where the amount of preventive patrol was doubled to tripled.

The second group of five was made up of "control" beats where the preventive

patrol effort remained at normal operating levels. The remaining five beats

were termed "reactive"; in these beats, preventive patrol was presumably

terminated completely (Kelling et al., 1974: 28).

To determine whether or not police visibility decreased markedly in

reactive areas, surveys were administered which, among other things,

asked respondents how often they observed police cars (Kelling et al.,
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1974: 39). Respondents were able to choose one of the following answers

to this question:

1. more than once a day

2. once a day

3. more than once a week (but less than once a day)

4. once a week

5. less than once a week (but more than once a month)

6. irregularly

7. never.

As Larson (1975) has noted, these intervals are not of equal size. In

fact, if we compare this data aggregation scheme to one based on an equal-

interval scale, the following correspondence is noted (Carter and Kaplan,

1977: 12).

Visibility Visibility
(sitings per week) (KCPPE scale)

0-1 ) 7, 6, 5

1-2 4

2-3

3-4

4-5 3

5-6

6-7

7-8 2

8-9

9-10 1

The following example is meant to illustrate one type of result that

could be completely determined by the way that the Kansas City evaluators
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classified their data. While the framework used in the example is analo-

gous to the Kansas City design, we stress that in this example, the data

are hypothetical.

Consider the data shown in Table I. One way to check for the exis-

tence of a statistically significant relationship between Police Visibility

and Type of Beat is to test the null hypothesis

H : Police Visibility and Type of Beat are independent

using the statistic (Freund, 1971, 334-337)

5 3 (O.. - E.. )2

i=1 j=l E .
131

where i,j = row, column subscripts

0.. = observed frequency in cell ij
IJ

E.. = expected frequency in cell ij

5 3 5 3

= E 0 -j E 0O 9 E E 0O 9
k~l=1 j k=1 9,=1 k

S a chi-square random variable with (5-1)(3-1)=8

degrees of freedom.

Applying equation (4) to Table I, we compute S = 18.79. At a sig-

nificance level of a = .05, the critical value of a chi-square random

variable with 8 degrees of freedom is S* = 15.507 (Freund, 1971: 438).

Since S = 18.79 > 15.507 = S*, we may reject the null hypothesis of in-

dependence at a = 0.05, and conclude that Police Visibility and Type of

Beat are related (the desired result from the viewpoint of the Kansas

City evaluators).
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TABLE I

Reactive

B E A T

Control Proactive TOTAL

I 15 12 10 37

POLICE II 30 14 10 54

VISIBILITY III 40 55 60 155

(Sitings) IV 5 6 5 16

V 10 13 15 38

TOTAL 100 100 100 300

where I = less than once/week, but more than once/month

II = once/week

III = more than once/week (but less than once/day)

IV = once/day

V = more than once/day
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Now, if we turn our attention to Table II, one notices that if these

figures were classified using the aggregation scheme of Table I, Table I

would be identically reproduced. Using the equal-interval scale of

Table II, we may again compute a chi-square statistic to test for the

independence of Police Visibility and Type of Beat. In this case, we

examine

10 3 (0. . - E. )2
S =E E E3 1 (5)

E
i=l j=1 ij

where all symbols are defined as before (but with reference to Table II),

and S now has (10-1)(3-1) = 18 degrees of freedom.

Equation (5) produces the value S = 21.32. Again checking against a

significance level of a = .05, the critical value of a chi-square random

variable with 18 degrees of freedom is S* = 28.869 (Freund, 1971: 438).

Since S = 21.32 < 28.869 = S*, we cannot reject the null hypothesis of in-

dependence at a = .05. It could be that there is no relationship between

Police Visibility and Type of Beat.

As mentioned before, Tables I and II may be viewed as containing the

same data under alternative aggregation schemes. From a statistical view-

point, the equal-interval data aggregation scheme of Table II is prefer-

able to the scheme utilized in Table I. Yet in the actual experiment,

visibility data were aggregated along the lines of Table I (Kelling et al.,

1974: 39). In the Kansas City Experiment, relationships between Police

Visibility and Beat Type may have be found solely due to the manner in

which survey data were classified.3
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TABLE II

POLICE

VISIBILITY

(Sitings

per Week)

0

1

2

3

4

5

6

7

8

9

1

2

3

4

5

6

7

8

9

10

B E A T

Reactive

15

30

8

11

10

6

5

5

5

5

Control

12

14

11

11

11

10

12

6

6

7

Proactive

10

10

12

13

11

10

14

5

7

8

TOTAL 100 100 100 300

TOTAL

37

54

31

35

32

26

31

16

18

20

TOTAL 100 100 100 300

I
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iii. The Determinants of Police Response Time

As part of a study related to the KCPPE entitled Police Response Time:

Its Determinants and Effects, researchers attempted to determine statisti-

cally those factors thought to affect police response time. Response

time was defined as "...the difference between the time an officer re-

ceived a call and the time the officer contacted the citizen." (Pate et

al., 1976: 22) Those variables chosen to estimate response time included

the distance to the call, the time taken to start the call after the offi-

cer had received the call, driving speed, and the time elapsed before the

arrival of an assisting officer (where applicable) (Pate et al., 1976: 22-

23). The analysis consisted of computing Pearson's product-moment corre-

lation coefficients (r) for response time versus each of the four explana-

tory variables, and testing to see if this coefficient was significantly

different from zero (Pate et al., 1976: 63).

Applying such a technique to a problem of this sort is erroneous.

First, let us define the equation that these evaluators implicitly sug-

gested through their framing of the research question:

t = D + - + D 2  (6)

where t = response time

Di = time taken to start call

D2 = time elapsed before the arrival of an assisting officer

d = distance to the call

s = driving speed associated with the call

As is immediately evident from equation (6), there are four variables

which affect response time, hence correlating response time with any one

variable demands that the other three be held constant!
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A few illustrations will help to establish this point. Allow us for

the moment to combine Di and D2 via summation (i.e., define D = Di + D2 ).

Suppose we wish to correlate response time with distance. Figure 1 illus-

trates one set of relations between response time and distance where speed

and non-travel delays (D) are held constant; such sets of relations exist

for all values of s and D. It is apparent from Figure 1 that for any

fixed pair (s, D), response time and distance are linearly related, and

the correlation coefficient between these two variables would equal 1.0.

However, if s and D are not controlled, then no definite relation is

guaranteed to emerge (hence the reported correlations between response

time and distance of r = .567, r = .532, r = .475 and r = .550 (Pate et

al., 1976: 24-25)).

Similarly, examining response time versus speed controlling for dis-

tance and non-travel delays yields Figure 2. Patterns like those shown

in Figure 2 exist for all combinations of D and d; aggregating all col-

lected data without structuring it as in Figure 2 is bound to weaken the

appearance of this conditional relationship between response time and

travel speed.

However, Figure 2 is instructive in another sense. The conditional

relationship that exists between response time and travel speed is not

linear; this is also obvious from equation (6).

In the actual study, true response speeds were not measured. Rather,

the following subjective rating scale was used (Pate et al., 1976: 28).4

1. very fast

2. moderately fast

3. slightly fast
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D = C5

= C4

D = C 3

D = C2

= C1

D= 0

Slope of all

lines =1
k

d
Distance

Figure 1

Response Time Versus Distance (s=k)

t

Response

Time
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t

Response

Time

d=c4

d=c 3
d=c2

d=Ci

k d=O

Speed s

Figure 2

Response Time Versus Speed (D=k)
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4. speed limit

5. slightly slow

6. moderately slow

7. very slow.

This scale undoubtedly suffers from problems similar to those of the

KCPPE's visibility scale of the last example. In particular, for linear

correlation methods to be used, the intervals of this subjective scale

need to correspond to equal intervals of 1/s, the inverse of speed for

any given call, as the scale increases from 1 to 7. Otherwise, the con-

ditional relation between response time and "subjective speed" as scaled

in this report cannot be linear, and the use of linear correlation analy-

sis becomes even more incorrect.

It is little wonder that the reported correlations between response

time and driving speed are so low (r = .016, r = .059 (Pate et al., 1976:

28-29)). The researchers attribute this finding to the narrow range of

driving speeds that is found in Kansas City:

"... the speed limits generally ranged only from 20

to 35 miles per hour. With so little variation

among reported driving speeds, the low statistical

correlations between driving speed and response

time should not be construed to indicate that driv-

ing speeds do not affect response time. The method

of estimating driving speeds may not be sufficiently

reliable, and the actual range of speeds may be too

narrow to permit the accuracy required for correla-

tion analysis." (Pate et al., 1976: 28)

This writer is inclined to attribute this result to the overall method of

analysis employed rather than to the particulars of observed data.

If we return to equation (6), we realize that this equation defines

response time. The term d/s corresponds to travel time, while the sum
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Di + D2 = D corresponds to non-travel delay time. The intent of the re-

searchers translates as an attempt to show statistically that equation (6)

is correct by definition! This example has presented the analytical errors

committed by one study which attempted to verify the obvious.

iv. Citizen Satisfaction with Response Time

In a different response time study, a system of regression models

was proposed to determine the effects of various factors on citizen satis-

faction with response time. The five equations analyzed were (Response

Time Analysis, 1977: 120)

TT = a + bi TOC + e (7)

DT = a + b2 TOC + e (8)

IRT = a + b 3 SC + b4 TOC + b5 TT + b6 DT + e (9)

(P-E)/E = a + b 7 SC + b8 TOC + b9 TT + bio DT + bil IRT + e (10)

CS = a + b 1 2 SC + b1 3 TOC + b1 4 TT + b15 DT + b16 IRT

+ b1 7 (P-E)/E + e (11)

where SC

TOC

TT

DT

IRT

(P-E) /E

CS

a's,b's

e's

= social characteristics of the involved citizen

= type of crime

= travel time

= dispatch time

= importance of response time

= perceptions and expectations index

= citizen satisfaction

= constants to be estimated

= residual variation
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According to the evaluation report,

"This model was analyzed through successive multiple
regression analysis of each equation listed above.

By examining the path coefficients (b's), it was pos-

sible to obtain the total effect that an independent

variable had on citizen satisfaction by examining

both its direct effects and its indirect effects
through other variables." (Response Time Analysis,

1977: 120)

The "model" that is presented here has some peculiar implications.

Suppose that equations (7) through (11) are true. It is a simple alge-

braic exercise to show via the substitution of equations (7) through

(10) into equation (11) that the following result is also true,

CS = A + B - TOC + C - SC + c (12)

where A, B and C are constants, C is a random error term, and CS,

TOC and SC are as defined previously. Equation (12) states that citizen

satisfaction with response time is determined solely by the type of

crime committed, the social characteristics of the involved citizen,

and random fluctuations.

Somehow, this result is troublesome. Aside from the methodological

flaw of including "independent" variables which are postulated to be

dependent upon each other in the regressions of equations (9) through

(11), the best result that could be produced by this model is one that

dictates police ineffectiveness. If the proposed model is true, all at-

tempts by the police to increase the level of citizen satisfaction with

response time are doomed to fail.

Intuitively, one senses that citizen satisfaction with response time

should be a monotonically decreasing function of response time. A model

exhibiting this behavior could provide a useful framework for analysis.
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While the model depicted by equations (7) - (11) does include some of the

factors which may be thought of as affecting citizen satisfaction with

response time, the way these factors are related in that model is neither

useful nor meaningful.
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III. PROCEDURE AND THEORY IN PROGRAM EVALUATION

As mentioned at the beginning of Section II, the examples we have

discussed typify the kinds of errors commonly committed in patrol eval-

uation. Though one might react by seriously questioning the integrity

of patrol evaluation research when confronted with these examples, such

a reaction is not constructive. In this section, we will attempt to ac-

count for the technical difficulties apparent in patrol evaluation.

Initially, it is useful to distinguish between two classes of methodo-

logical errors in evaluation. The first class of errors we will label

"procedural." The second class consists of errors that are more "con-

ceptual" in nature.

Procedural errors refer to flaws that arise during the mechanics of

analysis. Improper data aggregation (as in the visibility example),

algebraic errors and computational miscalculations may all be viewed as

procedural problems. Procedural errors may be committed within the frame-

work of an analytical design which is in itself technically sound, and

some of these errors, if detected, may be corrected without too much dif-

ficulty. It is our guess (and hope) that these errors do not occur in

isolation with sufficient frequency to warrant further attention.

Those errors we have termed as conceptual comprise a more serious

group of technical problems. Given a specific evaluation concern, con-

ceptual errors may arise from the evaluator's understanding (or misun-

derstanding) of the process by which program inputs are transformed into

program outputs, and from the evaluator's insertion of this process into

a methodological framework for purposes of analysis. In short, concep-

tual errors result when the relationship linking program inputs to program

outputs is not well-structured by the evaluator.
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Figure 3 presents the familiar schematic of a generic program, in-

cluding the components normally associated with program evaluation.

Aside from program goals which we will take as "given," and evaluation

conclusions which we will take as "implied," each of these components

will be briefly scanned for their potential contributions to conceptual

error in evaluation.

i. Hypothesis Formulation

This step in many ways sets the stage for subsequent evaluation

effort. An ill-conceived hypothesis can dictate the selection of mean-

ingless performance measures, the collection of irrelevant data, and the

application of poor analytical techniques (or the unnecessary application

of sophisticated methods). In the injuries example of last section, the

hypothesis

"If one-officer and two-officer patrol are equally

safe, then the number of injuries resulting from

one-officer patrol should equal the number of in-

juries resulting from two-officer patrol."

led to the specification of injuries per unit (as opposed to injuries per

officer) as the key performance measure. This in turn led to the t-test

which acted to support the hypothesis in question. Luckily, this example

was easy to correct, and luckier still, the correct result does not differ

sharply enough from the incorrect result to affect policy significance.

However, it should be obvious that this will not always be the case.

ii. Selection of Performance Measures

Performance measures have always caused problems for evaluators. In

the attempt to specify measures for program inputs, process and outcomes,
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FIGURE 3

A GENERIC PROGRAM

- Input Measures

- Data Collection

Program Process

- Hypothesis Formulation

- Process Measures

- Data Collection

- Analysis

- Program Goals
(Desired
Outcomes)

- Output Measures

- Conclusions
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it is easy to confuse the purpose of any given measure. For example, if

the aim of a program is to increase police productivity in a given area,

then response time is not a proper outcome measure to use. Rather, re-

sponse time is a process measure (along with measures like patrol work-

load), which when combined with certain input measures (like officer

salaries, number of available personnel) may be used to compute pre-

specified outcome measures (such as efficiency/effectiveness ratios).

To evaluate such a program as if it were intended to minimize response

time is conceptually erroneous.

iii. Data Collection

While errors committed during the manual recording of data may be

seen as procedural, there are some conceptual problems that also arise.

Foremost among these are problems associated with sampling. The means

by which data are collected has direct implications towards the means by

which data may be analyzed. For example, Larson (1975: 274) has noted

that the use of participant-observers in high activity beats as data

collectors for the KCPPE generated a highly nonrandom sample. To use

standard statistical procedures on a sample such as this is simply not

valid, as such procedures are predicated on the notion of random sampling.

Interestingly enough, the data for Police Response Time: Its Determinants

and Effects were generated by the observers Larson mentions in his article

(Pate et al., 1976: 9).
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iv. Analysis

This is the step which appears to be associated with the most serious

conceptual errors. The two response time examples of last section are

clear instances of this; they need not be repeated here.

What is symptomatic of conceptual errors in patrol evaluation is the

reliance on a narrow range of analytical tools. Two of the most popular

(and frequently misused) methods are conventional hypothesis testing and

regression analysis. Due to their omnipresence in the evaluation litera-

ture, it is useful to speak briefly about each.

Hypothesis testing (e.g., z, t, F, X 2) is a useful technique if it

is administered correctly. Unfortunately, within the context of program

evaluation, the requisite environment for the proper application of these

methods is often unachievable (as discussed at length in Chapter 1).

With reference to the relationship between program inputs and outputs,

hypothesis testing provides a framework for the examination of one theory;

this will be the level of outcome measures if the program has no effect.

This framework is narrow indeed for a situation as complex as the evalua-

tion of a social intervention program.

Regression analysis is perhaps the most abused technique of all.

Due to its ability to fit multi-factor equations to data, many feel this

method to be invaluable. Yet, the use of this technique highly restricts

the evaluation to the assumption of intrinsically linear relationships

between variables. As the measures associated with social programs ex-

hibit high degrees of uncertainty, the use of such linear analysis to

examine nonlinear stochastic relationships is too simplistic an approach.
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Clearly, another approach is necessary. If such an approach could

capture the major features of the mechanisms by which program inputs are

translated into program outputs, then much of the conceptual confusion

related to hypothesis formulation, selection of performance measures,

data collection and analysis could be avoided.
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IV. LINKING THEORY TO PROCEDURE VIA MODEL-BASED EVALUATION

In Chapter 1, we outlined a theory of model-based evaluation. It is

evident that process-oriented models could have aided the evaluations

cited in Section II. The two response-time studies would particularly

have benefited from the use of modeling procedures.

Having probed the field of evaluation methodology and proposed an

alternative to current methods of analysis, it is time to attempt some

applications of our ideas. The remaining two chapters of this thesis are

both applications of modeling techniques. Chapter 3 presents a model-

based evaluation of one- versus two-officer police patrol; it represents

a modeling effort aimed at a specific topic. Our focus becomes more

general in Chapter 4 where we develop a class of models for the evalua-

tion of treatment-release corrections programs.
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FOOTNOTES

1The study referred to is "An Empirical Study of Methods Used in

Criminal Justice Evaluations," currently underway at MIT under the

direction of Richard C. Larson.

2These figures are derived from the MIT study.

30f course, the reverse situation could also be true--significant

differences resulting from the aggregation scheme of Table II could well

be masked by the use of the aggregation scheme of Table I.

"A modified five-point scale was also used, but the criticisms

which follow apply equally to both scales.
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CHAPTER 3

EVALUATING THE EFFECTIVENESS OF ONE- VERSUS TWO-OFFICER PATROL UNITS

I. INTRODUCTION

The issue of one- versus two-officer patrol units has been a subject

of controversial debate among police researchers for over twenty years.

While many decry the postulated merits of one-officer patrol, timely sur-

veys indicate that an increasing number of U.S. metropolitan police

departments are adopting this staffing strategy (Governmental Research

Institute (1957); Boydstun et al., 1977: Al-A8, Clawson and Tarr, 1977).

Despite this major change in manpower allocation, the impact such a

change would have on police patrol has not been widely researched. Most

statements made on the subject have been speculative in nature; it is

not known what the implications of using one- versus two-officer patrol

units are, let alone which of the two methods of patrol should be adopted

under different circumstances.

The little evaluative research that has been carried out in this area

has been experimental in nature. While a carefully monitored and con-

trolled social experiment can provide valuable information, such experi-

ments are very difficult and expensive to perform in the field of police

patrol. Also, such experimental data emphasizes only the presence or ab-

sence of correlations among variables; structural, indeed casual relation-

ships between-variables are not defined through such empirical reasoning.
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On the other hand, model-based evaluations provide an attractive alter-

native to the approach of social experimentation. Through the construction

of simple mathematical models, structural relationships between variables

are explicitly defined. These relationships are invoked by the evaluator

to determine numerical values for a wide range of performance measures

relevant to the problem under consideration.

A model-based evaluation of one- versus two-officer patrol staffing

would examine the operational aspects of the two staffing strategies.

Such an evaluation attempts to formalize expectations of comparative

strategic performance under varying circumstances. These expectations

may then be used by police administrators to aid in their policy decisions

with respect to one- versus two-officer patrol staffing issues.

This chapter presents a model-based evaluation of one- versus two-

officer patrol. The pros and cons of the two strategies are discussed

in the next section. Emerging from this discussion is a set of perform-

ance measures. These performance measures are modeled for both staffing

strategies, allowing for a comparative analysis. Important results are

summarized at the end of the paper, as are directions for further work.
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II. ISSUES AND PERFORMANCE MEASURES

The pros and cons of each staffing strategy as debated in the litera-

ture are remarkably consistent (Chicago Police Department, 1963; Govern-

mental Research Institute, 1957; Boydstun et al., 1977: F-8, Al-A8).

Briefly, the arguments are as follows.

For a given manpower level, the use of one-officer units enables the

fielding of twice the number of patrol cars as the use of two-officer units.

This doubling of units allows for an increase in police visibility; time

spent on preventive patrol, hence increasing the probability of detecting

a crime in progress; average area covered by patrol; and a decrease in

response time. To achieve this same level of patrol utilizing two-officer

units would involve doubling the number of patrol officers, a very expensive

proposition. Alternatively, for a given cost constraint, more units may

be fielded using one- as opposed to two-officer staffing, again allowing

for improved patrol performance. Thus the use of one-officer patrol units

provides a more efficient, cost-effective service system than could be

realized through the use of two-officer units.

On the other hand, two-officer cars are preferred to one-officer units

for reasons of safety. The presence of a second officer provides a "built-

in cover" for the first officer. Two-officer units do not take as long to

service calls as one-officer units due to the additional manpower available

on the scene. One two-officer unit is less expensive than two one-officer

units, and since many calls cannot be handled by single one-off icer units,

the cost of servicing such calls is higher for one-officer staffing than for

two-officer staffing. Thus, the use of two-officer patrol units provides a

safer and better quality service than the use of one-officer units.
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It is interesting to note the type of reasoning which is being em-

ployed in these arguments. For example, the arguments in favor of one-

officer patrol are products of "linear" thinking (Chicago Police Depart-

ment, 1963: 213).

"It is obvious that patrol coverage can be twice as
intensive with 2 one-man cars as it can be with 1 two-
car."

As will be shown later, situations arise where patrol "intensity" due to

two one-officer cars may be less than twice, twice, or greater than twice

that of one two-officer car.

From the arguments stated above, one may elicit relevant performance

measures by which to evaluate the effectiveness of one- versus two-officer

units. Those measures chosen for comparative analysis include:

1. expected area covered by patrol

2. response time from the nearest vehicle to a randomly occuring

incident

3. expected frequency of patrol

4. visibility of patrol

5. probability of intercepting a randomly occurring crime in progress

6. probability of officer injury

7. comparative costs.

Where appropriate, simple probabilistic models will be constructed in order

to compare the two staffing strategies. In some instances, numerical ex-

amples using actual experimental data from the Police Foundation's recent

study Patrol Staffing in San Diego: One- or Two-Officer Units will be pre-

sented to illustrate the models used.
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III. COVERAGE

Upon contemplating a staffing change from two officers to one officer

per unit, the police administrator might wish to consider expected bene-

fits to be gained from an increase in patrol coverage. As mentioned in

the last section, supporters of one-officer patrol have expressed linear

expectations of increases in coverage; that is, twice the number of patrol

cars will double the expected area covered. The model presented in this

section demonstrates that, assuming full availabilities of patrol units,

a doubling of the number of patrol cars in an area increases the expected

area covered by less than twice; we will examine cases where units are

unavailable for service later on in this chapter.

Consider the square beat with area u2 shown in Figure 1. A point in

this beat is said to be covered if a police car is within T time units

of that point (Larson, 1972: 263). Thus, if T=2 minutes, a point Q is

covered if an available police car is no further than 2 minutes travel

time form Q. The expected (or average) area covered is simply the aver-

age area formed by collecting all covered points. Here, it is assumed

that travel time can be closely approximated by the right angle metric

d d
t = + -Y (1)

r v v
x y

where t = travel time between patrol car and the point
r

d (d ) = East-West (North-South) distances between the patrol

car and the point

v (v ) = East-West (North-South) speed of travel.



- 84 -

2 1 21v v T

uTv

uTv u2  uTv
x x

uTv

<-REGION R

1- v v T2 x y

1
2 x yT

AREA (R) = u2 + 2uT(v + v )+ 2v v T2
x y x y

assume v > vx y

Figure 1

Geometry of the Coverage Model

N1 2
-v v T2



- 85 -

To eliminate boundary effects, it is assumed that patrol cars are

uniformly and independently distributed over the entire region R shown in

Figure 1. Under these conditions, a simple result from geometrical proba-

bility shows that the probability that any point in the beat is covered

given that there are N patrol cars uniformly and independently distributed

over R is

PCIN Pr (point is covered I N cars in 
R)

u 2+ 2uT(v x+ v )F1 y 2 (2)
u + 2uT(v + v ) + 2v ]v T[7+2 x~ y x y

and that the expected area covered in the beat is given by

E (area covered) = PCIN - u2  (3)

Figure 2 shows a graph of the expected area covered versus N, the number

of units in the beat, for the special case u = 1 mile, v = v = 20 m.p.h.,
x y

and T = 3 minutes. Note that the expected area covered does not increase

linearly with N; rather the additional expected area covered is margin-

ally decreasing with N. In this example, the increase in expected area

covered due to a switch from two-officer patrol unit staffing (N = 1) to

one-officer patrol unit staffing (N = 2) is on the order of 71%.

Although the expected area covered is not doubled from its previous

value due to the presence of a second unit, the increase in expected area

covered is substantial. In general, such increases will be more signifi-

cant to the police adminis.trator when considering large beats rather

than small beats, when working with low values of v and v as opposed
o hy

to high values, and when coverage is defined for small values of T rather
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than large values of T. In any event, the percentage increase in expected

area covered due to patrol by two cars as opposed to one car per beat will

always equal 100 - (1 - PC|1) under the conditions of the model presented

here.
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IV. RESPONSE TIME

Mean response time is an important variable which pertains to the

quality of police service in an emergency setting. One of the postulated

benefits of one-officer unit staffing is that police response time may be

considerably reduced. This assertion is now made the subject of analy-

tical investigation.

For simplicity, consider the square beat of area u2 shown in Figure 3.

It is assumed that travel speed is held constant at v throughout the beat;

that is, v = v = v. Also, travel time between patrol units and incidents
x y

is assumed to be given by the right angle metric stated earlier. Patrol

units and incident locations are distributed uniformly and independently

over the beat.

Initially, we may consider again the case where all units are avail-

able. Consider the case of two-officer staffing (i.e., one car in the

beat). Under the conditions of this model, it is well known that the ex-

pected travel time from the patrol unit to the incident is (Larson, 1972:

79)

E(t ) = 2u u
r 3v v (4)

Now consider the case of one-officer staffing (i.e., two cars in the beat).

If we assume that the responding unit is the nearest unit to the scene of

the incident, we show in the Appendix that the expected travel time is:

_1354 u - u
E(t*) = 1~ .48-. (5)

r 2835 v v

The reduction in expected travel time gained by switching from 2-officer

units (1 car per beat) to 1-officer units (2 cars per beat is only around

28%.
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The analysis performed so far has not considered the case where

patrol units might not be able to respond due to possible commitments to

other incidents. This case is now examined within the context of a

spatially distributed queueing model. For simplicity, we will only

consider the case where exactly one car is dispatched to an incident.

Consider the square city shown in Figure 4. The city is divided into

four beats; each beat is a square with area u2 . Calls for police service

arrive in a Poisson manner at a rate Xc per hour for the entire city;

each beat receives on average X c/4 calls per hour. Assume that the time

to service a call is an exponentially distributed random variable with

mean service time (including travel time) equal to -. Travel time is

closely approximated by the right angle metric. People in this city are

patient in that they will wait any length of time until their call is

eventually serviced; thus no calls are lost.

Now imagine that there is one two-officer unit patrolling each of

the four beats, thus there are four police cars at work. Each car is

uniformly located over its home beat, and all units are located indepen-

dently of one another. Consider the following four mutually exclusive

events conditioned on beat 1:

Al,<=> a call originates in beat 1 and the unit patrolling beat 1

is available;

A21l<=> a call originates in beat 1, the unit patrolling beat 1 is

not available, but either or both of the units patrolling

beats 2 and 3 are available;
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A 31<-> a call originates in beat 1, neither of the units patrol-

ling beats 1, 2 or 3 are available, but the unit patrol-

ling beat 4 is available;

A <=> a call originates in beat 1, no units are available,

hence the call is placed in queue where it will be

serviced as soon as a unit becomes available. (We

assume that the queue discipline is First-Come,

First-Serve.)

In the case of All,, the beat unit responds and the expected response

time is given by 2-. In the case of A211 one unit from an adjacent beat

(2 or 3) responds, and it is easy to show that the expected response time

in this case is --. Once the service has been completed, it is assumed
3v

that the responding unit returns to its home beat before accepting another

call for service. A3 11 implies that the beat 4 unit responds, and it is

again easy to show that the expected travel time in this case is equal to

v Analogous to A 1 , it is assumed that the beat 4 unit returns to its

home beat upon service completion before accepting a new call for service.

A 4 1 1 implies a queue. In such an event, the time it will take for a

vehicle to respond is equal to the time spent waiting for a unit to be-

come available, plus the travel time to the incident. It is easy to show

4u
that the expected travel time to the incident for this case equals 4-; we

will determine the average queueing delay later on.

Now the unconditioning of these events from beat 1 is remarkably easy.

First, since the beat layout is perfectly symmetric, we could define the

events discussed conditional on each of beats 2, 3 and 4 in a manner
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analogous to beat 1. Second, since the probability that a call originates

in any one of the 4 beats is equal to , it is clearly true that

Pr(A.) = Pr(A.) i = 1, 2, 3, 4

where Ai <=> unit in beat where call for service originated is

available for service;

A 2 <=> unit in beat where call for service originated is not

available for service, but a unit in an adjacent beat

is available;

A 3 <=> the only unit available for service is located in the beat

diagonal to the beat where the call for service originated;

A4 <=> no units are available.

The point of all this is that once Pr{A.}, i = 1,...,4 are known,

then the expected travel time is:

4

E(tr .E E(trA i) Pr{A } (6)

1=1

=2u 4 u4
= Pr{Ai} + y Pr{A2 } + 2 Pr{Aa} + A- Pr{A4 },

and the expected response time is given by

E(RT) = E(t r) + W (7)

where W is the average queueing delay incurred due to unavailable units.

In the appendix, we determine expressions for Pr{A.} i = 1,...,4 and W

which enables us to use equation (7) for values of Ac and p.

It is straightforward to extend this model to the case of one-officer

staffing (2 units per beat). We assume for simplicity that exactly one
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unit is dispatched to any call. The following events may be defined:

B1 <=> both units in beat where call for service originated are

available for service;

B 2 <=> only one unit in beat where call for service originated is

available for service;

B3 <=> both units in beat where call for service originated are

busy, but a unit in an adjacent beat is available;

B4 <=> the only unit(s) available for service is located in

the beat diagonal to the beat where the call for service

originated;

B5 <=> no units are available, hence the call is placed in queue

where it will be serviced as soon as a unit becomes avail-

able.

In the case of Bi, it is assumed that the nearest response unit answers

1 354u.
the call, hence the expected travel time is given by 2835v. The condi-

tional expected travel time given the other events are straightforward.

The expected travel time for the case of two cars per beat is given by

5

E(t*) = Z E(t*IB )Pr{B.}, (8)
r .~ r i ir i=1

and the expected response time is given by

E(RT*) = E(t*) + W* (9)
r q

where W* is the expected queueing delay. Expressions for Pr(B.} and W*
q 1q

are derived in the Appendix.

c
In Figure 5, E(t ), E(t*) and W are plotted as functions of p = -

r r qP

W* is effectively equal to zero for this example, though exact calcula-
q

tions may be made using equation (A25) from the Appendix. If it takes
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the same amount of time for a one-officer unit as a two-officer unit to

service a call, then the expected travel times resulting from the two

staffing strategies may be identified by choosing the appropriate value

of p and reading the values for E(t ) and E(t*) off the graph. E(RT)
r r

may be found by reading the value for W off of the graph, multiplying

it by 1/p, and adding it to E(t ); E(RT*) Z E(t*) since W is effectively
r r q

zero, though exact values for E(RT*) may be found using equation (A25)

from the Appendix. Note that the percentage difference in expected

travel time does not exceed 40% when service times are equal. If the

service times are not equivalent for one-officer and two-officer units,

then one needs to consider p(l car, 2 officers) and p(2 cars, 1 officer)

separately in order to determine E(t ) and E(t*) before a comparison canr r

be made. However, the percentage difference is expected response time

can be enormous, as this depends on the magnitude of 1/p. Hence, from

the standpoint of response time the major advantage of fielding two one-

officer units as opposed to one two-officer unit is that the expected

amount of time waiting for a unit to become available is drastically

reduced.

Example: Patrol Staffing in San Diego

From a crude map study, it has been determined that the average beat

size in the San Diego experiment lies somewhere between four and six

square miles, so for the sake of discussion, u2 is set equal to 5 with

u =N/5 ~ 2.24 miles. If we assume an average travel speed of 15 miles

per hour, then the expected travel time to a random incident in a one-car

beat given that the randomly located unit is available is given by
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2 - 2.24 6 minutes.
r 3 - 15

If in a 2-car beat, both units are available, then the expected travel

time from the nearest unit to the incident is

T* = 1354 2.24 4 .3 minutes.
r 2835 15

The response time reported for two-officer units in the experiment

is 7.5 minutes (Boydstun et al., 1977: 50), which is within 25% of the

modeled value for T . Since the San Diego experiment did not double
r

the number of units in beats where one-officer cars were used, it is

hard to compare T* to an empirical value. However, the response time
r

for two one-officer units responding to the same call was recorded, the

value reported being the maximum of the two individual response times.

The figure given is 5.9 minutes which is not that much larger than the

modeled value for T*. However, the maximum of the two response times
r

should be larger than T*; it should also be larger than T . It is in-
r r

deed puzzling (as admitted by the San Diego researchers) why this re-

ported maximum value is so low.

Thus far, units have been assumed to be available. Within the con-

text of the four-beat queueing model, the effects of busy units may be

taken into account using San Diego data. During the course of the ex-

periment, two-officer units received an average of 6.68 calls per 8-hour

tour as compared with 6.28 calls per 8-hour tour for one-officer units

(Boydstun et al., 1977: 23). On the average then, there were 6.48 calls

per 8-hour tour per car. For the four-beat. model, Xc is calculated as
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_ 6.48 calls/car - 4 cars = 3.24 calls/hour.
c 8 hours

Two-officer units spent an average of 37.3 minutes/call, while one-

officer units spent an average of 48.8 minutes/call. Thus:

po_ c - 3.24 calls/hour - 37.3 mn.
2 officers y2ofcr call

2 ~ '2 officers

.1 hr. = 2.02.
60 min.

p - c - 3.24 calls/hour - 48.8 mn.
1 officer yP fie call

1 ' officer

6 0 hr. = 2.63.
60 min.

From Figure 5, and equations (A13), (A16), A23) and (A25) in the

Appendix, we see that

E(t ) = 1.029 (2.24) 60 = 9.22 minutes;
r 15

E(t* ) = .661 (2.24) 60 = 5.92 minutes;
r 15

Pr{A4} .18;

Pr{B51 -01;

E(RT) = 9.22 + 37.3 .087 = 12.47 minutes;

E(RT*) = 5.92 + 48.8 - .0012 = 5.98 minutes.

The decrease in response time due to the presence of an additional unit

is about 52%. Perhaps more significantly, the probability of a call not

being serviced immediately due to the presence of a queue has been re-

duced by 94%.
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From this analysis, it appears that while actual travel times are

not reduced that substantially, the probability of having to wait for

a free unit is reduced considerably by raising the number of units per

beat from one to two. In this San Diego example, the above statement

holds even though it does take one-officer units around 1.3 times

longer than two-officer units to service a call. Thus, it is better

from a queueing standpoint to have many slow servers than a few fast

servers.
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V. PATROL FREQUENCY

Another of the postulated benefits that one-officer staffing is sup-

posed to deliver is an increase in the level of preventive patrol. Pre-

ventive patrol is felt to be an important police function for a number

of reasons. In particular, police visibility is felt to be directly

proportional to the time spent on prevent patrol. Preventive patrol is

also intended to provide the threat of interception and apprehension to

the criminal. The next three sections of this chapter concentrate on

issues of preventive patrol.

Before one can study police visibility and interception probabili-

ties, one must establish the stochastic process by which patrol takes

place. For this reason, we now direct our attention to patrol frequency.

Larson (1972: 135-142) has developed a patrol frequency model, a

simplified version of which will be reported here. Let

D = number of street miles in a beat,

s = average patrol speed.

Suppose that a single two-officer unit is allocated in a uniform manner

over the streets of the beat. Under the condition that the unit is free,

the mean rate of patrol (in passes/hour, say) will be equal to

X = s/D (10)
p

If the Poisson assumptions are made, then

n -A t
(X t) e p n = 0, 1, 2,...

Pn(t) = n! t > 0
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where P (t) E probability that a random point has been passed n times
n

in a period of length t.

The time between patrol passings at a random point is an exponen-

tially distributed random variable with parameter X ; i.e.,

f (t) = X e t0 > 0

where to time between patrol passings. The expected time between

passings is simply

(11)

/ = D/s.

Now, consider the case where the unit is busy a fraction b of the

time. Under this condition, the mean rate of patrol is given by

2 officers p

and the time between patrols at a random point is assumed to be exponen

tially distributed but with parameter X2 officers'

As usual, the effect of one-officer patrol is introduced via a

doubling of the number of patrol units. If the service times for one-

officer and two-officer units are identical, then on average, either of

b
the two one-officer units will be busy a fraction b of the time due to

a halving of the call for service workload per unit. Thus, the average

patrol frequency given that there are now two one-officer units in the

beat is given by

)

X . = 2X (1 - b/2), (13)
1 officer p

and the pdf for the time between patrol passings at a random point is

again assumed to be an exponential distribution with parameter X1 officer

)

-
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To see the increase in patrol frequency due to the use of 2 one-

officer units as opposed to one two-officer unit, look at the ratio

1 officer 2X p (1 b/2)

- ( b)(14)

2 officers

= 2X bX
P P

X -bX
p p

> 2 . 0 < b < 1

Thus, the increase in patrol frequency is at least 100% when changing

from 1 two-officer unit to 2 one-officer units if service times are

the same for one- and two-officer units.

For the case where service times are not equal for both staffing

strategies, A . must be redefined as follows:

1 officer

oficr= 2X (1 - bi/2) (15)
1 oficer p

where service time (hrs.)/call

bi = avg. # calls/service/hr. for a one-beat unit

0 < bi < 1.

The ratio

officer _

2 officers

is: greater than

equal to 2

less than 2

2X (1 - b 1/2)

X (1 - b)
p

2 if bi < 2b,

if bi = 2b,

if b1 > 2b.

(16)
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Since bi is nearly always less than 2b, the switch to one-officer staff-

ing is likely to imply increasing returns to scale with respect to

patrol frequency.

Example: Patrol Staffing in San Diego

In San Diego, as previously mentioned, two-officer units averaged

a 37.3 minutes/call service time, while one-officer units averaged a

6.48_
48.8 minutes/call service time. On average, units received 8

.81 calls/hour. Thus, two-officer units were busy on average

37.3
b = .81 60 ~ .50 of the time,

while one-officer units were busy on average

bi = .81 48.8 .66 of the time.
60

From the experimental report, it may be derived that patrol units drove

an average of 60 miles per 8-hour tour which implies that s = 7.5 m.p.h.

Map analysis has yielded a rough estimate of the number of street miles

in an average beat to be in the neighborhood of 30 miles. Thus,

X = s/D = 7.5/30 = .25 patrols/hour;

2 . = X (1 - b) = .25(1 - .5) = .125 patrols/hour;
2 officers p

and the expected time between two-officer patrol passings of a random

point is

1 1_
= = 8 hours between patrols.

2 officers .125
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Also,

= 2X (1 -b )= 2(.25)(1- .66/2) = .335 patrols per hour;
1 officer p 1/2

and the expected time between patrol passings of a random point using two

one-officer units is

1 ~ 

i
X1 of ficer

3 hours between patrols.

The ratio of mean one-officer to two-officer patrol rates is

1 officer .335 2.68
.125

2 officer

Of course, we knew from equation (16) that this ratio would be greater

than 2 since

.66 = bi < 1.0 = 2b.
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VI. VISIBILITY

The notion that an increase in the level of patrol via a switch from

two-officer to one-officer patrol staffing will substantially increase

police visibility is questionable. Although we have shown that patrol

frequencies will increase by a factor greater than two in most cases,

the verm "visibility" requests the participation of "viewers." People

do not, by and large, spend a large fraction of their day observing the

street. Thus, although percentage increases in visibility may be sub-

stantial, absolute increases in visibility may be too small to be per-

ceived by the public.

Consider a person located at a random point in a beat. Imagine that

this person observes the street, say, 5% of the time (i.e., 72 minutes

per day). How often will our -th time street watcher see a police car?20

On the average, he will observe

S = .05X sightings/hour. (17)

For example, in San Diego where X2 officers = .125,

S = .05 - .125 = .00625 sightings per hour

= 1.05 sightings per week.

On average, our street watcher will see a patrol car once every 160

hours.

If we now introduce two one-officer units, our San Diego example

would have X1 officer = .335. This implies

S = .05 - .335 = .01675 sightings per hour

= 2.8 sightings per week.
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On average, the street watcher would see a car about once every 60 hours.

If one- and two-officer units had equal service times, then using

two-officer service times as a base, X1 officer would be reset to

2X (1 - b/2) 2(.25)(.75) = .379. This would put

S = .05 .375 = .01875 sightings per hour

= 3.2 sightings per week,

or one sighting every 53.3 hours on average.

The percentage changes in these numbers are substantial; the numeri-

cal differences may in fact be statistically significant (Carter and

Kaplan, 1977: 14-15). However, the magnitudes of these figures are too

small to make much of a difference.. People are not likely to notice

changes in visibility due to changes in patrol effort of the type men-

tioned here.

Larson (1975) has suggested a similar consideration with respect to

the Kansas City Preventive Patrol Experiment. In this study, patrol

levels were supposedly tripled in some areas, yet the change in the

level of patrol was difficult to perceive.

However, this need not always be the case. If the initial level of

patrol is high (for example, X > .8 patrols per hour), then the percen-

tage increases due to a switch from two-officer to one-officer staffing

may become perceived increases as well.

For example, if X2 officers= 1 patrol per hour, and X1 officer

2.2 patrols per hour, this would imply (using -th time street watcher).
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S = .05 sightings per hour = 8.4 sightings per week for two-officer

cars, and

S = .05 - 2.2 = .11 sightings per hour = 18.5 sightings per week for

one-officer units.

In this example, the percentage increase is less than in our previous

examples. However, one might expect that the absolute increase would

be a noticeable one.

Thus, perceived increases in police "visibility" due to the adoption

of one-officer patrol units are only likely to set in after some initial,

"critical" level of one-unit patrol has been reached. For cities with

patrol frequencies such as those found in San Diego or Kansas City, the

increase in perceived patrol visibility will likely occur only on paper.
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VII. CRIME INTERCEPTION

One of the postulated major functions of preventive patrol is that

of intercepting crimes in progress. It is argued that the use of two

one-officer units will provide for a higher probability of interception

than the use of one two-officer unit. This assertion will now be in-

vestigated in some detail.

Suppose that patrol is occurring according to the Poisson process

described in Section V. Assume that crime is also uniformly and indepen-

dently distributed over the beat in question; that is to say, a crime is

equally likely to occur at any particular location in the beat indepen-

dent of the locations of other crimes. A crime is said to be intercepted

if the point where the crime is occurring is passed by a patrol car while

the crime is still in progress. Note that there is no attempt being

made to distinguish between apprehension and interception; equivalently,

the tacit assumption being made is

Pr(apprehension I interception) = 1.0

Now the question becomes one of determining the probability of inter-

cepting a crime of duration T. This is a problem of random incidence.

The probability of intercepting a crime of duration T is simply the

probability that a patrol car arrives at the point where the crime is

being committed before the crime has been completed, given that the

crime started at some random time.

For Poisson patrol, the pdf for the time between patrol passings at

at random point is the exponential distribution with parameter X
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f (t ) = Xe U t > 0. (18)
tO0 0

The cdf for time between patrol passings at random point is given by

F t(t)0 = e 0 (19)

If we define z as the time from the beginning of a randomly occur-

ring crime (in time and space) until a patrol car arrives at the same

random point, then using random incidence arguments (Drake, 1967: 149-

153), the probability of intercepting a crime of duration T is given by

Pr {intercepting a crime of duration TI

= Pr {z < TI

T

-F (z) dz
0  E(t)

= 1 - e - T is deterministic. (20)

Models of this sort (e.g., Elliott (1968), Larson (1972)) where crime

duration is treated deterministically are reviewed by Riccio (1974).

However, it is more realistic to treat crime as a random variable.

As a first cut, it seems reasonable to hypothesize that there will be

relatively many crimes of short duration and few crimes of long dura-

tion (e.g., purse snatches vs. bank robberies). Hence, it is assumed

that crime duration is exponentially distributed with parameter y, i.e.,

f (T 0) = ye T >0 (21)

and1
E(T) = -.

Y
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Hence, if y = 20 crimes per hour, then the expected length of a crime

would be 3 minutes. 2

Of course, if Tisa random variable, then the probability of inter-

cepting a crime of duration T, $(T), is itself a random variable. Not-

ing that $(T) is monotonically increasing with T, it is straightforward

to obtain the pdf for $ (Freund, 1971: 119-126):

$ T d$-

f~ (P) f W)
d (P)

=f (-kn (1 ) p))

T -X(-9n(1 - p)/X)
Ae

= O(1 - 0)O< p < 1 where w - w > 0. (22)

This new result is remarkable in that the derived f (p) is a beta dis-

tribution (Freund, 1971; 114), with a = 1 and = o. The expected value

is given by

1 X
E($) = = .- 'P (23)

1 + +Y

Before proceeding to compare one-officer versus two-officer staff-

ing using this result, an important sampling property of this distribu-

tion should be mentioned. If the police administrator is not sure of

the value of y (X may be calculated using the models presented earlier),

he will not be able to state outright what the expected intercept proba-

bility is. However, if he assumes a value for y which seems reasonable

to him, then his estimates for E($p) may be updated in the followingmanner.
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Suppose after choosing a value for y, the administrator discovers

that of N potentially "observable" crimes committed in a given time

period, n crimes were actually intercepted. Under the crime indepen-

dence assumption postulated earlier, the above information corresponds

to n "successes" in N independent Bernoulli trials. It is a property

of beta distributions that the pdf for a beta distributed random vari-

able conditioned on Bernoulli events is also a beta distribution. In

the case presented here;

f (pNn) = F(N+c+1) p n(1 - p) Nn+w (24)
$ N, np r(n+1) (,N-n+w)

O<p< 1,

n<N, n & N interger.

and

E($JN,n) n ++1 (25)

Since N and n may be treated as cumulative figures, the police adminis-

trator's estimates of the probability of intercepting a randomly occur-

ring crime may be periodically updated.

To compare E($ll 2-officer unit) to E($p2 1-officer units), it is

obvious that changes are going to occur due to different values of X.

As in Section V, the cases where service times are equal and not equal

for one- and two-officer units will be considered separately.

For the case where service times are equal, from Section V we have
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E($1l 2-officer car) = 2 officers

2 officers + Y

X (1 - b)
- , < b < 1, (26)

X (1 - b) + y
p

where b is the fraction of time spent out of service by a single two-

officer unit. Also,

E($ll 2-officer car) = 1 officer

1 officer + y

2X (1 - b/2)
- P , O< b < 1. (27)

2X (1 - b/2) + y
p

The percentage increase in expected probability of interception due to

using two one-officer cars depends on b. In particular, there is a

critical value b* such that

% increase in E($) > 100% if b > b*, (increasing returns to scale)

% increase in E($) = 100% if b = b*, (constant returns to scale)

% increase in E($) < 100% if b < b*. (decreasing returns to scale)

It is easy to obtain the value of b*:

X (3X + y) -[X(3 + y) 2  8X 4  (28)

2X 2
p
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Figure 6 shows percentage increases in E($) due to a change to one-

officer staffing as a function of b for selected values of Xp and y.

Where service times are not equal, E(12 1 officer cars) is changed

to:

2X (1 - b1/2) , 0 < bi < 1 (29)
E($12 1-officer cars) = 2X (1- b 2) +

where bi is as defined in Section V. The critical value bi has the

properties:

% increase in E($) > 100% if bi < bl , (increasing returns to scale)

% increase in E($) = 100% if bi = b*, (constant returns to scale)

% increase in E($) < 100% if bi > b* . (decreasing returns to scale)

Again, it is easy to show that

X(1 - b) - by(
b = 2 1- b) - 0<b<1 (30)

Note that bi may be greater than 1, but bi cannot be greater than 1.

A value of b, > 1 simply means that increasing returns to scale are

guaranteed by a switch to two one-officer units from one two-officer

unit.

Figure 7 shows percentage increases in E($) as a function of bi for

selected values of X , y, and b. The models developed here will now be

illustrated using San Diego data.
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% Increase in
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1200-
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b

Figure 6

Percentage Increases in E($) for Equal Service Times
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2 Increase in
Expected Probability
of Interception

300-

200- Xp

y - 10,

b - 1/2

100

0

a 1/2, y - 20, b = 1/2

Increasing Returns to Scale

% Constant Returns to
Scale

Decreasing Returns to Scale

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
b

Figure 7

Percentage Increases in E($) for Unequal Service Times
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Example: Patrol Staffing in San Diego

Recall from Section V that the values for X , b, bi in San Diego

were determined as

X = .25 patrols per hour,

b = 0.50,

bi = 0.66.

If we assume that the average crime takes 3 minutes to occur (i.e.,

y = 20) then:

E(ipjl 2-officer unit) - .25(1 - .50)
.25(1 - .50) + 20

.006,

(2).25(1 - .66/2)
E(4'j2 1-officer unit (2.51-.62

(2).25(1 - .66/2) + 20

.016.

The % increase is around 167%; we knew that this increase would be

greater than 100% since from equation (30),

bi = .66 < .994 = bl.

If service times were the same for one-officer and two-officer units and

using two-officer service times as a base measure, we compute using

equation (28)

b* = .024,

and since b = .5 > b* .024, one would still expect increasing returns

to scale.

To see how these figures compare with what actually happened in

San Diego, an approximation of the number of arrests made as a result
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of interception was made. Of all crimes which occurred in San Diego in

the experimental period, Table I shows those which are felt by this

analyst to be "observable," along with arrests made, Table I repre-

sents about 93% of all crimes reported in the experimental period.

There were a total of 101 criminal arrests made due to calls for serv-

ice (Boydstun et al., 1977 29). Thus about 93% of these were arrests

made on observable crimes, i.e., .93 - 101 ~ 94.

Hence, given that 118 observable arrests were made in total, a

maximum of 118 - 94 = 24 arrests could have been made due to inter-

ception by preventive patrol.

Using our estimate for E($ll 2-officer car) = .006, one would ex-

pect 2301 - .006 ~ 14 arrests due to preventive patrol. Thus, the

model is predicting within the feasible upper bound, and the results

are certainly correct within an order of magnitude.

One thing that is interesting is the small numerical values of

E(4). These figures indicate that preventive patrol does not generate

a high probability of intercepting a crime. This finding has also

been discussed by Larson (1972: 147).

However, depending upon the crime level in the area in question,

the switch from two-officer to one-officer patrol could result in sig-

nificant increases in the number of intercepted crimes. The results

of this section show that the most significant increases will occur

(increasing returns to scale) for large values of b. This is consis-

tent with the results generated from the queueing analysis of Section

V. Again it has been shown that the switch to two one-officer units
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TABLE I

Selected Crime Statistics from Patrol Staffing In San Diego, Table B-2

Observable Crimes

Robbery

Burglary

Grand Theft

Petty Theft

Auto Theft

Tamper with Vehicle

Malicious Mischief

Total

# Crimes Committed

249

1251

55

240

208

107

191

2301

This table accounts for roughly 93% of all crimes

reported in the experimental period.

# Arrests

20

64

2

9

6

11

6

118
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is more justified if the present two-officer unit is busy for a large

fraction of the time than if it is busy for a small fraction of the

time.
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VIII. OFFICER INJURY

The major argument in favor of two-officer units hinges around the

claim that two-officer patrol is safer than one-officer patrol. One way

to investigate this claim is to examine officer injury rates. While no

attempt will be made to develop detailed models here, some simple proba-

bilistic arguments applied to empirical data will act to investigate the

claim mentioned above.

Suppose there is a probability 0 that an officer could be injured on

any given incident. Then,

Pr{exactly one injurylone one-officer unit at incident} = e

Pr{exactly one injurylone 2-0 unit at incident} -

2 e Pr{no 2nd injuryll injury}.

Pr{exactly two injuriesione 2-0 unit at incident} =

0 Pr{2nd injuryll injuryl.

The expected number of injuries per incident for 1-0 units is given simply

by 0. For two-officer units, the expected number of injuries is given by

1 - 2 6 Pr{no 2nd injuryll injury} + 2 - 0 Pr{2nd injuryll injury}

= 2 e .

Hence, one would expect, on average, twice as many injuries from two-officer

units than from one-officer units. This is the case when the probability

of injury is the same for officers in both one-and two-officer units.

In the San Diego experiment, it was concluded that one-officer patrol

was safer than two-officer patrol. To substantiate this claim, the evalua-

tors argued that given roughly the same number of exposures to potentially
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hazardous incidents, two-officer units became entangled in more "critical"

incidents than one-officer units (117 v.s. 62), and as a result incurred more

injuries (31 v.s. 18) (Boydstun et al., 1977: 61-70). However, this argu-

ment does not recognize the fact that more injuries are to be expected

from two-officer units due to the presence of the second officer.

If the number of exposures to potentially hazardous incidents is K,

and the number of critical incidents which actually occur is Q, then

1l- 0
K1 0 for 1-0 units,K1-0

Pr{critical incidentlexposure} =

Q2-0K2 0 for 2-0 units.
K2-0

Also, if I injuries are incurred over the Q critical incidents, then

1-0 for 1-0 units,

Q1-0

Pr{injuryjcritical incident} =

2-0
2 0  for 2-0 units.

2Q 2

If we assume that

Pr{injurylincident not critical} = 0,

then the ultimate probability of injury given a potentially hazardous

situation is
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1 1 0 1_ = - for 1-0 units,Q1-0 Kl 0  K1-0

Pr{injurylhazardous situation} = (31)

12-0 Q2 -0 12-0.
_______ =2 for 2-0 units.

2Q2-0 K2- 0  2K2-0

Note that this result does not depend on Q, the number of critical inci-

dents which actually occur.

If both one- and two-officer units are exposed to the same number of

potentially hazardous units (i.e., K1 -0 = K 2 0 as is suggested by the San

Diego study), then

Pr{injury to an officer in a 1-0 unitlhazardous situation}

< Pr{injury to an officer in a 2-0 unitlhazardous situation}

only if I20

1-0 20
In San Diego, I-0 = 18, while 120 = 31. Since 2 = 15.5 < 18 = Il-O

we conclude that one-officer staffing is in fact more dangerous than two-

officer staffing, if only slightly so. In figures,

Pr{injury to 1-0 officerlhazardous situation} - 18 .08.

Pr{injury to 2-0 officerlhazardous situation} ~ - = .07.
2 * 225

These figures are not that different. It would appear that, at least in

San Diego, the chances of getting injured are roughly equivalent for

officers in both one- and two-officer units.
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IX. COSTS

If one studies the cost aspect of the one- versus two-officer staffing

question, it is obvious that one one-officer unit will be less expensive

than one two-officer unit; the difference being the additional salary re-

quired by the second officer in a two-officer car. Also, two one-officer

units are more expensive to field than one two-officer unit, the differ-

ence being the additional cost of obtaining and maintaining the second

patrol car. In the context of this paper, the relevant cost considera-

tion is that which compares two one-officer units to one two-officer unit.

Let

C = cost per officer,

Cc = cost per car,

N1-0 = # of 1-0 units,

N2-0 = # of 2-0 units.

Then the cost associated with any mix of 1-0 and 2-0 units is given by

C = N (C + C ) + N 2 0 (2C + C ). (32)

For a fixed cost C, equal cost alternatives may be visualized as those

pairs (N1-0, N2-0) which fall on the line graphed.in Figure 8.

In this paper, we have considered the two cases of all two-officer

staffing, or all one-officer staffing. If initially there were N two-

officer cars, than an equal cost option would allow for

2C + C
N C0+CCone-officer cars.

C + CI
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Number of
Two-Officer
Units

C

2CO+CC

C - N1- 0 (C0 + CC) + N2-0(2CO + CC)

N 1 0  C
C + C

Number of One-Officer Units

Figure 8

Equal Cost Staffing Options

(Total Cost = C)

N2-0 -

i
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It stands to reason that from the models presented in this paper,

one would like to maximize the usage of one-officer cars. Using criteria

such as expected area covered, response time, patrol frequency/visibility,

and the probability of intercepting a randomly occurring crime in progress,

one-officer patrol is the preferred staffing mode as long as two one-

officer units are allocated where one two-officer unit was assigned before.

Also, from the last section, it does not appear that a policy utilizing

1-0 cars needs to be compromised for reasons of safety.

In San Diego, the following figures were reported (Boydstun et al.,

1977: 54-55)

C = $12.79/hr.,

C = $ 2.51/hr.
c

Thus, in San Diego, one could staff N two-officer units or

[2 - 12.79 + 2.51 N = 1.84N
12.79 + 2.51

one-officer units at tae same cost. How should these 1.84N units be allo-

cated? This is by no means a trivial problem, but some illustrative

simple-minded solutions do come to mind.

For example, a reasonable allocation scheme for a city with N two-

officer units and no one-officer units might be to use

N units for the first 8-hour tour,
6

6 units for the second 8-hour tour,
6

3Nunits for the third 8-hour tour.
6
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This, of course, assumes that a car can't be used on more than one tour per

day; this assumption could be relaxed without too much difficulty. Now,

if l.84None-officer units were available, one could allocate

--- units for the second tour,
6

-- units for the third tour, leaving
6

1.84N - -- 6 = .173N units for the first tour.
6 6

Tours two and three would contain exactly twice the number of units as

before, hence the models of this paper would apply. Tour one would con-

tain only a few more cars than before, and less manpower. However, since

this shift was not heavily manned before relative to other shifts, the

degradation in service would not be a serious one.
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X. SUMMARY AND CONCLUSIONS

This chapter began with a discussion of the postulated advantages of

one- versus two-officer patrol. Relevant performance measures were elicited

from this discussion, and models were constructed in order to formalize

expectations with respect to the levels of these performance measures under

the two staffing strategies. The results include:

1. Doubling the number of available units in a beat increases the

expected area covered by less than twice.

2. Increases in coverage gained by a switch to two one-officer

units per beat are most significant when:

(i) beat sizes are large,

(ii) travel speeds are low,

(iii) coverage is defined for low travel times.

3. Given that units are free, the reduction in expected travel time

due to a switch to two one-officer units is only around 28%.

4. If one-officer and two-officer units have equal service times,

and allowing for the possibility of busy units, the reduction

in expected travel time due to a switch to two one-officer

units does not exceed 40%.

5. Response delays are less frequent with many "slow" servers

(one-officer units) than with few "fast" servers (two-officer

units). Hence, the reduction in response times (including queue-

ing delay) due to a switch to one-officer staffing may be quite

large.
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6. If one-officer and two-officer units have equal service times,

then a switch to two one-officer units per beat will increase

patrol frequency by at least 100%. If one- and two-officer

units have different service times, patrol frequency is likely

to increase by more than 100%, though it may increase by less

than 100%.

7. Percentage increases in absolute visibility are the same as per-

centage increases in patrol frequency. Noticeable increases in

police visibility are only likely to set in after some initial,

"critical" level of one unit patrol has been reached.

8. The increase in the probability of intercepting a randomly occur-

ring crime in progress due to a switch to two one-officer units

per beat may be less than, equal to, or greater than 100%, de-

pending upon the fraction of time units are out of service.

9. The magnitudes of interception probabilities are small.

10. Increases in interception probabilities due to the adoption of

of one-officer per unit staffing are most significant for beats

with heavy workloads.

11. In San Diego, the probability of officer specific injury is

roughly the same for one- and two-officer staffing.

12. The additional cost due to switching from one two-officer unit

per beat to two one-officer units per beat is the cost of main-

taining a second vehicle, which in San Diego is $2.51/hour/unit.

13. Equal-cost alternatives favor maximum usage of one-officer units.

In San Diego, 1.84N one-officer units may be fielded for the same

cost as N two-officer units.
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This research has not attempted to be exhaustive; there are other

relevant areas which could be subjected to analysis. One important item

is the need for backup support when using one-officer vehicles. Both the

frequency of backup requests, and the logistics of backup assignments

may be investigated analytically. The patrol frequency and crime inter-

ception models may be improved by relaxing the uniformity assumptions:

patrol may be spatially distributed according to a coverage function

(Larson, 1972: 135-137) and crime may take on a spatial as well as tempo-

ral distribution. Also, the distinction between interception and appre-

hension may be investigated. In the area of officer safety, more exami-

nation of injury statistics from different cities is required. Finally,

an assessment of on-scene performance of one- versus two-officer units

would be useful; the models presented here do not begin to address this

this question.
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FOOTNOTES

10n page 36 of Patrol Staffing in San Diego, we are told that over
12 one-week periods, one-officer units drove on average 4856 miles/unit
while two-officer units drove on average 5026 miles/unit. Thus, one-
officer units averaged

4856 miles *1 week = 58 miles/day/unit
12 weeks 7 days

while two-officer units drove an average of

5026 miles *1 week = 60 miles/day/unit.
12 weeks 7 days

For any given unit, there are only 8 hours in a day (i.e., one tour) as
opposed to 24. Rounding off to the nearest mile would yield an average
of 59 miles/8-hour tour/unit for both one- and two-officer units. For
convenience, the number 60 was chosen instead of 59.

2By saying y = 20 crimes/hour, it is meant that on average, 20
crimes could occur in an hour, not that on average, 20 crimes do occur
in an hour.

3These figures are taken from Table B-2 in Patrol Staffing in San
Diego. Number of crimes committed is set equal to the number of reported
incidents minus the number of unfounded calls for each category.
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APPENDIX

1. Derivation of expected travel time from the nearest of two units to

an incident.

Under the conditions of the model, it is relatively easy to show

that the pdf for travel time from a randomly located patrol car to the

randomly located incident is:

(U2vt -uv 2 t 2 + 1vst 3) 0 < t <
u o o 6 o - 0-v

f(t ) = (Al)
t 0 3 3
rv

( s 4 - 2u2vt + uv2t o < t < 2u
0V30 0-<t <

6 v 0- v

If we consider the case of two units in the beat, then assuming that

the responding unit is the nearest unit to the scene of the incident,

the travel time is given by:

tr = min (t , t ) (A2)
r r1  r2

where t = travel time from 1st unit to incident.
r 1

t = travel time from 2nd unit to incident.
r
2

To find the pdf for t*, one can use the following rule:
r

n

f (x ) = E f |A. (x |A) - Pr(A )
1=1

where the A. are mutually exclusive, collectively exhaustive events

in x sample space. Returning to the example at hand, let
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Al <=> 0 < t r < ,0 < t < u
i - r -v - r2 -

0 u < 2u
2 - r -v v r - v

A <=> u< t < -3 v r -v

A4 <=> u < t < ,-
v r - v

O < t < ;
- r2 -v

u< 2u
-<t <-
v r 2 v

Using the pdf f t(t 0) and the fact that tr and t are independent,
r2

one can verify that:

Pr(Aj) = , Pr(A2) = Pr(A3 ) = , Pr(A4 ) =

Immediately, one can state that:

f(t )

ft A (tjA 2 ) = r

r Pr(A2)

= - (u2vt - uv 2t02+ vt 3)

By symmetry:

f* (t IA,) = f * (tIA2)
r A 3 o trA2 0

The method for obtaining ft*Ai(t0IA1) and ft JA4rr

0 < t < u
- 0 - v

0 < t <-0 t

0 < t < -
- 0 -V

(tI|A4 ) is

tedious and will not be discussed here. The results are:

(A3)

1
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ft Ai(t A1 ) 6 2 [ uvt - 5 2t 2
ft JAI1 H 5 u L4 o 24 0

67 u 4v 3 t
144 0 .

(A4)

6 24 0 72 o 144 ot 5 + uvt6 77

0 < t9 <-0< t

f t A4 (t oA4) = 36 - [ u

r

- 2 u6vt0 + u 5v 2 t 2
9 0 30

(A5)

-5 u4vt 3 + 35 s3V 4 t 4 - - u- u2v5t 5 + 7 uvat 6
9 o 18 o 12 o 72 o

1 v 7 U < t 2u
144 thv u - v

Thus, the unconditional pdf f t*(t 0) is given by:
r

-6v 1 - 1 u 5 v 2 2
b [2 uV to 1 uvst3 3 + uvt 4

12 0 3- 0

- 2v5t 5 + 7u6t - v7t 7 0 <_ t 1
12 o 3 6 o 72 0oJ-o0- v

(A6)

32v 7 28uvt + 14u 5 v 2t 2 - 35 u4vst 3
3u8 L1 3 00 3 0

+ usy UVt 4 - u2V5t 5 + _Luvat 6 - vit 7
6 0 4 0 24 0 48 0

< t <
v 0 - v

1

f *(t0) =
r
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The expected travel time from the nearest unit to the incident is:

2u

E(t*) =t f *(t )dtr J o t o o
r

0
(A7)

_ 1354u
2835v

2. Determination of Pr{A.} and W for the four-beat model: Two-
1 q

officer staffing.

To determine Pr{A.}, i = 1,..4, it is useful to distinguish be-

tween a macrostate and a microstate. In the example considered here,

a macrostate reports how many patrol cars are busy. A microstate re-

ports a particular combination of busy and free cars by beat. It

should be obvious that several microstates may give rise to the same

macrostate.

Consider the macrostate Si corresponding to the event "one patrol

car is busy." There are four microstates that could give rise to Si:

Mii: only beat 1 car is busy,

M 1 2 : only beat 2 car is busy,

M1 3 : only beat 3 car is busy,

M1 4 : only beat 4 car is busy.

The events A. i = 1,...,4 can be expressed in terns of microstates.
1

Since for a given macrostate, the associated microstates are equally

likely, if we know the probability of the macrostates, then we can
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find Pr(A ) i = 1,...,4 through the enumeration of the relevant micro-

states.

Since we know that Pr(A.) = Pr(A ) i = 1,.. .,4, let' s examine the

case discussed earlier where calls originate in beat 1. Consider

Table AI. Here, all the events A.11 i = 1,...,4 have been enumerated

in terms of the relevant microstates. For example, given that 2 cars

are busy there are:

3 microstates corresponding to A1i 1 (busy cars in beats 2-3, 2-4,

3-4);

3 microstates corresponding to A2 11 (busy cars in beats 1-2, 1-3,

1-4).

Since all microstates are equally likely for a given macrostate, we

have:

Pr{A I - Pr{SO} + Pr{Si}+ WPr{S2} + Pr{S3} (A8)

Pr{A l} = Pr{S} + Pr{S 2} +2 Pr{S3} (A9)

Pr{A 3 l} = Pr{S3} (AlO)

Pr{A4 11 } = Pr{S4} (All)

It has already been noted that Pr(A ) = Pr(A 1) i = 1,.. .,4, so the

stated equations hold for the general case. If the macrostate proba-

bilities Pr(S ) i = 0,...,4 can be found, the model will be complete.
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TABLE AI

STATE STRUCTURE FOR FOUR-BEAT MODEL, TWO-OFFICER PATROL

Macrostate
(# of busy cars)

So

Si

S2

S 3

# Microstates/
Macrostate

1

4

6

4

1

# Microstates per Event

A A21l A31l A

1 0 0 0

3 1 0 0

3 3 0 0

1 2 1 0

0 0 0 1

Given any macrostate, all microstates are equally likely.
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From the way this model has been constructed, the macrostate proba-

bilities are given by the M/M/4/o queueing model, i.e.:

Pr{S } = Pr{So} pI /i! i = 0, 1, 2, 3 (A12)

3

Pr{S 4} = 1 - E Pr{S } (A13)

i=O

where 3 p* + 1
Pr{ =/ + p4  - (A14)

li=0

W is simply the expected length of time spent waiting in queue for

the M/M/4/oo queueing model. It is easy to show that for the general

M/M/N/o model (White et al., 1975: 103)

W N 0 Pr{S 0} (A15)
q N - N! y (1 - p/N)2

so for this case,

Pr{S }

q 4 - 4! y (1 - p/4)2

3. Determination of Pr{B.} and W* for the four-beat model: One-
1q

officer staffing.

Table AII presents the macrostate/microstate/event breakdown for

the one officer per unit case. Since all microstates are equally

likely for any macrostate, the events B1 ,...,B 5 take on the following

probabilities.
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TABLE AII

STATE STRUCTURE FOR FOUR-BEAT MODEL, ONE-OFFICER PATROL

Macrostates
(# of busy cars)

# Microstates/
Macrostate

1

8

SO

Si

S2

S 3

S4

S5

S6

S 7

Se

# Microstates per Event

Bi B 2 B3 B4 B 5

1 0 0 0 0

6 2 0 0 0

15 1228

56

70

56

28

8

1

1 0 0

20 30 6 0 0

15 40 15 0 0

6 30 20 0 0

1 12 14 1 0

0 2 4 2 0

0 0 0 0 1

Given any macrostate, all microstates are equally likely.
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Pr{Bi} = Pr{S 0} + 6 Pr{S1 } +

+ -L Pr{S 5} + Pr{S 6 }

15 Pr{S 2} + 20 Pr{S 3} + -5 Pr{S 4}

(A17)

Pr{B 2} = 2 Pr{S1 } + -j Pr{S 2} + 30 Pr{S 3} + -- Pr{S4}

+-q-- Pr{S 5} + P + Pr{S 7}56 288

Pr{B 31 = 1 Pr{S 2} + 6 Pr{S 3}

+ - Pr{S6} + 4 Pr{S 7}

Pr{B 4} = 1 Pr{S 6}28

+ 15 Pr{S4} + 20 Pr{S 5}

(A19)

+ 2 Pr{S 7} (A20)

Pr{B 5 ) = Pr{S8}

The macrostate probabilities in this case are generated by the

M/M/8/o queueing model:

Pr{S.} = Pr{So} p /i!

7
Pr{S 8} = 1 - E Pr{S

where

Pr{So} =

i = 0, .,...,7

A}

i=0 1

p'/ + -p8 1

(A18)

A2])

(A22)

(A23)

(A24)
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and

x
p = c , p/8 < 1

For this case, W* is calculated from equation (A14) substituting
q

N = 8, i.e.,

8 Pr{S }
q 8 -8! yt (1 - p/8)2



CHAPTER 4

MODELS FOR THE EVALUATION OF TREATMENT - RELEASE CORRECTIONS PROGRAMS

I. INTRODUCTION

Within the corrections component of the criminal justice system, a

range of programs aimed at the rehabilitation of selected individuals

has been established. These programs (including prison, parole, resi-

dential centers for drug offenders, alcohol abuse counselling, etc.)

all share the following feature in common: individuals committed to a

program are subjected to a period of "treatment"; upon satisfactory com-

pletion of the treatment period, these individuals are "released" (hence

the term "treatment-release program"). Of interest to the officials of

such programs is the event that a randomly chosen program client commits

an offense after release; the likelihood of this event is termed the

"recidivism probability."

While the concept of a recidivism probability poses no immediate

difficulty, the measurement of recidivism is not an easy task. In a

clever paper, Blumstein and Larson (1969) discussed measurement problems

which arise from alternative definitions of recidivism, and from improper

interpretation of sample statistics. If we allow recidivism to refer

solely to the event where a program client commits an offense after re-

lease, then recidivism cannot be measured directly.

When an individual commits a crime, there is no guarantee that

(s)he will be apprehended. Of all individuals who commit crimes, some

fraction will in fact be arrested by the police. Placed into the con-

text of a treatment-release corrections program, only those recidivists

- 142 -
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who are rearrested are in fact observed as having recidivated; indeed,

the difference between rearrest levels and true recidivism levels may

be greater than one might expect (Barnett and Stabile, 1979). Whether

or not an offender is apprehended depends upon police performance as

well as upon the nature of the offense. Thus, the methods of this chap-

ter will be presented as applied to rearrest patterns over time, as this

is the type of data which is frequently available.

What is found in the remainder of this chapter is a discussion of

methodology for conducting model-based evaluations of treatment-release

corrections programs. Model-based techniques have proved useful in

evaluating police patrol programs (Larson, 1975; Kaplan, 1978a), and it

is felt that the advantages provided by the modeling approach can carry

over to the corrections area. We begin with the description of a general

model for rearrest patterns over time; the behavior of this model is

examined under alternative assumptions in a numerical example. Classi-

cal and Bayesian estimation methods are presented, followed by a dis-

cussion of model-based evaluation procedures. The chapter concludes with

a brief discussion of possible extensions to the work reported here.
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II. A GENERAL MODEL OF REARREST PATTERNS

Consider any corrections program which subjects its clients to a

treatment period after which they are released. Ideally, clients re-

leased from treatment return to the community as law - abiding citizens.

Realistically, sizeable fractions of program populations are known to

recidivate. Of those who do recidivate, some are apprehended and re-

arrested.

In the model to be presented, we exploit the similarities between

the rearrest process and a branch of probabilistic reasoning known as

reliability theory (see Chapter 4 in Tsokos (1972), Chapter 13 in

Hillier and Lieberman (1974).1 Figure 1 depicts our observation of a

corrections program which releases clients at different points in time;

in total, N clients are released. Of, these N individuals, some are

rearrested, while the others are not rearrested during the period of

time allowed for observation.

For all clients in the program, our model will measure time accord-

ing to time from individual release, hence all of our arguments are con-

ditioned on release occurring at time zero. An observed rearrest is re-

ferred to as a "failure", and the length of time that elapses between an

individual's release and failure is denoted as the "time until failure".

Hence, the statement "Five failures occurred by the eighth day after

release" is interpreted to mean that five (of N) individuals were re-

arrested within eight days of the particular day on which they were

each individually released.

Consider an individual who is released from treatment at time

0(tR= 0). We are interested in the probability that this same individual

will be rearrested at some future time t given release at tR= 0' Let
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this probability of failure be denoted by pF(t). In order to derive ex-

pressions for pF(t) and other performance measures, we need to make a few

simplifying assumptions.

(i) All individuals fail independently of each other.

(ii) Pr {any client fails in (t,t + dt)jultimate failure,
but not in (0,t), tR = 0}

= $(t|F)dt.

(iii) Pr {any client does not fail in (t,t + dt)|ultimate
failure, but not in (0,t), tR = 01

= 1 - $(t|F)dt.

(iv) The fraction of the population that will ultimately
fail is given by r; 0 < r < 1.

From reliability theory, it is well known that these assumptions

determine the conditional probability of failure by time t given tR 0

and ultimate failure to be (Hillier and Lieberman, (1974))

$ (x|F)dx

F( tIF) e , t>0 (1)

subject to:

(i) f(tF) > 0 V t > 0.

00(ii) $ (t IF) dt = oo

The unconditional probability of failure by time t after release, pF(t),

is then given by

I $(x|F)dx
PF(t) = r(l -e ). t > 0 (2)

0 < r < 1
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It is apparent that the behavior of this model is completely de-

pendent on the nature of the function $(t|F). This function, which is

referred to as the hazard function, dictates the probability of failure

in the next time instant for those clients who have yet to fail but will

ultimately fail. Several functions come to mind for $(t|F). These are

shown in Figure 2. Curves of Type I are of the form $(tjF) ; such an

assumption implies that pF(tIF) will take on the simple negative exponen-

tial distribution. Stollmack and Harris (1974) studied this model, they

also assumed that the fraction of utlimate failures was equal to one, a

rather restrictive assumption. Maltz and McCleary (1977) studied this

model without the r = 1 assumption. Both of these models will be examined

later -on in this paper. Type II and Type III curves involve increasing

or decreasing propensities to be rearrested over time. Some of these

curves can be formulated as $(tIF) = oqta , which implies that pF(tIF)

takes on the Weibull distribution (Freund, 1971:117); a model of this

sort is illustrated later on. A more complicated model involving an

exponential - type hazard function is discussed by Bloom (1978). In the

appendix, we show that Bloom's model performs equivalently to the Maltz-

McCleary model. Hence, Bloom's model will not be reviewed. Of course,

plausible arguments for more complicated curves such as Types IV and V

can be made; these would lead to still more complex forms for pF(t F). The

choice of an appropriate function for $(t|F) is a data analysis question not

pursued in this paper; since there is no one correct function $(t|F) which

works for all situations, the results which follow will be notated for

the general case.
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t

Figure 2

Possible Curves for $(t F)

(tIF)
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Performance Measures for the General Model

(I) Ultimate Probability of Failure: r

The ultimate probability of failure, r = pF (w), is directly esti-

mated along with whatever parameters accompany the hazard function $(t|F);

this estimation problem is discussed in Section IV.

(ii) Expected Time Until Failure: tF

We have already computed the unconditional probability of failure

by time t to be

t

PF(t) = r(l - e $(xjF)dx* t > 0

Differentiating this expression with respect to time from release pro-

vides us with the pseudo - pdf for clients' individual times until

failure

t

$(x|F) dx

ft (t) r*(tIF)e_ . t > 0 (3)

The expected time until failures for ultimate failures is thus formulated

as

tF t tF (t)dt. (4)

Note that unless r = 1, the unconditional expected time until failure

is infinite, since

E(time to failure) = E(time to failurelultimate failure).Pr {ultimate failurel

+ E(time to failurelultimate success) -Pr {ultimate success}
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= tF r+o- (l-r)

=-00

(iii) Median Time Until Failure: tF(.5)

The median time until failure for ultimaite failures is given by

the equation

-l
tF(.5) F .5r. (5)

This is the time by which 50% of all eventual rearrests will have

occurred.

*
(iv) Safety Time: t (E)

The performance measure t (c) satisfies the equation

* *
Pr {individual fails in (t ,o)|didn't fail in (0,t ) and t =0} =;

and hence defines the safety time at risk level C (see Bloom (1978)). In-

tuitively, if one wishes to observe a client after release until the re-

arrest probability of that client is less than or equal to E, then one

*
must observe that client for at least t (E) time units after release at

tR = 0. The safety time is found by solving

t () = p 1( 0 O < c < r. (6)

(v) Probability Mass Function of the Number of Rearrests: P (t)
n

Recall that by assumption, all individuals fail independently of

one another. Since the probability of failure by time t given release
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at tR = 0, PF(t), applies to any client, the probability that exactly

n individuals have failed by time t is given by the well known bi-

nomial pmf

P n(t) = ( [pF(t)]nl F t N-n (7)

n = 0,1,..,N

t > 0.

Note that the probabilities

P n() = N rn - r)N-n

n = 0,1,..,N (8)

t > 0

may be interpreted as long run probabilities of failure, in that equa-

tion (8) determines the probability distribution of the ultimate failure

population.

(vi) Expected Number of Failures: n(t)

The expected number of failures that have occurred by time t is

simply

n(t) = NpF(t). (9)

since n(t) is a binomially distributed random variable.

(vii) Variance of the Number of Failures: a (t)

This measure is also easily obtained; it is given by
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CF 2(t)- N M ( - W)(10)
n - F F

2
It is interesting to note that since 0 < pF(t) < 1, an(t) will achLeve

a maximum when pF(t) = 1/2. This implies that regardless of the functional

form of pF(t), the maximum achievable variance of this model is equal to

N/4. Under the conditions of this model, at worst one can be 95% certain

that the observed number of failures by any time t is within ±(/Rof n(t).

(viii) Gausian Approximation to Pn (t): f n()

Most correctional programs involve a large number of clients. In

such situations where N is large, the calculations of Pn (t) are both tedious

and perhaps unrewarding. However, if N is sufficiently large (i.e., if

NpF(t) and N(l - pF(t)), are both greater than 5 (Freund, 1971:177)),

one may approximate the discrete binomial distribution of n(t) by a

2
Gaussian distribution with mean n(t) and variance a (t). If we allow the

interval (n - 1/2, n + 1/2] to represent the integer number of failures n,

then the number of failures which occur by a given time t may be approxi-

mated as a continuous random variable with pdf

-2
-1/2[ x -n(t)I

f (x) 1 e t)
n(t) a (t) 72f7 (11)

- CO < x < 00

The corresponding steady state pdf is obtained by setting t = C in the

above formulation. For large values of N, these distributions f n(t)

will be quite accurate.
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(ix) Time by Which the Probability of Failure Equals k/N: Tk

th
One may also be interested in the time until the k failure.

While there is no theoretical problem formulating the expected time until

the kth failure given that at least k failures ultimately occur, the

computations involved are prohibitively difficult. To gain some in-

dication of the timing of rearrests, it seems reasonable to examine

- -l
T ~n (k). (12)
k

This statistic reports the time by which the probability of failure equals

k/N; we will use Tk in Section V to compute fractile times until failure

for ultimate failures.

In summary, this section has presented a general model which can

provide a framework for analyzing rearrest patterns over time. Having

discussed this model, it is useful to examine the differences in model

performance that result from the choice of alternative hazard functions.

Such an example is presented in the next section.
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III. AN ILLUSTRATIVE EXAMPLE

Consider a treatment-release corrections program which serves a

client population of N = 100. -Suppose that a preliminary review of re-

arrest data has revealed that 25 of the program's 100 clients were re-

arrested within 6 months after release (hence pV(6) is estimated to equal

.25). Program officials are committed to evaluate the program after 24

months of exposure data have been collected. The program will be con-

sidered a success if p (24) < .40. In the meantime, the program staff

would like some indications of the range of rearrest patterns that could

occur over time under alternative assumptions governing the rearrest

process.

Three conjectures are of particular interest to the program staff;

each may be formulated as a model consisted with the data point pF(6) = .25.

Model 1 (Stollmack-Harris)

Let $(tJF) = A, A > 0, and assume r = 1.0.

Model 2 (Maltz-McCleary)

Let (tIF) = a, a > 0, and assume r = 0.5.

Model 3 (Weibull)

Let *(tJF) = a S t0~, a, 8 > 0, and assume r = 0.5.

The implications of these postulates may be examined in some detail.

Table I presents the formulas used to compute the measures associated

with the models, while Table II reports numerical values for selected

measures.

If we direct our attention to Figure 3, we notice that the three

models do represent quite different rearrest patterns over time.
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TABLE I

FORMULAS FOR PERFORMANCE MEASURES

STOLLMACK-HARRIS MALTZ-MCCLEARY

e-At1 - e

- In(.5)

N. A.

N(1 - e -)

N(1 - e )e

r(1- e-at

a

- I ln(.5)a

- ln( c(lr))
a r (1-c)

Nr(1 - e-at

Nr(1 e-at)

(1-r + re-at)

(2)

(4)

(5)

(6)

(9)

(10)

(12)

r(1 -e-<tt)

(;) r(1 +)

- ln(.5)

N 1-0

-In( )

Nr(1 - e-at

Nr(1 - e-ata

(1-r + re-atS)

[ n l(1-

PERFORMANCE
MEASURES EQUATION WEIBULL

PF(t)

tF

tF (.5)

t (c)

; (t)

a (t)

(1 k !S 1 knI- !
N a l-NrT k
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TABLE II

NUMERICAL RESULTS

STOLLMACK-HARRIS
(A - .05)

1.0

13.9

20.0

N.A.

N.A.

N.A.

N.A.

2.1

PERFORMANCE
MEASURE

r

tF(.5)

tF

t (.1) (

t (.2)

t (.3)

t (.4)

T 1

T 20

MALTZ-MCCLEARY
(a - .12) (a_-_

0.5

6.0

8.3

18.3

11.6

7.1

3.4

0.2

4.3

WEIBULL
.28, S =.50)

0.5

6.0

25.5

61.6

24.5

9.2

2.1

0.0

3.3

10.2 13.4

4.5

months)

months)

(months)

33.0

411
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Recalling that an evaluation is to be performed on the basis of 24 months

of exposure data, the model-based values of pF(
2 4 ) are useful indices for

shaping prior expectations of program performance. As an example, our

Weibull model demonstrates that even if pF(2 4 ) = .37 < .40, the criterion

set a priori by program administrators, the long run probability of re-

arrest can equal .50. Thus, program success in the short run is not in-

consistent with long run program failure; evaluations of such programs

should take this possibility into account.

If we now consider the timing of rearrests, some differences in

model behavior are noteworthy. Although the Maltz-McCleary and Weibull

models produce equivalent median times until failure, the Weibull ex-

pected time until failure is more than three times that of the Maltz-

McCleary model. Of the three models considered, the Maltz-McCleary

model clearly exhibits the most rapid failure process over time for ul-

timate failures; this is best reflected by Figure 3.

*

Figure 4 presents a graph of the safety time t (c) versus c for the

Maltz-McCleary and Weibull models. The Weibull model is clearly conser-

vative in its implications. Only after an arrest-free release of 61.6

months can one be 90% certain that a client will not fail according to the

Weibull model. At an equivalent 90% confidence level, the Maltz-McCleary

model requires 18.3 months of arrest free releases.

To examine the uncertainty associated with these models, the

variance of the number of failures is plotted as a function of time in

Figure 5 for each of our three sets of assumptions. All three models

reach the maximum achievable variance of N/4, since pF(t) approaches

1/2 as t approaches infinity for the Maltz-McCleary and Weibull models,
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while pF( 1 3 .9) = 1/2 for the Stollmack-Harris model.

Finally, Figures 6, 7 and 8 present the Gaussian approximations to

P (t) for t = 6, 24 and o. At t = 6, all three models are identical.

The distributions are quite distinct at t = 24, with the Stollmack-Harris

model translated the furthest to the right, and the Weibull model the

furthest to the left. As t approaches infinity, the Stollmack-Harris

model produces an infinite spike at n(o) = N. Of course, the Maltz-

McCleary and Weibull models reproduce each other for this case.

It is apparent that the behavior of the models can be drastically

different at various points in time. This stems from the alternative

formulations of pF(t) which in turn depend upon the assumptions governing

the behavior of *(tIF), the conditional hazard function. While the mo-

dels demonstrated here do not by any means exhaust the world of possible

models, they do illustrate the different types of model behavior achiev-

able via the specification of alternative hazard functions.
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IV. ESTIMATION OF PARAMETERS FOR THE REARREST MODEL

In order to utilize in practice the general formulation developed

thus far, we need to consider some reasonable techniques for estimating

r and the parameters of $(tjF). To this end, both maximum likelihood and

Bayesian methods are suggested. The data aggregation scheme presented in

conjunction with this discussion is attributable to Stollmack and Harris

(1974).

Recall our discussion of Figure 1 from Section II. Suppose that of

the N individuals who were released, k have been rearrested by the time

we begin our analysis. If we let t correspond to the time from release

until the i h failure (i = 1,2,..,k), then the likelihood of observing

these k failures at the times they occurred under the conditions of our

model is given by
t.

f $(x|F)dx
k -0

L{k, t} = r $(t JF)e (13)

Similarly, let T. represent the time from release that the jth
J

client (j = 1,2,..,N-k) has been observed to remain unarrested. The

probability of observing this combination of the N-k success times is

given by
T.

N-k f 4$(x|F) dx

L{N-k, T} = f (1 - r + re 0  ). (14)
j=1

(i) Maximum Likelihood Estimation

Let $(t;ij F) denote the conditional hazard function where * is the

set of parameters contained in this function (e.g. for the Weibull model,

= {cx, S}). The overall likelihood of observing a particular pattern of
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k failures over time according to our model is given by

ti

f $(x; $|F)dx
k -0

L{k, N, t, |r, }= 'Tr r*(t F)e

-k 4 (x; *|F)dx

[1 (1-r + re ) -] (15)

To find the maximum likelihood estimates for r and , one must solve the

optimization problem

max L{k, N, k, r,} (16)

r,

subject to 0 < r < 1, constraints on $

In general, this is not an easy problem to solve. Maximum likelihood

estimates have been obtained analytically for the Stolimack-Harris model

(Stollmack-Harris, 1974), numerically for Bloom's model (Bloom, 1978)

and numerically for the Maltz-McCleary model under the special condition

that T = T, j = 1, 2,.. ,N-k (Maltz and McCleary, 1977). To obtain

maximum likelihood estimates for more complicated forms of $(t|F) may

require the use of non-linear programming routines.

(ii) Bayesian Estimation

In Bayesian analysis, we allow both subjective and objective infor-

mation to play a role in our model (Freund, 1971: 280-281). The para-

meters of interest, r and $,are not viewed as being fixed and unchanging
^V

as is the case with classical techniques such as maximum likelihood esti-

mation. Rather, r and are assumed to behave as random variables with

a priori probability distributions. These distributions may be objectively

or subjectively derived.
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As an example, assume for the moment that r and t are independent

within the Bayesian scheme of things. A corrections program official

might make a series of statements of the form:

"The probability that some fraction not exceeding r of our clients

will fail is given by F(r)."

These statements may be based on both the past experience of other

programs and personal convictions regarding the likelihood of program

success. This subjective cumulative distribution F(r) is then converted

to a density function by examining successive differences (e.g., F(.1) -

F(.05), F(.15) - F(.1), .... F(1.0) - F(.95)) and fitting a curve to the

resultant histogram. Such a prior distribution f(r) is interpreted as the

probability distribution of ultimate failure likelihoods across the popu-

lation of programs similar to the one in question. The true value of r

that will actually be observed is treated as a random selection from this

population.

Suppose that a program administrator specified the following values

for r and F(r):

r F(r)

.2 .10

.4 .50

.6 .80

.8 .95
1.0 1.00

The prior distribution graphed in Figure 9 would result. This dis-

tribution formally represents prior expectations of ultimate rearrest

probabilities.
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Let f(r, $ represent the joint prior distribution of r and . Since

r and are now being viewed as random variables, the likelihood function

of equation (15) is nothing more than the conditional probability of

having observed a particular rearrest pattern given specific values of r

and $. What we wish to compute is the joint conditional distribution of

r and $ having observed a particular rearrest pattern characterized by k

failures out of N released clients, and times to failure t, observed success

times T.

This posterior distribution of r and $ is formulated via the use of

Bayes' Rule (Freund, 1971: 280-281)

g(r, Ik, N, t, ) = f(r, V)L{k, N, t, T Ir, }7

R(k, N, t, T)
% lb

where R(k, N, t, T) is a normalizing constant. The posterior distribution

of r may be found by integrating out over $

h(rlk, N, t, T) = f g(r, $Jk, N, t, T)d$ ...d%.

1\ n (18)

The posterior expected value of r is then found by computing

1

E(rik, N, t, T) r- r h(rlk, N, t, T)dr. (19)

Similarly, the posterior expected values of each of the performance

measures discussed in Section II can be found. Let a generic performance

measure be denoted by M(r, $); the posterior expected value of this
ms

measure is given by
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1

E[M(r, $)Ik, N, t, T] = r= $p

1
f$ f$ M(r,0)g(r,)k,Nt, )d$...d4ndr.

n (20)

Now, since the calculations in the equations of this Bayesian analysis

require nothing more complex than integration, the Bayesian estimates dis-

cussed can be obtained numerically. It would be possible to write a com-

puter program to perform these calculations for any given function $(t|F),

though the design of such a program has not yet been attempted.
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V. EVALUATION ISSUES

In the introduction to this paper, we stressed the difference that

exists between observed rearrest rates and true recidivism rates. Since

we have not attempted to account for the relative influence the police

have on the rearrest process, the models which have been discussed should

be used in conjunction with controlled evaluation designs (see Campbell

and Stanley, 1966) if the comparison of two corrections programs is being

pursued.

The manner in which our model is used for evaluation purposes depends

upon whether the estimation approach chosen is classical or Bayesian. The

differences resulting from these alternative approaches are illustrated

throughout.

The first measure of evaluative interest is the ultimate rearrest

probability r. In general, program success is seen to vary inversely

with the value of r. 3 It may be established a priori by program officials

that one program target is the achievement of an r value less than some

*
desired tolerance level r . If r was estimated via maximum likelihood

*
techniques, then for large N, the null hypothesis H : r = r may be tested

using

Z = r - r
(21)

N

where r is the maximum likelihood estimate of r, and Z is distributed as

a standardized Gaussian random variable (Freund, 1971:329).4 The rationale

for this test stems from the Gaussian approximation f n(t)(x) discussed in

Section II.
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The Bayesian version of this test would consist of computing the

*
probability that r is truly less than r . This is computed as

*
*r

Pr{r < r |k, N, t, T} = h(rk, N, t, T) dr (22)
AV b 0 %b 1

where h(rjk, N, t, T) is as defined in Section IV. What constitutes an

acceptable likelihood of program success in this instance is a decision

problem for program officials.

One would also be interested in the average rearrest probability.

To this end, E(rik, N, t, T) may be found through use of equation (19).
'\., f\,

*
A computed value of E(rlk, N, t, T) < r is indicative of program success.

The procedure just presented may also prove useful as indicators of

whether or not additional data collection is necessary during the life

of a program. Suppose that after some initial fixed period of data

collection, k failures out of N releases have occurred. For the classi-

cal procedure, compute the maximum likelihood estimate r, and substitute

*
k/n for r in equation (21). If there appears to be no significant

difference between r and k/N, then perhaps there is no need to continue

collecting data, and resources available for this segment of the evalua-

tion may be channeled to other evaluation tasks (e.g. interviews with

program clients). The Bayesian analogy consists of substituting k/N for

r in equation (22); if Pr{r < k/NIk, N, t, T} is relatively large, then

this may also be an appropriate signal to end data collection.

Conversely, if there is a strong disagreement between the observed

fraction of failures and the estimated ultimate fraction of failures,

maybe more data should be collected, even if the time by which k rearrests

have occurred corresponds to the scheduled completion date for the data
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collection effort. For an example of this sort, data extracted from

Pre-Trial Intervention: A Program Evaluation of Nine Manpower-based

Pre-Trial Intervention Projects revealed that after one year of release

time, 18.3% of all released clients had been rearrested, yet application

of the Maltz-McCleary model to this same data yielded a maximum likeli-

hood estimate of £ = .43 (Kaplan, 1978b:23). Since P is almost 2 1/2

times as large as k/N in this instance, it might have been a good idea to

sustain the data collection effort for this evaluation; if models like

those presented here had been available to these evaluators, this finding

could have been discovered during the data collection phase.

If we now consider the case where two programs are being compared

in a controlled environment, a number of our model-based performance

measures may be utilized. Again focusing our attention on the ultimate

probability of rearrest r, the null hypothesis H : r1 = r2 may be tested

using

A A

Z =r r2

r___ r 2(l

(- 1) 22 2
l r) + N(23)

N N
1 2

where:

N , N2 = client populations of the programs;

A

r1 , r2 = maximum likelihood estimates of the

ultimate failure probabilities;

Z = a standardized Gausian random variable.
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As with all of the procedures we have discussed which are dependent upon

the Gausian approximation fn(t) (x), this test is valid only if N and N2

are large (Freund, 1971: 332).

The comparison of two programs from a Bayesian perspective using r

commends a more graphic analysis. Essentially, the posterior distribu-

tions of r for each program may be plotted on the same figure; such a

presentation provides a visual method for comparing program performance.

An example of such a plot is shown in Figure 10.

The Bayesian approach does allow for numerical comparisons as well.

The simplest of such comparisons would be to compute the expected posterior

probabilities of ultimate rearrest using equation (19), and check to see

which program produced the lower value. A more meaningful comparison in-

volves finding the likelihood that one program produced a lower probabil-

ity of rearrest than the other program. If we let

A E {k , N , t , }
r 2'2 2  29 2 2 2

where the subscripts denote program one and two, then the expected pro-

bability that r1 < r2 is computed as

1 r 2
Pr{r1 < r2  l A 2 hUr )h (r2 2)dr dr

r2=0 r 10 (24)

where h(rjA) is as defined in equation (18). Conversely,

Pr{r1 > rA2 1'A 2} = 1 - Pr{rl < rA2 Al A2}. If the result of equation

(24) is greater than 1/2, then it would appear that program one has out-

performed program two using r as a performance measure.
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Figure 10

Comparing the Posterior Distributions

Of Ultimate Failure Probabilities



- 174 -

When comparing two programs, the timing of rearrests becomes important.

For example, if two programs produced equivalent values for r, one could

argue that the program with the lesser value for tF (or E(tF) if you're

a Bayesian) was the more successful since such a program quickly distin-

guishes ultimate failures from the rest of the client population. Indeed,

Maltz and McCleary recognized this possibility when they wrote that

"Knowledge of a program's failure rate can help in matching programs to

participants" (Maltz and McCleary, 1977: 432); in the example presented

here, clients who are felt likely to fail a priori by program officials

could be assigned to the "quick failure given ultimate failure" program

to the benefit of the other program participants (Maltz and McCleary,

1977).

The use of time until failure measures has process implications as

well. In the example concerning the evaluation of pre-trial interven-

tion projects presented earlier, it was found through application of the

Maltz-McCleary model that the median time until failure for ultimate re-

arrests was equal to 462 days; thus the one year data collection effort

terminated before 50% of all ultimate rearrests had occurred! Again,

had this calculation been performed, it could have been seen as a signal

to prolong the data collection phase of the evaluation (Kaplan, 1978b:24).

To compare the timing of rearrests resulting from two programs with

different client populations, the measure Tk (or E(Tk) for Bayesians) is

useful. One can examine the fractile times until failure to perform a

relative comparison. Suppose we are interested in the time it takes until

a fraction q of the population of ultimate failures has failed. For both

of the programs being compared, compute
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k, q ~ n (N - r - q) i = 1, 2, 0 < q < 1 (25)

for various values of q between 0 and 1. The values of Tk q (or E(T kq

are then comparable for similar values of q (note that for q = 1/2,

Tk q = tF(.5), the median time until failure).

The final evaluation measure we will consider for the comparison of

* * *
two programs is the safety time t (e). The values of t (or E(t )) as a

function of E may be plotted for each program on the same graph. It is

*
then possible to check for dominance. Consider Figurell where t (e) has

been plotted for two hypothetical programs. Here it is clear that Pro-

* *
gram A dominates Program B, since for any value of C, t A < t B* To

assert with confidence (1-6) that an individual will not be arrested

given that (s)he hasn't failed by t will always require a longer time

from release for individuals in Program B than for individuals in Program

A. Of course, it is possible for partial dominance to occur; A could dom-

inate B for low values of c, while B could dominate A for high values of

e. For evaluation purposes, dominance over low values of E characterizes

a successful program.

It should be noted that in our discussion of the methods of this

section, no specific form was assumed for $(tIF). In fact, different

hazard functions could be engaged for different programs, and the compara-

tive procedures discussed here could still be invoked. Also, as mentioned

by Maltz and McCleary (1977: 432), it is not necessary for programs to

exist for the same length of time in order to use these techniques.
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VI. SUMMARY AND EXTENSIONS

This paper has analyzed the common structure shared by treatment-

release corrections programs within the framework of reliability theory.

Having presented a general model of the rearrest process, we examined

the performance of this model under alternative assumptions, and illus-

trated appropriate techniques for estimating model parameters. We then

discussed classical and Bayesian model-based evaluation procedures for

use in both process and outcome situations.

While the substantive focus of this paper has been on models for

rearrest patterns, it should be noted that the mathematics involved are

appropriate for generic failure problems. Thus, if one was interested

in performance measures based on alternative failure patterns over time,

the reliability models of this paper could prove useful. For example,

suppose one wished to judge a program participant as a failure only if

that client was reconvicted. The time until failure would then corres-

pond to the time until reconviction. Thus, the models presented here

are responsive to the notion that different types of programs may re-

quire different definitions of client failure for evaluation purposes.
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FOOTNOTES

'Reliability theory addresses problems associated with the [ailure

of systems (or system components) over time.

2The pdf is a pseudo-pdf since (t)dt = r, and r is in general
not equal to one. J F

0
3While r is often considered to be a fundamental performance measure,

the model presented by Blumstein and Larson (1971) suggests that 1/1-r
is a more readily interpretable performance measure. The expression

1/1-r represents the number of future crimes committed per individual

after release from treatment in the Blumstein/Larson model; this expres-

sion is very sensitive to changes in the value of r when r is close to

one.

4 It is assumed that the reader is familiar with the procedures of

hypothesis testing; a good discussion of hypothesis testing is found in

Chapters 10 through 12 of Freund (1971).
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Appendix: Assymptotic Equivalence of the Bloom and Maltz-McCleary Models

As mentioned in Section II, Bloom (1978) has proposed a model in-

volving an exponential hazard function. We also stated that Bloom's

model was operationally equivalent to the Maltz-McCleary model. In this

appendix, we will explain why this is so.

Bloom did not rely upon the notion of a conditional hazard function

when formulating his model, as he rejected the assumption that some

fraction r of the population released could be conceived a priori as

consisting of ultimate failures (Bloom, 1978: 4). Rather, Bloom defined

an unconditional hazard function for his model of the form (Bloom,

1978: 6)

$(t) = be-ct , b, c > 0 (Al)

In Bloom's model, $(t) represents the likelihood that an individual will

fail in the next time instant given release at tR = 0. Note that Bloom

does not explicitly restrict the application of his hazard function to

ultimate failures.

To obtain an expression for pF(t) given the hazard function of equa-

tion (Al), the well-known reliability result of equation (1) may again be

invoked yielding (Bloom, 1978: 6)

_b b t-_ -ct

PF(t) e c e c e b, c > 0, t > 0 (A2)

This model has some interesting properties; foremost among these is

the fact that by setting t = o in equation (A2), one arrives at the ex-

pression (Bloom, 1978: 7)
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b

pF = 1 - e b, c > 0 (A3)

b

Thus, Bloom's model implies that some fraction 1 - e e of the population

released will ultimately fail. Bloom does interpret equation (A3) as

an expression for the "ultimate probability of failure" (Bloom, 1978: 7),

yet he rejects the notion that one may assume the a priori existence of

an ultimate rearrest probability r. This distinction is at best artifi-
b

cial, as r and 1 - e c are both constants.

Recall that for the Maltz-McCleary model, $(tJF) = a, a positive

constant. To see how the Bloom model asymptotically approaches the

Maltz-McCleary model, we will formulate the conditional hazard function

$(tIF) for Bloom's model, and show that as t approaches infinity, $(t|F)

approaches a positive constant. If we define pF(t|F) as the probability

of failure by time t given release at tR = 0 and ultimate failure, then

for Bloom's model,

_b b -ct

pF(tIF) = e b, c > 0, t > 0 (A4)

1- e c

Differentiating (A4) with respect to time from release to obtain ft (t|F),

the conditional pdf for time until failure given ultimate failure, yields

b b -ct
- -e-ct c c

f (t|F) = be e e b, c > 0, t > 0 (A5)
tF b

1 - e c
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Now, the probability that an ultimate failure will be rearrested in the

next time instant conditioned on the event that (s)he has not failed by

time t is given by

b b -ct

$(tjF)dt = be-t ec c e dt
b

1- e c

b b c
_ - -et

1 l C ec Ce

1 - b

1 - e c

which algebraically reduces to

-ct
-ct c e

$(tjF) = be e b, c > 0, t > 0 (A6)
b
- -ct
eC e

If we examine the limit of $(t|F) as t approaches infinity, we realize

that we cannot evaluate this limit directly since both the numerator and

denominator of (A6) approach 0 as t approaches infinity. Applying

L'H8pital's rule (Purcell, 1972: 562), we obtain

d b -ct
-- -et Ce

lim $(t|F) = lim dt[be e (A7)
t +t -+o d - -et

dt[ec e

= lim [c + be t

= C c > 0.

Thus, the conditional hazard function for Bloom's model does approach a

positive constant over time.



- 183 -

To illustrate the operational similarities between Bloom's model

and the Maltz-McCleary model, we will return to our example of Section

III. First, we impose the same restrictions on Bloom's model as those

that were imposed on the Maltz-McCleary model:

(i) pF(6) = .2

(ii) pF (o)= .50

To satisfy restriction (ii), we use (A3) to obtain

b = -c 1n (.50). (A8)

Substitution of (A8) into Bloom's expression for pF(t) given in (A2)

combines with restriction (i) to produce the result c = .089. Placing

this value for c in equation (A8) yields b = .062. These values of b and

c may be used with equation (A2) to produce the results shown in Table AI.

It is evident from Table Al that these models behave in equivalent

fashions.

Hence, it is not surprising that Bloom found the performance of his

model and the Maltz-McCleary model to be operationally equivalent, de-

spite their mathematical differences (Bloom, 1978: 16). When applied to

the same data set, these two models will produce comparable results.
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TABLE AI

FAILURE PROBABILITIES FOR THE MALTZ-MCCLEARY AND BLOOM MODELS:

THE EXAMPLE OF SECTION III

Time from Release Maltz-McCleary Bloom

(months) (r - .5, a - .12) (b - .062, c - .089)

0 0.00 0.00

6 0.25 0.25

12 0.38 0.36

18 0.44 0.42

24 0.47 0.46

30 0.49 0.48

36 0.49 0.49

42 0.50 0.49


