
VISUALIZATION OF LATTICE FIELDS

by

David A. Jablonski

SUBMITTED TO THE DEPARTMENT OF ELECTRICAL
ENGINEERING AND COMPUTER SCIENCE IN

PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF

BACHELOR OF SCIENCE IN ELECTRICAL SCIENCE AND ENGINEERING

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 1989

Copyright (c) 1989 David A. Jablonski

THE AUTHOR HEREBY GRANTS TO M.I.T. PERMISSION TO REPRODUCE

AND DISTRIBUTE COPIES OF THIS DOCUMENT IN WHOLE OR IN PART.

A A A I

Signature of Author
Department ofElectrical Eng ee' g and Computer Science

,7 r n pJune 5, 1989

Certified by

Accepted by

ARCHIVES
gSS INSL, TECH.

JUN 16 I9
A~ R

/ V

Professor Sanjoy K. Mitter
Thesis Supervisor

Leonard A. Gould
Chairman, Undergraduate Thesis Committee

4 -,1

VISUALIZATION OF LATTICE FIELDS

by

David A. Jablonski

Submitted to the Department of Electrical Engineering and Computer
Science on June 5, 1989 in partial fulfillment of the requirements for the

degree of Bachelor of Science in Electrical Science and Engineering.

Abstract

The Laboratory of Information and Decision Systems is involved in the development of a
number of models of probabilistic systems based on three dimensional lattice
configurations. Proper development of these models involves computer simulation to test
the theoretical structure. This thesis examines some of the problems associated with
visualizing the resulting lattice fields in a form that is both understandable and useful.
Software was developed to render and provide some analysis of lattice fields.

Thesis Supervisor:
Title:

Professor Sanjoy K. Mitter
Professor of Electrical Engineering and Computer Science

-3-

Dedication

I would like to thank Professor Sanjoy Mitter for his guidance, Dr. Peter Doerschuk for his
unlimited assistance and my mother and father for all their loving support and
encouragement.

-4-

Table of Contents

Abstract 2
Dedication 3
Table of Contents 4
List of Figures 6

1. Introduction 7
1.1 Objective 7
1.2 Sparsely Occupied vs. Densely Occupied Lattice Fields 8

2. Background 9
2.1 The Ardent Computer 9
2.2 Coordinate Systems 9
2.3 Terminology 11

3. Sparsely Occupied Lattice Models 12
3.1 Modeling of Biological Molecules 12
3.2 Assisting Visualization 13

3.2.1 Visualization Planes 14
3.2.2 Probability Thresholding 14
3.2.3 Connectors 15
3.2.4 Dynamic Models 15

3.3 Information and Statistics 16

4. Densely Occupied Lattice Fields 17
4.1 The Ising Model 17
4.2 Grouping 18

4.2.1 The Grouping Algorithm 18
4.3 Approximations 19

4.3.1 Coarse Approximation 19
4.3.2 Group Size Approximation 20

4.4 Rendering Clusters 21
4.4.1 Primitive enclosures 21
4.4.2 Flat Plane Bounding surfaces 22
4.4.3 Beta-Splines 23

4.5 Assisting Visualization 25
4.5.1 Transparency 25
4.5.2 Spinup vs. Spindown Clusters 25

4.6 Information and Statistics 27

5. Conclusions 29
5.1 Results 29
5.2 Additional Research 30

Appendix A. Users manual 31
A. 1 Overview 31
A.2 The Program Structure 31

-5-

A.3 Using the Program 32
A.4 Running the Programs 33

Appendix B. The Code for the Sparse Model 36
B.1 Userparse.c 36
B.2 Geom-spec.c 42
B.3 My.h 46

Appendix C. The Code for the Dense Model 47
C.1 Userparse.c 47
C.2 Geomspec.c 51
C.3 My.h 68

Appendix D. Modifications to the Display Programs 69
D.1 Butt.c 69
D.2 Dui.c 69
D.3 MkModels.c 70
D.4 Render.c 70
D.5 Ui.c 73
D.6 butt.h 74
D.7 ui.h 74

-6-

List of Figures

Figure 2-1: Molecule in integer coordinates (left), floating point coordinates 2.2
(right)

Figure 4-1: Primitive cubes (top left), Variable primitives (bottom left), Flat 4.4.3
planes (top right), Beta Spline Surface (bottom right)

Figure 4-2: Spin up (left), Spin down (right) 4.5.2
Figure A-1: The directory structure A.2

-7-

Chapter 1

Introduction

1.1 Objective

Developing a realistic probabilistic model of a lattice field is a difficult matter. Aside

from whatever theoretical analysis is necessary, it is often helpful if not essential to develop

computer simulations to check the validity of the model. The goal of this thesis is to

provide a set of tools that will assist in the development, analysis and verification of these

models.

A major problem with the development of models of probabilistic systems greater

then two dimensions is the difficulty in interpreting and gaining insight from the resulting

data. Reading lists of data points and graphing two dimensional slices of the results are

helpful but do not reflect the true dimensionality of the results. Often symmetries and

correspondences are misinterpreted or missed altogether. By graphing the results of these

models using the multidimensional rendering capabilities of modem supercomputers, it is

possible to reveal relationships that were missed and increase the reliability of the

constructed model.

The software presented in this thesis provides a number of utilities that are helpful in

the algorithm development of computer simulations of lattice field models. In addition to

presenting a method for visualizing simulation results, techniques are offered that allow the

graphical representation of results while they are being generated by the simulation. This

feature is useful in analyzing the way the simulation actually generates its results. The

software presented here is discussed in relation to two specific classes of lattice fields;

however, in a broader sense this thesis is concerned with methods of visualizing and

rendering understandable images out of complex structures.

-8-

1.2 Sparsely Occupied vs. Densely Occupied Lattice Fields

Two classes of lattice fields were examined as this software was created. While there

are similarities between the two, each presents some unique features that require special

attention. Through the analysis of the requirements of these two simulations, visualization

techniques were developed that could be used for a broad range of models.

Both classes of models are based on configurations of three dimensional lattice

coordinates. Through various techniques, each model manipulates the sites in the lattice to

arrive at some optimal solution. The fundamental difference between the two is the number

of lattice sites that are occupied in the final solution to the simulation.

Models which contain only a few occupied sites are referred to as sparse models.

These models are usually concemed with the interactions between specific sites, or the

effect of particular sites on the overall model. Consequently, successful visualization of

these models involves techniques for rendering individual sites and their relationships to

other sites in the model.

Models which contain many occupied sites (50% or more) are referred to as dense

models. Usually these models simulate very large lattices, and are therefore concerned with

the effects of groups of sites rather then each individual site. Visualization techniques used

for this class of models involve definition and rendering of clusters of sites and

representation of the interaction of these clusters with the overall model.

-9-

Chapter 2

Background

2.1 The Ardent Computer

The software for this thesis was developed is the Titan II supercomputer produced by

the Ardent Corporation. The Titan is capable of running 4 CPU's with 64 Megabytes of

addressable memory. Tests have shown peak performance speeds of 16 MIPS and the

capability to render 400,000 3D vectors per second. [Titan Architecture 88] The particular

machine used to create this software package contained 2 CPUs with 64 Megabytes of

addressable RAM. This provided the capability of producing realtime rotations and

translations of relatively complex models.

The graphics software designed to run on the Ardent is the Dore Graphics language.

Dore is an object oriented language accessible through FORTRAN and C that handles most

of the overhead necessary in rendering graphics images. Models are defined as objects and

given to Dore to render. Keyboard, mouse and knob input can be configured to provide

control over Dore's rendering parameters. Additional software was created on the M.I.T.'s

Athena computer network to allow reformatting and printing of the graphics images

generated on the Ardent.

2.2 Coordinate Systems

Each lattice field model may be associated with a different coordinate system. The

sparsely occupied lattice field example that will be investigated is a representation of

organic molecules. The sample data that was collected lies at real valued locations on a

lattice with an angle of 94 degrees. For simplicity, this data has been discretized and

-10-

translated to lie at integer valued location on a lattice with all angles equal to 90 degrees.

While this simplifies the code and slightly increases execution speed, some detail is lost by

truncating the actual site locations to integer coordinates. Figure 2-1. shows an example of

the loss of information. Provisions have been made for the display of models with floating

point coordinates to allow more realistic representations of the models, but this code does

not account for the inherent symmetries in non-cartesian coordinate systems.

VI.

Figure 2-1: Molecule in integer coordinates (left), floating point
coordinates (right)

The densely occupied lattice field example used in this thesis can be completely

described in cartesian coordinates but contains two interlocking coordinate grids. Each

Lattice site can be represented by an integer coordinates in cartesian space. The

coordinates (XIm, YIm, Zim} which describe this location are referred to as lattice

coordinates. Additionally, the dense model contains representations of the surfaces which

bound clusters of similar sites. These surfaces lie between lattice coordinates and will be

referred to by their locations in surface coordinates (Xsm, Ysm, Zsm). The relationship

between lattice and surface coordinates is represented below.

O <X m, YIm, ZIm s m ; 0 <Xsm, Zsm, Zsm m+1

-11-

Xsm = XI(m-1)+0.5 = Xim -0.5

Ysm i(m-1) + 0.5 = Ym - 0.5

Zsm = Zl(m-1)+0.5 = Zim -0.5

Each lattice coordinate has two corresponding surface coordinates that bound it- located at

m ± 0.5 in lattice space and at m and m+1 in surface space.

2.3 Terminology

There are a number of terms used throughout this thesis that require some definition

or explanation. These terms are not necessarily used universally, but clear explanation of

each should help to make this document understandable.

site - A particular location within a lattice. Each site can be represented by the

integer vector {x, y, z} where each variable represents a coordinate in lattice coordinates.

nearest neighbor - A site which lies closest to another site in the dense model. The

distance between sites is the linear distance between the centers of the two sites. In

cartesian space each site has six nearest neighbors- one in the positive and negative

directions of each of the x, y, and z directions.

cluster - A group of sites within a dense model in which each member is a nearest

neighbor to at least one other member of the group.

occupied site - Any site with probability greater then 0.0 in the sparse model. Any

site containing an atom with spin up in the dense model.

unoccupied site - Any site with probability equal to 0.0 in the sparse model. Any site

containing an atom with spin down in the dense model.

-12-

Chapter 3

Sparsely Occupied Lattice Models

3.1 Modeling of Biological Molecules

The model that was chosen to examine the effectiveness of the sparse model

visualization is an excellent example of many of the characteristics that make the sparse

models different from dense models. Given the diffraction data from x-ray crystallography,

this model attempts to generate the original crystal structure. [Doerschuk 88]

Each site in the model's lattice represents a possible location for an atom in the

crystal structure. Each site has a probability associated with it- the probability that an atom

is located at that site. Factors such as nuclear repulsion between close atoms and covalent

attraction between distant atoms are used to generate that probability of each site's

occupancy.

The visualization goals for this particular model is the accurate representation of the

relationships between the sites that fall within a given probability range. However, this

example is an excellent illustration of generalized sparsely occupied lattice fields. Each

occupied site can be thought of as an atom and successful visualization will achieve

recognizable relationships between specific sites. In this case, the hexagonal and

pentagonal rings characteristic to organic molecules are the important relationship.

-13-

3.2 Assisting Visualization

The actual representation of the sparse model requires far less effort then the task of

making the representation understandable and useful to the user. Since there are relatively

few occupied sites and the individual sites are the focus of the investigation, it is a

relatively simple task to represent each site as a primitive object. For compactness and

added depth perception, each site is represented by a colored sphere. The location of the

sphere represents the location of the site within the lattice field, and the color represents the

probability of that site being occupied. For simplicity only sites with non-zero probability

are visible.

This simple representation of the model has a number of immediate benefits. With

proper perspective calculated, the position of each occupied site can be discerned by its

location(indicating x and y position) and its size (indicating depth or z position). In

addition, those sites whose probability of occupancy is high appear redder while those sites

whose probability of occupancy is low appear greener.

Yet there are a number of difficulties with this visualization of the image. As the

number of occupied sites increases, the computer requires much more time to render the

image when it is translated. Furthermore, when there are more then 20 or 30 occupied sites

on the screen, it becomes difficult to clearly see the position of the individual sites, and the

relationships between sites.

In order to overcome some of these problems, and to further enhance the information

that can be perceived through the visual representation of the model, the following methods

were developed.

-14-

3.2.1 Visualization Planes

The first visualization technique involves the selective isolation of sections of the

model for examination and manipulation. Often it is not necessary to look at the entire

model to determine the necessary results. The user has the option of selecting clipping

planes that will isolate sections of the model for viewing. By selecting the distance

between the planes it is possible to look at the entire model, or only a thin slice of it.

Through the use of the knob box, these clipping planes can be translated through the model

to render successive slices of the model. This simple technique both increases rendering

speed and limits the number of sites displayed, thereby reducing confusion.

3.2.2 Probability Thresholding

While visualization plane techniques allow the user to isolate data according to their

spatial dimensions, probability thresholding allows the isolation of data according to the

probabilities associated with each site. As before, it may only be necessary to view those

sites with probability of 1/2 and above. By selectively rendering only those sites with the

desired probability, speed is increased and the image is made clearer. Once again, the user

may specify the maximum and minimum probabilities that are to be rendered and the knob

box may be used to dynamically alter the minimum probability.

Since probability is represented by color, care was taken to use the full range of color

values. Color is controlled by specifying the percentage of red, green and blue that is used

to display each object. At each site the color of the rendered sphere is calculated with the

following equations:

P(x) - P
Red = 'i

1-Pmi

P(x)-min
Green = 1 - m

Blue=O

-15-

Where P(x) is the probability associated with the site and Pmmn is the minimum visible

probability. Thus, even as the probability range is modified, those sites with the maximum

probability will remain pure red, and those sites with the minimum probability will be pure

green. With this technique, sites of similar probability can be easily detected.

3.2.3 Connectors

In addition to selectively displaying portions of a model, it is useful to determine the

relationship between individual sites. In the case of the organic crystal model, where the

atoms are held together with covalent bonds, the natural repulsive force between the atoms

will limit the proximity of atoms, and the natural attractive forces between the atoms will

limit the farthest distance they can be separated while remaining part of the same molecule.

These interactions can be represented on the screen by visual links between the sites.

These links are represented by cylinders that join the centers of each pair of sites. Once

again, maximum and minimum values for the length of these links can be specified. In

order to reduce complexity and increase speed, those links that are longer than the

maximum are not rendered. Those links that are within the thresholds are colored blue, and

those links which are below the minimum threshold are colored yellow. By appropriate

choice of maximum and minimum lengths it becomes a simple matter to determine which

sites are too close or to far away from other sites to properly interact in the model.

Additionally, underlying symmetries such as the hexagonal ring structure discussed earlier

become visible.

3.2.4 Dynamic Models

Finally, it is often beneficial to watch the development of a model as it calculates new

sites. In order to facilitate this, a program has been written that accepts data from a file or

active simulation and dynamically alters the model that is displayed on the screen.

-16-

As a simulation is run, it can be configured to print each site that is examined and the

success or failure of the trial. The display software can then read that output data a few

sites at a time and display the resulting effect on the model. If a site was examined but not

altered, it briefly appears blue. If a site was altered, it briefly appears yellow then returns to

the color determined by its new probability value. By examining this visual representation

of the output of a simulation for a few iterations, it is not only possible to determine how

the simulation is parsing through the model, but it is possible to see the model evolve from

its initial to its final state.

3.3 Information and Statistics

The image that is displayed on the screen is the result of the underlying simulation

model and the interactive input of the user. The are a number of statistics associated with

the rendered model that are available to the user. The table below lists each parameter and

its definition.

Sparse Model Statistics

Parameter Definition

fileO Current model displayed in left window

fileO Current model displayed in right window

dist_mx Maximum bond length

dist_mn Minimum bond length

planeat Current position of front clipping plane

dev Current distance between clipping planes

prob-min Minimum probability displayed

MAXX,Y,Z Lattice field dimensions

-17-

Chapter 4

Densely Occupied Lattice Fields

4.1 The Ising Model

The second class of lattice fields that can be rendered through the use of this software

are those models which contain a large number of occupied sites. These models form a

different class because they do not require the visualization of each of the specific sites.

Instead, the emphasis is usually placed on clusters of sites, and the interaction between

these clusters.

The sample model that was used to test this software and for which many of the

visualization aspects were developed is a three dimensional extension of the Ising model of

ferromagnetism. [Huang 63] A simple explanation of the Ising model will add some clarity

to the overall visualization goals.

Certain metals exhibit a phenomenon known as ferromagnetism in which the spins of

some percentage of the atoms in the metal become spontaneously polarized, giving rise to

observable magnetic fields throughout the material. This phenomenon occurs only when

the temperature of the material falls below a characteristic temperature known as the Curie

temperature. The Ising model was developed to simulate the structure of these

ferromagnetic materials.

The model consists of a n-dimensional lattice of N fixed sites arranged in some

periodic or symmetric fashion. As in the case of the organic crystal model, simple cubic

lattice fields are examined for simplicity. Each site has associated with it, a spin variable sg

which is either 0 or 1 representing spin up and spin down respectively; and a set of nearest

neighbors <ij>. The energy of the system for a given configuration is defined to be

-18-

Elsg) = -X< .>6Egsgsj-BXN si

where the interaction energy Egj and the external magnetic field B are given constants.

The simulation consists of an algorithm that minimizes the energy of the system. [Huang

63]

The Ising model gives a very accurate treatment of ferromagnetism in statistical

mechanics. It is desirable to see the actual results of the simulation given different

parameters. This thesis offers a number of visualization methods that allow the rendering

and analysis of such models.

4.2 Grouping

One of the goals of this software is to assist the user in visualization of extremely

large lattices. It is desirable to study lattices with hundreds of thousands or even millions of

sites. Yet rendering lattices of this size is a time consuming task for even the most

powerful supercomputers. Therefore it is necessary to develop methods for approximating

the data that will reduce the rendering time but will not significantly alter the data that is

displayed.

4.2.1 The Grouping Algorithm

The grouping algorithm is not optimized for speed but does achieve correct results

for every configuration with which it was tested. It begins by examining each site to

determine if it has already been included in a cluster. If the site is not a member of another

cluster, it is inserted into a new cluster.

Next, each of this site's nearest neighbors is checked to see it they have the same

spin. Each time a nearest neighbor is found with the same spin, it is added to the cluster

and its nearest neighbors are tested. Care is taken that no site is added to more then one

-19-

cluster, or to the same cluster more then once. After every member of a cluster has had all

of its nearest neighbors tested, the cluster is closed and the program returns to parsing each

site to see if it is a member of a cluster.

4.3 Approximations

After the initial clusters have been formed, they tend to have a number

inconsistencies. Since the models are usually very large, representing the finest detail of

every cluster is little better then representing the individual sites themselves. Often, the

model is large enough that the small effects caused by a few sites can be completely

ignored. Sometimes there is enough error in the model itself that looking at the behavior of

a small clusters of sites does not necessarily represent realistic results.

In order to further increase rendering speed and to eliminate the small perturbations

caused by surface detail, the software includes two techniques for rendering approximated

or smoothed data. Judicious use of these algorithms can greatly enhance the rendered

image as well as the dynamic rendering time.

4.3.1 Coarse Approximation

The first technique used to generate an approximation is similar to digitizing the

information in three dimensions with a user controlled step size. In its simplest form, each

data point is sampled individually to determine whether the site is occupied.

Using this technique, the user controls the size of the approximation and the threshold

percentage that controls the spin. For example the data may be examined as 2x2x2 groups

for a total of eight lattice sites per rendered site. If the threshold is set to 50% then the

rendering site would be occupied only if four or more of the lattice sites in the group were

occupied.

By specifying a large approximation, the entire lattice could be tested to create a

-20-

single rendering site that represents the percentage of occupied sites in the lattice. By

specifying a small approximation each lattice site could be examined to create a rendered

site that represents the occupancy of that lattice site.

This technique is particularly useful in determining which sections of the lattice

contain the largest number of occupied sites. A particularly large lattice may be

approximated by a few rendered sites for easy manipulation, then the resolution may be

reduced to allow the closer study of a particular section of interest.

4.3.2 Group Size Approximation

A second technique used to develop smoother, more quickly renderable lattice fields,

involves limiting the size of individual clusters. In a simulated lattice field containing

millions of sites, it is doubtful that each lattice site is in its correct state. Furthermore, in a

large cluster of occupied sites, a few isolated unoccupied sites can greatly complicate the

rendering algorithms, thereby adding unnecessary delay. Therefore it is often beneficial to

ignore small isolated clusters altogether.

This software package allows the user to select a minimum size for each of the

clusters that will be displayed. Once the lattice has initially been broken into clusters, a

second routine parses each cluster and determines whether it is larger then the the minimum

size. If the cluster contains fewer then the minimum number of sites, the spin of each site

in that cluster is inverted. Finally, the program returns to the grouping algorithm and

regroups the clusters within the lattice. While the number of occupied sites may not have

changed significantly, the number of groups will usually decrease dramatically.

-21-

4.4 Rendering Clusters

Once the preliminary approximation and grouping is completed, we are at last faced

with the problem of displaying the lattice field. The simplest technique would be to render

each occupied site as a sphere. But this technique has a number of drawbacks. As was

pointed out in the previous section, rendering individual spheres for each of hundreds of

thousands of data points requires far more time then is realistically allowable. Even more

importantly, since the final product is viewed on a two dimensional screen, even carefully

chosen perspective drawing does little to eliminate confusion when viewing complex

figures. Thus arrays of thousands of spheres are far too complex to yield any useful

information.

Instead, we return to the notion of our data as clusters of information. Since it is

more useful to understand the relationship between clusters as opposed to the individual

sites themselves, the software uses a number of techniques for rendering the clusters as

individual objects. Each of the following algorithms offers unique advantages and

disadvantages and are suitable for different applications.

4.4.1 Primitive enclosures

The first technique is based on the traditional graphics technique of primitive

construction. The ideal surface is one that retains all the minutest surface variations of the

group, but is smooth enough for the eye to discern its boundaries. A group of sites that

form a cube is most closely approximated by a cube with rounded corners and edges. The

generation of such a complex continuous surface, particularly for any arbitrary size or

shape, is an extremely difficult matter. However primitive construction offers a relatively

simple solution to this problem.

Rather then generating the entire surface as a continuous object it can be

approximated by combining a number of simple primitives. The simplest case would be to

-22-

enclose each lattice site with a cube. The walls of the cube lie at Xsm and Xs(m+1) while the

cube is centered at the lattice site (Xlm, Ym, Z1m}. The junction between two adjoining

cubes will appear seamless. Testing can be done to eliminate all cubes that do not form

group boundaries i.e. cubes sites whose nearest neighbors are occupied in all directions. An

example of this technique appears in Figure 4-1.

The necessary algorithm is easily written, but the resulting images are less then

optimal. Since there are still a large number of primitives to render, the images move

slowly. Also since flat surfaces are usually rendered with continuous shading, surface

textures and edges do not readily appear on the bounding surfaces.

A slightly better solution is the use of variable primitives. Here each occupied site is

represented by a sphere, each pair of adjoining sites is linked together with a cylinder and

each set of four occupied sites that lie in the same plane X is bounded by planes at X ± 0.5.

The spheres and cylinders all have radius 0.5 so that any combination of these primitives

will form a seamless package that bounds each group. Once again testing is performed to

eliminate all primitives that do not form cluster boundaries. The resulting smooth surfaces

offer much more visual information then the use of simple cubes. Due to the varying

shading of the curved primitives, boundary textures and edges are much more readily

visible, yet since these smooth surfaces often require more primitives to define them they

tend to react more slowly to transformations. Generally, this techniques is most useful

when used in conjunction with the raytracing renderer to generate picture perfect smooth

images. An example of this technique also appears in Figure 4-1

4.4.2 Flat Plane Bounding surfaces

A third technique for rendering bounding surfaces achieves visual results similar to

those achieved with the primitive cube technique, but offers increased speed and functions

well when clusters are made transparent.

-23-

In this algorithm, each surface is defined as a combination of planes that surround a

cluster. The surfaces are created by testing each occupied lattice site to determine if it is

adjacent to an unoccupied site. In each instance where an occupied site is adjacent to an

unoccupied site, a square is placed in the interval between the sites. This test is performed

simply, without any regard for the specific groups. The resulting surfaces are flat with

sharp comers and edges that surround clusters. Since these planes are thin, they can be

made transparent to allow the user to view any group boundaries that lie within another

group. Figure 4-1 shows an example of this technique.

4.4.3 Beta-Splines

A fourth method used to render groups of atoms uses the generation of beta-spline

surface to enclose regions of the same spin. Beta-splines have many advantages not offered

by the other techniques. They allow the generation of smooth surfaces that offer more

uniforn transparency and softer looking groups then the flat plane method. They achieve a

continuous surface look that was not attainable using the primitive combination techniques.

The Dore graphics package only allows the use of Non-uniform rational beta-spline

surfaces. With proper control of the knot vectors uniform b-spline surfaces can be

generated. Similarly, fixing the w component of the control point vector to unity allows the

generation of non-rational b-splines.l. Calculating the knot vector for a continuously

varying closed surface is both difficult and time intensive. For this reason I chose to

generate the bounding surfaces from a number of simple Bezier patches [Newman and

Sproull 79] that are combined to form a closed surface. As will be shown below, the

technique can achieve a uniform surface free of discontinuities if the number of patches is

allowed to go to infinity.

1For further discussion of topics related spline surface generation see [Barsky 85]

-24-

The algorithm used to calculate the patches consists of the following steps. A group

of atoms of similar spin is selected and bounding planes are calculated that completely

enclose the group. This surface is defined by six Bezier patches that form the six sides of a

cube. Each patch may be broken into many smaller patches to allow more accurate

representation of the surface. For the sake of simplicity we shall assume that each side of

the cube comprises a single patch. Since each plane is a fourth order Bezier patch, sixteen

control points must be defined that describe the curvature of the patch. This selection of the

initial control points is easily accomplished by dividing the patch into a four by four array

of points. [Rational B-Splines 83] Initially, all of these points lie on the side of the

enclosing cube.

Next the center of the enclosing cube is calculated by finding the midpoint of the max

and min values in each of the x, y and z directions. The vector that defines each control

point relative to the center of the cluster is then defined by the following equations.

p 4x2+y2+z2

tan* = 4 2 +

tan0 = Y
x

A second set of equations relate this vector to lattice coordinates.

Xsm = psin~cos9

Ysm = psin~sin0

Zsm = pcosO

{Xm, Elm, Zim) = F({Xsm + 0.5, Ysm + 0.5, Zsm + 0.5)i[)]

where the function F(x) returns the largest integer not greater the x. Remember that each

lattice site includes all the area within 0.5 units of its location.

The algorithm calculates F({Xsm + 0.5, Ysm + 0.5, Zsm + 0.5)i[)] to determine if the

control vertex lies within an occupied site. If it does, then that location will sufficiently

-25-

represent a bounding surface for the cluster. If the vertex lies in an unoccupied site, the

length of the defining vector is decreased by Al and a new control vertex is calculated.

Once again the vertex is checked to detennine it it lies within an occupied site. If Al is

sufficiently small, a control vertex that falls within an occupied site will closely

approximate the wall which bounds this site.

The over all effect can be likened to the shrinkable plastic that is used to enclose

many commercial products. The enclosing surface starts far outside the group and as each

control point is moved closer to the center of the object, the bounding surface appears to

shrink down to fit snugly around the cluster.

4.5 Assisting Visualization

Once the image has been properly prepared for rendering, there are a number of

useful operations that may be performed on the image to further enhance the visualization

of the model. While much is learned simply by seeing the result of the of the simulation

brought to life, there are additional features that allow the user to dissect the results in front

of him, and further understand the image.

4.5.1 Transparency

Through knob box input the user can dynamically control the transparency of the

images he displays. It is often useful to see clusters that reside within one another. By

making successive clusters appear transparent, it is possible to see clusters that are hidden

within or behind other clusters.

4.5.2 Spinup vs. Spindown Clusters

The software also offers control over the orientation of the clusters that are rendered

on the screen. Each model can be specified to render the spinup, spindown or both types of

clusters. Figure 4-2 shows the different spin clusters associated with a single model.

-26-

Figure 4-1: Primitive cubes (top left), Variable primitives (bottom left),
Flat planes (top right), Beta Spline Surface (bottom right)

-27-

Figure 4-2: Spin up (left), Spin down (right)

4.6 Information and Statistics

While the visualization of complex lattice structures offers many advantages that are

simply not available through two-dimensional examination of the data, it is still

advantageous to have at hand a number of statistical parameters that define the lattice field.

Many of these statistics are associated with the parameters that were selected to achieve the

three-dimensional view of the lattice. Yet others are collected and are functions of the

lattice itself. These statistics are presented in the following Table.

-28-

Dense Model Statistics

Param Definition

fileO Current model displayed in left window

fileO Current model displayed in right window

grpmax Number of spinup and spindown clusters in each model

grpcount Number of sites in each cluster

dens Current size of coarse approximation

size Current minimum cluster size

intensity Current transparency percentage

-29-

Chapter 5

Conclusions

5.1 Results

In addition to helpful information gleaned from examination of the statistics

generated by each model, a number of observations were made through use of the software

in the examination of the models that were chosen to test it.

Effective visualization of the sparse model requires the solution of a number difficult

problems. As the number of primitive objects on the screen increases, it takes significantly

longer to render each new version of the model. While it is possible to limit the number of

objects on the screen through the use of the viewing plane and probability thresholding,

lack of speed can prove to be an annoyance. Secondly, due to the inherent flatness of the

screen it is still somewhat difficult to comprehend the three dimensional representations of

the models. Careful choice of perspective parameters and use of connectors as lines of

reference are helpful, but the problem will always persist to some degree.

The dense model also can create difficulties with rendering speed, but use of beta-

splines and carefully chosen approximation parameters can significantly increase speed.

Despite these advantages, much information is lost when data is represented by splines.

The inherent approximations associated with spline calculations result in the loss of much

of the information.

-30-

5.2 Additional Research

In many ways the completion of this work has at last furnished the tools to

understand and begin to answer the original question. The capabilities and limitations of

modem supercomputers have been explored. Specific examples of lattice field models have

been examined and evaluated. Still the task remains of the defining what makes one

particular visualization technique successful and developing additional techniques for

producing understandable images.

All of the various visualization and rendering methods examined in this project form

only a small subset of the possible methods. While it is possible to develop methods that

exploit similarities in groups of models and will be useful to all of them, each model has

slightly different requirements. This work is not meant to be the definitive study of

visualization possibilities, rather it offers suggestions and explores some of the

visualization options in depth given the constraints and requirements of the models that

were selected for testing.

There are still significant exploration possibilities available in the areas of enhancing

performance speed and the clarity of the rendered image. Additionally, work can be done

to define optimal solutions for the visualization parameters and the optimal B-spline surface

for representation of clusters.

-31-

Appendix A

Users manual

A.1 Overview

The software developed for this thesis was written in the C programming language.

The code follows the format required by the Ardent user-interface programs. Lattice field

models are defined as objects and fed to Dore to render. Input is accepted from the

keyboard, mouse and dial box and is parsed to determine each input command. The code

that performs these functions for the sparse and dense models is provided in appendices B

and C.

Portions of the code were built on top of the user-interface software that was

developed by Dore. Modifications were made to this software to allow twin viewing

windows and multiple input windows. The modifications that were made are shown in

Appendix D.

A.2 The Program Structure

The location of the individual programs is represented in figureA- 1

The code that generates the models and parses the input of the sparse and dense

lattice field models are located in their respective directories. Each directory also contains

a Makefile that should be used to recompile the files when modifications are made, and a

file called script that will run the necessary programs.

The modified user interface code resides in the display directory. Additional user

interface programs are located in the directory /opt/demo/dui and have not been modified.

-32-

/opt/user/dajablon

dense
geom spec.c
userjparse.c

my.h

display
MkModels.c

Render.c
Butt.c
Dui.c
Ui.c

butt.h
ui.h

sparse
geom spec.c
userj-arse.c

my.h

Figure A-1: The directory structure

A.3 Using the Program

The Software can be used with and Lattice field simulation that meets the following

simple requirements:

1- The output of the simulation must be stored in a file accessible to the display

programs.

2- The output files for the sparse models must conform to the following format:

Line 1 :%d %d %d (Integer values for the X,
Line 2-on:(%d, %d, %d) %f\n (Integer lattice

floating point probability associated

Y, and Z sizes)
coordinates,
with that site)

3- The output files for the dense models must conform to the following format:

:%d %d %d (Integer values for the X, Y, and Z sizes)
:(%d, %d, %d) %d\n (Integer lattice coordinates,

integer probability associated with that site)

Line 1
Line 2-

-33-

A.4 Running the Programs

Each program is activated by changing to the appropriate directory and typing the

command script. The User interface is automatically created and default test models are

created and displayed. New models can be read from files and displayed using the

appropriate commands.

Once the user interface is activated, commands can be input from the dial box, mouse

or keyboard. The current status of each dial is displayed in the lower righthand corner of

the screen. Specific commands can be activated by pressing the mouse buttons when the

cursor resides on the appropriate button in the upper righthand portion of the screen.

Additionally, commands may be typed directly to the program via the command window in

the lower lefthand corner of the screen. A complete list of Runtime commands is given in

the following tables.

-34-

Standard Runtime Commands

Command Definition

a Turns auto x, y, & z rotation on/off

ax Turns auto x rotation on/off

ay Turns auto y rotation on/off

az Turns auto z rotation on/off

c Turns on/off all polygons with back facing normals

d Switched drawing type between surface, points,& line

debug Turns debug printout on/off

h Turns specular highlights on/off

help Prints this message

i Decreases the intensity of the lights

I Increases the intensity of the lights

q Exit this program (same as x)

s Switch between smooth and flat shading

V Turns video recording on

v Turns video recording off

x Exit this program (same as q)

z Zoom in

Z Zoom out

-35-

Dense Model Visualization Commands

Command Definition

w change active window both/right/left,

mO Select enclosing surface type in left window

ml Select enclosing surface type in right window

G Print statistics about clusters

SO Perform coarse approximation on currently active windows

S1 Perform group size approximation on currently active windows

I List current state of user defined parameters

Dh Reset transparency percentage

YO Select spin models for left window up/down/both

Y1 Select spin models for right window up/down/both

Mf Read new model from file into currently open windows

Sparse Model Visualization Commands

Cmd Definition

w change active window both/right/left

I List current state of user defined parameters

Dh Reset Probability threshold

Dv Change position of clipping planes

Md Change distance between clipping planes

Mf Read new model from file into currently open windows

Mn Change minimum bond length

Mx Change maximum bond length

A Tums dynamic model input on/off

-36-

Appendix B

The Code for the Sparse Model

B.1 Userparse.c

#ident "@(#)useryarse.c 1.1" 9/1/88

#include "/opt/user/dajablon/display/ui .h"

#include "/opt/user/dajablon/display/butt .h"

#include "my.h"

/*USERPARSE() - Checks input as it is received and performs

the required task*/
int usery arse (str)
char *str; /*String to be parsed*/

{
char c;
float value;
char string[100];
int x, y, z;
float prob;

if (debug)
print f ("Useryarse (%s) ; \n", str);

c = *(str++);
switch (c) {

case 'd': /*Change active window from O=both, 1=right, 2=left*/
if (!mousehit) tap_button(O);
mouse hit = 0;
Act Wind++;
if (Act Wind == 3)
ActWind = 0;

return (1);
case '': /*Change 'Surface Type' icon when command is typed*/

if (!mousehit) tap_button(1);
mousehit = 0;
return (0);

case 'h': /*Change 'Highlights' icon when command is typed*/
if (!mousehit) tap_button(2);
mousehit = 0;
return (0);

case 'c': /*Change 'Backface Culling' icon when command is typed*/
if (!mousehit) tap_button(3);
mousehit = 0;
return (0);

case 'z': /*Change state of connectors 0=off, 1=on*/

-37-

if (!mousehit) tap_button (8);
mousehit = 0;
Connects++;
if (Connects == 2)
Connects = 0;

resetfiles();
return (1);

case 'I': /*Print list of current parameters*/
printf("*******Current Parameters*******\n");
printf("Lattices Displayed\n");
printf(" Left Window: %s\n", fileO);
printf(" Right Window: %s\n", filel);
printf ("Connector Parameters\n");
printf (" Maximum Length = %f\n", distmx);
printf(" Minimum Length = %f\n", distmn);
printf("Disection plane\n");
printf(" Front plane = %5.lf%%\n", planeat[2]);
printf(" Thickness = %5.lf%%\n", dev[2]);
return(1);

case '?':
printf("*******Keyboard Commands********\n");
printf ("I Print current parameters\n");
printf("Md x.xx -Set viewplane thickness to x.xx\n");
printf("MfO 'file' -Display data in 'file' in right window\n");
printf("Mfl 'file' -Display data in 'file' in left window\n");
printf ('Mn x.xx -Set minimum bond length to x.xx\n");
printf ("Mx x.xx -Set maximum bond length to x.xx\n");
printf("] -enable/disable filereading\n");
printf("? -Print this list\n");
return(1);

case 'D': /* Parse a commands from dial box */

c = *(str++);
switch (c) {

case 'h': /*Change Probability Threshold*/
sscanf(str, " %f", &value);
if(debug) printf("User 'Dh' value = %f\n",value);
prob_min = value;
resetfiles(;
return (1);

case 'v': /*Change position of clipping planes*/
sscanf(str, " %f", &value);
if(debug) printf("User 'Dv' value = %f\n",value);
planeat[O] = ((value/100) * (zmx[O] - zmn[O])) + zmn[O];
planeat[l] = ((value/100) * (zmx[l] - zinr[l])) + zmn[1];
planeat[2] = value;
resetfiles(;
return (1);

default:
return (0);

-38-

}
case 'a': /*Change state of 'auto-rotate' buttons when cmd is typed*/

if(mousehit) {mouse-hit = 0; return(O); }
c = *(str++);
switch (c) {

case 'x': /*Auto-rotate
tap_button(5);
return (0);

case 'y': /*Auto-rotate
tap_button(6);

return (0);

case 'z': /*Auto-rotate
tap_button(7);
return (0);

}

around X-axis*/

around Y-axis*/

around Z-axis*/

case 'M': /*Change various viewing parameters */

c = *(str++);
switch (c) {

case 'd': /*Change viewplane thickness*/
sscanf(str, " %f", &value);
if(debug) printf("User 'Dv' value = %f\n",value);
dev[O] = (value/100) * (zmx[O] - zmn[O]);
dev[l] = (value/100) * (zmx[1] - zmn[1]);

dev[2] = value;
resetfileso;
return (1);

case 'f': /*Read new models into
sscanf(str, " %s", &string);
if (Act Wind = 0) {

strcpy(fileO, string);
strcpy(filel, string);
readfile(0);
readfile(1);

}
else if(ActWind =1) {

strcpy(filel, string);
readfile(1);

I
else if (ActWind ==2) {

strcpy(file0, string);
readfile(0);

I

all windows currently*/
/*open for update*/

resetfiles();
return (1);

case 'n': /*Change minimum bond length*/
sscanf(str, " %f ", &value);
if(debug) printf("User 'Dv' value = %f\n",value);
dist mn = value;
reset files();

-39-

return (1);
case 'x': /*Change maximum bond length*/

sscanf(str, " %f", &value);
if(debug) printf("User 'Dv' value = %f\n",value);
dist mx = value;
reset_files(;
return (1);

}
case 'A': /*Turn on/off automatic file reading*/

if (autohit) {
autohit = 0;
return(0);

}
else {
autohit = 1;
autoread (1);
resetfiles1();
return(0);

}
}

return(0); /*Default return if command was not accepted*/

} /* End of user-Parse function */

/*AUTOREAD() - Loads initial state of model into memory

and recalculates center*/

autoread (num)
int num;

{
int i, x, y, z, prob;
float xmax, ymax, xmin, ymin;
char filename[60];

xmax = ymax = zmx[num] = -1000.0;
xmin = ymin = zmn[num] = 1000.0;
printf("What is the name of the input file?");

scanf ("%s ", filename);
/*Clear memory array*/

for(x=1; x<=(MAXX[num]); x++)
for(y=1; y<=(MAXY[num]); y++)

for(z=1; z<=(MAXZ[num]); z++)
m[x][y][z][num] = 0.0;

/*Open new file for reading*/
if ((autosfp = fopen(filename, "r")) = NULL)
printf("Couldn't open %s for reading\n", filename);

/*Read Maximum lattice values*/
fscanf(autosfp, "%d %d %d\n", &MAXX[num], &MAXY[num], &MAXZ[num]);

/*Read number of sites in initial state*/
fscanf(autosfp, "%d\n", &MAXARRAY[num]);

/*Read each site in initial model*/
for (i=0; i<MAXARRAY[num]; i++) {
fscanf(autosfp, "%d %d %d %d\n", &x, &y, &z, &prob);

m[x+1][y+l][z+1][num] = (float)prob;

-40-

if (x >= xmax)
xmax = x;

if (x <= xmin)
xmin = x;

if (y >= ymax)
ymax = y;

if (y <= ymin)
ymin = y;

if (z >= zmx[num])
zmx[num] = z;

if (z <= zmn[num])
zmn[num] = z;

}
/*Calculate center of model*/
xmid[num] = MAXX[num] / 2;
ymid[num] = MAXY[num] / 2;
zmid(num] = MAXZ[num] / 2;
planeat[num] = zmid(num]; /*Set viewing plane in center of model*/

}

/*PIPE CHECK() - read in required number of sites for dynamic display*/
pipe_check()

{
int i, num, x, y, z, xl, yl, z1, prob, step;
float hold;

num = 1;
step = 10000;

/*Search data until success is found or enough samples have been tried*/
for(i=0; i< step; i++) {

if (fscanf(autosfp, "%d %d %d %d %d %d %d\n",
&x, &y, &z, &xl, &yl, &zl, &prob) = EOF) return;

if (prob == 1) i = step;/*Stop if a successful trial is found*/
I

/*Set probability of sites in successful trial to 99 or 101 MAKE MESH()
will set the color to yellow and reset probabilities to 0 or 1*/

if(prob) {
hold = m[x+1][y+1][z+1][num];
m[x+1][y+1][z+1][num] = m[xl+1][yl+l][zl+1][num] + 100.0;
m[xl+1][yl+1][zl+1][num] = hold + 100.0;

}
/*Set probability of sites in successful trial to 9 or 11 MAKE MESH()
will set the color to blue and reset probabilities to 0 or 1*/
else {
m[x+1][y+l][z+1][num) = m[x+1][y+1][z+1][num] + 10.0;
m[xl+1][yl+1][zl+1][num] = m[xl+1][yl+1][zl+1][num] + 10.0;

I
resetfiles(;

/*RESETFILES() - Recalculates model in active window each time a change

is made*/
reset files()

{

-41-

if (ActWind != 1) { /*If right window is to be updated*/
DgEmpty(models[O]); /*Empty old Model*/
DgOpen(models[O]);
DgAddObj (makemesh(O)); /*Create new model*/
DgCloseo;
if (Connects) { /*If connectors are on*/
DgEmpty(models(0]); /*Empty old model*/
DgOpen (models [0]);
DgAddObj(makemesh(O)); /*Create new model*/
DgAddObj (makeconn (0)); /*Add connectors*/
DgCloseo;

} }
if (ActWind != 2) { /*If left window is to be updated*/
DgEmpty(models[l]); /*Empty old Model*/
DgOpen(models[1]);
DgAddObj(makemesh(1)); /*Create new model*/
DgClose();
if (Connects) (

DgEmpty(models[1]); /*Empty old Model*/
DgOpen (models [1]);
DgAddObj (makemesh (1)); /*Create new model*/
DgAddObj (make_conn (1)); /*Add connectors*/
DgClose();

} }
}

/*TAPBUTTON() - Resets button icons when commands are typed*/
tap_button (but slid)
int butslid; /*The number of the button to be reset*/

{
draw button(butslid window, xyloc[butslid] (0] ,xyloc[butslid] [1],

buttdn[butstat[butslid]], "", 0, "", 0);
do {

if((++butstat[butslid]) > NumButtStates)
butstat[butslid] = 0;

} while(buttons[butslid].exec[butstat[butslid]][0] =

draw button(butslid window, xyloc[butslid] [0] ,xyloc[butslid] [1],
buttup [butstat [butslid]],
buttons[butslid].text, OxOOOOOO,
buttons[butslid].label[butstat[butslid]],OxOOOOOO);

XFlush(display);

}

-42-

B.2 Geomspec.c

#ident "@(#)geomspec.c 9/1/88

#include <dore.h>
#include <stdio.h>
#include <math.h>
#include "my.h"

#define NMODELS 4
int nmodels = NMODELS;
int firstcycle = 1;
int lastcycle = 2;

/*GEOMSPEC() - Initializes models and viewing parameters*/
geom spec()

{
DtObject DoGroup(;
DtReal value;
static DtPoint3 border[] = { -10.0, -10.0, 0.0,

-10.0, 10.0, 0.0,
10.0, 10.0, 0.0,);

if (debug) printf("In geom_spec... \n");

/*Initialize parameters*/
Res = 1.3;
dens = 1.0;
dist mn = 1.0;
dist mx = 2.5;
dev[0] = dev[1] = dev(2] = 15;
strcpy(file0, "data.strt.int");
strcpy(filel, "data.cube");

/*Read initial models from files*/
readfile(0);
readfile (1);

/*Create initial model for left window*/
if (debug) printf("In geom_spec ... Read file\n");
models[0] = DoGroup(DcTrue);

DgAddObj(DoLabel(0));
DgAddObj (DoDiffuseColor (DcRGB, bg));
DgAddObj (DoRepType (DcPoints));
DgAddObj(DoPolyline(DcRGB, DcLoc, 3, border));
DgAddObj (DoLabel (1));

DgCloseo;
DsHoldObj (models [0]);

/*Create initial model for right window*/
modelsEl] = DoGroup(DcTrue);

DgAddObj (DoLabel (0));
DgAddObj (DoDiffuseColor (DcRGB, bg));
DgAddOb j (DoRepType (DcPoint s)) ;
DgAddObj(DoPolyline(DcRGB, DcLoc, 3, border));

-43-

DgAddObj (DoLabel (1));
DgClose (;
DsHoldObj (models [1]);

} /* End of geom_spec function */

/*READFILE() - Read data from file*/
readfile (num)
int num; /*0 = left window, 1 = right window*/
{

Int i;
float xmax, ymax, xmin, ymin;
int x, y, z;

float prob;
FILE *sfp;

/*Clear max/min values of model*/
xmax = ymax = zmx[num] = -1000.0;
xmin = ymin = zmn[num] = 1000.0;

/*Open data files*/
if (num == 0) {

if ((sfp = fopen(file0, "r")) == NULL)
printf ("Couldn't open testfile0 for reading\n");

}
if (num = 1)

if ((sfp = fopen(filel, "r")) == NULL)
printf ("Couldn't open testfilel for reading\n");

}
/*Read maximum array values*/

fscanf(sfp, "%d %d %d\n", &MAXX[num], &MAXY[num], &MAXZ[num]);
/*Clear arrays to 0*/

for(x=0 ; x<=(MAXX[num]+1); x++)
for(y=0 ; y<=(MAXY[num]+1); y++)

for(z=0; z<=(MAXZ[num]+1); z++)
m[x] [y] [z] [num] = 0;

} }}
/*Read valu of each occupied site*/

MAXARRAY [num] = (MAXX [num]) * (MAXY [num]) * (MAXZ [num]);
for (i=0; i<=MAXARRAY[num]; i++) {

fscanf(sfp, "(%d, %d, %d) %f\n", &x, &y, &z, &prob);
if (prob >= 1.000001)
prob = 0.95;

m[x+1] [y+1] [z+1] [num] = prob;
if (x >= xmax)

xmax = x;
if (x <= xmin)

xmin = x;
if (y >= ymax)
ymax = y;

if (y <= ymin)
ymin = y;

if (z >= zmx[num])
zmx[num] = z;

if (z <= zmn[num])
zmn [num] = z;

}

-44-

/*Calculate center of model*/
xmid[num] = MAXX[num] / 2;
ymid[num] = MAXY[num] / 2;
zmid[num] = MAXZ[num] / 2;

(void) fclose(sfp);
planeat[num] = zmid[num];

)

/*MAKEMESH() - Create model object to be rendered by Dore*/
DtObject makemesh(num)
int num;

{
int x, y, z;

DtReal color[3];

for(x=1; x<=(MAXX[num]); x++) (/*Test each site in model*/
for(y=1; y<=(MAXY[num]); y++) {

for(z=1; z<=(MAXZ[num]); z++)

if(m[x] [y] [z] [num] <= prob_min) /*do not render if below*/
continue; /*probability threshhold*/

if((z - zmid[num]) > planeat[num]) /*Do not render if in front*/
continue; /*of viewing plane*/

if((z - zmid[num]) <= (planeat[num] - (3 * dev[num])))
continue; /*Do not render if behind viewing plane*/

if (m[x] [y] [z] [num] > 50) {
color[0] = yellow[O]; /*If PIPE CHECK() marked as*/
color[1] = yellow[1]; /*successful trial color yellow*/
color[2] = yellow[2]; /*and reset probability*/
m[x] [y] [z] [num] = m[x] [y] [z] (num] - 100;

}
else if (m[x] [y] [z] [num] > 5) {

color[O] = blue[0]; /*If PIPECHECK() marked as*/
color[1] = blue[1]; /*successful trial color blue*/
color[2] = blue[2]; /*and reset probability*/
m[x] [y] [z] [num] = m[x] [y] [z] [num] - 10;

}
else (/*otherwise calculate probability color*/

color[0] = ((m[x][y][z][num] - probmin) /
(1.0 - prob_min));

color[1] = 1. - ((m[x][y][z][num] - prob_min) /
(1.0 - prob min));

color[2] = 0.03;

)
/*Add new site to model*/

DgAddObj (DoPushMatrix ();
DgAddObj (DoDiffuseColor (DcRGB, color));
DgAddObj (DoRepType (DcSurface));
if((z - zmid[num]) <= (planeat[num] - dev[num]))
DgAddObj (DoRepType (DcWireframe));

if ((z - zmid[num]) <= (planeat[num] - (2 * dev[num])))
DgAddObj (DoRepType (DcPoints));

DgAddObj (DoTranslate (((float) x - xmid [num]),
((float)y - ymid[num]), ((float)z - zmid[num])));

DgAddObj(DoScale(0.5, 0.5, 0.5));

-45-

DgAddObj (DoPrimSurf (DcSphere));
DgAddObj (DoPopMatrix());

} } }
return (DoLabel(50)); /*Mark end of model*/

}

/*MAKECONN() - Create connectors in desired object*/
DtObject makeconn(num)
int num;

{
int x, y, z, x1, yl, z1;
float Dist, a, b, c, d;
DtReal Theta, Chi;
DtObject cyl();

if (debug) printf ("Make connectors!!!!");

for(x=l; x<=MAXX[num]; x++) { /*Try each site*/
for(y=1; y<=MAXY[num]; y++) {

for(z=l; z<=MAXZ[num]; z++)
if (m[x] [y] [z] num] <= prob_min)
continue;

if((z - zmid[num]) > planeat[num])
continue;

if((z - zmid[num]) <= (planeat[num] - (3 * dev[num])))

continue;
for(xl=l; xl<=MAXX[num]; xl++) { /*Test against each of the*/

for(yl=l; yl<=MAXY[num]; yl++) { /*other sites*/
for(zl=l; zl<=MAXZ[num]; zl++) {

if (m[xl] [yl] [z] [num] <= prob_min)
continue;

if((zl - zmid[num]) > planeat[num])
continue;

if((zl - zmid[num]) <= (planeat[num] - (3 * dev[num])))

continue;

a = (float)x - (float)xl;
b = (float)y - (float)yl;
c = (float)z - (float)zl;

Dist = sqrt(fabs(a * a + b * b + c * c));

if (Dist >= distmx)
continue;

d = hypot(a, c);
Theta = atan2(a, c);
Chi = -atan2(b, d);
DgAddObj (DoPushMatrix ();

DgAddObj(DoDiffuseColor(DcRGB, blu));
if(Dist <= dist_mn)
DgAddObj(DoDiffuseColor(DcRGB, yellow));

DgAddObj(DoRepType(DcSurface));
if((zl - zmid[num]) <= (planeat[num] - dev[num]))

DgAddObj (DoRepType (DcWire frame));
if((zl - zmid[num]) <= (planeat[num] - (2 * dev[num])))

DgAddOb j (DoRepType (DcPoints)) ;
DgAddObj (DoTranslate (((float) x - xmid[num]),

((float)y - ymid[num]), ((float)z - zmid[num])));

-46-

DgAddObj(DoRotate(DcYAxis, Theta));
DgAddObj (DoRotate (DcXAxis, Chi));
DgAddObj(DoScale(0.3, 0.3, -Dist));
DgAddObj (DoPrimSurf (DcBox));

DgAddOb j (DoPopMatrix ();

} } }
} } }

return (DoLabel(100)); /*Mark end of connector group*/

}

B.3 My.h

#ident "@(#)my.h 1.1" 9/1/88

#define MAX 25 /*Maximum length of the side of an array*/
#define Pi 3.1415927
#define MaxButs 12 /*Maximum number of buttons*/

int MAXARRAY[2], MAXX[2], MAXY[2], MAXZ[2];

float xmwid[2], ymid[2], zmid[2];
extern DtInt debug;

extern DtObject models[4];
extern DtReal bg[3];
float dist mx;
float dist mn;
char fileo[100];
char filel[100];

float m[MAX] [MAX] [MAX] [2];

float zmx[2], zmn[2], dens;
float prob_min;
float planeat[3];
float dev[3];
float Res;
int Act Wind, Connects;
DtObject models[4];
int count;

int readinput, count, autohit;
FILE *autosfp;

static DtReal white[] = {1.0, 1.0, 1.0); /*Define some colors*/
static DtReal red[] = (1., 0.01, .03);
static DtReal yellow[] = (1., 1.0, 0.0);
static DtReal blue[] = {0., 0.0, 1.0);

-47-

Appendix C

The Code for the Dense Model

C.1 Userparse.c

#ident "@ (#) userjparse. c 1.1" 9/1/88

#include "/opt/user/dajablon/display/ui.h"
#include "/opt/user/dajablon/display/butt.h"
#include "my.h"

/*USERPARSE() - Checks input as it is received and performs
the required task*/

int user-arse (str)
char *str; /*String to be parsed*/

{
char c;
float value;
int valint, a;
char string[100];

if (debug)
printf ('Useryparse (%s) ; \n", str);

c = *(str++);
switch (c) {

case 'w' :/*Change active window from O=both, 1=right, 2=left*/

if (!mousehit) tap_button(O);
mousehit = 0;
Act_Wind++;
if (Act Wind == 3)

Act_Wind = 0;
return (1);

case 's' :/*Change 'Surface Type' icon when command is typed*/
if (!mousehit) tap_button(2);
mousehit = 0;
return (0);

case 'd' :/*Change 'Surface Rep' icon when command is typed*/
if (!mousehit) tap_button(1);
mousehit = 0;
return (0);

case 'im' :/*Modify bounding surface type*/
c = *(str++);
switch (c) {

case '0' :/*Left window*/
modtype0++;
if (modtypeO = 4) modtypeO = 0;

-48-

reset_files(;
return (1);

case '1':/*Right window*/
modtypel++;
if (modtypel == 4) modtypel = 0;
resetfiles(;
return (1);

}
case 'G':/*Print information about groups*/

for (gnum=O; gnum<4; gnum++) {
printf("Lattice number %d has %d groups\n", gnum, grpmax[gnum]);
for(a=O; a<grpmax[gnum]; a++) {

printf("Group %d has %d members\n", a+1, grpcount[a][gnum]);
} }

case 'S':/*Make approximation of group structures*/
c *(str++);
switch (c) {

case '0':/*Do course approximation*/
sscanf(str, " %d", &valint);
if(debug) printf("User 'SO' value = %d\n",valint);
dens = (float)valint;
printf("%f\n", dens);
if(Act Wind = 0) (

approx(0);
approx(1);

}
else if(ActWind =1) {

approx(1);

}
else if (Act Wind ==2) {

approx(O);

resetfiles(;
return (1);

case '1':/*Do group size approximation*/
sscanf(str, " %d", &valint);
if(debug) printf("User 'S1' value = %d\n",valint);
if(Act Wind == 0) {

smooth (0, valint) ;
smooth (1, valint) ;

)
else if(ActWind ==1) {

smooth (1, valint);
}
else if(Act Wind ==2) {

smooth(O, valint);

}
resetfiles(;
return (1);

}
case 'I': /*Print list of current parameters*/
printf("*******Current Parameters*******\n");
printf ("Lattices Displayed\n");
printf(" Left Window: %s\n", fileO);

-49-

printf(" Right Window: %s\n", filel);
printf("Connector Parameters\n");
printf (" Maximum Length = %f\n", distmx);
printf(" Minimum Length = %f\n", distmn);
printf("Disection plane\n");
printf(" Front plane = %5.lf%%\n", planeat[2]);
printf(" Thickness = %5.lf%%\n", dev[2]);
return(1);

case 'D': /* Parse a commands from dial box */
c = *(str++);

switch (c) {

case 'h': /*Reset transparency value*/
sscanf(str, " %f", &value);
if (debug) printf("User 'Dh' value = %f\n",value);
intensity = value;
update modified = DcFalse;
return (1);

default:
return(0);

}
case 'a': /*Change state of 'auto-rotate' buttons when cmd is typed*/
if(mousehit) {mousehit = 0; return(0); }
c = *(str++);

switch (c) {
case 'x': /*Auto-rotate around X-axis*/

tap_button(4);

return (0);

case 'y': /*Auto-rotate around Y-axis*/

tap_button(5);
return (0);

case 'z': /*Auto-rotate around Z-axis*/

tap_button(6);
return (0);

case 'Y': /* Select spinup, spindown or both models */
c = *(str++);

switch (c) {

case '0': /*Left Window*/
spin[0]++;
if (spin[O] == 3) spin[O] = 0;

resetfiles(;
return (1);

case '1': /*Right Window*/
spin[l]++;
if (spin[l] = 3) spin[1] = 0;

resetfiles(;
return (1);

}
case 'M' : /*Change various viewing parameters */

-50-

c = *(str++);
switch (c) {

case 'f': /*Read new models into all windows currently open*/
sscanf(str, " %s", string);
if(Act Wind = 0) {

strcpy(fileO, string);
strcpy(filel, string);
readfile(0);
readfile(1);

}
else if(ActWind =1) {

strcpy(filel, string);
readfile (1);

)
else if(ActWind ==2) {

strcpy(fileO, string);
readfile(0);

}
resetfiles();
return (1);

}
}
return(0); /*Default return if command was not accepted*/

} /* End of user-parse function */

/*TRANSPAREN_CALLBACK() - Dynamicly alter transparency as requested*/
transparencallback()

{
DtObject DoTransplntens();

/*printf("transparent intensity = %lf\n",intensity);*/
if (intensity <= 0.25)
DsExecuteObj (DoTranspSwitch(DcOff));

else {
DsExecuteObj(DoTranspSwitch(DcOn));
DsExecuteObj(DoTranspColor(DcRGB, white));
DsExecuteObj(DoTranspIntens(intensity));

}
} /* End of transparen_callback function */

/*RESETFILES() - Recalculates model in active window each time a change
is made*/

resetfiles()

{
if (ActWind != 1) {
DgEmpty (models [0]);
DgOpen (models [0]) ;
DgAddObj(DoReflectionSwitch(DcOff));
DgAddObj(DoCallback(transparencallback,DcNullObject));
if(modtype0 == 0) makemesh(0);
else if(modtype0 = 1) makeconn(0);
else if(modtype0 = 2) makeconn2(0);
else if(modtype0 = 3) bsurf(0);

-51-

DgClose();
}
if (ActWind != 2) {
DgEmpty (models [1]);
DgOpen(models[1]);
DgAddObj (DoRe flectionSwitch (DcOf f));
DgAddObj (DoCallback (transparen callback, DcNullObject));
if(modtypel == 0) makemesh(1);
else if(modtypel = 1) makeconn(1);
else if(modtypel = 2) makeconn2(1);
else if(modtypel = 3) bsurf(1);
DgClose();

}
}

/*TAP BUTTON() - Resets button icons when comands are typed*/
tap_button (but slid)

int butslid; /*The number of the button to be reset*/

{
drawbutton(butslid window,xyloc[butslid][0],xyloc[butslid][1],

buttdn[butstat[butslid]], "", 0, "", 0);

do {
if((++butstat[butslid]) > NumButtStates)

butstat[butslid] = 0;
} while(buttons[butslid].exec[butstat[butslid]][0] =='\');
drawbutton(butslid window,xyloc[butslid][0],xyloc[butslid][1],

buttup[butstat[butslid]],

buttons[butslid].text, OxOOOOOO,
buttons[butslid].label[butstat[butslid]],0x000000);

XFlush (display);
}

C.2 Geom_spec.c

#ident "@(#)geomspec.c 1.1" 9/1/88

#include <dore.h>
#include <stdio.h>

#include <math.h>
#include "my.h"

#define NMODELS 4
int nmodels = NMODELS;

int firstcycle = 1;
int lastcycle = 2;

/*GEOMSPEC() - Initializes models and viewing parameters*/
geomspec()

DtObject DoGroup(;
static DtPoint3 border[] = { -10.0, -10.0, 0.0,

-10.0, 10.0, 0.0,

-52-

10.0, 10.0, 0.0);

if (debug) printf("In geom_spec...\n");

/*Initialize parameters*/
Res = 1.3;
dens = 1.0;
dist mx = 1.1;
dist mn = 1.0;
intensity = 0.1;
modtype0 = modtypel = 0;
dev[0] = dev[1] = dev[2] = 15;
strcpy(file0, "data4.3");
strcpy(filel, "data4.3");
/*Read initial models from files*/
readfile(0);
readfile(1);

/*Create initial model for left window*/
if (debug) printf("In geom_spec .. .Read file\n");

models[0] = DoGroup(DcTrue);
DgAddObj (DoLabel (0));
DgAddObj(DoDiffuseColor(DcRGB, bg));
DgAddObj (DoRepType (DcPoints)) ;
DgAddObj(DoPolyline(DcRGB, DcLoc, 3, border));
DgAddObj (DoLabel (1));
DgClose();
DsHoldObj (models [0]);

/*Create initial model for right window*/
models[1] = DoGroup(DcTrue);
DgAddObj (DoLabel (0));
DgAddObj(DoDiffuseColor(DcRGB, bg));
DgAddObj (DoRepType (DcPoints)) ;
DgAddObj(DoPolyline(DcRGB, DcLoc, 3, border));
DgAddObj (DoLabel (1));
DgClose();
DsHoldObj(models[1]);

} /* End of geom_spec function */

/*READFILE() - Read data from file*/
readfile(num)

int num; /*0 = left window, 1 = right window*/
{
int i;

float xmax, ymax, xmin, ymin;
int x, y, z, prob;
FILE *sfp;

/*Clear max/min values of model*/
xmax = ymax = zmx[num] = -1000.0;
xmin = ymin = zmn[num] = 1000.0;
/*Open data files*/
if (num = 0) {

if ((sfp = fopen(file0,"r")) == NULL) (

-53-

printf ("Couldn't open testfile0 for reading\n");
return;

}
}
if (num = 1)

if ((sfp = fopen (filel, "r")) = NULL) {
printf("Couldn't open testfilel for reading\n");
return;

}
}
/*Read maximum array values*/
fscanf(sfp, "%d %d %d\n", &MAXX[num], &MAXY[num], &MAXZ[num]);
MAXARRAY [num] = (MAXX [num]) * (MAXY [num]) * (MAXZ [num]);
MAXX[num+2] = MAXX[num];
MAXY [num+2] = MAXY [num] ;
MAXZ[num+2] = MAXZ[num];
/*Clear arrays to -1000*/
for(x=0 ; x<=MAXX[num]+1; x++)

for(y=0; y<=MAXY[num]+1; y++)
for(z=0; z<=MAXZ[num]+1; z++)
m[x] [y] [z] [num] = -1000;
m[x] [y] [z] [num+2] = -1000;

} } }
/*Read valu of each occupied site*/
for (i=0; i<=MAXARRAY[num]; i++) {

fscanf(sfp, "(%d, %d, %d) %d\n", &x, &y, &z, &prob);
m[x+1] [y+1] [z+1] [num] = prob;
m[x+1] [y+1] [z+1] [num+2] = prob;
if (x >= xmax)

xmax = x;
if (x <= xmin)

xmin = x;
if (y >= ymax)
ymax = y;

if (y <= ymin)
ymin = y;

if (z >= zmx[num])
zmx[num] = z;

if (z <= zmn[num])
zmn [num] = z;

}
/*Calculate center of model*/
xmid[num] = -1.0*(dens/2.0*MAXX[num])+(dens/2.0);
ymid[num] = -1.0*(dens/2.0*MAXY[num])+(dens/2.0);
zmid[num] = -1.0* (dens/2.0*MAXZ[num])+(dens/2.0);
(void) fclose(sfp);
planeat [num] = zmid[num];
group(num); /*Define clusters*/

}

/*TREE() - Given a starting point calculate of the members
of the cluster*/

tree(num, grpnum, posneg)
int num, grpnum, posneg;

{

-54-

int a, b, c, d, cont, x, y, z;

gnum = num + 2*posneg;
a = grpnum;
b = 0;
do(

/*Take site off the top of the culster list*/
x = grp[gnum] [a] [b][0];
y = grp[gnum] [a] [b] [1];
z = grp[gnum] [a] [b] [2];
/*Test each of its nearest neighbors*/
if (m[x-1][y][z][num] == posneg) {

cont = 0;
for(c=0; c<=grpcount[a][gnum]; c++) {

if ((x-1 = grp[gnum] [a] [c][0]) && (y =
&& (z = grp[gnum][a][c][2]))

cont = 1;
}
/*If a test is positive add neighbor to clu
if (!cont) {

d = grpcount [a] [gnum];
grp[gnum][a][d][0] = x-1;
grp[gnum][a][d][1] = y;
grp[gnum][a][d][2] = z;
grpcount [a] [gnum] ++;

) }
/*check another nearest neighbor*/
if (m[x+1][y][z][num] == posneg)

cont = 0;

for(c=0; c<=grpcount[a][gnum]; c++) {
if ((x+1 = grp[gnum] [a] [c] [0]) &&

&& (z = grp[gnum] [a] [c] [2]))
cont = 1;

(y =

grp[gnum] [a] [c][1])

ster list*/

grp[gnum][a][c][1])

}
if (!cont)

d = grpcount[a][gnum];
grp[gnum][a][d][0] = x+1;
grp[gnum] [a] [d] [1] =y;
grp[gnum][a][d][2] =z;
grpcount[a][gnum]++;

} }
/*Again*/

if (m[x] [y-1] [z] [num] == posneg)
cont = 0;

for(c=0; c<=grpcount[a][gnum]; c++) {
if ((x == grp[gnum][a][c][0]) && (y-1 = grp[gnum][a][c][1])

&& (z == grp[gnum] [a] [c] [2]))
cont = 1;

}
if (!cont)

d = grpcount [a] [gnum];
grp[gnum] [a] [d] [0] = x;

grp[gnum] [a] [d] [1] = y-1;
grp[gnum] [a] [d] [2] = z;
grpcount [a] [gnum]++;

-55-

) }
if (m[x][y+l][z][num] == posneg)

cont = 0;
for(c=O; c<=grpcount[a][gnum]; c++) {

if ((x == grp[gnum][a][c][0]) && (y+1 = grp[gnum][a][c][1])
&& (z == grp[gnum][a][c][2]))

cont = 1;

}
if (!cont)

d = grpcount[a][gnum];
grp[gnum][a][d][0] = x;

grp[gnum] [a] [d] [1] = y+l;
grp[gnum][a][d][2] = z;
grpcount [a] [gnum] ++;

} }
if (m[x] [y] [z-1] [num] == posneg)

cont = 0;
for(c=O; c<=grpcount[a][gnum]; c++) {

if ((x == grp[gnum] [a] [c] [0]) && (y grp[gnum] [a] [c] [1])
&& (z-1 = grp[gnum][a][c][2]))

cont = 1;
}
if (!cont) {

d = grpcount[a][gnum];
grp[gnum][a][d][0] = x;
grp[gnum][a][d][1] = y;
grp[gnum][a][d][2] = z-1;
grpcount [a] [gnum] ++;

} }
if (m[x][y][z+1][num] == posneg) {

cont = 0;
for(c=0; c<=grpcount[a][gnum]; c++) {

if ((x == grp[gnum] [a] [c] [0]) && (y = grp[gnum] [a] [c][1])
&& (z+1 == grp[gnum][a][c][2]))

cont = 1;
I
if (!cont)

d = grpcount[a][gnum];
grp[gnum] [a] [d] [0] = x;
grp[gnum][a][d][1] = y;
grp[gnum] [a] [d] [2] = z+1;
grpcount [a] [gnum] ++;

b++;
} while (b < grpcount[a][gnum]);

}

/*GROUP() - Controls the calculation of clusters*/
group(num)

int num;

{
int x, y, z, a, b, c;

gnum = num;
/*Check for spinup and spin down clusters*/

-56-

for(posneg=0; posneg<2; posneg++)
/*Clear out old cluster values*/
for(a=0; a<=grpmax[gnum]; a++) {

for (b=0; b<=grpcount [a] [gnum]; b++) {
grp[gnum] [a] [b] [0] = grp[gnum] [a] [b] [1] =

grp[gnum] [a] [b] [2] = -1000;
) }

for(a=0; a<=grpmax[gnum]; a++)
grpcount[a][gnum] = 0;

I
grpmax [gnum] = 0;
/*check each site to see if it is a part of a group*/
for(x=1; x<=MAXX[num]; x++) {

for(y=1; y<=MAXY[num]; y++)
for(z=1; z<=MAXZ[num]; z++)

if (m[x] [y] [z] [num] != posneg)
continue;

c = 1000;
for(a=0; a<=grpmax[gnum]; a++)

for (b=0; b<=grpcount [a] [gnum]; b++) {
if ((x = grp[gnum] [a] [b] [0]) && (y = grp[gnum] [a] [b] [1])

&& (z == grp[gnum] [a] [b] [2]))
c = a;

} }
/*If site is not in a cluster star a new cluster*/
if (c == 1000) {

c = grpmax [gnum];
grpmax [gnum] ++;
b = grpcount[c][gnum] = 0;
grp[gnum] [c] [b] [0] = x;
grp[gnum] [c] [b] [1] = y;
grp[gnum][c][b][2] = z;
grpcount [c] [gnum] ++;
printf ("%d, %d, %d Starts Group %d\n", x-1, y-1, z-1, c);
tree(num, c, posneg); /*Determine entire cluster*/

}
} } }

gnum = gnum + 2;
}

}

/*SMOOTH() - Perform group size approximation*/
smooth (num, newsize)

int num, newsize;

{
int a, b, x, y, z;
/*If newsize is smaller then old size, recalculate initial clusters*/
if (newsize < size) {

for(x=1; x<=MAXX[num]; x++)
for(y=1; y<=MAXY[num]; y++)

for(z=1; z<=MAXZ[num]; z++)
m[x] [y] [z] [num] = m[x] [y] [z] [num+2];

}) I
group (num);

}

-57-

/*Invert spin vales of members of clusters smaller then newsize*/
for (gnum=num; gnum<=num+2; gnum=gnum+2)

for(a=0; a<grpmax[gnum]; a++) {
if (grpcount[a][gnum] <= newsize)

for(b=0; b<grpcount[a][gnum]; b++) {
m[grp[gnum] [a] [b] [0]] [grp[gnum] [a] [b] [1]] [grp[gnum] [a] [b] [2]] [num]=
!m[grp[gnum] (a] [b] [0]] [grp[gnum] [a] [b] [1]] [grp[gnum] [a] [b] [2]] [num];

} } }
}
size = newsize;
group(num); /*Calculate new clusters*/

}

/*Generate B-Spline Surface*/
bsurf(num)

int num;

{
DtReal xmin, ymin, zmin, xmax, ymax, zmax;

DtReal xavg, yavg, zavg;
Int a, b, r, s, t, i;
DtReal x, y, z;

DtReal surf[4][4][4][3];
DtReal r1, xoc, yoc, zoc, thea, ph;
static DtReal subdivspc[5]={0.0617);
DtReal v[16][4];
static DtArea unit_square={0.,0., 10.,10.};
static double bezier-knots[]={0.,0.,0.,0.,1., 1.,1.,1.};

gnum = num;

for(posneg=0; posneg<2; posneg++)
if (posneg = spin[num]) (gnum=gnum+2; continue;)
if (posneg = 0) DgAddObj(DoDiffuseColor(DcRGB, red));
if (posneg = 1) DgAddObj(DoDiffuseColor(DcRGB, blue));
for(a=0; a<grpmax[gnum]; a++) {

if (grpcount[a][gnum] <= size) continue;
xmin = ymin = zmin = 100000.0;
xmax = ymax = zmax = -100000.0;
for(b=O; b<grpcount[a][gnum]; b++)

x = (double) grp[gnum] [a] [b] [0];
y = (double) grp[gnum] [a] [b] [1];
z = (double) grp[gnum] [a] [b] [2];
if (x >= xmax)

xmax = x;
if (x <= xmin)

xmin = x;

if (y >= ymax)
ymax = y;

if (y <= ymin)
ymin = y;
if (z >= zmax)

zmax = z;
if (z <= zmin)

zmin = z;

}
/*Select point down to which the surface will collapse*/

-58-

xavg = grp[gnum][a][0][0];
yavg = grp[gnum][a][0][1];
zavg = grp[gnum][a][0][2];
if (m[(int) floor (xavg)] [(int) floor (yavg)] [(int) floor (zavg)] [num]

!= posneg)
printf ("the center of group %d is unoccupied\n", a);

for(r=0; r<4; r++) {
for(s=0; s<4; s++)

for(t=0; t<4; t++)
surf[r] [s] [t] [0] = xmin + (r*(xmax - xmin)/3);
surf[r] [s] [t] [1] = ymin + (s*(ymax - ymin)/3);
surf [r] [s] [t] [2] = zmin + (t* (zmax - zmin) /3);

}))
for(r=0; r<4; r++)

for(s=0; s<4; s++)
for(t=0; t<4; t++)

if (!((r==O) II (r==3) || (s==0) || (s=3)
|1 (t==0) | (t==3)))

continue;
x = surf Cr][s] [t] [0];
y = surf[r] [s] [t] [1];
z = surf[r] [s] [t] [2];
if (floor(x) == floor(x - 0.5))
xoc = floor(x) + 1;

else xoc = floor(x);
if (floor(y) == floor(y - 0.5))
yoc = floor(y) + 1;

else yoc = floor(y);
if (floor(z) = floor(z - 0.5))

zoc = floor(z) + 1;
else zoc = floor(z);
if (m[(int)xoc][(int)yoc][(int)zoc][num] = posneg)

continue;

}
x = surf [r][Cs][t][0O] - xavg;
y = surf[r][s][t][1] - yavg;
z = surf [r] [s] [t] [2] - zavg;
r1 = sqrt(x*x + y*y + z*z);
thea = atan2(y, x);
ph = atan2(hypot(x, y), z);
do

/*printf("rl = %f\n", rl);*/
x = rl*sin(ph)*cos(thea) + xavg;
y = rl*sin(ph)*sin(thea) + yavg;
z = rl*cos(ph) + zavg;
if (floor(x) == floor(x - 0.5))

xoc = floor(x) + 1;
else xoc = floor(x);
if (floor(y) = floor(y - 0.5))

yoc = floor(y) + 1;
else yoc = floor(y);
if (floor(z) == floor(z - 0.5))

zoc = floor(z) + 1;
else zoc = floor(z);
r1 = r1 - (ri/50);

(int)xoc][(int)yoc][(in
(r1 > 0.5));

surf [r] [s] [t] [0] = x;

surf Cr] [s] [t] [1] = y;
surf [r] [s] [t] [2] = z;

/*Generate each of the B-Spline surfaces*/
r = i = 0;

for(s=0; s<4; s++)
for(t=0; t<4; t++)

v[i] [0] = surf [r] [s] [t] [0] + xmid[num]

v[i] [1] = surf [r] [s] [t] [1] + ymid[num]
v[i] [2] = surf [r] [s] [t] [2] + zmid[num]
v[i][3] = 1.;
i++;

t)zoc][num] != posneg)

dens;
dens;
dens;

} }
DgAddObj (DoNURBSurf (DcRGB, DcCtr, unit_square,

4,8,bezierknots,
4,8,bezier knots,
4,4,v));

i = 0;
r = 3;
for(s=0; s<4; s++) {

for(t=0; t<4; t++)
v[i][0] = surf[r]
v[i] [1] = surf [r]
v[i][2] = surf[r]
v[i][3] = 1.
i++;

{
[s]
[s]
[s]

[t]
[t]
[t]

[0] + xmid[num]
[1] + ymid[nwn]
[2] + zmid[num]

- dens;
- dens;
- dens;

(DoNURBSurf (DcRGB, DcCtr, unit_square,
4,8,bezierknots,
4,8,bezierknots,
4,4,v));

s = i = 0;

for(r=0; r<4; r++) {
for(t=0; t<4; t++)

v[i][0] = surf[r]
v[i][1] = surf[r]
v[i][2] = surf[r]
v[i][3] = 1.;

i++;

{
[s]
[s]
[s]

[t]
[t]
[t]

[0]
[1]
[2]

+ xmid[num]
+ ymid[num]
+ zmid[num]

- dens;
- dens;
- dens;

I)
DgAddObj (DoNURBSurf (DcRGB, DcCtr, unit_square,

4,8,bezierknots,
4,8,bezierknots,
4,4,v));

i = 0;

s = 3;
for(r=0; r<4; r++)

for(t=0; t<4; t++)
v[i] [0] = surf [r] [s] t] [0] + xaid[num] - dens;
v[i][1] = surfCr][s][t][1] + ymid[num] - dens;
v[i][2] = surf[r][s][t][2] + zmid[num] - dens;
v[i][3] = 1.;

} while ((m[
&&

-59-

DgAddOb j

-60-

} }
DgAddObj (DoNURBSurf(DcRGB,DcCtr,unit_square,

4,8,bezierknots,
4,8,bezierknots,
4, 4,v));

t = i = 0;
for(r=0; r<4; r++)

for(s=0; s<4; s++)
v[i][0] = surf[r] [s] [t][0]
v[i] [1] = surf [r] [s] [t] [1]
v[i] (2] = surf [r] [s] [t] (2]
v[i][3] = 1.;

+
+
+

xmid [num]
ymid[num]
zmid (num]

dens;
dens;
dens;

} }
DgAddObj (DoNURBSurf (DcRGB, DcCtr, unit_square,

4,8,bezierknots,
4,8,bezier knots,
4, 4,v));

i = 0;

t = 3;
for(r=0; r<4; r++)

for(s=0; s<4; s++)
v[i][O] = surf[r] [s]
v[i] [1] = surf [r] [s]
v[i] [2] = surf [r] [s]
v[:i] [3] = 1.;

[t] [0] + xmid[num]
[t] [1] + ymid[num]
[t] [2] + zmid[num]

dens;
dens;
dens;

} I
DgAddObj (DoNURBSurf (DcRGB, DcCtr, unit square,

4, 8, be zier_knots,
4,8,bezier knots,
4, 4,v));

gnum= gnum +2;

/*APPROX() - Do Course

approx (num)
int num;

{

Approximation*/

int x, y, z, a, b, c, densnum;
float prob;

densnum = num + 2;
MAXX[num] = MAXX[densnum]/(int)dens;
MAXY[num] = MAXY[densnum] / (int) dens;
MAXZ[num] = MAXZ[densnum]/(int)dens;
for(x=0; x<=MAXX[num]+1; x++) (

for(y=O; y<=MAXY[num]+l; y++)
for(z=0; z<=MAXZ[num]+1; z++)

m[x] [y] [z] [num] = 0;
} } I

for(x=1; x<=MAXX[num]; x++)

I
}

-61-

for(y=1; y<=MAXY[num]; y++) {
f or(z=1; z<=MAXZ[num]; z++)
prob = 0;
for(a=((x-1)*dens)+1; a<=(x*dens); a++)

for(b=((y-l)*dens)+1; b<=(y*dens); b++)
for(c=((z-1)*dens)+1; c<=(z*dens); c++) {
prob = prob + m[a][b][c][densnum];

}) I
prob = prob/(dens*dens*dens);
if(prob >= 0.25)

m[x] [y] [z] [num] = 1;
else

m[x] [y] [z] [num] = 0;

xmid[num] = -1.0*(dens/2.0*MAXX[num])+(dens/2.0);
ymid[num] = -1.0*(dens/2.0*MAXY[num])+(dens/2.0);
zmid[num] = -1.0* (dens/2.0*MAXZ[num])+(dens/2.0);

}

/*MAKECONN2() - Produce Thin surface Bounding surrfaces*/
makeconn2(num)

Int num;

{
int x, y, z;

DtReal color[3];
static DtReal squarex[] = (0.5, 0.5, 0.5,

0.5, 0.5, -0.5,
0.5, -0.5, -0.5,
0.5, -0.5, 0.5);

static DtReal squarey[] = (0.5, 0.5, 0.5,

0.5, 0.5, -0.5,
-0.5, 0.5, -0.5,
-0.5, 0.5, 0.5);

static DtReal squarez[] = (0.5, 0.5, 0.5,

0.5, -0.5, 0.5,
-0.5, -0.5, 0.5,
-0.5, 0.5, 0.5);

for(posneg=0; posneg<2; posneg++) {
if (posneg = spin[num]) continue;
if (posneg = 0) DgAddObj(DoDiffuseColor(DcRGB, red));
if (posneg = 1) DgAddObj(DoDiffuseColor(DcRGB, blue));

for(x=0 ; x<=MAXX[num]; x++) {
for(y=0 ; y<=MAXY[num]; y++) {

for(z=0; z<=MAXZ[num]; z++)

if((m[x][y] [z] [num]) = (m[x+1] [y] [z] [num]))
continue;

if ((m[x] [y] [z] [num] !=posneg) && (m[x+1] [y] [z] [num] !=posneg))
continue;

DgAddObj (DoPushMatrix ());
DgAddObj (DoTranslate (((x-1) *dens+xmid[num]),

((y-1) *dens+ymid[num]), ((z-1) *dens+zmid[num])));
DgAddObj(DoScale(dens, dens, dens));
DgAddObj (DoSimplePolygon (DcRGB, DcLoc, 4, squarex, DcConvex));

-62-

DgAddObj (DoPopMatrix ();
) } }

for(x=O; x<=MAXX[num]; x++)
for(y=O; y<=MAXY[num]; y++)

for(z=O; z<=MAXZ[num]; z++)
if ((m[x] [y] [z] [num]) = (m[x] [y+l] [z] [num]))
continue;

if ((m[x] [y] [z] [num] !=posneg) && (m[x] [y+l] [z] [num] !=posneg))
continue;

DgAddObj (DoPushMatrix ();
DgAddObj (DoTranslate (((x-1) *dens+xmid[num]),

((y-1)*dens+ymid[num]), ((z-1)*dens+zmid[num])));
DgAddObj (DoScale (dens, dens, dens));
DgAddObj (DoSimplePolygon (DcRGB, DcLoc, 4, squarey, DcConvex
DgAddObj (DoPopMatrix 0);

} } }
for(x=O; x<=MAXX[num]; x++)

for(y=O; y<=MAXY[num]; y++)
for(z=O; z<=MAXZ[num]; z++)

if((m[x][y] [z][num]) == (m[x][y] [z+1] [num]))
continue;

if ((m[x] [y] [z] [num] !=posneg) && (m[x] [y] [z+1] [num] !=posneg))
continue;

DgAddObj (DoPushMatrix 0);
DgAddObj (DoTranslate (((x-1) *dens+xmid[num]),

((y-1)*dens+ymid[num]), ((z-1)*dens+zmid[num])));
DgAddObj (DoScale (dens, dens, dens));

DgAddObj (DoSimplePolygon (DcRGB, DcLoc, 4, squarez, DcConvex
DgAddObj (DoPopMatrix 0);

/*MAKEMESH() - Produce primative cubes bounding surface*/
makemesh(num)

int num;

{
int x, y, z;
DtReal color[3];

));

));

for(x=1; x<=(MAXX[num]); x++) {
for(y=1; y<=(MAXY[num]); y++)

for(z=1; z<=(MAXZ[num]); z++)

/*printf("(%d, %d, %d)%d %d\n", x, y, z, num, m[x][y][z][num]);*/

if(m[x] [y] [z] [num] = spin[num]) continue;
if(m[x] [y] [z] [num] = 0) DgAddObj (DoDiffuseColor(DcRGB, red));
if (m[x] [y] [z] [num] = 1) DgAddObj (DoDiffuseColor(DcRGB, blue));
DgAddObj (DoPushMatrix 0);
DgAddObj (DoTranslate (((x-1) *dens + xmid[num]),

((y-1)*dens + ymid[num]), ((z-1)*dens+zmid[num])));
DgAddObj (DoTranslate ((-dens/2.0), (-dens/2.0), (-dens/2.0)));
/*DgAddOb j(DoTranslate ((- .5) , (- .5) , (-. 5))) ;*/
DgAddObj (DoScale (dens, dens, dens));
DgAddObj (DoPrimSurf (DcBox));
DgAddObj (DoPopMatrix ();

-63-

} } }
return (DoLabel(50));

}

/*MAKECONN() - Produce complex primatives bounding surface*/
makeconn(num)

int num;

{
Int x, y, z;
static DtReal white[] = (1.0, 1.0, 1.0);
DtObject cyl();
static DtReal squarexy[] = {0.0, 0.0, 0.0,

1.0, 0.0, 0.0,
1.0, 1.0, 0.0,
0.0, 1.0, 0.0);

static DtReal squareyz[] = (0.0, 0.0, 0.0,
0.0, 1.0, 0.0,
0.0, 1.0, 1.0,
0.0, 0.0, 1.0);

static DtReal squarezx[] = (0.0, 0.0, 0.0,
1.0, 0.0, 0.0,
1.0, 0.0, 1.0,

0.0, 0.0, 1.0);

if (debug) printf("Make connectors!!!!");

for(posneg=0; posneg<=1; posneg++) {
if (posneg = spin[num]) continue;
if (posneg = 0) DgAddObj(DoDiffuseColor(DcRGB, red));
if (posneg = 1) DgAddObj(DoDiffuseColor(DcRGB, blue));

for(x=1; x<=MAXX[num]; x++) {
for(y=1; y<=MAXY[num]; y++)

for(z=1; z<=MAXZ[num]; z++)

if(m[x] [y] [z] [num] != posneg)
continue;

if((m[x+1][y][z][num] = posneg) &&
(m[x-1] [y] [z] [num] = posneg))

continue;
if((m[x][y+1][z][num] = posneg) &&

(m[x][y-l][z][num] = posneg))
continue;

if((m[x][y][z+1][num] = posneg) &&

(m[x][y][z-1][num] = posneg))

continue;
DgAddObj (DoPushMatrix ();
DgAddObj(DoTranslate(((x-1)*dens+xmid[num]),

((y-l) *dens+ymid [num]), ((z-1) *dens+zmid[num])));
DgAddObj(DoScale((.5*dens), (.5*dens), (.5*dens)));
DgAddObj (DoPrimSurf (DcSphere));
DgAddObj (DoPopMatrix 0);

for(y=1; y<=MAXY[num]; y++) {
for(z=1; z<=MAXZ[num]; z++)

for(x=1; x<=MAXX[num]-1; x++)

-64-

if (m[x] [y] [z] [num] != posneg)
continue;

if(m[x+1] [y] [z] [num] != posneg)
continue;

if((m[x][y+1][z][num] = posneg) &&
(m[x+1][y+1][z][num] = posneg))

if ((m[x] [y-1] [z] [num] = posneg) &&
(m[x+1] [y-l] [z] [num] == posneg))

continue;

}
if((m[x][y][z+1][num] == posneg) &&

(m[x+1] [y] [z+1] [num] = posneg))
if ((m[x] [y] [z-1] [num] = posneg) &&

(m[x+1] [y] [z-1] [num] == posneg))
continue;

}
DgAddObj (DoPushMatrix ();
DgAddObj (DoTranslate (((x-1) *dens+xmid [num]),

((y-1) *dens+ymid[num]), ((z-1) *dens+zmid[num])));
DgAddObj (DoRotate (DcYAxis, -Pi/2));
DgAddObj (DoRotate (DcXAxis, 0.0));
DgAddObj (DoScale((.5*dens), (.5*dens), (-1.0*dens)));
/*DgAddObj(DoScale(0.5, 0.5, -1.0));*/
DgAddObj (DoSubDivSpec (DcSubDivRelative, 4.0));
DgAddObj (DoPrimSurf (DcCylinder));
DgAddObj (DoPopMatrix 0);

} } }
for(x=1; x<=MAXX[num]; x++)

for(z=1; z<=MAXZ[num]; z++)

for(y=1; y<=MAXY[num]-1; y++)

if (!m[x] [y] [z] [num] = posneg)
continue;

if (!m[x] [y+1] [z] [num] = posneg)
continue;

if ((m[x+1] [y] [z] [num] = posneg) &&
(m[x+1][y+1][z][num] = posneg))

if ((m[x-1] [y] [z] [num] = posneg) &&
(m[x-1] [y+l] [z] [num] == posneg))

continue;

}
if ((m[x] [y] [z+1] [num] == posneg) &&

(m[x] [y+l] [z+1] [num] = posneg))
if ((m[xl [y] [z-1] [num] = posneg) &&

(m[x][y+1][z-1][num] == posneg))
continue;

}
DgAddObj (DoPushMatrix 0);
DgAddObj (DoTranslate (((x-1) *dens+xmid num]),

((y-1) *dens+ymid[num]) ,((z-1) *dens+zmid[num])));
DgAddObj (DoRotate (DcYAxis, Pi/2));
DgAddObj (DoRotate (DcXAxis, Pi/2));

DgAddObj (DoScale((.5*dens), (.5*dens), (-1.0*dens)));
DgAddObj (DoSubDivSpec (DcSubDivRelative, 4.0));
DgAddObj (DoPrimSurf (DcCylinder));
DgAddObj (DoPopMatrix 0);

-65-

} } }
for(x=1; x<=MAXX[num]; x++)

for(y=1; y<=MAXY[num]; y++)

for (z=1; z<=MAXZ [num]-1; z++)

if (!m[x] [y] [z] [num] == posneg)
continue;

if(!m[x] [y] [z+1] [num] = posneg)
continue;

if ((m[x+1] [y] [z] [num] = posneg) &&
(m[x+1] [y] [z+1] [num] = posneg)) {

if ((m[x-1] [y] [z] [num] = posneg) &&
(m[x-1][y][z+1][num] == posneg))

continue;

if((m[x][y+1][z][num] == posneg) &&
(m[x] [y+l] [z+1] [num] == posneg))

if((m[x][y-1][z][num] = posneg) &&

(m[x] [y-1][z+1] [num) == posneg))
continue;

}
DgAddObj (DoPushMatrix ();
DgAddObj (DoTranslate (((x-1) *dens+xmid[num]),

((y-l) *dens+ymid[num]), ((z-1) *dens+zmid[num])));

DgAddObj (DoScale((.5*dens), (.5*dens), (1.0*dens)));
DgAddObj (DoRotate (DcYAxis, 0.0));

DgAddObj (DoRotate (DcXAxis, 0.0));

DgAddObj (DoSubDivSpec (DcSubDivRelative, 4.0));
DgAddObj (DoPrimSurf (DcCylinder));

DgAddObj (DoPopMatrix ();

} } }
for(z=1; z<=MAXZ[num]; z++)

for(x=1; x<=MAXX[num]-1; x++)
for(y=1; y<=MAXY[num]-1; y++) {

if(!m[x] [y] [z] [num] = posneg)
continue;

if (!m[x+1] [y] [z] [num] = posneg)
continue;

if(!m[x] [y+l] [z] [num] = posneg)
continue;

if(!m[x+1][y+1][z][num] == posneg)
continue;

if((m[x][y][z+1][num] == posneg) &&
(m[x+1] [y] [z+1] [num] = posneg))

if ((m[x] [y+1] [z+1] [num] = posneg) &&

(m[x+1] [y+l] [z+1] [num] == posneg))
continue;

}
DgAddObj (DoPushMatrix ();
DgAddObj (DoTranslate (((x-1) *dens+xmpid[num]),

((y-1)*dens+ymid[num]), ((z-1)*dens+zmid[num])));

DgAddObj(DoTranslate(0.0, 0.0, (0.5*dens)));
DgAddObj (DoScale ((dens), (dens), (1.0)));

DgAddObj(DoSimplePolygon(DcRGB, DcLoc, 4, squarexy, DcConvex));
DgAddObj (DoPopMatrix 0);

I) }

-66-

for(z=1; z<=MAXZ[num]; z++) {
for (x=1; x<=MAXX[num]-1; x++)

for(y=1; y<=MAXY[num]-1; y++)

if (!m[x] [y] [z] [num] == posneg)
continue;

if (!m[x+1] [y] [z] [num] = posneg)
continue;

if (!m[x] [y+1] [z] [num] = posneg)
continue;

if (!m[x+1] [y+1] [z] [num] = posneg)
continue;

if ((m[x] [y] [z-1] [num] = posneg) &&

(m[x+1][y][z-1][num] == posneg))
if ((m[x] [y+1][z-1] [num] = posneg) &&

(m[x+1] [y+l [z-1] [num] == posneg))
continue;

I
DgAddObj (DoPushMatrix ();
DgAddObj (DoTranslate (((x-1) *dens+xrid[num]),

((y-l) *dens+ymid[num]), ((z-1) *dens+zmid[num])));
DgAddObj(DoTranslate(O.0, 0.0, (-0.5*dens)));

DgAddObj (DoScale ((dens), (dens), (1.0)));
DgAddObj(DoSimplePolygon(DcRGB, DcLoc, 4, squarexy, DcConvex));
DgAddObj (DoPopMatrix 0);

for(x=1; x<=MAXX[num]; x++)

for(y=1; y<=MAXY[num]-1; y++)

for(z=1; z<=MAXZ[num]-1; z++)

if (!m[x] [y] [z] [num] == posneg)
continue;

if (!m[x] [y+1] [z] (num] posneg)
continue;

if(!m[x] [y] [z+1] [num] = posneg)
continue;

if(!m[x][y+1][z+1][num] == posneg)
continue;

if ((m[x+1] [y] [z] [num] == posneg) &&
(m[x+1] [y+l] [z] (num] == posneg))

if((m[x+1][y][z+1][num] == posneg) &&
(m[x+1][y+1][z+1][num] == posneg))

continue;

}
DgAddObj (DoPushMatrix ();
DgAddObj (DoTranslate (((x-1) *dens+xmid[num]),

((y-l) *dens+ymLid[num]), ((z-1)*dens+zmid[num])));
DgAddObj(DoTranslate((0.5*dens), 0.0, 0.0));
DgAddObj (DoScale((1.0), (dens), (dens)));
DgAddObj (DoSimplePolygon (DcRGB, DcLoc, 4, squareyz, DcConvex));
DgAddObj (DoPopMatrix 0);

for(x=1; x<=MAXX[num]; x++)
for(y=1; y<=MAXY[num]-1; y++)

for(z=1; z<=MAXZ[num]-1; z++)
if (!m[x] [y] [z] [num] == posneg)

continue;

-67-

if (!m[x] [y+l] [z] [num] = posneg)
continue;

if(!m[x] [y] [z+1] [num] = posneg)
continue;

if(!m[x] [y+l] [z+1] [num] == posneg)
continue;

if((m[x-1][y][z][num] == posneg) &&
(m[x-1] [y+l] [z] [num] == posneg))

if((m[x-1][y][z+1][num] == posneg) &&
(m[x-1][y+l[z+1][num] == posneg))

continue;

}
DgAddObj (DoPushMatrix 0);
DgAddObj (DoTranslate (((x-1) *dens+xmid[num]),

((y-1) *dens+ymid [num]) , ((z-1) *dens+zmid [num])));
DgAddObj (DoTranslate((-0.5*dens), 0.0, 0.0));
DgAddObj (DoScale((1.0), (dens), (dens)));
DgAddObj(DoSimplePolygon(DcRGB, DcLoc, 4, squareyz, DcConvex));
DgAddObj (DoPopMatrix 0);

for(y=1; y<=MAXY[num]; y++)
for(z=1; z<=MAXZ[num]-1; z++)

for(x=1; x<=MAXX[num]-1; x++)
if(!m[x] [y] [z] [num] == posneg)

continue;
if(!m[x+1] [y] [z] [num] = posneg)

continue;
if (!m[x] [y] [z+1] [num] = posneg)

continue;
if (!m[x+1] [y] [z+1] [num] = posneg)

continue;
if ((m[x] [y+1] [z] [num] == posneg) &&

(m[x+1] [y+1] [z] [num] == posneg))
if((m[x][y+1][z+1][num] == posneg) &&

(m[x+1] [y+1] [z+1] [num] == posneg))
continue;

}
DgAddObj (DoPushMatrix 0);
DgAddObj (DoTranslate (((x-1) *dens+xmid[num]),

((y-l) *dens+ymLd[num]), ((z-1) *dens+zm:id[num])));
DgAddObj(DoTranslate(O.0, (0.5*dens), 0.0));
DgAddObj (DoScale((dens), (1.0), (dens)));
DgAddObj(DoSimplePolygon(DcRGB, DcLoc, 4, squarezx, DcConvex));
DgAddObj (DoPopMatrix ();

for(y=1; y<=MAXY[num]; y++)
for(z=1; z<=MAXZ[num]-1; z++)

for(x=1; x<=MAXX[num]-1; x++)
if (!m[x] [y] [z] [num] == posneg)
continue;

if(!m[x+1][y][z][num] = posneg)
continue;

if (!m[x] [y] [z+1] [num] = posneg)
continue;

if(!m[x+1][y][z+1][num] == posneg)

-68-

continue;
if((m[x][y-1][z][num] == posneg) &&

(m[x+1][y-l][z][num] = posneg))

if((m[x][y-l[z+1][num] == posneg) &&
(m[x+1][y-l1[z+1][num] == posneg))

continue;

}
DgAddObj (DoPushMatrix ();

DgAddObj (DoTranslate (((x-1) *dens+xmid[num]),
((y-l) *dens+ymid[num]), ((z-1) *dens+zmid[num])));

DgAddObj(DoTranslate(0.0, (-0.5*dens), 0.0));
DgAddObj(DoScale((dens), (1.0), (dens)));
DgAddObj(DoSimplePolygon(DcRGB, DcLoc, 4, squarezx, DcConvex));
DgAddObj (DoPopMatrix ();

} } }
}
return (DoLabel(100));

}

C.3 My.h

#ident "@(#)my.h 1.1" 9/1/88

#define MAX 64 /*Maximum lattice size*/

#define Pi 3.1415927

extern DtInt debug;

extern DtObject models[4];
extern DtReal bg[3];
static int MAXARRAY[2], MAXX[4], MAXY[4], MAXZ[4];

float distmx;
float dist mn;
char file0[100];
char filel[100];
int m[MAX] [MAX] [MAX] [4];
static float xmid[2], ymid[2], zmid[2];
float zmx[2], zmn[2], dens;
int size, posneg;
int prob_min;
float planeat[3];
float dev[3];
float Res;
int ActWind, Connects;
DtObject models[4];
int spin[2], gnum;
int modtype0, modtypel;
static DtReal white[] = (1.0, 1.0, 1.0);
static DtReal red[] = (1.0, 0.0, 0.0);
static DtReal blue[] = {0.0, 0.0, 1.0};
float intensity;
extern DtInt updatemodified;
int grp[4][70][4100][3], grpmax[4], grpcount[70][4];

-69-

Appendix D

Modifications to the Display Programs

This software package relies heavily upon the user interface software supplied by

Ardent for the creation of icons and other screen interface windows. Numerous

modifications were made to the Ardent software to make it more appropriate for this use.

Including a complete listing of all the modified programs would be excessive.

Instead, I have listed the sections of code that were modified in their modified form. Each

section represents a different program. The number of the altered line is followed by a

letter indicating whether the line was 'changed', 'added' or 'deleted'. This is followed by

the corect form of the line.

D.1 Butt.c

13a #include "butt.h"
15c int mousehit;

Button buttons [MaxButs];
int butstat [MaxButs];

int xyloc[MaxButs] [2];
int Nbuts = 0;

22c char *buttupimg[NumButtStates] = {
29c char *buttdnimg[NumButtStates] = {
36c XImage *buttup[NumButtStates];

XImage *buttdn[NumButtStates];

39c XFontStruct *fontstruct1 = 0, *font struct2 = 0;

unsigned int textheightl, textheight2;
257a mouse-hit = 1;

D.2 Dui.c

404c cmap = XTitanDefaultDirectColormap (display,
XDefaultRootWindow (display));

-70-

D.3 MkModels.c

39c DtObject modelgroup[3];
116a if (nmodels = 1)
139a
145c modelgroup[nmodels] = DoGroup(DcTrue);
178a if (nmodels = 2) {

DgAddObj (models [1]);

}
184c DsHoldObj (model_group [nmodels]);

D.4 Render.c

36c DtObject device0;
DtObject frame0;
DtObject viewO;
DtObject devicel;
DtObject framel;
DtObject view1;

44a DtReal bg[3];

65c Dtint windowO=O;
DtInt windowl=0;

150a extern int Act Wind;
char rayname[50];

177c extern DtObject studio-group, modelgroup[3];

189d /*makemodels(argc, argv);*/
194d /*make studioso;*/
200c nmodels = 1; /*Set so MkModels uses model[0]*/

makemodels (argc, argv);

make studios();
DgAddObjToGroup (DvInqDefinitionGroup (viewO) , studio_group);

DgAddObjToGroup (DvInqDisplayGroup (viewO), model_group [nmodels]);

nmodels = 2;
makemodels (argc, argv);
make studios();
DgAddObjToGroup (DvInqDefinitionGroup (viewl) , studio_group);

DgAddObjToGroup (DvInqDisplayGroup (viewl), mode_group [nmodels]);

207c DdUpdate(deviceO, Dcralse);

DdUpdate(devicel, DcFalse);

geomspec(&xbound, argc, argv);

DdUpdate(devicel, DcFalse);

DdUpdate(deviceO, DcFalse);

223c DsReleaseObj(device0);
DsReleaseObj(devicel);

342c prsarggetkeywordint(argc,argv,"-w",0,&window0);
372c windowO = ui init(pseudo, singleb, 0);

415c if(window0 != 0)
417c windowO);
431c if (!(deviceO = DoDevice(devicetype,devicefile)))

printf ("can't create device0: type = '%s', file =%s'\n",

437c DdInqExtent(deviceO,&bound);

-71-

442c DdSetViewport(deviceO,&bound);
447c if (!(frameO = DoFrameo))
451c DdSetFrame(deviceO,frameO);

if (pseudo) DdSetShadeMode(deviceO,shade);
DfSetBoundary(frameO,&bound);

457c if (!(viewO = DoView()) {
461c DvSetClearFlag(viewO,DcTrue);

DvSetRendStyle(viewO,renderstyle);
464c DgAddObjToGroup(DflnqViewGroup(frameO),viewO);

DvSetBoundary(viewO,&bound);
DvSetBackgroundColor(viewO,DcRGB,backcolor);
if (pseudo) createcolortable(deviceO,shade);

472c DdInqViewport(deviceO,&bound);
printf("deviceO=%lf,%lf,%lf\n %lf,%lf,%lf\n",

476c DfInqBoundary(frameO,&bound);
printf("frameO=%lf,%lf,%lf\n %lf,%lf,%lf\n",

480c DvlnqBoundary(viewO,&bound);
printf("viewO=%lf,%lf,%lf\n %lf,%lf,%lf\n",

484a if(windowl != 0) {
sprintf(dummy, "%s -display %d -window %d",devicefile,display,

windowi);
strcpy(devicefile,dummy);

}
485a if (debug) printf("DoDevice(type = '%s', file = '%s')\n"

devicetype,devicefile);

if (!(devicel = DoDevice(devicetype,devicefile)))
printf ("can't create devicel: type = '%s', file =%'\n",

devicetype,devicefile);
exit (1);
}

DdInqExtent(devicel,&bound);
devicewidth = bound.fur[0] - bound.bll[O];
deviceheight = bound.fur[1] - bound.bll[1];
if(debug) printf("devicel width = %lf, height =%lf\n",

devicewidth, deviceheight);
DdSetViewport(devicel,&bound);

if (!(framel = DoFrameo)))
printf ("can't create frame\n");
exit(1);

)
DdSetFrame (devicel, framel);
if (pseudo) DdSetShadeMode(devicel,shade);
DfSetBoundary(framel,&bound);

if (!(view1 = DoView()) {
printf ("can't create viewl\n");
exit(1);

}
DvSetClearFlag(view1,DcTrue);
DvSetRendStyle(view1,renderstyle);

DgAddObjToGroup (DfInqViewGroup (framel) ,viewl);

-72-

DvSetBoundary(viewl,&bound);

DvSetBackgroundColor(viewl,DcRGB,backcolor);
if (pseudo) createcolortable(devicel,shade);

if(debug) {
DdlnqViewport(devicel,&bound);
printf("devicel=%lf,%lf,%lf\n %lf,%lf,%lf\n",

bound.bll[0], bound.bll[1], bound.bll[2],
bound.fur[0], bound.fur[1], bound.fur[2]);

DfInqBoundary(framel, &bound);
printf ("framel=%lf,%lf,%lf\n %lf,%lf,%lf\n",

bound.bll[0], bound.bll[1], bound.bll[2],
bound.fur[0], bound.fur[1], bound.fur[2]);

DvInqBoundary(view1,&bound);

printf("viewl=%lf,%lf,%lf\n %lf,%lf,%1f\n",
bound.bll[0], bound.bll[1], bound.bll[2],
bound.fur[0], bound.fur[1], bound.fur[2]);

}
523c if (Act Wind != 1) {

DdUpdate(deviceO, DcFalse);
DdUpdate(device0, DcTrue);

}
if (Act Wind != 2) {

DdUpdate(devicel, DcFalse);
DdUpdate(devicel, DcTrue);

}
updatemodified = DcTrue;
script in = 1;
parse_input ("Dh 0.000000");
scriptin = 0;

561c update = pipe_check();
623d
636c if (ActWind != 1) {

DdUpdate(deviceO, DcFalse);
DdUpdate(deviceO, DcTrue);

}
if (ActWind != 2) {

DdUpdate(devicel, DcFalse);
DdUpdate(device1, DcTrue);

}
updatemodified = DcTrue;

684c if (Act Wind != 1) {
DdUpdate(deviceO, DcFalse);
DdUpdate(deviceO, DcTrue);

}
if (ActWind != 2) {

DdUpdate(devicel, DcFalse);
DdUpdate(devicel, DcTrue);

update modified = DcTrue;
/*update = 0;*/

711c float value;
764c DvSetBackgroundColor(viewo,DcRGB,bg);

DvSetBackgroundColor(view1,DcRGB,bg);
update modified = Dcralse;

-73-

804c updatemodified = DcFalse;
810c updatemodified = DcFalse;
837c width = 517; height = 636;

sscanf(command, "%s", rayname);
printf ("rayname = %s\n", rayname);

840c DdUpdate(deviceO,DcFalse);
853c sscanf (command, "%f", &value);
857c printf("Setting subdivision level to %f\n",
875c DdUpdate (deviceO, DcTrue);
911c updatemodified = DcFalse;
916c updatemodified = DcFalse;
921c sscanf (command, "%*s %f", &value);
924c if(debug) printf("Dial val: %f\n",value);
989c updatemodified = DcFalse;
994c updatemodified = DcFalse;
1108d
1268c int width, height;
1272c extern DtObject studio_group, model_group[3J;
1276c printf("Raytrace res: %dx%d file %s\n", width, height, rayname);
1277a if (strcmp(rayname, "left") == 0)

ray_device = device0;
else if (strcmp(rayname, "right") == 0)

ray_device = devicel;
1282c else (

sprintf(arg, "-filename %s -width %d -height %d",
rayname, width, height);

1289c)
1319c DgAddObjToGroup (DvlnqDisplayGroup (ray_view) ,modelgroup [1]);
1325c DdUpdate (ray_device,DcFalse);

D.5 Ui.c

26a Window data window;
Window dorewindowO;
Window dorewindowl;

36a int trying;
53c int uiinit(pseudo, singleb, num)

int pseudo, singleb, num;
101a if (num == 0) {
103c instruct window = init window(0,0,3,3,0,1);
116c XMoveResizeWindow(displayxtermwindow,0,dore_hnew+spc,

dorewnew, screen h-dorehnew);
124a system("xterm =72x32+518+638 -name bob &");

trying = getpid();
trying = trying + 2;
if (debug) printf("Window id = %d\n", trying);

125d /*if (debug) printf("New Window.....");
datawindow = XCreateSimpleWindow(display,0,119,138,117,182,2);

dorewnew+spc, dorehnew+spc, dore wnew, screen h-dore hnew, 1);
XbdapWindow (display, data-window);
XFlush(display);*/

126,127c

-74-

dorewindowO = initwindow(O,O,dorewnew,dorehnew,pseudo,
(singleb?1:2));

XClearWindow(display,dorewindowO);

}
128a else {

if (debug) (printf("dore... ");fflush(stdout);)
dore windowl = init window(dorewnew+spc,O,dorewnew,dorehnew,

pseudo, (singleb?1:2));
XClearWindow(display,dorewindowl);

}
143c XDefineCursor(display,dore_window0,waitcurs);

XDefineCursor (display, dore_windowl, waitcurs);
152c printf("dore window = %#x\n",dore-windowO);
161c if (num == 0)

return((int)dorewindowO);
if (num == 1)

return((int)dorewindow1);
380c XDefineCursor(display,dorewindowO,dore);

XDefineCursor(display,dorewindowl,dore);
416c if (bevent.xany.window = dore-windowO) {

D.6 butt.h

#define MaxButs 12

extern mouse hit;
extern Button buttons[MaxButs];
extern int but st at [MaxBut s] ;
extern int xyloc[MaxButs][2];
extern Int Nbuts;

extern char *buttupimg[NumButtStates];
extern char *buttdnimg[NumButtStates];
extern XImage *buttup[NumButtStates];
extern XImage *buttdn[NumButtStates];

extern XFontStruct *fontstruct1, *fontstruct2;
extern unsigned int textheightl,textheight2;

D.7 ui.h

41c #define spc 2
45a #define dorehnew 636

#define dore-wnew 517

-75-

References

[Barsky 85]

[Doerschuk 88]

[Huang 63]

Barsky, Brian A.
Computer Graphics and Geometric Modeling Using Beta-Splines.
Springer-Verlag, 1985.

Doerschuk, Peter.
AFOSR Renewal Proposal.
September, 1988.
Includes additional untitled notes.

Huang, K.
Statistical Mechanics.
McGraw-Hill Book Company, 1963.

[Newman and Sproull 79]
Newman, William M. and Sproull, Robert F.
Principles of Interactive Computer Graphics.
McGraw-Hill Book Company, 1979.

[Rational B-Splines 83]
Tiller, Wayne.
Rational B-Splines for Curve and Surface Representation.
IEEE Computer Graphics and Applications , September, 1983.

[Starbase Graphics 88]
Starbase Graphics Techniques HP-UX Concepts and Tutorials
Edition 2.0 edition, Hewlett-Packard Corporation, 1988.

[Titan Architecture 88]
Diede, Tom et. al.
The Titan Graphics Supercomputer Architecture.
Computer , September, 1988.

