18.100B (ANALYSIS I) PRIMER: SETS AND BASIC LOGIC

This primer collects some mathematical nomenclature we shall use throughout the course.

Sets. For our purposes, it is sufficient to exclusively deal with "naive set theory" whose terminology is as follows.¹

Sets are collections of elements (or members). If A is any set, we mean by $x \in A$ that x is an element of A; if x is not an element of A, we write $x \notin A$.

The set which contains no element is called the *empty set* and denoted by \emptyset . Any set containing at least one element is referred to as *non-empty*.

If A and B are sets such that every element of A is an element of B, we say that A is a *subset* of B, which we denote by $A \subseteq B$; or occasionally by $B \supseteq A$. (Alternative notations for \subseteq and \supseteq are \subset and \supset , respectively.) Note that the empty set is always a subset, i.e., we have that $\emptyset \subseteq A$ holds for every A.

If both $A \subseteq B$ and $B \subseteq A$ hold, we write A = B; and $A \neq B$ otherwise. We call A a *proper subset* of B if $A \subseteq B$ and $A \neq B$, and we denote this by writing $A \subseteq B$.

In many instances, sets are either given by explicitly listing their elements, e.g., $A = \{1, 2, 3\}$, or by stating properties that all elements have in common, e.g., $A = \{x : x \text{ is an even integer}\}.$

Prominent examples of sets are: the natural numbers $\mathbb{N} = \{0, 1, 2, ...\}$; the integers $\mathbb{Z} = \{..., -2, -1, 0, 1, 2, ...\}$; the rational numbers \mathbb{Q} ; the real numbers \mathbb{R} ; and the complex numbers \mathbb{C} . Note that $\mathbb{N} \subsetneq \mathbb{Z} \subsetneq \mathbb{Q} \subsetneq \mathbb{R} \subsetneq \mathbb{C}$.

Given two sets A and B, we define their *union*

$$A \cup B = \{x : x \in A \text{ or } x \in B\},\$$

and their *intersection*

$$A \cap B = \{x : x \in A \text{ and } x \in B\}.$$

One can prove the following rules:

(1)
$$A \cap B = B \cap A, \quad A \cup B = B \cup A$$

$$(2) A \cap (B \cap C) = (A \cap B) \cap C, \quad A \cup (B \cup C) = (A \cup B) \cup C;$$

$$(3) \qquad A \cap (B \cup C) = (A \cap B) \cup (A \cap C), \quad A \cup (B \cap C) = (A \cup B) \cap (A \cup C);$$

(4)
$$A \cap \emptyset = \emptyset, \quad A \cup \emptyset = A.$$

Furthermore, the set

$$A \setminus B = \{x : x \in A \text{ and } x \notin B\}$$

is called the *difference* of A with respect to B. Note that $A \setminus A = \emptyset$, as well as $A \setminus B = A$ whenever $A \cap B = \emptyset$.

¹For further reading on axiomatic set theory, see e.g. http://en.wikipedia.org/wiki/ Axiomatic_set_theory

Be aware of the fact that sets can contain sets. The power set

 $\mathcal{P}(A) = \text{set of all subsets of } A$

furnishes an illuminating example for this, e.g.,

 $\mathcal{P}(\{1,2\}) = \{\emptyset, \{1\}, \{2\}, \{1,2\}\}.$

Later in the course we will identify the power set of the natural numbers, $\mathcal{P}(\mathbb{N})$, with the set of real numbers \mathbb{R} .

Finally, we turn to the *cartesian product* defined by

 $A \times B = \{(x, y) : x \in A \text{ and } y \in B\},\$

with A and B being two sets. Here (x, y) denotes the ordered pair, where we say that $(x_1, y_1) = (x_2, y_2)$ holds if and only if $x_1 = x_2$ and $y_1 = y_2$. Also, we remark that $A \times B = \emptyset$ holds if and only if $A = \emptyset$ or $B = \emptyset$.

Furthermore, we define the *n*-fold cartesian product of the sets A_1, \ldots, A_n by

 $A_1 \times \cdots \times A_n = \{(x_1, \ldots, x_n) : x_1 \in A_1 \text{ and } \cdots \text{ and } x_n \in A_n \}.$

A useful example of this construction is given by \mathbb{R}^n which is the *n*-fold cartesian product of \mathbb{R} with itself.

Basic Logic. Supplementing Rudin's textbook, we briefly recall some basic notations related to mathematical logic.²

Symbol	Meaning	Example
Ξ	there exists	$\exists q \in \mathbb{Q}$ such that $q^2 = 4$
∄	there does not exist	$\nexists q \in \mathbb{Q}$ such that $q^2 = 2$
∃!	there exists only one	$\exists ! n \in \mathbb{N}$ such that $12.1 < n < 13.1$
\forall	for all	$\forall x \in \mathbb{R}$ we have that $x^2 \ge 0$
\Rightarrow	implies that	$x > 0 \Rightarrow x^2 > 0$
\Leftrightarrow	is equivalent to	$x \neq 0 \Leftrightarrow 1/x \neq 0$
\sim , !, ¬	negation	$X \text{ is true} \Leftrightarrow \neg X \text{ is false}$

We remark that the implication $X \Rightarrow Y$ can be rephrased by saying that "if X, then Y" or "when X is true, Y is true" or "Y is true only if X is true". In this case, we say that X is *sufficient* for Y, and that Y is *necessary* for X. It is a beginner's common mistake to confuse sufficient and necessary.

A ubiquitous word in the mathematical literature is "iff" which serves as an abbreviation for "if and only if". For instance, the equivalence $X \Leftrightarrow Y$ means that "X is true iff Y is true".

²An easy-to-read and informal introduction to mathematical logic can be found Terence Tao's new textbook "Analysis, Volume I", Chapter 12, pp. 118; see http://www.math.ucla.edu/~tao/preprints/books.html where you can download sample chapters (including Chapter 12).