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18.100B, Fall 2002, Homework 9 

Due by Noon, Tuesday November 26

Rudin:

(1) Chapter 6, Problem 12 

Proof. Suppose that f ∈ R(α), let C >  0 be such that |f(x)| ≤ C for all 
x ∈ [a, b]. Given ε >  0 there exists a partition P of [a, b] such that  

n 

(1)	 U(f, α, P ) − L(f, α, P ) =  (α(xi) − α(xi−1))(Mi − mi) < ε2/2C 
i=1 

where Mi and mi are the supremum and infimum of f over [xi−1, xi]. Con-
sider the function given in the hint: 

t − xi−1(2)	 g(t) =  
xi − t

f(xi−1) +  f(xi), t  ∈ [xi−1, xi]. 
xi − xi−1 xi − xi−1 

Note that the value at t = xi is independent of choice even if there are two 
intervals of which it is an end point. On [xi−1, xi], g  is continuous since it is 
linear there and it is continuous at each xi, hence is continuous everywhere. 
On [xi−1, xi ], g  takes values in [mi,Mi] since its maximum and minimum 
occur at the ends (it is linear) and these are values of f. Since f takes values 
in the same interval it follows that f −g takes values in [mi −Mi,Mi −mi]. 
Thus 

2|f(x) − g(x)| ≤ |Mi − mi|2 ≤ 2C(Mi − mi) on [xi−1, xi]. 

Estimating the integral on each segment of the partition we see that 

|f(x) − g|2dα ≤ 2C (α(xi) − α(xi−1)(Mi − mi) < ε2 

i∈I 

which implies that ‖f − g‖2 < ε. 	 � 

(2) Chapter 6, Problem 15 

Solution. By assumption f is real and continuously differentiable on [a, b] 
hence so is F (x) =  xf2(x). This has derivative f2(x) + 2xf(x)f ′(x) so by  
the fundamental theorem of calculus � b 

(f2(x) + 2xf(x)f ′(x))dx = F (b) − F (a) = 0  
a 

since f(a) =  f(b) = 0. Thus � b � b1	 1 
xf(x)f ′(x)dx = − f2 (x)dx = − .

2	 2a	 a 

By Schwarz inequality � �2 
1 
4 

= 
� b 

a 
xf(x)f ′(x)dx ≤ 

� b 

a 
[f ′(x)]2dx · 

� b 

a 
x 2f2(x)dx. 

� 

(3) Chapter 7, Problem 2 
1 
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Proof. If fn and gn converge uniformly on a set E then they are uniformly 
Cauchy. Hence given ε >  0 there exist N ′ and N ′′ such that 

n, m > N ′ =⇒ |fn(x)−fm(x)| < ε/2, n,m  >  N ′′ =⇒ |gn(x)−gm(x)| < ε/2 ∀ x ∈ E. 

Taking N = max(N ′, N ′′) we see that 

n, m > N =⇒ |(fn(x) +  gn(x)) − (fm(x) +  gm(x))| < ε  ∀ x ∈ E 

so fn + gn is uniformly Cauchy and hence uniformly convergent. 
If both fn and gm are uniformly bounded, with |fn(x)|, |gn(x)| ≤ M for 

all x ∈ E and all n then 

|fn(x)gn(x) − fm(x)gm(x)| ≤  

|fn(x)gn(x) − fn(x)gm(x)| + |fn(x)gm(x) − fm(x)gm(x)| ≤ Mε  

if n, m > N showing that fngn is uniformly Cauchy and hence uniformly 
convergent. 

(4) Chapter 7, Problem 6 

2
Proof. We may write the series as the sum of (−1)n x and (−1) 1 . n2 n 

n n 
The second series converges uniformly as a series of functions in x since it 
converges and does not depend on x. The first series converges uniformly 

1on any bounded interval, using Theorem 7.10 and the convergence of 
� 

n2 . 
n 

It follows that the sum of the series converges uniformly using the triangle 
inequality 

mm � x2 �� x2 + n 
m 1 | (−1)n | ≤ |  (−1)n 

2 
| + | (−1)n |.

2n n n
n=p n=p n=p 

(5) Chapter 7, Problem 8 

Proof. If 
� |cn| converges then for any m ≥ n, 
n 

m m 

| cjI(x − xj)| ≤  |cj | ∀ x ∈ [a, b] 
j=n j=n 

By Theorem 7.10, it follows that the series converges uniformly on [a, b]. 
Given ε >  0 there  exists  N such that 

| cjI(y − xj )| < ε/3 ∀ y ∈ [a, b]. 
j≥N 

If x �= xn for any n then it follows that 
� 

cjI(y − xj) is continuous at x, 
j<N


so there exists δ >  0 such that


|x − y| < δ  =⇒ |  cjI(x − xj) − cjI(y − xj )| < ε/3. 
j<N j<N 
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Then we see that, if x − y| < δ,  

|f (x) − f (y)| ≤ |  cj I(x − xj ) − cj I (y − xj )|
j<N j<N 

+ | cj I (x − xj )| + | cj I(y − xj )| < ε.  
j≥N j≥N 

Thus, f is continuous at x. � 


