18.100B, FaLL 2002, HOMEWORK 8 SOLUTIONS

Was due by Noon, Tuesday November 19 Rudin:

(1)

Chapter 6, Problem 5

Solution. 1. No, it is not true that a bounded function, f on [a,b] with
f? € R(«) is necessarily in R(«) itself. We need a counterexample to see
this. Take the function f = 1 at rational points and f = —1 at irrational
points. This is not integrable by the preceeding question (the difference
between upper and lower sums is always 2(b — a)). On the other hand
=1

2. If f is real-valued and bounded and f3 € R(a) then f € R(«) as
follows from Theorem 6.11 with ¢(t) = t!/? the unique real cube root. [J

Chapter 6, Problem 7

Solution. (a) If f € R on [0,1] then

/le(as)da: = /01 f(a:)dxf/oc f(z)dx

and if |f| < M then |focf(x)dx| < 2Me so fclf(x)dm — folf(x)dm as
¢ | 0. [It is enough to say that fcl f(z)dz depends continuously on ¢ by
Theorem 6.20.

(b) Consider g(z) = 273/2, 2 > 0 and ¢(0) = 0. This is definitely not
integrable since it is not bounded. Moverover the integral over [c,1] does
not converge since

1
/ 2732 de = —2(1 — c*%) —
(&
as ¢ | 0. Now consider the function
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2k+1 — 2k

For any ¢ > 0 this function is integrable on [c, 1] since it is bounded and
has only a finite number of points of discontinuity. The integral over any
of the intervals [, 57] is —2((2k — 1)2 — (2k)7 and over [221 1] is

2k’ 2k—1
2((2k)2 — (2k+1)2). Both of these are bounded in absolute value by Ck~z.
Combining the two integrals shows that the integral over [Qk—Jrl ﬁ] is

2(2(2k)2 — (2k+1)2 — (2k —1)2) < Ck~3/2 (by Taylor’s theorem applied
tox=0for 2— (1+)2 — (1 — )2 with # = 1/2k. Thus if N is the largest
integer such that 2N < ¢ then
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|/ fdx—/ fdm|§C’N_%—>0asN—>oo
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and



(1)
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converges by comparison to Y k—3/2 < oo. This shows that fcl fdx con-
k=1

verges as ¢ — 0.

Note that if f is bounded and integrable on [c, 1] for every ¢ > 0 then it
is integrable on [0, 1], so you cannot do this with a bounded function. O

Chapter 6, Problem 10, (a),(b) and (c).

Proof. (a) If u =0 or v = 0 this is obvious so we can assume that both are
positive. Since p and ¢ are both positive and p = q%l both of them must
lie in the interval 1 < p < co. Now divide through the inequality we want
by v? and set a = uP/v9. It follows that uv'~7 = a'/P since ¢/p = q — 1.
Thus we only need to show that

1 1
al/Pg—a+—, 0<a<oo.
p q

The continuous function %a + % — a'/? is positive at 0 and tends to oo as
a — oo. Thus if it has an interior minimum in (0, co) it will have to be at
a point where the derivative vanishes, namely % = %al/ P=1 which is to say
a = 1. Since it takes the value 0 there it is in fact non-negative, meaning
(1) holds. This proves the inequality

uP 4
uw < — + —
p q

with equality only where a = 1, which is u? = v? (including the case where
both are zero).

(b)) If 0 < f € R(a) and 0 < g € R(«) then fP and g? € R(a) by
Theorem 6.11. It also follows that fg € R(a) and, using (})

b 1t 1t
da < = Pdo + — Ida = 1.
fg g
a p a q a

(¢) If f and g are complex-valued in R(«) then |f| and |g| are non-
negative elements of R(«) and fg € R(a). Moverover

i " fgiol < / " | fllglde.

IfI= fab |[fIP # 0 and J = fab |g|? # 0 then apply the conclusion of the
previous part to |f|/c and |g|/d where ¢ = I and d? = J. This gives the
desired result

b b l/p b 1/q
| / fgda§cd=<| / Ifl”dal> (| / g|qda|> |

On the other hand if one of these intgrals vanishes, say the first since we
can always reverse the roles of p and ¢, then

b 1 b
/ fl(clgda < 17 / l9/da

for any ¢ > 0 and sending ¢ — 0 shows that f: | fllglda = 0 so the inequality
still holds. O



(4) Chapter 6, Problem 11
Setting p = ¢ = 2 in the previous problem we see that

b b b
(/ |uv|da)2§/ |u|2da/ [v]2da.

Now multiply out

b b b
/ |u+v|2da:/ |u\2do¢+/ (tv 4 ud)da

+/ab lof?da < ((/ab|u|2da> + (/abw?da)é)?

This means ||u + v|j2 < [Jull2 + ||v||2. Now setting u=f —gandv=h—g
gives the general case.
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