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18.100B, Fall 2002, Homework 8 solutions 

Was due by Noon, Tuesday November 19 Rudin: 
(1) Chapter 6, Problem 5 

Solution. 1. No, it is not true that a bounded function, f on [a, b] with  
f2 ∈ R(α) is necessarily in R(α) itself. We need a counterexample to see 
this. Take the function f = 1 at rational points and f = −1 at irrational 
points. This is not integrable by the preceeding question (the difference 
between upper and lower sums is always 2(b − a)). On the other hand 
f2 = 1, 

2. If f is real-valued and bounded and f3 ∈ R(α) then  f ∈ R(α) as  
follows from Theorem 6.11 with φ(t) =  t1/3 the unique real cube root.  � 

(2) Chapter 6, Problem 7 

Solution. (a) If f ∈ R on [0, 1] then � 1 �� 1 c 

f(x)dx = f(x)dx − f(x)dx 
c 0 0 � � 1and if |f | ≤  M then | c 

f(x)dx| ≤  2Mc  so 
� 1 

f(x)dx −→ f(x)dx as
0 c 0 

c ↓ 0. [It is enough to say that 
� 

c 
1 
f(x)dx depends continuously on c by 

Theorem 6.20. 
(b) Consider g(x) =  x−3/2, x  >  0 and  g(0) = 0. This is definitely not 

integrable since it is not bounded. Moverover the integral over [c, 1] does 
not converge since � 1 

x −3/2dx = −2(1 − c − 1 
2 ) −→ ∞ 

c 

as c ↓ 0. Now consider the function 

x−3/2 1 ≤ x <  1 
2kf(x) =  −x−3/2

2k−
1
1 , 1 ≤ k.

1 ≤ x <2k+1 2k 

For any c >  0 this function is integrable on [c, 1] since it is bounded and 
has only a finite number of points of discontinuity. The integral over any 

1 1 2k+1 
2
1 
k ] is  2 2of the intervals [ 2k , 2k−1 ] is  −2((2k − 1) 

1 − (2k) 
1 

and over [ , 

2 .2((2k) 
1

2 ). Both of these are bounded in absolute value by Ck− 1 
2 −(2k +1)  

1 

2k+1 
2k

1 
−1 ] is  Combining the two integrals shows that the integral over [ , 

2 22(2(2k) 
1 − (2k + 1)  

1 − (2k − 1) 
1 
2 ) ≤ Ck−3/2 (by Taylor’s theorem applied 

to x = 0  for  2  − (1 + x) 
1 − (1 −x) 

1 
with x = 1/2k. Thus if N is the largest 2 2 

integer such that 2N ≤ c then � 1 � 1 
2| fdx  − fdx| ≤ CN− 1 → 0 as  N → ∞  

1 c 2N +1 

and � 1 N � 1 
2k−1 

fdx  = fdx  
1 1 

2N +1 k=1 2N +1 

1 



� 

2 

c 

∞ 
k−3/2converges by comparison to 

� 
< ∞. This shows that 

� 1 
fdx  con-

k=1 
verges as c → 0. 

Note that if f is bounded and integrable on [c, 1] for every c >  0 then it  
is integrable on [0, 1], so you cannot do this with a bounded function. � 

(3) Chapter 6, Problem 10, (a),(b) and (c). 

Proof. (a) If u = 0  or  v = 0 this is obvious so we can assume that both are 
qpositive. Since p and q are both positive and p = q−1 both of them must 

lie in the interval 1 < p <  ∞. Now divide through the inequality we want 
by vq and set a = up/vq . It follows that uv1−q = a1/p since q/p = q − 1. 
Thus we only need to show that 

1 11/p ≤(1) a a + , 0 < a <  ∞. 
p q 

1 a + 1The continuous function − a1/p is positive at 0 and tends to ∞ as p q 

a → ∞. Thus if it has an interior minimum in (0, ∞) it will  have  to  be  at  
1a point where the derivative vanishes, namely p = 1 a1/p−1 which is to say p 

a = 1. Since it takes the value 0 there it is in fact non-negative, meaning 
(1) holds. This proves the inequality 

up vq 

uv ≤ + 
p q 

with equality only where a = 1, which is up = vq (including the case where 
both are zero). 

(b) If 0 ≤ f ∈ R(α) and  0  ≤ g ∈ R(α) then  f p and gq ∈ R(α) by  
Theorem 6.11. It also follows that fg  ∈ R(α) and, using (†) 

1 
� b� b 1 

� b 

fgdα  ≤ f pdα + gq dα = 1. 
a p a aq 

(c) If f and g are complex-valued in R(α) then  |f | and |g| are non-
negative elements of R(α) and  fg  ∈ R(α). Moverover � b � b 

| fgdα| ≤  |f ||g|dα. 
a a 

p = 0 and J = 
� b |g| �If I = 

� b |f | � q = 0 then apply the conclusion of the 
a a 

previous part to |f |/c and |g|/d where cp = I and dq = J. This gives the 
desired result � b 

� � b 
�1/p � b 

�1/q 

| fgdα| ≤ cd = | |f |pdα| | |g|q dα| . 
a a a 

On the other hand if one of these intgrals vanishes, say the first since we 
can always reverse the roles of p and q, then � b � b1 |f |(c|g|)dα ≤ cq |g|q dα 

a q a 

for any c >  0 and sending c → 0 shows that 
� 

a

b |f ||g|dα = 0 so the inequality 
still holds. � 
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(4) Chapter 6, Problem 11

Setting p = q = 2 in the previous problem we see that
� b � b� b 

( |uv|dα)2 ≤ |u|2dα |v|2 dα. 
a a a 

Now multiply out � b � b� b 

|u + v|2dα = |u|2dα + (ūv + uv̄)dα 
a a a 

11 � bb 2 b 2 

+ |v|2dα ≤ ( |u|2dα + |v|2dα )2 . 
a a a 

This means ‖u + v‖2 ≤ ‖u‖2 + ‖v‖2. Now setting u = f − g and v = h − g 
gives the general case. 


