
18.100B, Fall 2002, Homework 7 

Was due by Noon, Tuesday November 5.

This was a bit of a stinker.

Rudin:

(1) Chapter 5, Problem 12 

Solution. In x >  0, |x|3 = x3 so is infinitely differentiable, being a poly-
2nomial, and has derivative 3x . Similarly in x <  0, |x|3 = −x3 is again a 

polynomial and has derivative −3x2 . The limit 

lim 
f(0) − f(t) 

= lim |t|3/t = 0  
=t→0 0 − t 0�0� =t→0 

so f is differentiable at 0 and f ′(x) = 3x|x| everywhere. As already noted 
this is differentiable in x �= 0 and has derivative 6|x|. The limit 

(1) lim 
f ′(0) − f ′(t)

= lim 3|t| = 0  
=t→0 0 − t 0�0� =t→0 

again exists, so f ′′(x) = 6|x| exists everywhere. Finally the third derivative 
exists for x �= 0 and is f (3)(x) = 6  sgn  x, sgn x = ±1 as  x >  0 or  x <  0. The 
limit of 

f(0) − f ′′(t)
= 

f(0) − f(t)
6 sgn  t


0 − t 0 − t

does not exist as 0 �
= t → 0, so f (3)(0) does not exist. � 

(2) Chapter 5, Problem 14 

Solution. By assumption, f(x) is convex and differentiable on (a, b). Thus 

f(tx + (1  − t)y) ≤ tf(x) + (1  − t)f(y) ∀ t ∈ [0, 1], x  ≤ y ∈ (a, b). 

For any three points x < y  <  z  ∈ (a, b) the difference quotient satisfies 

f(x) − f(y) f(x) − f(z) f(y) − f(z)≤ ≤ 
x − y x − z y − z 

as shown last week. Letting y ↓ x in the first inequality, and using the 
differentiability of f shows that 

f ′(x) ≤ 
f(x) − f(z) f(y) − f(z)≤ 

x − z y − z 

where x, y, z are again any points satisfying x < y  <  z.  Now letting y ↑ z 
we conclude that f ′(x) ≤ f ′(z) if  x < z.  

Conversely, suppose f ′(x) is monotonically increasing on (a, b). Using 
the mean value theorem, if x < z  then f(z) − f(x) = (z − x)f ′ (q) for  some  
q ∈ (x, z) so  f ′(x) ≤ z−x 

f (z)−f (x) ≤ f ′ (z). For three points x < z  <  y  this 
gives 

f(z) − f(x) f(z) − f(y)≤ 
z − x z − y 

y−zand setting t = y−x so z = tx + (1  − t)y this is precisely 

f(tx + (1  − t)y) ≤ tf(x) + (1  − t)f(y) ∀ t ∈ (0, 1)


which is convexity.
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If f ′′(x) exists for all x ∈ (a, b) and  f ′′ ≥ 0 then  f ′(x) is increasing and  
so f is convex. Conversely if f is convex then f ′ is increasing and hence 
f ′′ ≥ 0. 

(3) Chapter 5, Problem 15 
I should have said not to do the last part, since I have not talked much 

about differentiation of vector-valued functions. 

Solution. The question is quite as clear as should be, you are supposed to 
assume that M0 and M2 are finite. 

Following the hint, recall that Taylor’s theorem shows that 

f(x + 2h) =  f(x) + 2hf ′(x) +  
(2h)2 

f ′′(ξ)
2


for some ξ ∈ (x, x + 2h) which can be written


1 
f ′(x) =  [f(x + 2h) − f(x)] − hf ′′(ξ).

2h

Thus

1
|f ′(x)| ≤  [|f(x + 2h)| + |f(x)|] +  h|f ′′(ξ)|
2h

and so with M0 an upper bound for |f | and M2 and upper bound for f ′′|, 

|f ′(x)| ≤ hM2 + 
M0 

, ∀ h > 0, x ∈ (a,∞). 
h


Taking the supremum over x for each h > 0 we find


M1 ≤ hM2 + 
M0 ∀ h > 0. 
h 

We can assume M0, M2 > 0 since if M2 = 0 then  f is linear and M0 is 
infinite. If M0 = 0  then  f ≡ 0. The right side is differentiable in h with 
derivative M2 −h−2M0. This vanishes when h = M0/M2 > 0, substituting 
this gives 

M1 ≤ 2 M0M2 ⇐⇒ M2 ≤ 4M0M2.1 

For the given 

2x2 − 1 −1 < x < 0 
f(x) =  

x −12 
0 ≤ x < ∞ x2 +1 

we see that 
4x −1 < x < 0 

f ′(x) =  4x 0 < x < ∞(x2 +1)2 

also exists at 0 where it has the value 0. Then f ′′(x) also exists at 0, taking 
the value 4 and 

4 −1 < x < 0 
f ′′(x) =  4(1−x 2 ) 0 < x < ∞(x2 +1)3 

Now, f ′ < 0 in  x < 0 and  f ′ > 0 for  x > 0 so  

sup |f(x)| = M0 = 1. 
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Similarly f ′′ ≥ 0 in  x <  1 and  f ′′ < 0 in  x >  1 so  f ′ takes its maximum 
value at x = 1 and since it is positive for x >  0 its minimum is −4 so  

M1 = sup  |f ′(x)| = 4. 

Finally then M2 = sup  |f ′′| = 4  since  in  x >  0 it decreases to its zero at 
x = 1 and for x >  1, f ′′ > −4x2/(x2 + 1)3 ≥ −4. Thus equality can occur. 

Yes, the result is true for vector valued functions for the usual Euclidean 
norms. Let f = (f1, f2, . . . , fk ) be a function with values in Rk . Thus the 
assumption is that each of the components satisfies the assumptions of the 
question and we set 

Mi = sup  |f (i)(x)|
x∈(a,∞) 

with the Euclidean norm. Now, suppose that a = (a1, . . . , ak ) ∈ Rk is a 
(constant) vector. We can apply the result above to g(x) =  a · f(x) =  
a1f1(x) +  · · · + ak fk (x). We see then that for any x ∈ (a,∞) 

|g ′(x)| ≤ 4 sup  |g| sup |g | ≤ 4|a|2M0M2. 
2Now we can set a = f ′(x) for  a given  x and divide by a factor of |f ′ (x)|

and so conclude that 

|f ′(x)|2 ≤ 4M0M2. 

Taking the supremum over x now gives the vector-valued result. � 

(4) Chapter 6, Problem 2 

Solution. Since f is continuous it is Riemann integrable and f ≥ 0, either 
f = 0 or there exists an interval of positive length, l >  0, in [a, b] on which  
f(x) ≥ c >  0. Then there exists a partition, with the end points of this 
interval as two of its points, such that 

L(P, f) ≥ lc > 0. � bSince 
� b 

fdx  ≥ L(P, f) for any partition, this implies 
a fdx  >  0 so  

a � b 
fdx  = 0  must  imply  f ≡ 0. 

a 
Or, you could use the fundamental theorem of calculus. � 

(5) Chapter 6, Problem 4 

Solution. For any partition P we have 
n 

U(P, f) − L(P, f) =  (xi − xi−1)( sup f − inf f). 
[xi−1 ,xi ] [xi−1 ,xi ]

i=1,xi−1 >xi 

Now, any interval of non-zero length contains both rational and irrational 
points, so the difference of sup f and inf f is always one. It follows that 

U(P, f) − L(P, f) = (b − a) 

so the function cannot be Riemann integrable. � 


