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18.100B, Fall 2002, Homework 6 

Due by Noon, Tuesday October 29. Rudin: 
(1) Chapter 4, Problem 20 

If E is a nonempty subset of a metric space X, define the distance from 
x ∈ X to E by


ρE (x) =  inf  d(x, z).

z∈E 

¯(a) Prove that ρE (x) = 0 if and only if x ∈ E. 
(b) Prove that ρE is uniformly continuous on X by showing that 

|ρE (x) − ρE (y)| ≤ d(x, y) 

for all x, y ∈ X. 

Solution. (a) If ρE (x) = 0 then there exists a sequence zn ∈ E such that 
¯ d(x, zn) → 0. This implies zn → x and hence x ∈ E. Conversely if 

¯ x ∈ E then either x ∈ E, in which case ρE (x) = 0, or else x ∈ E′ , so 
there exists a sequence zn ∈ E with zn → x. This implies d(x, zn) → 0 
so ρE (x) = 0. 

(b) If x, y ∈ X then for any z ∈ E, using the triangle inequality 

ρE (x) ≤ d(x, z) ≤ d(x, y) +  d(y, z). 

Taking the infimum over z ∈ E on the right-hand side shows that 
ρE (x) − ρE (y) ≤ d(x, y). Interchanging the roles of x and y gives the 
desired estimate 

|ρE (x) − ρE (y)| ≤ d(x, y). 

This proves the uniform continuity of ρE , since given ε >  0, d(x, y) < ε  
implies |ρE (x) − ρE (y)| < ε.  

(2) Chapter 4, Problem 23

A real valued function defined on (a, b) is said to be convex if


f(λx + (1  − λ)y) ≤ λf(x) + (1  − λ)f(y) 

whenever x, y ∈ (a, b) and  λ ∈ (0, 1). Prove that every convex function 
is continuous. Prove that every increasing convex function of a convex 
function is convex. If f is convex on (a, b) and  if  a < s < t < u < b  show 
that 

f(t) − f(s) f(u) − f(s) f(u) − f(t)≤ ≤ . 
t − s u − s u − t 

Solution. (c) We do the third part first. Since a < s < t < u < b,  
u−tt = λs + (1  − λ)u with λ = u−s ∈ (0, 1). Thus 

u − t t − s 
f(t) ≤ f(s) +  f(u) =⇒ (t − s)f(u) + (u − t)f(s) − (u − s)f(t) ≥ 0. 

u − s u − s 
This can be rewritten as (t− s)(f(u) − f(s)) − (u− s)(f(t) − f(s)) ≥ 0 
and (u − s)(f(u) − f(t)) − (u − t)(f(u) − f(s)) ≥ 0 proving the  two  
desired inequalities: 

f(t) − f(s) f(u) − f(s) f(u) − f(t)
(1) ≤ ≤ . 

t − s u − s u − t 
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(a) Given	 x ∈ (a, b) choose δ >  0 so that [x − δ, x + δ] ⊂ (a, b). Now, 
consider a point z ∈ (x − δ, x) applying the second inequality in (1) 
gives the first inequality in 

f(x) − f(x − δ) f(z) − f(x) f(x + δ) − f(x)
(2)	 ≤ ≤ . 

δ z − x δ 

Applying the outer inequality in (1) to the three points z <  x  <  x + δ 
gives the second inequality. Now consider the case x < z  <  x  + δ. 
Then the first inequality in (2) follows from the outer inequality in (1) 
applied to the three points x − δ, x, z and the second inequality in (2) 
follows from the first inequality in (1) applied to x, z, x + δ. Now (2) 
implies that 

| f(x) − f(z)| ≤  C| x − z| ∀  z ∈ (x − δ, x + δ) 

and hence proves the continuity of f (in fact the Lipschitz continuity). 
(c) Let	 g be convex and increasing on (c, d) and  f be convex on (a, b) 

with f(a, b) ⊂ (c, d). Then set h(x) =  g(f(x)). Since f is convex, 
A = f(λx + (1  − λ)y) ≤ λf(x) + (1  − λ)f(y) =  B and since g is 
increasing, g(A) ≤ g(B) so  

h(λx+(1  − λ)y) =  g(f(λx+(1  − λ)y) ≤ g(λf(x)+(1  − λ)f(y) ≤ λh(x)+(1  − λ)h(y) 

proving the convexity of h. 

(3) Chapter 4, Problem 26 
Suppose X, Y and Z are metric spaces and  Y is compact. Let f : X −→ 

Y and let g : Y −→ Z be continuous and 1-1 and put h(x) =  g(f(x)). 
Prove that f is uniformly continuous if h is uniformly continuous. Show 
that compactness of Y cannot be omitted from the hypotheses, even when 
X and Z are compact. 

Solution. Consider the subset Z ′ = g(Y ) as a metric space with the metric 
induced from Z. Then g : Y −→ Z ′ is 1-1 and onto. Since Y is compact, 
so is Z ′ and by a result from class, the inverse of g is continuous. Thus, 
again by a result from class, both g and g−1 : Z ′ −→ Y are uniformly 
continuous. Note that the composite of two uniformly continuous maps is 
uniformly continuous1 . Applying this to f = g−1 ◦ h, h = g ◦ f shows that 
the uniform continuity of h implies that of f. 

As a counterexample to the result when the compactness of Y is dropped, 
]. Let f be the discontinuous map 
for ≤ x ≤ 1. Then let g be the 
and g(y) =  y − for 1 ≤ y ≤ . 

take X = Z = [0, 1] and Y = [0, ) ∪ [1, 
f(x) =  x for 0 ≤ x <  , f(x) =  x + 
continuous map g(y) =  y for 0 ≤ y <  
Observe that g is uniformly continuous, since | g(y) − g(y′)| ≤ |  y − y | . The 
composite map is the identity on [0, 1], so uniformly continuous, but f is 
not even continuous (of course if it was continuous it would be uniformly 
continuous since [0, 1] is compact). 

If the maps are f : X −→ Y and g : Y −→ Z, both uniformly continuous then given ε >  0 
there exists η >  0 sucht  that  dY (y, y�) < η  implies dZ (g(y), g(y�)) < ε.  Then from the uniform 
continuity of f there exists δ >  0 such that  dX (x, x�) < δ  impies dY (f(x), f(x�)) < γ  and hence 
d(g(f(x)), g(f(x�)) < ε.  But this is the uniform continuity of h = g ◦ f. 
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(4) Chapter 5, Problem 1 
Let f be defined for all real x and suppose that 

|f(x) − f(y)| ≤ (x − y)2 ∀ x, u ∈ R. 

Prove that f is constant.


Solution. Certainly f is differentiable at each point with derivative zero,

since


f(x + h) − f(x)
lim = lim h = 0. 
=h→0 h 0�0� =h→0 

By the mean value theorem it follows that f is constant. � 

(5) Chapter 5, Problem 2 
Suppose f ′(x) > 0 in (a, b). Prove that f is strictly increasing in (a, b) 

and let g be its inverse function. Prove that g is differentiable and 
1 

g ′(f(x)) = 
f ′(x) 

∀ x ∈ (a, b). 

Proof. By the mean value theorem, if y >  x  are two points in (a, b) then  
there exists z ∈ (x, y) such that f(y) − f(x) = (y − x)f ′(z) > 0. Thus f 
is stricly increasing. It follows that it is 1 − 1 as a map onto the (possibly 
infinite) interval (c, d) = (inf  f, sup f). Thus it has an inverse, g determined 
by the fact that g(y) =  x if f(x) =  y. � 


