18.100B, FaLL 2002, HOMEWORK 6

Due by Noon, Tuesday October 29. Rudin:

(1) Chapter 4, Problem 20
If E is a nonempty subset of a metric space X, define the distance from
x € X to E by

pe(z) = inf d(z,2).
(a) Prove that pg(x) = 0 if and only if z € E.
(b) Prove that pg is uniformly continuous on X by showing that
lpe(z) — pE(Y)| < d(z,Y)
for all z,y € X.

Solution. (a) If pg(z) = 0 then there exists a sequence z, € E such that
d(z,2,) — 0. This implies z, — x and hence x € E. Conversely if
x € E then either x € E, in which case pg(z) = 0, or else z € E’, so
there exists a sequence z,, € E with z, — . This implies d(x, z,) — 0
so pe(z) =0.

(b) If z,y € X then for any z € F, using the triangle inequality

pe(r) < d(z,2) < d(z,y) +d(y, 2).

Taking the infimum over z € E on the right-hand side shows that
pe(x) — pe(y) < d(x,y). Interchanging the roles of x and y gives the
desired estimate

() = pe(y)| < d(z,y).

This proves the uniform continuity of pg, since given € > 0, d(x,y) < €

implies [pgp(z) — pE(y)| <e.
0

(2) Chapter 4, Problem 23
A real valued function defined on (a,b) is said to be convez if
fOz+ (1= Ny) <Af(z) + (1= N)f(y)
whenever z,y € (a,b) and A € (0,1). Prove that every convex function

is continuous. Prove that every increasing convex function of a convex
function is convex. If f is convex on (a,b) and if a < s < t < u < b show

that
F&) = f(s) _ flw) = f(s) _ flw) = f(t)

t—s - uU—S - u—t

Solution. (c) We do the third part first. Since a < s < t < u < b,
t=As+ (1 —A)u with A = “=L € (0,1). Thus

£ < U6 + L2 fw) = (- )7 (w) + (= () — (u = 9)(1) 20,
This can be rewritten as (t —s)(f(u) — f(s)) — (u—3s)(f(t) — f(s)) >0
and (u — s)(f(u) — f(t)) — (u—t)(f(u) — f(s)) > 0 proving the two
desired inequalities:

" £ = () _ fu) = () _ () = F(O)

t—s - uU—S - u—t
1



(a) Given = € (a,b) choose § > 0 so that [z — d,z + §] C (a,b). Now,
consider a point z € (z — d,z) applying the second inequality in (1)
gives the first inequality in

o f@) = fo=8) _f2) =) _ fo+) ~ fa)
) z—z 0

Applying the outer inequality in (1) to the three points z < z <z + 4
gives the second inequality. Now consider the case © < z < x + 0.
Then the first inequality in (2) follows from the outer inequality in (1)
applied to the three points x — J, z, z and the second inequality in (2)
follows from the first inequality in (1) applied to z, z,2 + §. Now (2)
implies that

lf(x) = f(2)| <Clz—2|Vz€e (x—05,z+0)

and hence proves the continuity of f (in fact the Lipschitz continuity).

(¢) Let g be convex and increasing on (¢,d) and f be convex on (a,b)
with f(a,b) C (¢,d). Then set h(x) = g(f(z)). Since f is convex,
A= fhr+ 1 -Ny) < Af(x)+ (1 —N)f(y) = B and since g is
increasing, g(A) < ¢g(B) so

hAz+(1=Ny) = g(fAz+(1=Ny) < g\ f(z)+ (1 =) f(y) < A(z)+(1-N)h(y)

proving the convexity of h.

O

(3) Chapter 4, Problem 26
Suppose X, Y and Z are metric spaces and Y is compact. Let f: X —
Y and let g : Y — Z be continuous and 1-1 and put h(z) = g(f(x)).
Prove that f is uniformly continuous if h is uniformly continuous. Show
that compactness of Y cannot be omitted from the hypotheses, even when

X and Z are compact.

Solution. Consider the subset Z’ = g(Y') as a metric space with the metric
induced from Z. Then ¢g : Y — Z’ is 1-1 and onto. Since Y is compact,
so is Z' and by a result from class, the inverse of g is continuous. Thus,
again by a result from class, both g and ¢! : Z/ — Y are uniformly
continuous. Note that the composite of two uniformly continuous maps is
uniformly continuous'. Applying this to f = ¢~*oh, h = g o f shows that
the uniform continuity of A implies that of f.

As a counterexample to the result when the compactness of Y is dropped,
take X = Z =[0,1] and Y = [0, 2) U[L, 3]. Let f be the discontinuous map
fl@) =z for 0 <a <3, fl) =a+12 for L <z <1 Then let g be the
continuous map g(y) =y for 0 < y < % and g(y) =y — 3 for 1 <y < %
Observe that g is uniformly continuous, since |g(y) — g(v')| < |y — ¢'|. The
composite map is the identity on [0, 1], so uniformly continuous, but f is
not even continuous (of course if it was continuous it would be uniformly
continuous since [0, 1] is compact).

1f the maps are f:X — Y and g:Y — Z, both uniformly continuous then given € > 0
there exists n > 0 sucht that dy (y,y’) < n implies dz(g(y),g(y’)) < €. Then from the uniform
continuity of f there exists 6 > 0 such that dx (z,2’) < § impies dy (f(z), f(2’)) < v and hence
d(g(f(x)),g(f(z')) < e. But this is the uniform continuity of h = go f.



(4)

Chapter 5, Problem 1
Let f be defined for all real x and suppose that

[f(@) = fW)] < (@ —y)* Vaz,ueR.
Prove that f is constant.

Solution. Certainly f is differentiable at each point with derivative zero,

since A
lim M — lim h=0.
0#h—0 h 0#h—0
By the mean value theorem it follows that f is constant. |
Chapter 5, Problem 2

Suppose f'(z) > 0 in (a,b). Prove that f is strictly increasing in (a,b)
and let g be its inverse function. Prove that ¢ is differentiable and

1
/
I (@) = 50
Proof. By the mean value theorem, if y > x are two points in (a,b) then
there exists z € (z,y) such that f(y) — f(z) = (y — z)f'(2) > 0. Thus f
is stricly increasing. It follows that it is 1 — 1 as a map onto the (possibly
infinite) interval (¢, d) = (inf f,sup f). Thus it has an inverse, g determined
by the fact that g(y) = x if f(z) = y. O

vz € (a,b).



