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18.100B, Fall 2002, Homework 5 

Due by Noon, Tuesday October 8. Rudin: 
(1) Chapter 3, Problem 1 

Solution: The sequence is supposed to be in Rn . We use the triangle 
inequality in the form |b| = |b − a + a| ≤ |a − b| + |a| which implies that 
|b| − |a| ≤ |a− b|. Reversing the roles of a and b we also see that |a| − |b| ≤
|a − b| and so ||a| − |b|| ≤ |a − b|. 

If {sn} converges to s then given ε >  0 there  exists  N such that n > N  
implies |sn −s| < ε.  By the triangle inequality ||sn|−|s|| ≤ |sn −s| so {|sn|}
converges to |s|. 

(2) Chapter 3, Problem 20 
Solution: Let {pn} be a Cauchy sequence in a metric space X. By as-

sumption, some subsequence {pn(k)} converges to p ∈ X. Thus, given ε >  0 
there exits K such that k >  K  implies that d(p, pn(k) < ε/2 for all k >  K.  
By the Cauchy condition, given ε >  0 there exists M such that n, m > M 
implies d(xn, xm) < ε/2. Now, consider N = n(l) for  some  l ≥ K such that 
n(l) > M,  which exists since n(k) → ∞  with k. For this choice, 

n > N  =⇒ d(pn, p) ≤ d(pn, pn(l)) +  d(pn(l), p) < ε  

shows that {pn} converges to p. 
(3) Chapter 2, Problem 21 

Note that the problem should say that {En} is a sequence of closed, 
bounded and non-empty sets in a complete metric space with En ⊃ En+1 

and if limn→∞ diam(En) = 0, where diam(E) =  supp,q∈E d(p, q) , then �∞ 
En consists of exactly one point. n=1 

Solution: If p, q ∈ 
� 

n En then p, q ∈ En for all n, so d(p, q) ≤ diam(En) → 
0 with  n, so d(p, q) = 0 and there can be at most one point in the intersec-
tion. So, suppose {pn} is any sequence with pn ∈ En. By the convergence 
of diam(En) to 0, given ε >  0 theren exists  N such that n > N  implies 
diam(En) < ε  for all n > N.  Since Em ⊂ EN if m ≥ N it follows that 
d(pn, pm) ≤ diam(EN ) < ε  if n, m > N and hence the sequence is Cauchy. 
The assumption that X is complete implies that this sequence converges to 
a limit p. Since pn ∈ EN of n > N  and each EN is closed, p ∈ EN for all 
N and hence p ∈ 

� 
n En which therefore consists of exactly one point. 

(4) Chapter 2, Problem 22. 
Solution: Let {Gn} be a sequence of dense open subsets of a complete 

metric space X. We can assume that X 	= ∅ otherwise the question is trivial. 
We construct a sequence of open balls Ek = B(pk , εk ) ⊂ Gk , εk > 0 with  
B(pk , 2εk ) ⊂ Gk ∩ Ek−1 for all k >  1. Choose ε1 > 0 and  a point  p1 ∈ G1 

such that E1 = B(p1, 2ε1) ⊂ G1; this is possible since  E1 	= ∅ is open. From 
the density of G2 in X, p1 is a limit point of G2, so there exists p2 ∈ E1 ∩G2 

and hence ε2 > 0 such that B(p2, ε2) ⊂ E1 ∩G2. Now,  proceed in this way,  
supposing we have chosen  pl and εl > 0 for  l = 1, . . . , k  − 1 such that with  
El = B(pl , εl) we have  B(pl, 2εl) ⊂ El−1 ∩ Gl for each l = 2, . . . , k  − 1. 
Then, from the density of Gk in X we can choose pk ∈ Ek−1 ∩ Gk such 
that B(pk , 2εk ) ⊂ Ek−1 ∩ Gk . The closed set {p; d(p, pl } ≤  εl} satisfies 
the conditions of Problem 21; they are non-empty, and decreasing, in fact 
B(pk , 2εk ) ⊂ B(pk−1, εk−1) implies  2εk ≤ εk−1 so diam(Ek ) → 0 as  k → ∞. 
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Thus  there is a point in  
� 

Ek , and hence in Gk . In fact we could do this k k 
with the center of the first ball arbitrarily close to a given point p ∈ X, and 
with ε1 > 0 arbitrarily small, so it follows that Gk is dense (of course it k 
need not be open). 

This is Baire’s theorem, the intersection of a countable set of open dense 
subsets of a complete metric space is dense. 


