
18.100B, Fall 2002, Homework 4, Solutions 

Was due by Noon, Tuesday October 1. Rudin: 
(1) Chapter 2, Problem 22 

Let Qk ⊂ Rk be the subset of points with rational coefficients. This is 
countable, as the Cartesian product of a finite number of countable sets. 
Suppose that x = (x1, . . . , xk ) ∈ Rk . By the density of the rationals in the 
real numbers, given ε >  0 there exists yi ∈ Qk such that |xi − yi| < ε/k,  
i = 1, . . . , k.  Thus if y = (y1, y2, . . . , yk ) then  

√ 
k|x − y| ≤  k maxi=1 |xi − yi| < ε  

shows the density of Qk in Rk . Thus Rk is separable. 
(2) Chapter 2, Problem 23 

Given a separable metric space X, let Y ⊂ X be a countable dense 
subset. The product A = Y × Q is countable. Let {Ua}, a  ∈ A, be the 
collection of open balls with center from Y and rational radius. If V ⊂ X is 
open then for each point p ∈ V there exists r >  0 such that B(p, r) ⊂ V. By 
the density of Q in X there exists y ∈ Q such that p ∈ B(y, r/2). Moreover 
there exists q ∈ Q with r/2 < q  < r.  Then x ∈ B(y, q). Thus each point of 
V is in an element of one of the Ua’s which is contained in V, so 

V = 

 

Ua. 
Ua ⊂V 

It follows that the {Ua }a∈A form a base of X (actually now more usually 
called an open basis). 

(3) Chapter 2, Problem 24 
By assumption X is a metric space in which every infinite set has a limit 

point. 
For each positive integer n choose points x1(n), x2(n), . . .  successively 

with the property that d(xj (n), xk (n)) ≥ 1/n for k <  j.  After a finite 
number of steps no futher choice is possible. Indeed, if there were an 
infinite set of points E satisfying d(x, x′) ≥ 1/n for all x �= x′ in E then E 
could have no limit point – since a limit point q ∈ X would have to satify 
d(q, pi) < 1/2n for an infinite number of (different) pi ∈ E and this would 
imply that d(p1, p2) ≤ d(p1, q) +  d(q, p2) < 1/n which is a contradiction. 
Let Y ⊂ X be the countable subset, as a countable union of finite sets, 
consisting of all the xj (n), for all n. Then Y is dense in X. To see this, 
given p ∈ X and ε >  0 choose n >  1/ε. If p = xj (n) for  some  j then it is in 
Y. If not then for some j, d(p, xj (n)) < 1/n, otherwise it would be possible 
to choose another xj (n) contradicting the fact that we have chosen as many 
as possible. Then d(p, q) < ε  for some q ∈ Y which is therefore dense and 
X is therefore separable. 

(4) Chapter 2, Problem 26. 
By assumption, X is a metric space in which every infinite subset has 

a limit point. By the problems above it is separable, and hence has a 
countable open basis, {Ui}. Let {Va }a∈A be an arbitrary open cover of X. 
Each Va is a union of Uj ’s by the definition of an open basis. For each j 
such that Uj is in one of these unions, choose a V which contains it. Then aj 

for every b ∈ A, Vb must  be  contained in a union of the  Uaj ’s, hence in the 
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union of the  Vaj ’s which therefore form a countable subcover of the original 
open cover Va. Consider the successive open sets 

N 
 
Vai . 

i=1 

If one of these contains X then we have found a finite subcover of the Va’s. 
So, suppose to the contrary that 

N 

FN = X \ 

 

Vai �= ∅ ∀ N. 
i=1 

The FN ’s are decreasing as N increases. Let E ⊂ X be a set which contains 
one point from each FN . It must be an infinite set, since otherwise some 
fixed point would be in FN for arbitrary large, hence all, N but 

(1)	 FN = ∅ 
N ∈N 

since together all the Vai do cover X. By the assumed property of X, E 
must have a limit point p. For each N, all but finitely many points of E lie 
in FN , so p must be a limit point of FN for all N, but each FN is closed so 
this would mean p ∈ FN for all N, contradicting (1). 


