18.100B, FALL 2002, SOLUTIONS TO HOMEWORK 3

Rudin:

(1) Chapter 2, Problem 6
Done in class on Thursday September 26. Here E C X is a subset of a
metric space and E’ is the set of limit points, in X, of E.
(a) Prove that E’ is closed.
If p € X is a limit point of E’ then for each r > 0, B(p,r)NE’ >
¢ is not empty. Since ¢ is a limit point of F and r — d(p,q) > 0,
B(q,r — d(p,q)) N E is an infinite set. By the triangle inequality,
B(q,r—d(p,q)) C B(p,r)so B(p,r)NE is also infinite and p is therefore
a limit point of F, i.e. p € E'. Thus E’ contains each of its limit points
and it is therefore closed.
(b) Prove that F and E have the same limit points.
If p is a limit point of F then it is a limit point of F since E C E. If p
is a limit point of E then B(p, )N (E\{0}) decreases with n; either it
is infinite for all n or it is empty for large n. We show that the second
case cannot occur. Indeed this woould imply that B(p, )N (E"\{p}) is
infinite for all n and hence that p is a limit point of E’; by the preceding
result it is then a limit point of E contradicting the assumption that
it is not. Thus a limit point of E is a limit point of E.
(c) Do E and E’ have the same limit points?
No, not in general. A limit point of E’ must be a limit point of E
but the converse need not be true. For example consider E = {1/n €
R;n € N}. This has a single limit point, 0 so £’ = {0} has no limit
points at all.
(2) Chapter 2, Problem 8
(a) Is every point of every open set £ C R? a limit point of E?
Yes. If E C R? is open then B(p,r) C E for some 7’ > 0 and all
0 < r < '. Since B(p,r) C R? is infinite if r > 0 it follows that p is a
limit point of F.
(b) Same question for E closed?
No, not in general. For instance the set containing a single point {0}
is closed but has no limit points.
(3) Chapter 2, Problem 9.
Let E° denote all the interior points of E C X, meaning that p € E° if
B(p,r) C E for some r > 0.
(a) Prove that E° is always open
If p € E° then B(p,r) C E for some r > 0 and if ¢ € B(p,r) then,
by the triangle inequality, B(q,r — d(p,q)) C E so B(p,r) C E° and
hence E° is open.
(b) Prove that F is open if and only if E = E°.
Certainly if E is open then E = E° since for each p € E there exists
r > 0 such that B(p,r) C E. Conversely if E° = E then this holds for
each p € E so F is open.
(¢) If G C F and G is open, prove that G C E°.
If G C E is open then for each p € G there exists 7 > 0 such that
B(p,r) C G, hence B(p,r) C E sop € E° and it follows that G C E°.
1



(d) Prove that the complement of E° is the closure of the complement of
E.
The complement (EO)E consists of the points p € F such that B(p,r)N
EC £ () for all » > 0. Since p ¢ EC this implies that p is a limit point
of E¥ so

(E°)® c EC.

Conversely if p € EC then, by Problem 6 above, either p € EC or
p € (E®Y (or both). In the first case certainly p € (E°)L, since E° C E.
So we may assume p € F, i.e. p ¢ EC and p e (EE)’. Then for each
r >0 B(p,r) N (EY) # 0 (since p is a limit point not in the set) and
this means B(p,r) is NOT a subset of E for any r > 0, hence p ¢ E°.
Thus EC c (E°)C and these two sets are therefore equal.

(e) Do E and E have the same interiors?
Not necessarily. For instance (0,1) U (1,2) C R is open, so equal to its
interior, but its closure is [0, 2] with interior (0,2) which contains the
extra point 1. It is always the case that E° C (E)°.

(f) Do E and E° have the same closures?
Again in general no. For example if E = {0} C R its interior is empty
but it is closed and non-empty. Clearly the closure of E contains the
closure of E°.

(4) Chapter 2, Problem 11.
(a) dy is not a metric since for the three points 0, 3 and %

1 1, 1, 1 1, 1
4_(O 2)>(0 4)+Q 2)_8

(b) dz is a metric. It satisfies the first two axioms trivially. To see the
triangle inequality first note that

|z =yl <[z =2+ ]2 -yl

for any three real numbers. Taking square-roots of both sides (using
the montonicity of , /) we find

da(z,y) = ]z —yl < Ve — 2| + ]z — ]
= V/(da(, 2))? + (d2(2,9)? < da(w,2) + da(z,y)

by the usual triangle inequality.

(c) dg is not a metric since d3(z, —z) = 0 for all z.

(d) d4 is not a metric since d4(1,2) # ds(2,1).

(e) ds is a metric. Certainly it is symmetric and ds(z,y) = 0 implies
|z —y| = 0 and hence = = y. To get the triangle inequality we need to
find the sign of

|z — 2| ly—=2  |z—yl
l+lz—z 14+ly—z 1+z—y|
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Multplying by the product of the demoninators (which are all strictly
positive) this is the same as the sign of
(I +lz=yA+ly —zDlz = 2[+ 1+ |z =y + |z — 2[)ly — 2|
— (e =2 +ly — 2]z -yl
=lz—ylly —zllz — 2[+2ly — 2lle — 2| + (Jo — 2| + [y — 2] — |z — )
All three terms here are non-negative, the last being the triangle in-
equality. Thus ds does also satisfy the triangle inequality.
Remark: If d(x,y) is a metric then so is
d(z,y)
L+d(z,y
The proof in general essentially the same.



