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18.100B, Fall 2002, Solutions to Homework 3 

Rudin: 

(1) Chapter 2, Problem 6 
Done in class on Thursday September 26. Here E ⊂ X is a subset of a 

metric space and E′ is the set of limit points, in X, of E. 
(a) Prove that E′ is closed. 

If p ∈ X is a limit point of E′ then for each r >  0, B(p, r) ∩ E′ � 
q is not empty. Since q is a limit point of E and r − d(p, q) > 0, 
B(q, r − d(p, q)) ∩ E is an infinite set. By the triangle inequality, 
B(q, r−d(p, q)) ⊂ B(p, r) so  B(p, r)∩E is also infinite and p is therefore 
a limit point of E, i.e. p ∈ E′ . Thus E′ contains each of its limit points 
and it is therefore closed. 

(b) Prove that E and E have the same limit points. 
If p is a limit point of E then it is a limit point of E since E ⊂ E. If p 

1is a limit point of E then B(p, n ) ∩ (E \{0}) decreases with n; either it  
is infinite for all n or it is empty for large n. We show that the second 

1case cannot occur. Indeed this woould imply that B(p, n )∩(E′ \{p}) is  
infinite for all n and hence that p is a limit point of E′; by the  preceding  
result it is then a limit point of E contradicting the assumption that 
it is not. Thus a limit point of E is a limit point of E. 

(c) Do E and E′ have the same limit points? 
No, not in general. A limit point of E′ must be a limit point of E 
but the converse need not be true. For example consider E = {1/n ∈ 
R; n ∈ N}. This has a single limit point, 0 so E′ = {0} has no limit 
points at all. 

(2) Chapter 2, Problem 8 
(a) Is every point of every open set E ⊂ R2 a limit point of E? 

Yes. If E ⊂ R
2 is open then B(p, r) ⊂ E for some r > 0 and all 

0 < r  < r′ . Since B(p, r) ⊂ R2 is infinite if r >  0 it follows that p is a 
limit point of E. 

(b) Same question for E closed? 
No, not in general. For instance the set containing a single point {0}
is closed but has no limit points. 

(3) Chapter 2, Problem 9. 
Let E◦ denote all the interior points of E ⊂ X, meaning that p ∈ E◦ if 

B(p, r) ⊂ E for some r >  0. 
(a) Prove that E◦ is always open 

If p ∈ E◦ then B(p, r) ⊂ E for some r >  0 and  if  q ∈ B(p, r) then, 
by the triangle inequality, B(q, r − d(p, q)) ⊂ E so B(p, r) ⊂ E◦ and 
hence E◦ is open. 

(b) Prove that E is open if and only if E = E◦ . 
Certainly if E is open then E = E◦ since for each p ∈ E there exists 
r >  0 such that B(p, r) ⊂ E. Conversely if E◦ = E then this holds for 
each p ∈ E so E is open. 

(c) If G ⊂ E and G is open, prove that G ⊂ E◦ . 
If G ⊂ E is open then for each p ∈ G there exists r >  0 such that 
B(p, r) ⊂ G, hence B(p, r) ⊂ E so p ∈ E◦ and it follows that G ⊂ E◦ . 
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(d) Prove that the complement of E◦ is the closure of the complement of 
E.

The complement (E◦)� consists of the points p ∈ E such that B(p, r) ∩

E� � ∈ E� this implies that p is a limit point
= ∅ for all r >  0. Since p / 

of E� so


(E◦)� ⊂ E� . 

Conversely if p ∈ E� then, by  Problem  6  above, either  p ∈ E� or 
p ∈ (E�)′ (or both). In the first case certainly p ∈ (E◦)� , since E◦ ⊂ E. 
So we may assume p ∈ E, i.e. p /∈ E� , and p ∈ (E�)′ . Then for each 
r >  0 B(p, r) ∩ (E� ) �= ∅ (since p is a limit point not in the set) and 
this means B(p, r) is NOT  a subset of  E for any r >  0, hence p /∈ E◦ . 

Thus E� ⊂ (E◦)� and these two sets are therefore equal. 
(e) Do E and E have the same interiors? 

Not necessarily. For instance (0, 1) ∪ (1, 2) ⊂ R is open, so equal to its 
interior, but its closure is [0, 2] with interior (0, 2) which contains the 
extra point 1. It is always the case that E◦ ⊂ (E)◦ . 

(f ) Do E and E◦ have the same closures? 
Again in general no. For example if E = {0} ⊂ R its interior is empty  
but it is closed and non-empty. Clearly the closure of E contains the 
closure of E◦ . 

(4) Chapter 2, Problem 11. 
1 1(a)	 d1 is not a metric since for the three points 0, 2 and 4 
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(b)	 d2 is a metric. It satisfies the first two axioms trivially. To see the 
triangle inequality first note that 

|x − y| ≤ |x − z| + |z − y| 

for any three real numbers. Taking square-roots of both sides (using 
the montonicity of √) we find  

d2(x, y) =  |x − y| ≤  |x − z| + |z − y| 
=	 (d2(x, z))2 + (d2(z, y)2 ≤ d2(x, z) +  d2(z, y) 

by the usual triangle inequality. 
(c)	 d3 is not a metric since d3(x, −x) = 0 for all x. 
(d)	 d4 is not a metric since d4(1, 2) �= d4(2, 1). 
(e)	 d5 is a metric. Certainly it is symmetric and d5(x, y) = 0 implies 

|x − y| = 0 and hence x = y. To get the triangle inequality we need to 
find the sign of 

|x − z| 
+ 

|y − z| − |x − y|
1 +  |x − z| 1 +  |y − z| 1 +  |x − y| . 
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Multplying by the product of the demoninators (which are all strictly 
positive) this is the  same  as  the sign of  

(1 + |x − y|)(1 + |y − z|)|x − z| + (1 +  |x − y|)(1 + |x − z|)|y − z| 
− (1 + |x − z|)(1 + |y − z|)|x − y| 

= |x − y||y − z||x − z| + 2|y − z||x − z| + (|x − z| + |y − z| − |x − y|) 
All three terms here are non-negative, the last being the triangle in-
equality. Thus d5 does also satisfy the triangle inequality. 
Remark: If d(x, y) is a metric then so is 

d(x, y) 
1 +  d(x, y

. 

The proof in general essentially the same. 


