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18.100B, Fall 2002, Homework 10 

Due by Noon, Thursday December 5

Rudin:

(1) Chapter 7, Problem 14 

Solution. There is a function  f as described, just set ⎧ ⎪0 ) ≤ t ≤ 1 ⎨ 3 
1f(t) =  3(t − 1
3 ≤ t ≤ 2 

3 ) 3 ⎪ ⎩1 2 ≤ t ≤ 13 

and for instance f(2 − t) =  f(t) for 1 ≤ t ≤ 2 and  then  f(2k + t) =  f(t) for  
all k ∈ N, k  �= 0, t  ∈ [0, 2]. This gives a continuous function. Consider 

∞	 ∞ 

(1)	 x(t) =  2−nf(32n−1t), y(t) =  2−nf(32nt). 
n=1 n=1 

The nth term in the series for (1) is bounded 

|2−n f(32n−1t)| ≤ 2−n . 

By Theorem 7.10, the series converges uniformly. Thus x(t) is continuous 
by Theorem 7.12. The same argument applies to y(t) so Φ(t) = (x(t), y(t)) 
is continuous by Theorem 4.10. Now, to see that Φ is surjective, follow the 
hint. Each point in [0, 1] has a dyadic decomposition 

∞ 

x = 2−nbn, bn = 0 or 1. 
n=1 

Indeed one can compute the successive bn, n  = 1, . . . , k  to arrange that 
k 

0 ≤ x− 2−nbn ≤ 2−k . Then choose bk+1 = 0 or 1 depending on whether 
n=1 

k k 
< 2−k−10 ≤ x − 2−nbn or 2−k−1 ≤ x − 

∑ 
2−n bn ≤ 2−k . Now we let 

n=1 n=1 
the a2n−1 be these numbers for x0 and a2n those for y0. ∞ 

It follows that t0 = 
∑ 

3−i−1 (2ai) converges to a number in [0, 1] and 
i=1 

that 3k t0 = 2N + 2 ak + tk where N is an integer, ak = 0  or  1  and  tk ≤ 1 .3	 3 
The properties of  f show that f(3k t0) =  f( 2 ak + tk ) =  ak since as ak = 03 

1
3 , 1]. From the definition of x(t) and  y(t) it  or 1 then 2 ak + tk ∈ [0, 3 ] of [  2 

3 
follows that Φ(t0) = (x0, y0) and hence Φ is surjective. 

These points t0 are the ones appearing in the Cantor set as defined in 
section 2.44. � 

(2) Chapter 7, Problem 18 

Solution. If fn is a uniformly bounded sequence of functions on [a, b] there  
exists a constant M such that |fn(x)| ≤ M for all x ∈ [a, b] and all n. Since 
the fn are Riemann integrable the functions 

x 

Fn(x) =  fn(t)dt. 
a 
1 
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are continuous. We show that the sequence Fn is equicontinuous. In fact 
if x ≤ x′ ∈ [a, b] then  

x 

|Fn(x) − Fn(x ′)| ≤  |fn (t)|dt ≤ M |x − x |. 
x 

Thus, if |x−x | < δ  = ε/M then |Fn(x) −Fn(x′)| < ε,  showing the equicon-
tinuity. We also have a uniform bound |Fn(x)| ≤ (b − a)M. As a sequence 
of uniformly bounded and equicontinuous functions on a compact metric 
space we see from Theorem 7.25 that {Fn} has a uniformly convergent 
subsequence. � 

(3) Chapter 7, Problem 24 

Solution. We define a map X −→ C(X) into the space of bounded contin-
uous functions on X. Fixing a point a ∈ X let 

f : X � p �−→ fp, fp(x) =  d(x, p) − d(x, a). 

By the triangle inequality d(x, p) ≤ d(x, a) +  d(a, p) and  d(x, a) ≤ d(x, p) +  
d(a, p) shows  that  |fp(x)| ≤  d(a, p). Thus fp is a bounded function. It is 
continuous, again by the triangle inequality 

|fp(x) − fp(y)| ≤ |d(x, p) − d(y, p)| + |d(x, a) − d(y, a)| ≤ 2d(x, y). 

Thus fp ∈ C(X). Now, consider 

‖fp(x) − fq (x)‖ = sup  |d(x, p) − d(x, a) − d(x, q) +  d(x, a)|
x∈X 

= sup  |d(x, p) − d(x, q)| = d(p, q). 
x∈X 

The last inequality follows from the triangle inequality and the fact that 
fp(q) − fq (q) =  d(p, q). 

It follows that f is a continuous map. It is an isometry, namely the 
distance in C(X) is  ‖f − g‖. In particular this shows that f is 1-1. Let Y 
be the closure of f(X) ⊂ C(X). Then we may regard X ⊂ Y using f. As a 
closed subset of C(X), Y  is complete as a metric space. Thus X is isometric 
to a subset of the complete space Y in which it is dense. � 

(4) Chapter 5, Problem 26 

Solution. We assume that f is differentiable on [a, b], f(a) = 0 and there is 
a real number  A such that |f ′(x)| ≤ A|f(x)| for all x ∈ [a, b]. Following the 
hint, for a chosen x0 ∈ (a, b], set M0 = sup  |f(x)| and M1 = sup  |f ′(x)| with 
the suprema over [a, x0]; where the second exists because of the assumption. 
It follows that M1 ≤ AM0. By the mean value theorem f(x) − f(a) =  
f ′(y)(x − a) for  some  y ∈ (a, x0) so  

|f(x) − f(a)| = |f(x)| = |f ′(y)||x − a| ≤ M1(xa) ≤ AM0(x0 − a). 

Taking the sup over x ∈ [a, x0] we see that M0 ≤ AM0(x0 − a). Taking 
x0 − a so small that A(x0 − a) < 1 we see  M0 ≤ 0 and hence M0 = 0. Thus 
f(x) = 0  on  [a, x0]. Set z = sup{x0 ; f(x) = 0  on [a, x0]}. If z = b we are 
finished, since f is continuous so f(z) = 0. If z <  b  then we may apply the 
argument again to find a contradiction. � 

(5) Chapter 5, Problem 27 
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Solution. I did this in class in a slightly different way, so I am just asking 
you to write down the proof. Namely if fi(x) are two solutions, for i = 1, 2, 
then we may integrate the equation to see that 

x 

fi(x) =  c + φ(t, fi(t))dt. 
a 

It follows that the difference f(x) =  f2(x) − f1(x) satifies  

f(a) = 0, f ′(x) =  φ(x, f1(x)) − φ(x, f2(x). 

We see that |f ′(x)| ≤ A|f(x)| where A is the constant in the Lipschitz 
condition. Applying the previous problem, we conclude that f = 0. 

x = y 
1 
2 shows that it is a solution in 

are both solutions. 

1 2 ′ 1Differentiating y = 4 x , y = 2 
1 2[0, 1]. Thus both y ≡ 0 and  y = x4 

These are not the only solutions, since if x0 > 0 and we define 

0 x < x0(2)	 y = 
1 
4 (x − x0)2 x ≥ x0 

we get a continuously differentiable solution by the same argument. Con-
versely every solution, y ≥ 0, of y = y 

1 
2 is of this form. Indeed, if y(t) > 0 

for some t ∈ (0, 1) then, being continuous, it is positive nearby. Thus we 

can divide by y 
1 
2 

1 
2 = 1 on any interval where and conclude that d −2ydx 

1 
2−y >  0. This implies that 2y = x − x0 for some constant x0 and hence 

that (2) holds in any interval where y >  0. In principle there could be dif-
ferent values of x0 on different intervals. However, y in (2) is increasing, 
so the set on which it is strictly positive must be of the form (x0, 1] for 
some x0 ∈ [0, 1], since y(0) = 0. Thus the general solution is (2) for some 
x0 ∈ [0, 1]. 

PS. I don’t have the book with me, perhaps the upper limit of the interval 
here is ∞, but the argument is the same. � 


