18.100B, FALL 2002, HOMEWORK 10

Due by Noon, Thursday December 5
Rudin:

(1)

Chapter 7, Problem 14

Solution. There is a function f as described, just set

0 )<t<y

— 1 1 2
fH)=43(t—3) 3=t<j3
1 2<t<1

and for instance f(2—1t) = f(t) for 1 <t < 2 and then f(2k+t) = f(¢) for
all k e N, k #0, t € [0,2]. This gives a continuous function. Consider

p(t) =D 27" (3TN, y(t) =Y 27" F(37M).

The nth term in the series for (1) is bounded
2o () < 2,

By Theorem 7.10, the series converges uniformly. Thus z(t) is continuous
by Theorem 7.12. The same argument applies to y(t) so ®(¢) = (z(t), y(¢))
is continuous by Theorem 4.10. Now, to see that ® is surjective, follow the
hint. Each point in [0, 1] has a dyadic decomposition

=3 27"b,, by =0or 1.
n=1

Indeed one can compute the successive b,, n = 1,...,k to arrange that

k
0<z—> 27", < 2% Then choose bg+1 = 0 or 1 depending on whether
n=1
k k
0<xz— Y 27", <27k Ltor27k-l <z — 3 277, < 27 Now we let
n=1 n=1
the ag,_1 be these numbers for zy and as, those for yq.
o0

It follows that to = Y. 37¢71(2a;) converges to a number in [0,1] and
i=1

that 3%ty = 2N + %ak + tr where N is an integer, ay = 0 or 1 and t; < %
The properties of f show that f(3%ty) = f(%ak + ti) = ay, since as a, =0
or 1 then 2ay +t), € [0, 4] of [2,1]. From the definition of z(t) and y(¢) it
follows that ®(tg) = (zo, yo) and hence P is surjective.

These points tg are the ones appearing in the Cantor set as defined in
section 2.44. g

Chapter 7, Problem 18

Solution. If f,, is a uniformly bounded sequence of functions on [a, b] there
exists a constant M such that |f,(x)| < M for all z € [a,b] and all n. Since
the f, are Riemann integrable the functions

Fo(x) = / "t



pr(x

()

are continuous. We show that the sequence F), is equicontinuous. In fact
if z <2’ € [a,b] then

’

Fole) = Faa)| < [ a0l < Ml — o'

Thus, if |z —2'| < § = ¢/M then |F,,(z) — F,,(2')| < €, showing the equicon-
tinuity. We also have a uniform bound |F,(z)| < (b — a)M. As a sequence
of uniformly bounded and equicontinuous functions on a compact metric
space we see from Theorem 7.25 that {F,} has a uniformly convergent
subsequence. O

Chapter 7, Problem 24

Solution. We define a map X — C(X) into the space of bounded contin-
uous functions on X. Fixing a point a € X let

f:X2p— fp, fp(@) =d(z,p)—d(z,a)
By the triangle inequality d(z,p) < d(z,a)+d(a,p) and d(z,a) < d(z,p) +
d(a,p) shows that |f,(z)| < d(a,p). Thus f, is a bounded function. It is
continuous, again by the triangle inequality

() = ()| < ld(z, p) — d(y, p)| + |d(z,a) — d(y, a)| < 2d(z,y).
Thus f, € C(X). Now, consider

) = fo(@)ll = sup |d(x,p) — d(z,a) — d(z,q) + d(z,0)]

= sup |d(z,p) — d(z,q)| = d(p, q).
rxeX

The last inequality follows from the triangle inequality and the fact that
fo(@) = fq(q) = d(p. q).

It follows that f is a continuous map. It is an isometry, namely the
distance in C(X) is || f — g||. In particular this shows that f is 1-1. Let YV
be the closure of f(X) C C(X). Then we may regard X C Y using f. As a
closed subset of C(X), Y is complete as a metric space. Thus X is isometric
to a subset of the complete space Y in which it is dense. O

Chapter 5, Problem 26

Solution. We assume that f is differentiable on [a, b], f(a) = 0 and there is
a real number A such that |f'(z)| < Alf(x)] for all z € [a, b]. Following the
hint, for a chosen zq € (a,b], set My = sup |f(z)| and M; = sup |f'(z)| with
the suprema over [a, o]; where the second exists because of the assumption.
It follows that My < AMj. By the mean value theorem f(z) — f(a) =
1 (y)(z — a) for some y € (a,zg) so
[f (@) = f(@)| = [f(@)] = ' W)llz — a] < Mi(za) < AMo(z0 — a).

Taking the sup over x € [a, ] we see that My < AMy(xo — a). Taking
xo — a so small that A(xg —a) < 1 we see Mp < 0 and hence My = 0. Thus
f(z) = 0 on [a,x0]. Set z = sup{zg; f(z) = 0 on [a,zo]}. If 2z = b we are
finished, since f is continuous so f(z) = 0. If z < b then we may apply the
argument again to find a contradiction. O

Chapter 5, Problem 27



(2)

Solution. 1 did this in class in a slightly different way, so I am just asking
you to write down the proof. Namely if f;(x) are two solutions, for ¢ = 1,2,
then we may integrate the equation to see that

fi(z) = C+/ B(t, fi(t))dt.
It follows that the difference f(z) = fo(x) — f1(z) satifies

f(a) =0, f/(I) = (;5(17, fl(‘r)) - ¢($a fQ(I)
We see that |f'(z)] < A|f(x)| where A is the constant in the Lipschitz
condition. Applying the previous problem, we conclude that f = 0.
Differentiating y = imz, y = %x = y% shows that it is a solution in
[0,1]. Thus both y =0 and y = %xQ are both solutions.
These are not the only solutions, since if g > 0 and we define

40 r < T
v= i(xfxof T > T

we get a continuously differentiable solution by the same argument. Con-
versely every solution, y > 0, of ¢’ = y% is of this form. Indeed, if y(¢) > 0
for some ¢ € (0,1) then, being continuous, it is positive nearby. Thus we

can divide by y% and conclude that % (Qy 2) =1 on any interval where

y > 0. This implies that 2y’% = x — xo for some constant xy and hence
that (2) holds in any interval where y > 0. In principle there could be dif-
ferent values of z¢ on different intervals. However, y in (2) is increasing,
so the set on which it is strictly positive must be of the form (xg, 1] for
some g € [0, 1], since y(0) = 0. Thus the general solution is (2) for some
To € [0, ].].

PS. I don’t have the book with me, perhaps the upper limit of the interval
here is oo, but the argument is the same. O



