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Less Common Acyclic Isoprenoids
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Polar Lipid Precursors of Acyclic Isoprenoids
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Favored Mass Spectrometric Fragmentations
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Crocetane – Phytane Distinction
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Crocetane – Phytane Distinction
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Regular C25 vs PMI  Distinction
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Regular C25 vs PMI  Distinction
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Carbon chains of Halobacterium core lipid 
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Figure 6
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Partial 183 Da (SIR) chromatograms of (a) Monterey Formation showing elution position of 
PMI; (b) Byilkaoora-3 showing elution position of I25 reg; (c) Monterey + Byilkaoora-3 
mixture showing relative elution order of PMI and I25 reg isomers (NB. only partially 
resolved); (d) West Terrace-1 which has a peak at the same position as the I25 reg isomer 
and no peak at the earlier retention time of PMI. Unknown peaks 1 (Monterey) and 2 (West 
Terrace-1) elute after I25 reg. Chromatogram time range = 36 sec. 
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Glycerol Stereochemistry ?


sn-glycerol-1 sn-glycerol-3
phosphate phosphate 
dehydrogenase dehydrogenase 
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IPL variety analyzed by HPLC-ESI-MSn
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Ignicoccus islandicus & Ignicoccus pacificus


Sources of samples. At the Kolbeinsey Ridge, north of 
Iceland, eight samples of submarine sandy sediments 
and venting water (original temperatures around 90 °C) 
were taken by the research submersible `Geo' at depths 
between 103 and 106 m (Fricke et al., 1989; Burggraf et 
al., 1990). 

Furthermore, black smoker samples were obtained 
during dive 3072 of the submersible `Alvin' at the East 
PaciÆc Rise at 9° N, 104° W at a depth of 2500 m. 
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Genome Structure 
Nanoarchaeum has a genome with only 490 kb, which 
represents the smallest archaeal genome to date. Comparing 
ss rRNA sequences, it was noted that sequence identities 
were more like archaeon than bacterial species. There was 
no difference, however, in the sequence identity to the 
Crenarchaeota, Euryarchaeota, and 'Korarchaeota', 
indicating it represents a new archaeal phylum. 
Cell Structure and Metabolism 
These coccus cells are only 400 nm in diameter and are 
covered by an S-layer. They require cell-cell contact with an 
actively growing Ignicoccus cell in order to grow. 

Other nanoarchaeotal 16S rRNA genes have been obtained 
from the East Pacific Rise (pH 6.5), the Obsidian Pool in 
Yellowstone National Park (80oC, pH 6.0), and Caldera Uzon 
in Kamchatka, Russia (85oC, pH 5.5). 
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N. equitans (a positive ion; b negative ion) and a N. equitans/ignicoccus sp. 
strain KIN4/I co-culture (c positive ion). Identifications were made on the basis 
of MSN  spectra in both positive and negative ion modes from LC-MS and from 
direct infusion of total lipid extracts. Peaks are labeled as follows: I-5 number 
of glycosyl units, G glycolipid, GP phospholipid, A archaeol lipid core, C 
caldarchaeol lipid core and * unidentified lipid. The dominant lipids are 
glycolipids with an archaeol core, with smaller amounts of phospholipids which 
consist of a phosphate group with glycosyl headgroup and either an archaeol or 
caldarchaeol lipid core. 
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Fig. 4 Negative ion mode MS/MS spectra of three glycosylbearing 
phospholipid species observed in the total lipid extracts of both N. 
equitans (shown above) and Ignicoccus sp. strain KIN4/I. Unlike 
glycolipids, these phospholipids do not form formate adducts and 
are directly observed as [M-H]-ions. Spectrum a is identified as a 
glycosylphosphoarchaeol (at 33 min in Fig. 2), since the 241-Da ion 



is diagnostic for phosphoinositol lipids and corresponds to the 
dehydrated glycophosphate headgroup. The 731-Da ion corresponds 
to an archaeol phosphate ion and is observed in phosphoarchaeol 
standards with different headgroups. The exact structure of the glycosyl 
unit attached to the phosphate is unknown since these MSN analyses do 
not give detailed structural information on the nature of the glycosyl 
units. Spectra b, c are identified as phosphoglycosyl caldarchaeols 
with one phosphate and one (at 32.6 min in Fig. 2) or two (at 41.1 
min in Fig. 2) glycosyl groups, respectively, attached either via the 
phosphate group or the glycerol moiety. 



Co-culture Isotopes 

phytane biphytane 
nano -16.1185 -16.0045 

igni -16.023 -16.297 

igni 77C -15.219 -15.249 

igni 90C -42.087 -43.603 

igni 95C -18.623 -19.767 



Yellowstone National Park ‘Ojo Caliente’ hot spring 
sample of biomass from a ‘streamer’ community 

archaeal membrane lipids 

bacterial membrane lipids 

lipids common to Aquificales 
lipids common to cyanobacteria 

complex distribution 
of lipids shows diverse 
population 

Data; Fredricks, Summons, Hinrichs TIME 

M
O

LE
C

U
LA

R
 M

A
SS

 

©R Summons 



APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 
0099-2240/97/$04.0010 Jan. 1997, p. 50–56 Vol. 63, No. 1 
Copyright q 1997, American Society for Microbiology 

Vertical Distribution and Phylogenetic Characterization of Marine 
Planktonic Archaea in the Santa Barbara Channel 

RAMON MASSANA,1 ALISON E. MURRAY,2 CHRISTINA M. PRESTON,2 AND 
EDWARD F. DELONG2* 
Marine Science Institute1 and Department of Ecology, Evolution and Marine 
Biology,2University of California, Santa Barbara, Santa Barbara, California 
93106 
Received 1 August 1996/Accepted 11 October 1996 

Newly described phylogenetic lineages within the domain Archaea have 
recently been found to be significant components of marine picoplankton 
assemblages. To better understand the ecology of these microorganisms, 
we investigated the relative abundance, distribution, and phylogenetic 
composition of Archaea in the Santa Barbara Channel. Significant amounts 
of archaeal rRNA and rDNA (genes coding for rRNA) were detected in all 
samples analyzed. 



A Few Cosmopolitan Phylotypes Dominate Planktonic 
Archaeal Assemblages in Widely Different Oceanic 
Provinces 

RAMON MASSANA,1* EDWARD F. DELONG,2 AND CARLOS PEDRO´ S-ALIO´ 1 
Institut de Cie`ncies del Mar, CSIC, 08039 Barcelona, Catalunya, Spain,1 and Monterey Bay 
Aquarium Research Institute, Moss Landing, California 950392 
Received 4 October 1999/Accepted 2 February 2000 

We compared the phylogenetic compositions of marine planktonic archaeal populations 
in different marine provinces………… 



letters to nature 
Nature 371, 695 - 697 (2002); doi:10.1038/371695a0 

High abundance of Archaea in Antarctic marine picoplankton 
Edward F. DeLong, Ke Ying Wu, Barbara B. Prézelin & Raffael V. M. Jovine 

ARCHAEA (archaebacteria) constitute one of the three major evolu-tionary 
lineages of life on Earth13. Previously these prokaryotes were thought to 
predominate in only a few unusual and disparate niches, characterized by 
hypersaline, extremely hot, or strictly anoxic conditions47. Recently, novel 
(uncultivated) phylotypes of Archaea have been detected in coastal8 and 
subsurface9,10 marine waters, but their abundance, distribution, physiology 
and ecology remain largely undescribed. Here we report exceptionally high 
archaeal abundance in frigid marine surface waters of Antarctica. Pelagic 
Archaea constituted up to 34% of the prokaryotic biomass in coastal 
Antarctic surface waters, and they were also abundant in a variety of other 
cold, pelagic marine environments. Because they can make up a significant 
fraction of picoplankton biomass in the vast habitats encompassed by cold 
and deep marine waters, these pelagic Archaea represent an unexpectedly 
abundant component of the Earth's biota. 
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Dibiphytanyl Ether Lipids in Nonthermophilic 
Crenarchaeotes 
EDWARD F. DELONG,1* LINDA L. KING,2 RAMON MASSANA,1 HENRY 
CITTONE,1 ALISON MURRAY,1 CHRISTA SCHLEPER,1 AND STUART G. 
WAKEHAM2 
The Marine Science Institute, University of California, Santa Barbara, California 
93106,1 andSkidaway Institute of Oceanography, Savannah, Georgia 314112 
Received 30 September 1997/Accepted 23 December 1997 

The kingdom Crenarchaeota is now known to include archaea which 
inhabit a wide variety of low-temperature environments. We report 
here lipid analyses of nonthermophilic crenarchaeotes, which 
revealed the presence of cyclic and acyclic dibiphytanylglycerol 
tetraether lipids. Nonthermophilic crenarchaeotes appear to be a 
major biological source of tetraether lipids in marine planktonic 
environments. 
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Acid-labile cyclopropyl lipids from Aquificales
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