MIT OpenCourseWare http://ocw.mit.edu

12.001 Introduction to Geology Spring 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

The effects of magma ocean depth and initial composition on planetary differentiation

L. T. Elkins-Tanton

Mars Fundamental Research Program

(Image courtesy of NASA/JPL.)

Formation of new stars and planets

protoplanetary nebula = planetary nebula = preplanetary nebula, NEBULAS, not new SOLAR SYSTEMS protoplanetary disk = proplyd \approx accretionary disk (this really refers just to the star)

Rotating nebula begins to contract

Contraction and rotation of protoplanetary disk

Ca-Al inclusions in carbonaceous chondrites: 4567.2±0.6 million years old

Images removed due to copyright restrictions.

Planetary accretion simulation from Raymond et al. (2006), using 1054 initial planetesimals from 1 to 10 km radius. Earthlike planets are formed, but their orbital eccentricities are too high.

Size of the planets

Images courtesy of NASA.

Factors lead to heating and melting early in a terrestrial planet's history

Radioactive decay of elements

Accretion of large bodies (meters [planetesimals] to hundreds of kilometers [embryos]) Converts kinetic energy to heat

Core formation Converts potential energy to heat

Global Chemical Differentiation

Iron meteorites: The cores of failed planetesimals

Short-lived radioisotopes

Some short-lived radioactive elements produced enough heat to help melt planetesimals or embryos:

- ${}^{26}\text{Al}(700,000 \text{ y}) \rightarrow {}^{26}\text{Mg}$ releases 4.8×10^{-13} J/atom; Mars may have had 10^{42} atoms Wasserburg: ${}^{26}\text{Al}$ was present in CAIs, meaning at most a few million years for CAI formation
- 60 Fe (1,500,000 y) $\rightarrow {}^{60}$ Co (5.2714 y) $\rightarrow {}^{60}$ Ni

Other short-lived radioisotopes date differentiation events:

- ¹⁸²Hf (9,000,000y) → ¹⁸²Ta (114.43 days) → ¹⁸²W
 Core formation constraint (W into core, Hf into silicate mantle)
- 146 Sm (103,000,000 y) $\rightarrow {}^{142}$ Nd Silicate differentiation constraint (Sm slightly more into minerals, Nd into melt)

Formation of the Moon (about 15 – 20 million years after CAIs)

Far side of the Moon

Image courtesy of NASA.

1. Theory and calculations

- 2. Planetary radius and a heterogeneous mantle
- 3. Depth of initial magma ocean and resulting crustal compositions
- 4. Production of a magnetic field
- 5. Volatiles and plagioclase flotation

Linked solidification and cooling processes

Volatiles partition among three reservoirs

Heat flux through atmosphere allows calculation of cooling rates

Structure and thermal evolution of an evolving magma ocean

Images removed due to copyright restrictions.

Mineralogy and solidus based on data from Longhi et al. (1992)

Settling or entrainment: Calculation of liquid/crystal density inversion

Images removed due to copyright restrictions.

Elkins-Tanton et al. (2003)

Stolper *et al.* (1981) and Walker and Agee (1988): olivine buoyancy inversion between 7.5 and 9 GPa.

OUTLINE

1. Theory and calculations

Magma oceans would solidify from the bottom up Volatiles partition between cumulates and atmosphere Garnet may sink into a near-monominerallic layer Shallowest cumulates are denser than deeper cumulates

2. Planetary radius and a heterogeneous mantle

- 3. Depth of initial magma ocean and resulting crustal compositions
- 4. Production of a magnetic field
- 5. Volatiles and plagioclase flotation

Gravitational overturn: Nonmonotonic density gradients

Gravitational overturn: Numerical models in spherical coordinates

Images removed due to copyright restrictions.

Monotonic density gradient

Nonmonotonic density gradient

Overturn creates a laterally-heterogeneous mantle

Before overturn

After overturn

Images removed due to copyright restrictions.

Axisymmetic models show: The majority of overturn complete in <2 Myr; smallscale heterogeneities last a long time

Depths of origin of lunar volcanic rocks

OUTLINE

- 1. Theory and calculations
- 2. Planetary radius and a heterogeneous mantle

Cumulate overturn is fast and efficient

Following early differentiation there will be no simple composition-depth relationships

Following early differentiation the mantle will have a stable density stratification

- 3. Depth of initial magma ocean and resulting crustal compositions
- 4. Production of a magnetic field
- 5. Volatiles and plagioclase flotation

- The Moon likely accreted dry, while Mars and the Earth had non-zero volatile contents
- Volatiles form an insulating atmosphere and partition into nominally anhydrous mantle cumulates
- No mafic quench crust is likely to form on a magma ocean, because of density and temperature considerations
- Water in the silicate liquid inhibits the formation of plagioclase
- If plagioclase forms and floats, it may significantly slow planetary cooling

Volatile contents of possible planetary building blocks

If planet up to ~1,300 km radius retains volatiles (Safronov), bulk Mars-size planet contains:

	<u>C</u>	<u>H₂O</u>	<u> </u>	H_2O
C1 (CI)	3.5%	20%	0.05%	1.2%
C2 (CM)	2.5	13		
CR	1.5	6	0.03	0.36
C3 (CV, CO)	0.5	1	0.01	0.06
OC (Type 3)	0.5	1		

John A. Wood (2005) The chondrite types and their origins.

Images removed due to copyright restrictions.

Brain and Jakosky (1998): 95 to 99% of atmospheric has been lost Catling (2004): 99% of surface water has been lost Mars-sized planet: Decreasing water, increasing carbon dioxide

Image removed due to copyright restrictions.

Initial: 0.4 wt% H₂O, 0.1 wt% CO₂

0.3 wt% H₂0, 0.2 wt% CO₂

0.2 wt% H₂O, 0.3 wt% CO₂

Depth of first plagioclase crystallization

PLANETARY SURFACE

Images removed due to copyright restrictions.

Without a plagioclase flotation crust, planetary solidification is very fast: 90 vol% in less than 50,000 years

The Hadean Earth: Old Version

Dynamic effects of volatiles in cumulates

- Even small amounts of water have a large effect on solid-state creep rates
- Volatiles are available for later degassing

Constraints on planetary formation from isotopic systems

Liquid water

Image removed due to copyright restrictions.

Liquid water may be stable on the surface within a few million years Martian distributary channels

Courtesy of NASA.