MIT OpenCourseWare http://ocw.mit.edu

12.001 Introduction to Geology Spring 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

Basic Field Procedures

Planning

Location

Observation

Measurements

Notes and Sketches

Mapping

Geologic relationships

Recording information on a map

Image removed due to copyright restrictions.

• All exposures ringed by a solid line, colour coded by *formation* with an abbreviated lithological descriptor e.g. f.gr.rd. sstn (= fine grained red sandstone)

Information about what can seen

• All structural data, unless there is too much to fit it all on the map, in which case, representative structural data

Recording exposures

Map A: good features

- Represents exposure shape on the map as accurately as possible, bearing in mind the scale
- Accurate placement of boundary due to accurate recording of observations
- •' V' effect in valley where boundary is inferred

Map B: poor features

- Exposures too blobby and not to scale
- Boundary poorly placed due to above features
- •' V' effect in valley not interpreted

Images removed due to copyright restrictions.

Inferred contacts...

Images removed due to copyright restrictions.

All field sheets should have a lithostratigraphic key and all structural symbols used should be explained. The lithostratigraphic key should contain information about lithotype (i.e. not just a list of formation names)

Make sure you write your name on the reverse of each field sheet. The lithostratigraphic key can be on the reverse

A diagram to show how the field sheets fit together is very helpful Images removed due to copyright restrictions.

Images removed due to copyright restrictions.

Using colors and letters in geologic maps: SIs = Silurian limestone Pv = Permian volcanic rock

Brunton Compass

Images removed due to copyright restrictions.