
MIT Open Access Articles

Brief Announcement: Partial Reversal Acyclicity

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Tsvetomira Radeva and Nancy Lynch. "Brief Announcement: Partial Reversal 
Acyclicity." In Proceedings of the 30th annual ACM SIGACT-SIGOPS Symposium on Principles of 
Distributed Computing (PODC '11). ACM, New York, NY, USA, 353-354.

As Published: http://dx.doi.org/10.1145/1993806.1993880

Publisher: Association for Computing Machinery (ACM)

Persistent URL: http://hdl.handle.net/1721.1/73185

Version: Author's final manuscript: final author's manuscript post peer review, without 
publisher's formatting or copy editing

Terms of use: Creative Commons Attribution-Noncommercial-Share Alike 3.0

https://libraries.mit.edu/forms/dspace-oa-articles.html
http://hdl.handle.net/1721.1/73185
http://creativecommons.org/licenses/by-nc-sa/3.0/


Brief Announcement: Partial Reversal Acyclicity ∗

Tsvetomira Radeva
MIT, Cambridge, MA

radeva@csail.mit.edu

Nancy Lynch
MIT, Cambridge, MA

lynch@csail.mit.edu

ABSTRACT
Partial Reversal (PR) is a link reversal algorithm which en-
sures that an initially directed acyclic graph (DAG) is even-
tually a destination-oriented DAG. While proofs exist to es-
tablish the acyclicity property of PR, they rely on assigning
labels to either the nodes or the edges in the graph. In this
work we show that such labeling is not necessary and outline
a simpler direct proof of the acyclicity property.

Categories and Subject Descriptors
G.2 [Discrete Mathematics]: Graph Theory—Graph al-
gorithms

General Terms
Algorithms, Theory

Keywords
Partial Reversal, Link Reversal, Graph Algorithms

1. INTRODUCTION
Link reversal algorithms were first introduced in [1] to pro-

vide an efficient graph structure for routing. The main goal
of link reversal algorithms is to ensure that all the nodes in
a directed acyclic graph (DAG) have paths to a destination
node or nodes. These algorithms can also be used to solve
problems such as leader election and mutual exclusion [4].

This work focuses on a specific link reversal algorithm:
partial reversal (PR). In PR the initial graph is a DAG with
a single destination node; however, some nodes may not have
paths to the destination D. The goal is to ensure that all
nodes have paths to D. In PR only the nodes, except for
D, that become sinks (all their incident edges are incoming)
take steps. Each node u maintains a list of the edges reversed
by its neighbors since the last time u took a step. When u
becomes a sink, it reverses only the edges which are not in
the list, and then clears the list.

A key property of PR is that it does not create cycles
in the graph. This has been proved in [1] and [4]. The
proof in [1] assigns to each node an integer 3-tuple such that
each edge is directed from a node with a lexicographically
larger value of the 3-tuple to a node with a smaller value.
The proof establishes the existence of such an assignment

∗This work is supported in part by an Akamai Presidential Fel-
lowship, AFOSR FA9550-08-1-0159, and NSF CCF-0726514.
A full version of this paper is available in [3].

Copyright is held by the author/owner(s).
PODC’11, June 6–8, 2011, San Jose, California, USA.
ACM 978-1-4503-0719-2/11/06.

forming a total order on the nodes. Consequently, no cycles
exist in the graph. In [4], PR is described as a special case
of the Binary Link Labels (BLL) algorithm, which uses an
assignment of binary labels to edges. The proof of acyclicity
of PR in [4] follows from a specific such assignment.

Here, we outline a novel proof of the acyclicity property
of PR that is agnostic to node and edge labels. First, we
introduce a simpler version of PR and prove its acyclicity
property without recourse to external or dynamic labeling.
Next, we provide a simulation relation from the original al-
gorithm to the new one, and consequently, our new acyclicity
proof also applies to the original PR algorithm.

2. ORIGINAL ALGORITHM
We model the system as an undirected graph G = (V, E)

with a set of nodes V and a set of edges E. For each node u,
nbrsu is the set of neighbors of u in G. Consider a directed
version of G, denoted G′ = (V, E′), such that for a given
edge {u, v} ∈ E either (u, v) ∈ E′ or (v, u) ∈ E′, but not
both. Let G′init be one such G′ corresponding to the initial
state. Let in-nbrsu and out-nbrsu be the sets of nodes cor-
responding to incoming and outgoing edges of a node u in
G′init. Note that the sets in-nbrsu and out-nbrsu are static
and remain unchanged.

Next, we present the original PR algorithm [1], and ex-
press it as an I/O automaton (PR) (as described in [2]) with
a single set of actions – reverse(S). The set S represents all
the nodes that are taking a step together. PR has a variable
list[u], for each node u, which consists of all neighbors of u
that took a step since the last time u took a step. Addition-
ally, PR has a dir[u, v] variable for each ordered pair (u, v),
which represents the direction of the edge between u and v.

Algorithm 1 PR automaton

Signature: reverse(S), S ⊆ V \ {D}, S 6= ∅
States: for each u, v where {u, v} ∈ E:

dir[u, v] ∈ {in, out}, initially in if v ∈ in-nbrsu, else out

dir[v, u] ∈ {in, out}, initially in if u ∈ in-nbrsv, else out

for each u, list[u], a set of nodes W ⊆ nbrsu, initially empty

Transitions: reverse(S)

Precond: for each u ∈ S, for each v ∈ nbrsu, dir[u, v] = in

Effect: for each u ∈ S

if list[u] 6= nbrsu then for each v ∈ nbrsu \ list[u]:

dir[u, v] := out; dir[v, u] := in; list[v] := list[v] ∪ {u}
else for each v ∈ nbrsu:

dir[u, v] := out; dir[v, u] := in; list[v] := list[v] ∪ {u}
list[u] := ∅
Tasks: {reverse(S), S ⊆ V \ {D}, S 6= ∅}



The precondition for the reverse(S) action is that all
nodes in S are sinks. The effect of the reversal is that the
edge between u and each neighbor of u not in list[u] is re-
versed. However, if list[u] contains all neighbors of u, then
the edges to all neighbors are reversed. Also, each neighbor
v of u that has its edge to u reversed, adds u to list[v]. Fi-
nally, after reversing the particular edges, u empties list[u].
The following corollaries establish the possible contents of
list[u] for any node u.

Corollary 1. In all reachable states, for each node u,
list[u] ⊆ in-nbrsu or list[u] ⊆ out-nbrsu.

Corollary 2. In all reachable states, if u is a sink, then
list[u] = in-nbrsu or list[u] = out-nbrsu.

3. NEW ALGORITHM
In NewPR, nodes use only the initial in-nbrs and out-

nbrs sets to determine which edges to reverse in each step.
Whenever a node is a sink, it reverses either its in-nbrs or
out-nbrs set, alternating between the two. A history vari-
able count[u] keeps track of the number of steps u has taken
so far, and a derived variable parity[u] represents the par-
ity of count[u]. The precondition for a node u to perform a
reverse(u) action is that it is a sink. The effect of the rever-
sal is that, depending on the value of parity[u], either the
edges corresponding to in-nbrsu or out-nbrsu are reversed.
Also, count[u] is incremented.

Algorithm 2 NewPR automaton

Signature: reverse(u), u ∈ V , u 6= D

States: for each u, v where {u, v} ∈ E:

dir[u, v] ∈ {in, out}, initially in if v ∈ in-nbrsu, else out

dir[v, u] ∈ {in, out}, initially in if u ∈ in-nbrsv, else out

for each node u, count[u], integer, initially 0

Derived: for each node u, parity[u] ∈ {even, odd},
even if count[u] is even; else odd

Transitions: reverse(u)

Precond: for each v ∈ nbrsu, dir[u, v] = in

Effect: if parity[u] = even then

for each v ∈ in-nbrsu: dir[u, v] := out; dir[v, u] := in

else

for each v ∈ out-nbrsu: dir[u, v] := out; dir[v, u] := in

count[u] := count[u] + 1

Tasks: {reverse(u), u ∈ V , u 6= D}

Note that it is possible that a node u does not reverse any
edges because either in-nbrsu = ∅ or out-nbrsu = ∅. This
case occurs only if u is initially a sink or a source. When
such an action is performed, u increments its step counter
without reversing any edges. Therefore, u remains a sink
but now the parity has the correct value, so u can reverse
its incident edges in the next step.

A main difference between the two algorithms is that while
PR keeps a dynamic list of nodes, NewPR maintains two
static lists of nodes to determine the edges to be reversed.
The description of the algorithm in NewPR is simpler and
makes the algorithm easier to understand.

Since the input to the PR algorithm is a DAG, we can
embed it in a plane, ensuring all edges are initially directed
from left to right. Therefore, for each node u all nodes in in-
nbrsu are to the left of u, and all nodes in out-nbrsu are to
the right of u. The following invariants establish some prop-
erties of NewPR, and are combined into the main theorem
concluding that PR maintains acyclicity.

Invariant 1. In any reachable state, if u and v are neigh-
bors, then:

(a) If parity[u] = parity[v] = even, then the edge {u, v} is
directed from left to right.

(b) If parity[u] = parity[v] = odd, then the edge {u, v} is
directed from right to left.

Invariant 2. In any reachable state, if u and v are neigh-
bors, then:

(a) If count[u] = n, then count[v] ∈ {n− 1, n, n + 1}.
(b) If count[u] = n, where n is odd, and v is to the right of

u, then count[v] = n.
(c) If count[u] = n, where n is even, and v is to the left of

u, then count[v] = n.
(d) If count[u] > count[v], then the edge {u, v} is directed

from u to v.

Theorem 1. PR maintains acyclicity.

Proof. Suppose in contradiction that there exists a cy-
cle in some reachable state s of the system. Therefore, there
is a sequence of nodes: u, v1, . . . , vn, u such that the edges
between these nodes are directed from u to v1, from vi to
vi+1 for all 1 ≤ i < n, and from vn to u. By Invariant 2
(d) the number of steps of the nodes in the sequence is non-
increasing, and because the nodes form a cycle, s.count[u] =
s.count[v1] = . . . = s.count[vn]. Let vi−1, vi, vi+1 be a se-
quence on nodes where vi is the rightmost node in the cycle.
Assume the edge {vi−1, vi} is directed from left to right,
and the edge {vi, vi+1} is directed from right to left. Since,
s.count[vi−1] = s.count[vi] = s.count[vi+1], s.parity[vi−1] =
s.parity[vi] = s.parity[vi+1] = p. By Invariant 1 (b) applied
to vi−1 and vi, p = even. By Invariant 1 (a) applied to vi

and vi+1, p = odd, a contradiction.

4. SIMULATION RELATION
We define a simulation relation R from states of PR to

states of NewPR which guarantees that the two algorithms
preserve the same edge directions. Let s be a state of PR
and t be a state of NewPR. We define (s, t) ∈ R if:

1. t.G′ = s.G′

2. For each u, if t.parity[u] = even, then s.list[u] ⊆ out-
nbrsu; else s.list[u] ⊆ in-nbrsu.

Theorem 2. For each reachable state s of PR there ex-
ists a reachable state t of NewPR such that (s, t) ∈ R.

Corollary 3. PR maintains acyclicity.

The proof follows from Theorem 1, Theorem 2, and the
fact that by part 1 of the simulation relation both algorithms
produce the same directed versions of the graph.

5. REFERENCES
[1] E. Gafni and D. Bertsekas. Distributed algorithms for

generating loop-free routes in networks with frequently
changing topology. IEEE Trans. on Comm.,
C-29(1):11–18, 1981.

[2] N. Lynch. Distributed Algorithms. Morgan Kaufmann
Publishers, San Mateo, CA, 1996.

[3] T. Radeva and N. Lynch. Partial reversal acyclicity.
Technical Report MIT-CSAIL-TR-2011-xxx, MIT
CSAIL, Cambridge, MA.

[4] J. Welch and J. Walter. Link reversal algorithms. In
Synthesis Lectures on Distributed Computing Theory.
Morgan Claypool, (to appear).


