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Inference About the Mean and Variance of a 
Normal Population

Applications:
• Monitor the mean of a manufacturing process to determine 

if the process is under control
• Evaluate the precision of a laboratory instrument measured 

by the variance of its readings
• Prediction intervals and tolerance intervals which are 

methods for estimating future observations from a 
population. 

By using the central limit theorem (CLT), inference procedures 
for the mean of a normal population can be extended to the 
mean of a non-normal population when a large sample is available

2



Inferences on Mean (Large Samples)
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Pivots

• Definition: Casella & Berger, p. 413

• E.g. 
• Allow us to construct confidence intervals on 

parameters.
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Confidence Intervals on the Mean: 
Large Samples
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Note: zα/2 = -qnorm(α/2)

(See Figure 2.15 on page 56 of the 
course textbook.)
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Confidence Intervals on the Mean
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Confidence Intervals in S-Plus

t.test(lottery.payoff)

One-sample t-Test

data:  lottery.payoff
t = 35.9035, df = 253, p-value = 0 
alternative hypothesis: true mean is not equal to 0 
95 percent confidence interval:
274.4315 306.2850 
sample estimates:
mean of x 
290.3583
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Sample Size Determination for a z-interval

[ ]
Suppose that we require a (1- )-level two-sided CI for 
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•Calculation is done at the design stage so a sample 
estimate of σ is not available.
•An estimate for σ can be obtained by anticipating
the range of the observations and dividing by 4.

[ ]
Based on assuming normality since then 95% of the 
observation are expected to fall in 2 , 2µ σ µ σ− +
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Example 7.1 (Airline Revenue)

See Example 7.1, “Airline Revenue,” on page 239 of the 
course textbook.
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Example 7.2 – Strength of Steel Beams

See Example 7.2 on page 240 of the course textbook.
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Power Calculation for One-sided Z-tests
0( ) P[Test rejects |   ]Hπ µ µ=

Testing                 vs.

For the power function of the α-level 
upper one sided z-test derivation, see 
Equation 7.7 in the course textbook.  

:o oH µ µ≤ 1 0:H µ µ>

Illustration of 
calculation on next 
page

-z z

Φ(−z) 1−Φ(z)
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Power Calculation for One-sided Z-tests
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(See Figure 7.1 on page 
243 of the course 
textbook.)
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Power Functions Curves

See Figure 7.2 on page 243 of the course 
textbook.

Notice how it is easier to detect a big 
difference from µ0.
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Example 7.3 (SAT Couching: Power Calculation)

See Example 7.3 on page 244 of the course textbook.
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Power 
Calculation 
Two-Sided 

Test
(See Figure 7.3 on page 245 
of the course textbook.)
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Power Curve for Two-sided Test
It is easier to 
detect large 
differences 
from the null 
hypothesis(See Figure 7.4 on 

page 246 of the 
course textbook.)

Larger samples 
lead to more 
powerful tests
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Power as a function of µ and n, µ0=0, σ=1
Uses function persp in S-Plus
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This graph was created using S-PLUS(R) Software.  S-PLUS(R) is a registered trademark of Insightful Corporation.



Sample Size Determination for a One-Sided z-Test

• Determine the sample size so that a study will have 
sufficient power to detect an effect of practically important 
magnitude

• If the goal of the study is to show that the mean response µ
under a treatment is higher than the mean response µ0 
without the treatment, then µ−µ0 is called the treatment 
effect

• Let δ > 0  denote a practically important treatment effect 
and let 1−β denote the minimum power required to detect 
it. The goal is to find the minimum sample size n which 
would guarantee that an α-level test of H0 has at least 1-β
power to reject H0 when the treatment effect is at least δ.
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Sample Size Determination for a One-sided Z-test

Because Power is an increasing function of µ−µ0, it is only 
necessary to find n that makes the power 1− β at µ = µ0+δ.

( )

0

2

( ) 1  [See Equation (7.7), Slide 11]
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Example 7.5 (SAT Coaching: Sample Size 
Determination

See Example 7.5 on page 248 of the course textbook.
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Sample Size Determination for a 
Two-Sided z-Test

( ) 2

2z z
n α β σ

δ

⎡ ⎤+
⎢ ⎥
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� Read on you own the 
derivation on pages 248-249

See Example 7.6 on page 249 of the 
course textbook.

Read on your own Example 7.4 (page
246)
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Power and Sample Size in S-Plus

normal.sample.size(mean.alt = 0.3)  
mean.null sd1 mean.alt delta alpha power n1 

0       1      0.3       0.3 0.05    0.8    88

> normal.sample.size(mean.alt = 0.3,n1=100)  
mean.null sd1 mean.alt delta alpha     power  n1 

0         1      0.3        0.3 0.05     0.8508 100
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Inference on Mean (Small Samples)

The sampling variability of s2 may be sizable if the sample is small
(less than 30).   Inference methods must take this variability into
account when σ2 is unknown .
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2

Assume that ,...,  is a random sample from an 

( , ) ditribution. Then  has a

-distribution with -1 degrees of freedom (d.f.)
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Confidence Intervals on Mean
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Example 7.7, 7.8, and 7.9

See Examples 7.7, 7.8, and 7.9 from the course textbook.
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Inference on Variance
2

1Assume that ,...,  is a random sample from an ( , ) distributionnX X N µ σ
2
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( 1) has a Chi-square distribution with -1 d.f.n S nχ
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=

(See Figure 7.8 on page 255 of 
the course textbook)
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CI for σ2 and σ

The 100(1-α)% two-sided CI for σ2 (Equation 7.17 in course textbook):
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The 100(1-α)% two-sided CI for σ (Equation 7.18 in course textbook):
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Hypothesis Test on Variance

See Equation 7.21 on page 256 of the course textbook for an 
explanation of the chi-square statistic:
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Prediction Intervals
• Many practical applications call for an interval estimate of 

– an individual (future) observation sampled from a population 
– rather than of the mean of the population.

• An interval estimate for an individual observation is called 
a prediction interval

Prediction Interval Formula:

1, 2 1, 2
1 11 1n nx t s X x t s
n nα α− −− + ≤ ≤ + +
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Confidence vs. Prediction Interval
Prediction interval of a single future observation:

1, 2 1, 2
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As  interval converges to [ , ]
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Confidence interval for µ:
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Example 7.12: Tear Strength of Rubber

See Example 7.12 on page 259 of the course textbook.

Run chart shows process is predictable. 
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Tolerance Intervals
Suppose we want an interval which will contain at least
.90 = 1-γ of the strengths of the future batches (observations) with 
95% = 1-α confidence

Using Table A.12 in the course textbook:
1-α = 0.95
1-γ = 0.90
n = 14
So, the critical value we want is 2.529.

[ , ] 33.712 2.529 0.798 [31.694,35.730]x Ks x Ks− + = ± × =
Note that this statistical interval is even wider than the prediction interval
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