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“Statistical thinking will one day be as necessary for efficient citizenship 
as the ability to read and write.” H. G. Wells

Statistical Inference
Deals with methods for making statements about a population based on 
a sample drawn from the population

Point Estimation: Estimate an unknown population parameter

Confidence Interval Estimation: Find an interval that contains the 
parameter with preassigned probability.

Hypothesis testing: Testing hypothesis about an unknown population 
parameter
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Examples

Point Estimation: estimate the mean package weight 
of a cereal box filled during a production shift

Confidence Interval Estimation:  Find an interval 
[L,U] based on the data that includes the mean 
weight of the cereal box with a specified 
probability

Hypothesis testing: Do the cereal boxes meet the 
minimum mean weight specification of 16 oz?
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Two Levels of Statistical 
Inference

• Informal, using summary statistics (may 
only be descriptive statistics)

• Formal, which uses methods of 
probability and sampling distributions to 
develop measures of statistical 
accuracy
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Estimation Problems

• Point estimation: estimation of an unknown population 
parameter by a single statistic calculated from the 
sample data.

• Confidence interval estimation: calculation of an 
interval from sample data that includes the unknown 
population parameter with a pre-assigned probability.
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Point Estimation Terminology
Estimator = the random variable (r.v.)     , a function of the Xi’sθ̂
(the general formula of the rule to be computed from the data)

Estimate = the numerical value of      calculated from the 
observed sample data X1 = x1, ..., Xn = xn

θ̂

n

X
X

n

i
i∑

== 1

n

x
x

n

i
i∑

== 1

Example: Xi ~ N(µ,σ2)

(the specific value calculated from the data)

of µ(= 10.2)  is an estimateEstimate =
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Estimator = is an estimator of µ µ̂=

Other estimators of µ?



Methods of Evaluating Estimators
Bias and Variance

θθθ −= )ˆ()ˆ( EBias
- The bias measures the accuracy of an estimator.
- An estimator whose bias is zero is called unbiased.
- An unbiased estimator may, nevertheless, fluctuate greatly from
sample to sample.

{ }2)]ˆ(ˆ[ )ˆ( θθθ EE −=Var
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-The lower the variance, the more precise the estimator.
- A low-variance estimator may be biased.
- Among unbiased estimators, the one with the lowest variance 
should be chosen.  “Best”=minimum variance.



Accuracy and Precision

accurate and 
precise

accurate, 
not precise

precise, 
not accurate 

not accurate, 
not precise
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Mean Squared Error
- To chose among all estimators (biased and unbiased), 
minimize a measure that combines both bias and variance.
- A “good” estimator should have low bias (accurate) AND 
low variance (precise).

{ }2)]ˆ[ )ˆ( θθθ −= EMSE 6.2) (eqnBiasVar 2)]ˆ([)ˆ( θθ +=

MSE = expected squared error loss function

θθθ −= )ˆ()ˆ( EBias

{ }2)]ˆ(ˆ[ )ˆ( θθθ EE −=Var
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Example: estimators of variance

Two estimators of variance:
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i i is unbiased (Example 6.3)
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is biased but has smaller MSE 
(Example 6.4)

In spite of larger MSE, we almost always use S1
2
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Example - Poisson

(See example in Casella & Berger, page 308)
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Standard Error (SE)
- The standard deviation of an estimator is called the standard 
error of the estimator (SE).
- The estimated standard error is also called standard error (se).
- The precision of an estimator is measured by the SE.
Examples for the normal and binomial distributions:

µ     1. of estimator unbiased an isX
nXSE σ=)(

are called the standard error of the mean
nsXse =)(

   ˆ  2. pp of estimator unbiased an is
npppse )ˆ1(ˆ)ˆ( −=
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Precision and Standard Error

• A precise estimate has a small standard error, but exactly 
how are the precision and standard error related?

• If the sampling distribution of an estimator is normal with 
mean equal to the true parameter value (i.e., unbiased). Then 
we know that about 95% of the time the estimator will be within 
two SE’s from the true parameter value.
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Methods of Point Estimation

•Method of Moments (Chapter 6)

•Maximum Likelihood Estimation (Chapter 15)

•Least Squares (Chapter 10 and 11)
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Method of Moments

• Equate sample moments to population moments (as we did with 
Poisson).

• Example: for the continuous uniform distribution, f(x|a,b)=1/(b-a), a≤x≤b

• E(X) = (b+a)/2,  Var(X)=(b-a)2/12

• Set     = (b+a)/2

• S2 = (b-a)2/12

• Solve for a and b (can be a bit messy).

X
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Maximum Likelihood Parameter 
Estimation

• By far the most popular estimation method! (Casella & 
Berger).

• MLE is the parameter point for which observed data is most 
likely under the assumed probability model.

• Likelihood function: L(θ |x) = f(x| θ), where x is the vector of 
sample values, θ also a vector possibly.

• When we consider f(x| θ), we consider θ as fixed and x as 
the variable.

• When we consider L(θ |x), we are considering x to be the 
fixed observed sample point and θ to be varying over all 
possible parameter values.
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MLE (continued)
•If X1….Xn are iid then

L(θ|x)=f(x1…xn| θ) = ∏ f(xi| θ) 

•The MLE of θ is the value which maximizes the                     
likelihood function (assuming it has a global maximum).

•Found by differentiating when possible.

•Usually work with log of likelihood function (∏→∑).

•Equations obtained by setting partial derivatives of 
ln L(θ) = 0 are called the likelihood equations.

•See text page 616 for example – normal distribution.
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Confidence Interval Estimation
We want an interval [ L, U ] where L and U are two 
statistics calculated from X1, X2, …, Xn such that

P[ L ≤ θ ≤ U] = 1 - α Note:  L and U are random 
and θ is fixed but unknown

regardless of the true value of θ.

• [ L, U ] is called a 100(1-α)% confidence interval (CI).

• 1-α is called the confidence level of the interval.

• After the data is observed X1 = x1, ..., Xn = xn, the 
confidence limits L = l and U = u can be calculated.
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95% Confidence Interval: Normal     known2σ
Consider a random sample X1, X2, …, Xn ~ N(µ,σ2) where 
σ2 is assumed to be known and µ is an unknown parameter 
to be estimated.  Then
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µ By the CLT even if the sample 
is not normal, this result is 
approximately correct.

95.096.196.1P =⎥⎦
⎤

⎢⎣
⎡ +=≤≤−=⇒

n
XU

n
XL σµσ

u
n

x
n

xl =+≤≤−=⇒
σµσ 96.196.1 is a 95% CI for µ

(two-sided)

• See Example 6.7, Airline Revenues, p. 204
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Normal Distribution, 95% of area under 
curve is between -1.96 and 1.96
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Frequentist Interpretation of CI’s
In an infinitely long series of trials in which repeated 
samples of size n are drawn from the same population 
and 95% CI’s for µ are calculated using the same method, 
the proportion of intervals that actually include µ will be 
95% (coverage probability).

However, for any particular CI, it is not known whether or 
not the CI includes µ, but the probability that it includes µ
is either 0 or 1, that is, either it does or it doesn’t.

It is incorrect to say that the probability is 0.95 that the true 
µ is in a particular CI.

• See Figure 6.2, p. 205
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95% CI, 50 samples from unit normal 
distribution
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Arbitrary Confidence Level for CI:     known2σ

100(1-α)% two-sided CI for µ based on the observed sample mean

n
Zx

n
Zx σµσ

αα 2/2/ +≤≤− For 99% confidence,     
Zα/2 = 2.576

The price paid for higher confidence level is a wider interval.

For large samples, these CI can be used for data from any 
distribution, since by CLT     ≈ N(µ, σ2/n).x
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One-sided Confidence Intervals

n
Zx σµ α−≥ Lower one-sided CI For 95% 

confidence,      
Zα= 1.645 vs. 
Zα/2= 1.96 n

Zx σµ α+≤ Upper one-sided CI

One-sided CIs are tighter for the same confidence level.
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Hypothesis Testing

The objective of hypothesis testing is to access the validity of a 
claim against a counterclaim using sample data.

• The claim to be “proved” is the alternative hypothesis (H1).

• The competing claim is called the null hypothesis (H0).

• One begins by assuming that H0 is true. If the data fails to 
contradict H0 beyond a reasonable doubt, then H0 is not 
rejected. However, failing to reject H0 does not mean that we 
accept it as true. It simply means that H0 cannot be ruled out as 
a possible explanation for the observed data. A proof by 
insufficient data is not a proof at all.
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Testing Hypotheses
“The process by which we use data to answer questions about parameters
is very similar to how juries evaluate evidence about a defendant.” – from 
Geoffrey Vining, Statistical Methods for Engineers, Duxbury, 1st edition, 
1998. For more information, see that textbook.
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Hypothesis Tests
• A hypothesis test is a data-based rule to decide between H0
and H1.

• A test statistic calculated from the data is used to make this 
decision.

• The values of the test statistics for which the test rejects H0 
comprise the rejection region of the test.

• The complement of the rejection region is called the 
acceptance region. 

• The boundaries of the rejection region are defined by one or 
more critical constants (critical values).

• See Examples 6.13(acc. sampling) and 6.14(SAT coaching), 
pp. 210-211.
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Hypothesis Testing as a Two-Decision Problem

28

Framework developed by Neyman and Pearson in 1933.

When a hypothesis test is viewed as a decision procedure, 
two types of errors are possible:

  Decision 
  Do not reject H0 Reject H0 

 

H0 True Correct Decision 
“Confidence” 

1 - α 

Type I Error 
“Significance Level”

α 
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H0 False Type II Error 
“Failure to Detect” 

β 

Correct Decision 
“Prob. of Detection”

1 - β  
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≠ 1 
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Probabilities of Type I and II Errors
α = P{Type I error} = P{Reject H0 when H0 is true} = P{Reject H0|H0}

also called α-risk or producer’s risk or false alarm rate

β = P{Type II error} = P{Fail to reject H0 when H1 is true} = P{Fail to 
reject H0|H1}

also called β-risk or consumer’s risk or prob. of not detecting

π = 1 - β = P{Reject H0|H1} is prob. of detection or power of the test

We would like to have low α and low β (or equivalently, high power).

α and 1-β are directly related, can increase power by increasing α.

These probabilities are calculated using the sampling distributions from 
either the null hypothesis (for α) or alternative hypothesis (for β).
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Example 6.17 (SAT Coaching)

See Example 6.17, “SAT Coaching,” in the course textbook.
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Power Function and OC Curve

The operating characteristic function of a test is the probability 
that the test fails to reject H0 as a function of θ, where θ is the 
test parameter.

OC(θ) = P{test fails to reject H0 | θ}

For θ values included in H1 the OC function is the β –risk.

The power function is:

π(θ) = P{Test rejects H0 | θ} = 1 – OC(θ)

Example: In SAT coaching, for the test that rejects the null 
hypothesis when mean change is 25 or greater, the power 
= 1-pnorm(25,mean=0:50,sd=40/sqrt(20))
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Level of Significance
The practice of test of hypothesis is to put an upper bound on the     
P(Type I error) and, subject to that constraint, find a test with the lowest 
possible P(Type II error). 

The upper bound on P(Type I error) is called the level of significance of 
the test and is denoted by α (usually some small number such as 0.01, 
0.05, or 0.10).

The test is required to satisfy:

P{ Type I error } = P{ Test Rejects H0 | H0 } ≤ α

Note that α is now used to denote an upper bound on P(Type I error).

Motivated by the fact that the Type I error is usually the more serious.

A hypothesis test with a significance level α is called an a α-level test.
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Choice of Significance Level

What α level should one use?

Recall that as P(Type I error) decreases P(Type II error) 
increases.

A proper choice of α should take into account the relative costs 
of Type I and Type II errors. (These costs may be difficult to 
determine in practice, but must be considered!)

Fisher said: α =0.05

Today α = 0.10, 0.05, 0.01 depending on how much proof 
against the null hypothesis we want to have before rejecting it.

P-values have become popular with the advent of computer 
programs.
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Observed Level of Significance or P-value
Simply rejecting or not rejecting H0 at a specified α level does 
not fully convey the information in the data.

Example: H0 : µ = 15 vs H1 : µ > 15 is rejected at the α = 0.05 

when 71.29
20

40645.115 =×+>x

Is a sample with a mean of 30 equivalent to a sample with a mean
of 50? (Note that both lead to rejection at the α-level of 0.05.)

More useful to report the smallest α-level for which the data 
would reject (this is called the observed level of significance or 
P-value).

Reject H0 if P-value < α
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Example 6.23 (SAT Coaching: P-Value)

See Example 6.23, “SAT Coaching,” on page 220 of the 
course textbook.
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One-sided and Two-sided Tests
H0 : µ = 15 can have three possible alternative hypotheses:

H1 : µ > 15 , H1 : µ < 15 , or   H1 : µ ≠ 15

(upper one-sided) (lower one-sided) (two-sided)

Example 6.27 (SAT Coaching: Two-sided testing)

See Example 6.27 in the course textbook.

36



Example 6.27 continued

See Example 6.27, “SAT Coaching,” on page 223 of the 
course textbook.
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Relationship Between Confidence Intervals 
and Hypothesis Tests

An α-level two-sided test rejects a hypothesis H0 : µ = µ0 if and 
only if the (1- α)100% confidence interval does not contain µ0.

Example 6.7 (Airline Revenues)

See Example 6.7, “Airline Revenues,” on page 207 of the 
course textbook.
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Use/Misuse of Hypothesis Tests in Practice

• Difficulties of Interpreting Tests on Non-random samples 
and observational data

• Statistical significance versus Practical significance
– Statistical significance is a function of sample size

• Perils of searching for significance

• Ignoring lack of significance

•Confusing confidence (1 - α) with probability of detecting a 
difference (1 - β)

39



Jerzy Neyman Egon Pearson
(1894-1981) (1895-1980)

Carried on a decades-long feud with Fisher over the 
foundations of statistics (hypothesis testing and confidence 
limits) 
- Fisher never recognized Type II error & developed fiducial
limits  
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