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Sampling Distributions
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Definitions and Key Concepts
• A sample statistic used to estimate an unknown population 
parameter is called an estimate.

• The discrepancy between the estimate and the true 
parameter value is known as sampling error.

• A statistic is a random variable with a probability distribution, 
called the sampling distribution, which is generated by 
repeated sampling.

• We use the sampling distribution of a statistic to assess the 
sampling error in an estimate.



Random Sample
• Definition 5.11, page 201, Casella and Berger.

• How is this different from a simple random sample?

• For mutual independence, population must be very 
large or must sample with replacement.
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Sample Mean and Variance
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Sample Variance 

How do the sample mean and variance vary in repeated 
samples of size n drawn from the population?

In general, difficult to find exact sampling distribution. However,
see example of deriving distribution when all possible samples
can be enumerated (rolling 2 dice) in sections 5.1 and 5.2.
Note errors on page 168.
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Properties of a sample mean and variance

See Theorem 5.2.2, page 268, Casella & Berger.
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Distribution of Sample Means
• If the i.i.d. r.v.’s are

– Bernoulli
– Normal
– Exponential

The distributions of the sample means can be derived

Sum of n i.i.d. Bernoulli(p) r.v.’s is Binomial(n,p)

Sum of n i.i.d. Normal(µ,σ2) r.v.’s is Normal(nµ,nσ2)

Sum of n i.i.d. Exponential(λ) r.v.’s is Gamma(λ,n)
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Distribution of Sample Means

• Generally, the exact distribution is difficult to 
calculate.

• What can be said about the distribution of the 
sample mean when the sample is drawn from 
an arbitrary population?

• In many cases we can approximate the 
distribution of the sample mean when n is 
large by a normal distribution.

• The famous Central Limit Theorem
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Central Limit Theorem
Let X1, X2, … , Xn be a random sample drawn from an 
arbitrary distribution with a finite mean µ and variance σ2

As n goes to infinity, the sampling distribution of                  
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converges to the N(0,1) distribution.

Sometimes this theorem is given in terms of the sums:
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Central Limit Theorem

Let X1… Xn be a random sample from an arbitrary distribution 
with finite mean µ and variance σ2.  As n increases
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What happens as n goes to infinity?

9



10

Variance of means from uniform distribution
sample size=10 to 10^6
number of samples=100
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This graph was created using S-PLUS(R) Software.  S-PLUS(R) is a registered trademark of Insightful Corporation.



Example: Uniform Distribution
• f(x | a, b) = 1 / (b-a), a≤x≤b
• E X = (b+a)/2
• Var X = (b-a)2/12
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Standardized Means, Uniform Distribution
500 samples, n=1
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Standardized Means, Uniform Distribution
500 samples, n=2
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Standardized Means, Uniform Distribution
500 samples, n=100
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QQ (Normal) plot of means of 500 samples of 
size 100 from uniform distribution

Quantiles of Standard Normal
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Bootstrap – sampling from the 
sample

• Previous slides have shown results for means 
of 500 samples (of size 100) from uniform 
distribution.

• Bootstrap takes just one sample of size 100 
and then takes 500 samples (of size 100) 
with replacement from the sample.

• x<-runif(100)
• y<- mean(sample(x,100,replace=T))
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Normal probability plot of sample of 
size 100 from exponential distribution
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Normal probability plot of means of 500 
bootstrap samples from sample of size 100 

from exponential distribution

Quantiles of Standard Normal
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Law of Large Numbers and Central Limit Theorem

Both are asymptotic results about the sample mean:

• Law of Large Numbers (LLN) says that as n → ∞, the 
sample mean converges to the population mean, i.e.,

 0,n as →−∞→ µX

• Central Limit Theorem (CLT) says that as n → ∞, 
also the distribution converges to Normal, i.e.,

N(0,1)  toconverges    , n as
n

X
σ

µ−
∞→
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Normal Approximation to the Binomial

A binomial r.v. is the sum of i.i.d. Bernoulli r.v.’s so the CLT can be 
used to approximate its distribution.

Suppose that X is B(n, p). Then the mean of X is np and the variance 
of X is np(1 - p) . 

By the CLT, we have: )1,0(
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How large a sample, n, do we need for the approximation to be good?

Rule of Thumb: np ≥ 10 and n(1-p) ≥ 10

For p=0.5, np = n(1-p) = n (0.5) = 10 ⇒ n should be 20. (symmetrical)

For p=0.1 or 0.9, np or n(1-p) = n (0.1) = 10 ⇒ n should be 100. (skewed)

• See Figures 5.2 and 5.3 and Example 5.3, pp.172-174
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Continuity Correction

See Figure 5.4 for motivation.
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Exact Binomial Probability:

P(X ≤ 8) = 0.2517

Normal approximation without Continuity Correction:

P(X ≤ 8) = 0.1867

Normal approximation with Continuity Correction:

P(X ≤ 8.5) = 0.2514 (much better agreement with exact calculation)
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Sampling Distribution of the Sample Variance
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There is no analog to the CLT for which 
gives an approximation for large 
samples for an arbitrary distribution.

The exact distribution for S2 can be derived for X ~ i.i.d. Normal.

Chi-square distribution: For ν ≥ 1, let Z1, Z2, …, Zν be i.i.d. N(0,1) 
and let Y = Z1

2 + Z2
2 + …+ Zν2.

The p.d.f. of Y can be shown to be
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This is known as the χ2 distribution with ν degrees of freedom 
(d.f.) or Y ~      .2

νχ

• See Figures 5.5 and 5.6, pp. 176-177 and Table A.5, p.676
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Distribution of the Sample Variance in the Normal Case

If Z ~ N(0,1), then Z2 ~
2
1χ

2
12

2

2

2

~
)1/(

)1(
−−

=
−

nn
SSn χ

σσ

1
~

2
1

2
2

−
−

n
S nχσ

It can be shown that

or equivalently , a scaled χ2

E(S2) = σ2 (is an unbiased estimator)

Var(S2) = 1
2 4

−n
σ

See Result 2 (p.179)
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Chi-square distribution
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Chi-Square Distribution
Interesting Facts

• EX = ν (degrees of freedom)
• Var X = 2ν
• Special case of the gamma distribution 

with scale parameter=2, shape 
parameter=v/2.

• Chi-square variate with v d.f. is equal to 
the sum of the squares of v independent 
unit normal variates.
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Student’s t-Distribution
Consider a random sample X1, X2, ..., Xn drawn from N(µ,σ2).

It is known that
n

X
/σ
µ− is exactly distributed as N(0,1).             

nS
XT

/
µ−

= is  NOT distributed as N(0,1).

A different distribution for each ν = n-1 degrees of freedom (d.f.). 

T is the ratio of a N(0,1) r.v. and sq.rt.(independent χ2 divided by its d.f.) 
- for derivation, see eqn 5.13, p.180,  and its messy p.d.f., eqn 5.14

See Figure 5.7, Student’s t p.d.f.’s for ν = 2, 10,and ∞, p.180
• See Table A.4, t-distribution table, p. 675
• See Example 5.6, milk cartons, p. 181
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Student’s t densities for df=1,100
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Student’s t Distribution
Interesting Facts

• E X = 0, for v>1
• Var X = v/(v-2) for v>2
• Related to F distribution (F1,v = t2v )
• As v tends to infinity t variate tends to 

unit normal
• If v=1 then t variate is standard Cauchy
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Cauchy Distribution 
for center=0, scale=1 
and center=1, scale=2
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Cauchy Distribution
Interesting Facts
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• Parameters, a=center, b=scale 
• Mean and Variance do not exist (how could this be?)
• a=median
• Quartiles=a +/- b
• Special case of Student’s t with 1 d.f.
• Ratio of 2 independent unit normal variates is standard 

Cauchy variate
• Should not be thought of as “only a pathological case”. 

(Casella & Berger) as we frequently (when?) calculate 
ratios of random variables.



Snedecor-Fisher’s F-Distribution

has an F-distribution with n1-1 d.f. 
in the numerator and n2-1 d.f. 
in the denominator.

•F is the ratio of two independent χ2’s divided by their respective d.f.’s 

•Used to compare sample variances.

•See Table A.6, F-distribution, pp. 677-679 

Consider two independent random samples:

X1, X2, ..., Xn1
from N(µ1,σ1

2) , Y1, Y2, ..., Yn2
from N(µ2,σ2

2).
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Snedecor’s F Distribution
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Snedecor’s F Distribution
Interesting Facts

• Parameters, v, w, referred to as degrees of freedom (df).
• Mean = w/(w-2), for w>2
• Variance = 2w2(v+w-2)/(v(w-2)2(w-4)), for w>4
• As d.f., v and w increase, F variate tends to normal
• Related also to Chi-square, Student’s t, Beta and Binomial
• Reference for distributions:

Statistical Distributions 3rd ed. by Evans, Hastings 
and Peacock, Wiley, 2000
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Sampling Distributions - Summary

• For random sample from any distribution, standardized sample mean 
converges to N(0,1) as n increases (CLT).

• In normal case, standardized sample mean with S instead of sigma in the 
denominator ~ Student’s t(n-1).

• Sum of n squared unit normal variates ~ Chi-square (n)

• In the normal case, sample variance has scaled Chi-square distribution.

• In the normal case, ratio of sample variances from two different samples 
divided by their respective d.f. has F distribution.
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Sir Ronald A. Fisher George W. Snedecor
(1890-1962) (1882-1974)

Taught at Iowa State Univ. where 
wrote a college textbook (1937):

“Thank God for Snedecor;
now we can understand Fisher.”

(named the distribution for Fisher)

Wrote the first books on statistical 
methods (1926 & 1936):

“A student should not be made
to read Fisher’s books

unless he has read them before.”
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Sampling Distributions for Order Statistics
Most sampling distribution results (except for CLT) apply to samples from 
normal populations.

If data does not come from a normal (or at least approximately normal), 
then statistical methods called “distribution-free” or “non-parametric” 
methods can be used (Chapter 14).

Non-parametric methods are often based on ordered data (called order 
statistics: X(1), X(2), …, X(n)) or just their ranks.

If X1..Xn are from a continuous population with cdf F(x) and pdf f(x) then the 
pdf of X(j) is:

The confidence intervals for percentiles can be derived using the order 
statistics and the binomial distribution.
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