Logistic Regression

References: *Applied Linear Statistical Models*, Neter et al. *Categorical Data Analysis*, Agresti

Slides prepared by Elizabeth Newton (MIT)

Logistic Regression

- Nonlinear regression model when response variable is qualitative.
- 2 possible outcomes, success or failure, diseased or not diseased, present or absent
- Examples: CAD (y/n) as a function of age, weight, gender, smoking history, blood pressure
- Smoker or non-smoker as a function of family history, peer group behavior, income, age
- Purchase an auto this year as a function of income, age of current car, age

Response Function for Binary Outcome

$$
Y_i = \beta_0 + \beta_1 X_i + \varepsilon_i
$$

$$
E{Y_i} = \beta_0 + \beta_1 X_i
$$

$$
P(Y_i = 1) = \pi_i
$$

\n
$$
P(Y_i = 0) = 1 - \pi_i
$$

\n
$$
E{Y_i} = 1(\pi_i) + 0(1 - \pi_i) = \pi_i
$$

\n
$$
E{Y_i} = \beta_0 + \beta_1 X_i = \pi_i
$$

Special Problems when Response is Binary

Constraints on Response Function

 $0 \leq \textrm{E}\{\mathrm{Y}\}=\pi\ =\ \leq 1$

Non-normal Error TermsWhen $Y_i = 1$: $\varepsilon_i = 1 - \beta_0 - \beta_1 X_i$ When $Y_i=0$: $\varepsilon_i = -\beta_0 - \beta_1 X_i$

Non-constant error variance

$$
Var{Yi} = Var{εi} = πi(1-πi)
$$

Logistic Response Function

$$
E{Y} = \pi = \frac{\exp(\beta_0 + \beta_1 X)}{1 + \exp(\beta_0 + \beta_1 X)}
$$

$$
\pi(1+\exp(\beta_0+\beta_1X)) = \exp(\beta_0+\beta_1X)
$$

\n
$$
\pi + \pi \exp(\beta_0+\beta_1X) = \exp(\beta_0+\beta_1X)
$$

\n
$$
\pi = \exp(\beta_0+\beta_1X) - \pi \exp(\beta_0+\beta_1X)
$$

\n
$$
\pi = (1-\pi)\exp(\beta_0+\beta_1X)
$$

$$
\frac{\lambda}{1-\pi} = \exp(\beta_0 + \beta_1 X)
$$

$$
\log\left(\frac{\pi}{1-\pi}\right) = \beta_0 + \beta_1 X
$$

Example of Logistic Response Function

Properties of Logistic Response Function

log(^π/(1- ^π))=logit transformation, log odds

 $\pi/(1-\pi) = \mathrm{odds}$

Logit ranges from -∞ to ∞ as x varies from -∞ to ∞

Likelihood Function

$$
P(Y_i = 1) = \pi_i
$$

\n
$$
P(Y_i = 0) = 1 - \pi_i
$$

\n
$$
pdf: f_i(Y_i) = \pi_i^{Y_i} (1 - \pi_i)^{1 - Y_i}, Y_i = 0, 1, i = 1, 2...n
$$

\nSince Y_i are independent, joint pdf is;
\n
$$
g(Y_i...Y_n) = \prod_{i=1}^{n} f_i(Y_i) = \prod_{i=1}^{n} \pi_i^{Y_i} (1 - \pi_i)^{1 - Y_i}
$$

\n
$$
log g(Y_i...Y_n) = \sum_{i=1}^{n} [Y_i log(\frac{\pi_i}{1 - \pi_i})] + \sum_{i=1}^{n} log(1 - \pi_i)
$$

Likelihood Function (continued)

$$
log(\frac{\pi_i}{1 - \pi_i}) = \beta_0 + \beta_1 X_i
$$

\n
$$
1 - \pi_i = \frac{1}{1 + exp(\beta_0 + \beta_1 X_i)}
$$

\n
$$
log L(\beta_0, \beta_1) = \sum_{i=1}^n Y_i(\beta_0 + \beta_1 X_i) - \sum_{i=1}^n log[1 + exp(\beta_0 + \beta_1 X_i)]
$$

Likelihood for Multiple Logistic Regression

X'y = *X'ŷ* $\left(\frac{\partial}{\partial X_i}\right)^j = \sum_i \pi_i X_i$ *x* $y_i x_{ik} = \sum_i x_{ik} \left[\frac{1}{1 + \exp(\sum_i \beta_i x_{ij})} \right] = \sum_i \pi_i x_{ik}$ *x x* $y_i x_{ik} - y_{ik}$ *L* $L(\beta) = \sum_{i} (\sum_{i} y_{i} X_{ii}) \beta_{i} - \sum log[1 + exp(\sum_{i} \beta_{i} X_{ii})]$ *i j j ij j j ij i* \sum_{i} **y** $i \wedge ik$ \sum_{i} $\wedge ik$ $X_{ik} = \sum X_{ik} \left[\frac{1}{4 \cos(\sum Q_{ik})} \right] = \sum \hat{\pi}$ *j j ij j j ij i* \sum_{i} **y** i \sim ik
i $\frac{1}{k} = \sum_{i} y_{i} x_{ik} - \sum_{i} x_{ik} [\frac{1}{1 + \exp(\sum \beta_{i} x_{ij})}]$ *i j j ij i i ij j j* 1+ $\exp(\sum \beta_i x_{ii})$ $\mathsf{exp}(\sum \beta_i \mathsf{x}_{_{\mathit{ii}}})$ Likelihood Equations : $\sum_i {\bm y}_i {\bm x}_{ik} = \sum_i {\bm x}_{ik} [\frac{1}{1+\textsf{exp}(\sum{\bm \beta}_i {\bm x}_{ii})}] =$ $\mathsf{exp}(\sum \beta_i \mathsf{x}_{_{\mathit{ii}}})$ [$\mathsf{log}\, \mathsf{L}(\beta)$ $= \sum (\sum \mathsf{y}_i \mathsf{X}_{ij}) \beta_j - \sum \mathsf{log}[1 + \exp(\sum \beta_j \mathsf{X}_{ij})]$ $=\sum X_{ik}[\frac{1}{4+\exp(\sum Q_{i}y_{i})}]=\sum$ + $\overline{\partial \beta_{k}}$ = \sum_{i} y_i x_{ik} – \widehat{O} ∑ ∑ $\sum_i \mathbf{y}_i \mathbf{x}_{ik} = \sum_i \mathbf{x}_{ik} \left[\frac{i}{1 + \exp(\sum_i \beta_i \mathbf{x}_{ii})} \right] = \sum_i \hat{\pi}$ ∑ ∑ $\sum y_i x_{ik} - \sum$ β β β β

Solution of Likelihood Equations

No closed form solution

Use Newton-Raphson algorithm

Iteratively reweighted least squares (IRLS)

Start with OLS solution for $\boldsymbol{\beta}$ at iteration t=0, $\boldsymbol{\beta}^0$

$$
\pi_i^{\text{t}}=1/(1+\exp(-X_i^{\bullet}\beta^t))
$$

 $\beta^{(\mathsf{t}+1)}$ = $=$ β^t + (XVX)⁻¹ X'(y- π t)

Where $V = diag(\pi_i^t(1-\pi_i^t))$

Usually only takes a few iterations

Interpretation of logistic regression coefficients

- •• Log(π/(1-π))=Χβ
- •• So each β $_{\mathsf{j}}$ is effect of unit increase in X_{j} on log odds of success with values of other variables held constant
- •• Odds Ratio=exp(β $_{\rm j}$)

Example: Spinal Disease in Children Data SUMMARY:

The kyphosis data frame has 81 rows representing data on 81 children who have had corrective spinal surgery. The outcome Kyphosis is a binary variable, the other three variables (columns) are numeric. **ARGUMENTS:**

Kyphosis

a factor telling whether a postoperative deformity (kyphosis) is "present" or "absent" .

Age

the age of the child in months.

Number

the number of vertebrae involved in the operation.

Start

the beginning of the range of vertebrae involved in the operation. **SOURCE:**

John M. Chambers and Trevor J. Hastie, *Statistical Models in S,* Wadsworth and Brooks, Pacific Grove, CA 1992, pg. 200.

Observations 1:16 of kyphosis data set

¾kyphosis[1:16,]

E Newton 2008 14

Variables in kyphosis

\blacktriangleright summary(kyphosis)

E Newton 2008 15

Scatter plot matrix kyphosis data set

E Newton

Boxplots of predictors vs. kyphosis

E Newton 17

Smoothing spline fits, df=3

E Newton

Summary of glm fit

 $Call: qlm(formula = Kyphosis ~ Aqe + Number + Start,$ family = binomial, data = kyphosis)

Deviance Residuals:Min 1Q Median 3Q Max -2.312363 -0.5484308 -0.3631876 -0.1658653 2.16133

Coefficients:

E Newton 2008 19

Summary of glm fit

Null Deviance: 83.23447 on 80 degrees of freedom

Residual Deviance: 61.37993 on 77 degrees of freedom

Number of Fisher Scoring Iterations: 5

Correlation of Coefficients:(Intercept) Age Number Age -0.4633715 Number -0.8480574 0.2321004 Start -0.3784028 -0.2849547 0.1107516

Residuals

• Response Residuals: y_i-π_i

•• Pearson Residuals: (y_i-π_i)/sqrt(π_i(1-π_i))

•• Deviance Residuals: sqrt(-2log(|1-y_i-π_i|))

Model Deviance

- Deviance of fitted model compares log-likelihood of fitted model to that of saturated model.
- Log likelihood of saturated model=0

$$
DEV = -2\sum_{i=1}^{n} Y_i \log(\hat{\pi}_i) + (1 - Y_i) \log(1 - \hat{\pi}_i)
$$

\n
$$
d_i = sign(Y_i - \hat{\pi}_i) \{-2[Y_i \log(\hat{\pi}_i) + (1 - Y_i) \log(1 - \hat{\pi}_i)]\}^{1/2}
$$

\n
$$
\sum_{i} d_i^2 = DEV
$$

Covariance Matrix

> x<-model.matrix(kyph.glm)

 $>$ xvx < - t(x) $*$ diag(fi*(1-fi)) $*$ $*$

> xvx

- > xvxi<-solve(xvx)
- > xvxi

(Intercept) Age Number Start (Intercept) 2.101402986 -0.00433216784 -0.2764670205 -0.0370950612 Age -0.004332168 0.00004155736 0.0003368969 -0.0001244665 Number -0.276467020 0.00033689690 0.0505664221 0.0016809996Start -0.037095061 -0.00012446655 0.0016809996 0.0045833534> sqrt(diag(xvxi)) [1] 1.44962167 0.00644650 0.22486979 0.06770047

Change in Deviance resulting from adding terms to model

> anova(kyph.glm) Analysis of Deviance Table

Binomial model

Response: Kyphosis

Summary for kyphosis model with age^2 added

Call: $glm(formula = Kyphosis \sim poly(Age, 2) + Number$ + Start, family = binomial, data = kyphosis)

Deviance Residuals:Min 1Q Median 3Q Max

-2.235654 -0.5124374 -0.245114 -0.06111367 2.354818

```
Coefficients:
```
Value Std. Error t value (Intercept) -1.6502939 1.40171048 -1.177343 poly(Age, 2)1 7.3182325 4.66933068 1.567298 poly(Age, 2)2 -10.6509151 5.05858692 -2.105512 Number 0.4268172 0.23531689 1.813798Start -0.2038329 0.07047967 -2.892080

Summary of fit with age^2 added

Null Deviance: 83.23447 on 80 degrees of freedom

Residual Deviance: 54.42776 on 76 degrees of freedom

Number of Fisher Scoring Iterations: 5

```
Correlation of Coefficients:(Intercept) poly(Age, 2)1 poly(Age, 
  2)2 Number 
poly(Age, 2)1 -0.2107783 
poly(Age, 2)2 0.2497127 -0.0924834 
      Number -0.8403856 0.3070957 -0.0988896
       Start -0.4918747 -0.2208804 0.0911896 0.0721616
```
Analysis of Deviance

> anova(kyph.glm2) Analysis of Deviance Table

Binomial model

Response: Kyphosis

Kyphosis data, 16 obs, with fit and residuals

Plot of response residual vs. fit

Plot of deviance residual vs. index

Plot of deviance residuals vs. fitted value

Summary of bootstrap for kyphosis model

```
Call:bootstrap(data
= kyphosis, statistic = coef(glm(Kyphosis
~poly(Aqe, 2) + Number + Start, family = binomial,data = k yphosis), trace = F)
Number of Replications: 1000 
Summary Statistics:
            Observed Bias Mean SE (Intercept) -1.6503 -0.85600 -2.5063 5.1675
poly(Age, 2)1 7.3182 4.33814 11.6564 22.0166
poly(Age, 2)2 -10.6509 -7.48557 -18.1365 37.6780
      Number 0.4268 0.17785 0.6047 0.6823Start -0.2038 -0.07825 -0.2821 0.4593
Empirical Percentiles:
                 2.5% 5% 95% 97.5% (Intercept) -8.52922 -7.247145 1.1760 2.27636
poly(Age, 2)1 -6.13910 -1.352143 27.1515 34.64701
poly(Age, 2)2 -48.86864 -38.993192 -4.9585 -4.13232
      Number -0.07539 -0.003433 1.4756 1.82754Start -0.58795 -0.470139 -0.1159 -0.08919
```
Summary of bootstrap (continued)

BCa Confidence Limits:

Correlation of Replicates:

Histograms of coefficient estimates

QQ Plots of coefficient estimates

