Logistic Regression

References: Applied Linear Statistical Models, Neter et al. Categorical Data Analysis, Agresti

Slides prepared by Elizabeth Newton (MIT)

Logistic Regression

- Nonlinear regression model when response variable is qualitative.
- 2 possible outcomes, success or failure, diseased or not diseased, present or absent
- Examples: CAD (y/n) as a function of age, weight, gender, smoking history, blood pressure
- Smoker or non-smoker as a function of family history, peer group behavior, income, age
- Purchase an auto this year as a function of income, age of current car, age

Response Function for Binary Outcome

$$Y_i = \beta_0 + \beta_1 X_i + \varepsilon_i$$
$$E\{Y_i\} = \beta_0 + \beta_1 X_i$$

$$P(Y_{i} = 1) = \pi_{i}$$

$$P(Y_{i} = 0) = 1 - \pi_{i}$$

$$E\{Y_{i}\} = 1(\pi_{i}) + 0(1 - \pi_{i}) = \pi_{i}$$

$$E\{Y_{i}\} = \beta_{0} + \beta_{1}X_{i} = \pi_{i}$$

Special Problems when Response is Binary

Constraints on Response Function

 $0 \leq \mathrm{E}\{\mathrm{Y}\} = \pi = \leq 1$

Non-normal Error Terms When $Y_i=1: \epsilon_i = 1-\beta_0-\beta_1X_i$ When $Y_i=0: \epsilon_i = -\beta_0-\beta_1X_i$

Non-constant error variance

$$\operatorname{Var}\{Y_i\} = \operatorname{Var}\{\varepsilon_i\} = \pi_i(1 - \pi_i)$$

Logistic Response Function

$$E\{Y\} = \pi = \frac{\exp(\beta_0 + \beta_1 X)}{1 + \exp(\beta_0 + \beta_1 X)}$$

$$\pi(1 + \exp(\beta_0 + \beta_1 X)) = \exp(\beta_0 + \beta_1 X)$$

$$\pi + \pi \exp(\beta_0 + \beta_1 X) = \exp(\beta_0 + \beta_1 X)$$

$$\pi = \exp(\beta_0 + \beta_1 X) - \pi \exp(\beta_0 + \beta_1 X)$$

$$\pi = (1 - \pi)\exp(\beta_0 + \beta_1 X)$$

$$\frac{\pi}{1 - \pi} = \exp(\beta_0 + \beta_1 X)$$

$$\log\left(\frac{\pi}{1 - \pi}\right) = \beta_0 + \beta_1 X$$

Example of Logistic Response Function

Properties of Logistic Response Function

 $\log(\pi/(1-\pi))$ =logit transformation, log odds

 $\pi/(1-\pi) = \text{odds}$

Logit ranges from - ∞ to ∞ as x varies from - ∞ to ∞

Likelihood Function

$$P(Y_{i} = 1) = \pi_{i}$$

$$P(Y_{i} = 0) = 1 - \pi_{i}$$

$$pdf : f_{i}(Y_{i}) = \pi_{i}^{Y_{i}} (1 - \pi_{i})^{1 - Y_{i}}, Y_{i} = 0,1; i = 1,2...n$$
Since Y_i are independent, joint pdf is;
$$g(Y_{i}...Y_{n}) = \prod_{i=1}^{n} f_{i}(Y_{i}) = \prod_{i=1}^{n} \pi_{i}^{Y_{i}} (1 - \pi_{i})^{1 - Y_{i}}$$

$$\log g(Y_{i}...Y_{n}) = \sum_{i=1}^{n} [Y_{i} \log(\frac{\pi_{i}}{1 - \pi_{i}})] + \sum_{i=1}^{n} \log(1 - \pi_{i})$$

Likelihood Function (continued)

$$\log(\frac{\pi_{i}}{1-\pi_{i}}) = \beta_{0} + \beta_{1}X_{i}$$

$$1-\pi_{i} = \frac{1}{1+\exp(\beta_{0} + \beta_{1}X_{i})}$$

$$\log L(\beta_{0}, \beta_{1}) = \sum_{i=1}^{n} Y_{i}(\beta_{0} + \beta_{1}X_{i}) - \sum_{i=1}^{n} \log[1+\exp(\beta_{0} + \beta_{1}X_{i})]$$

Likelihood for Multiple Logistic Regression

 $\log L(\beta) = \sum_{i} \left(\sum_{i} y_{i} X_{ij}\right) \beta_{j} - \sum_{i} \log[1 + \exp(\sum_{i} \beta_{j} X_{ij})]$ $\frac{\partial L}{\partial \beta_k} = \sum_i y_i x_{ik} - \sum_i x_{ik} \left[\frac{\exp(\sum_j \beta_j x_{ij})}{1 + \exp(\sum_j \beta_j x_{ij})} \right]$ $\operatorname{Exp}(\sum_{j} \beta_{j} \mathbf{x}_{ij})$ Likelihood Equations : $\sum_{i} y_{i} \mathbf{x}_{ik} = \sum_{i} \mathbf{x}_{ik} \left[\frac{1}{1 + \exp(\sum_{j} \beta_{j} \mathbf{x}_{ij})} \right] = \sum_{i} \hat{\pi}_{i} \mathbf{x}_{ik}$ $X' y = X' \hat{y}$

Solution of Likelihood Equations

No closed form solution

Use Newton-Raphson algorithm

Iteratively reweighted least squares (IRLS)

Start with OLS solution for β at iteration t=0, β^0

$$\pi_i^{t} = 1/(1 + \exp(-X_i^{\beta t}))$$

 $\beta^{(t+1)} = \beta^t + (XVX)^{-1} X'(y-\pi^t)$

Where V=diag($\pi_i^t(1-\pi_i^t)$)

Usually only takes a few iterations

Interpretation of logistic regression coefficients

- Log(π/(1-π))=Xβ
- So each β_j is effect of unit increase in X_j on log odds of success with values of other variables held constant
- Odds Ratio=exp(β_j)

Example: Spinal Disease in Children Data SUMMARY:

The kyphosis data frame has 81 rows representing data on 81 children who have had corrective spinal surgery. The outcome Kyphosis is a binary variable, the other three variables (columns) are numeric. **ARGUMENTS:**

Kyphosis

a factor telling whether a postoperative deformity (kyphosis) is "present" or "absent".

Age

the age of the child in months.

Number

the number of vertebrae involved in the operation.

Start

the beginning of the range of vertebrae involved in the operation. **SOURCE:**

John M. Chambers and Trevor J. Hastie, *Statistical Models in S,* Wadsworth and Brooks, Pacific Grove, CA 1992, pg. 200.

Observations 1:16 of kyphosis data set

kyphosis[1:16,]

	1 '	-		<u>a</u>
	Kyphosis	Age	Number	Start
1	absent	71	3	5
2	absent	158	3	14
3	present	128	4	5
4	absent	2	5	1
5	absent	1	4	15
6	absent	1	2	16
7	absent	61	2	17
8	absent	37	3	16
9	absent	113	2	16
10	present	59	б	12
11	present	82	5	14
12	absent	148	3	16
13	absent	18	5	2
14	absent	1	4	12
16	absent	168	3	18

Variables in kyphosis

summary(kyphosis)

Kyphosis	Age	Number	Start
absent:64	Min.: 1.00	Min.: 2.000	Min.: 1.00
present:17	1st Qu.: 26.00	1st Qu.: 3.000	1st Qu.: 9.00
	Median: 87.00	Median: 4.000	Median:13.00
	Mean: 83.65	Mean: 4.049	Mean:11.49
	3rd Qu.:130.00	3rd Qu.: 5.000	3rd Qu.:16.00
	Max.:206.00	Max.:10.000	Max.:18.00

Scatter plot matrix kyphosis data set

г		0 50 100 150 200		
-	Kyphosis	0 000 00000000000000000000000000000000	o o <td>o I I absn prsn</td>	o I I absn prsn
0 50 100 150 200 	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Age		• - -
		0 0	Number	0 2 4 1 1 8 8 10
- 10 - 12	o o o o o o o o o o o o o o o o o o o		° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °	

E Newton

Boxplots of predictors vs. kyphosis

E Newton

Smoothing spline fits, df=3

E Newton

Summary of glm fit

Call: glm(formula = Kyphosis ~ Age + Number + Start, family = binomial, data = kyphosis)

Deviance Residuals: Min 1Q Median 3Q Max -2.312363 -0.5484308 -0.3631876 -0.1658653 2.16133

```
Coefficients:
```

	Value	Std. Error	t value
(Intercept)	-2.03693225	1.44918287	-1.405573
Age	0.01093048	0.00644419	1.696175
Number	0.41060098	0.22478659	1.826626
Start	-0.20651000	0.06768504	-3.051043

Summary of glm fit

Null Deviance: 83.23447 on 80 degrees of freedom

Residual Deviance: 61.37993 on 77 degrees of freedom

Number of Fisher Scoring Iterations: 5

Correlation of Coefficients: (Intercept) Age Number Age -0.4633715 Number -0.8480574 0.2321004 Start -0.3784028 -0.2849547 0.1107516

Residuals

Response Residuals: y_i-π_i

• Pearson Residuals: $(y_i - \pi_i)/sqrt(\pi_i(1 - \pi_i))$

Deviance Residuals: sqrt(-2log(|1-y_i-π_i|))

Model Deviance

- Deviance of fitted model compares log-likelihood of fitted model to that of saturated model.
- Log likelihood of saturated model=0

$$DEV = -2\sum_{i=1}^{n} Y_{i} \log(\hat{\pi}_{i}) + (1 - Y_{i}) \log(1 - \hat{\pi}_{i})$$

$$d_{i} = sign(Y_{i} - \hat{\pi}_{i}) \{-2[Y_{i} \log(\hat{\pi}_{i}) + (1 - Y_{i}) \log(1 - \hat{\pi}_{i})]\}^{1/2}$$

$$\sum_{i} d_{i}^{2} = DEV$$

Covariance Matrix

> x<-model.matrix(kyph.glm)</pre>

> xvx<-t(x)%*%diag(fi*(1-fi))%*%x</pre>

> xvx

	(Intercept)	Age	Number	Start
(Intercept)	9.620342	907.8887	43.67401	86.49845
Age	907.888726	114049.8308	3904.31350	9013.14464
Number	43.674014	3904.3135	219.95353	378.82849
Start	86.498450	9013.1446	378.82849	1024.07328

- > xvxi<-solve(xvx)</pre>
- > xvxi

(Intercept) Age Number Start (Intercept) 2.101402986 -0.00433216784 -0.2764670205 -0.0370950612 Age -0.004332168 0.00004155736 0.0003368969 -0.0001244665 Number -0.276467020 0.00033689690 0.0505664221 0.0016809996 Start -0.037095061 -0.00012446655 0.0016809996 0.0045833534 > sqrt(diag(xvxi)) [1] 1.44962167 0.00644650 0.22486979 0.06770047

Change in Deviance resulting from adding terms to model

> anova(kyph.glm)
Analysis of Deviance Table

Binomial model

Response: Kyphosis

Terms a	adde	ed sequent	cially (fin	rst to last)
	Df	Deviance	Resid. Df	Resid. Dev
NULL			80	83.23447
Age	1	1.30198	79	81.93249
Number	1	10.30593	78	71.62656
Start	1	10.24663	77	61.37993

Summary for kyphosis model with age² added

Call: glm(formula = Kyphosis ~ poly(Age, 2) + Number + Start, family = binomial, data = kyphosis)

Deviance Residuals: Min 1Q Median 3Q Max -2.235654 -0.5124374 -0.245114 -0.06111367 2.354818

```
Coefficients:
```

Value Std. Error t value (Intercept) -1.6502939 1.40171048 -1.177343 poly(Age, 2)1 7.3182325 4.66933068 1.567298 poly(Age, 2)2 -10.6509151 5.05858692 -2.105512 Number 0.4268172 0.23531689 1.813798 Start -0.2038329 0.07047967 -2.892080

Summary of fit with age^2 added

Null Deviance: 83.23447 on 80 degrees of freedom

Residual Deviance: 54.42776 on 76 degrees of freedom

Number of Fisher Scoring Iterations: 5

```
Correlation of Coefficients:

(Intercept) poly(Age, 2)1 poly(Age,

2)2 Number

poly(Age, 2)1 -0.2107783

poly(Age, 2)2 0.2497127 -0.0924834

Number -0.8403856 0.3070957 -0.0988896

Start -0.4918747 -0.2208804 0.0911896

0.0721616
```

Analysis of Deviance

> anova(kyph.glm2)
Analysis of Deviance Table

Binomial model

Response: Kyphosis

Terms add	ded a	seqı	uentially	(first	to	last)
		Df	Deviance	Resid.	Df	Resid. Dev
1	JULL				80	83.23447
poly(Age,	, 2)	2	10.49589		78	72.73858
Nur	nber	1	8.87597		77	63.86261
St	art	1	9.43485		76	54.42776

Kyphosis data, 16 obs, with fit and residuals

cb	ind(kyphos	sis,	round(p	,3),rou	und(rr	,3),rour	nd(rp,3),round(rd,3))[1:16,]
	Kyphosis	Age	Number	Start	fit	rr	rp	rd	
1	absent	71	3	5	0.257	-0.257	-0.588	-0.771	
2	absent	158	3	14	0.122	-0.122	-0.374	-0.511	
3	present	128	4	5	0.493	0.507	1.014	1.189	
4	absent	2	5	1	0.458	-0.458	-0.919	-1.107	
5	absent	1	4	15	0.030	-0.030	-0.175	-0.246	
б	absent	1	2	16	0.011	-0.011	-0.105	-0.148	
7	absent	61	2	17	0.017	-0.017	-0.131	-0.185	
8	absent	37	3	16	0.024	-0.024	-0.157	-0.220	
9	absent	113	2	16	0.036	-0.036	-0.193	-0.271	
10	present	59	б	12	0.197	0.803	2.020	1.803	
11	present	82	5	14	0.121	0.879	2.689	2.053	
12	absent	148	3	16	0.076	-0.076	-0.288	-0.399	
13	absent	18	5	2	0.450	-0.450	-0.905	-1.094	
14	absent	1	4	12	0.054	-0.054	-0.239	-0.333	
16	absent	168	3	18	0.064	-0.064	-0.261	-0.363	
17	absent	1	3	16	0.016	-0.016	-0.129	-0.181	

Plot of response residual vs. fit

Plot of deviance residual vs. index

Plot of deviance residuals vs. fitted value

Summary of bootstrap for kyphosis model

```
Call:
bootstrap(data = kyphosis, statistic = coef(qlm(Kyphosis ~
  poly(Age, 2) + Number + Start, family = binomial,
  data = kyphosis)), trace = F)
Number of Replications: 1000
Summary Statistics:
             Observed Bias
                                 Mean
                                          SE
  (Intercept) -1.6503 -0.85600 -2.5063 5.1675
poly(Age, 2)1 7.3182 4.33814 11.6564 22.0166
poly(Age, 2)2 -10.6509 -7.48557 -18.1365 37.6780
      Number 0.4268 0.17785 0.6047 0.6823
       Start -0.2038 -0.07825 -0.2821 0.4593
Empirical Percentiles:
                 2.5%
                             5% 95% 97.5%
  (Intercept) -8.52922 -7.247145 1.1760 2.27636
poly(Age, 2)1 -6.13910 -1.352143 27.1515
                                         34.64701
poly(Age, 2)2 -48.86864 -38.993192 -4.9585 -4.13232
      Number -0.07539 -0.003433 1.4756 1.82754
       Start -0.58795 -0.470139 -0.1159
                                         -0.08919
```

Summary of bootstrap (continued)

BCa Confidence Limits:

	2.5%	5%	95%	97.5%
(Intercept)	-6.4394	-5.3043	2.39707	3.56856
poly(Age, 2)1	-18.2205	-10.1003	18.34192	21.56654
poly(Age, 2)2	-24.2382	-20.3911	-1.75701	-0.19269
Number	-0.7653	-0.1694	1.14036	1.27858
Start	-0.3521	-0.3167	-0.03478	0.01461

Correlation of Replicates:

	(Intercept)	<pre>poly(Age, 2)1</pre>	<pre>poly(Age, 2)2</pre>	Number	Start
(Intercept)	1.0000	-0.4204	0.5082	-0.5676	-0.1839
poly(Age, 2)1	-0.4204	1.0000	-0.8475	0.4368	-0.6478
poly(Age, 2)2	0.5082	-0.8475	1.0000	-0.3739	0.5983
Number	-0.5676	0.4368	-0.3739	1.0000	-0.4174
Start	-0.1839	-0.6478	0.5983	-0.4174	1.0000

Histograms of coefficient estimates

QQ Plots of coefficient estimates

