Multiple Linear Regression

Corresponds to Chapter 11 of Tamhane & Dunlop

Slides prepared by Elizabeth Newton (MIT) with some slides by Roy Welsch (MIT).

Linear Regression

Review:
Linear Model:
$$y=X\beta + \varepsilon$$

 $y\sim N(X\beta, \sigma^2 I)$
Least squares: $\hat{\beta} = (X'X)X'y$
 $\hat{y} = \text{fitted value of } y = X \hat{\beta} =$
 $X(X'X)^{-1}X'y=Hy$
 $e = \text{error} = \text{residuals} = y - \hat{y} = y - Hy = (I-H)y$

Properties of the Hat matrix

- Symmetric: H'=H
- Idempotent: HH=H
- Trace(H) = sum(diag(H)) = k+1 = number of columns in the X matrix
- 1'H=vector of 1's (hence y and \hat{y} have same mean)
- 1'(I-H) = vector of 0's (hence mean of residuals is 0).
- What is H when X is only a column of 1's?

Variance-Covariance Matrices

Cov($\hat{\beta}$) = $\sigma^2 (X'X)^{-1}$ (as we saw last time)

$$Cov(\hat{y}) = Cov(Hy) = HCov(y)H$$
$$= H\sigma^{2}IH = \sigma^{2}H$$

Cov (e) = Cov (I - H)y = (I - H)Cov (y)(I - H)= $(I - H)\sigma^2 I(I - H) = \sigma^2 (I - H)$

Confidence and Prediction Intervals

Variance of mean response at x_0

$$Var(\hat{y}_{0}) = Var(x_{0}\hat{\beta}) = \sigma^{2}x_{0}(X'X)^{-1}x_{0} = \sigma^{2}V_{0}$$

Variance of new observation at
$$\mathbf{x}_0$$
, $\mathbf{y}_0 = \hat{\mathbf{y}}_0 + \varepsilon_0$
 $Var(\hat{\mathbf{y}}_0 + \varepsilon_0) = Var(\hat{\mathbf{y}}_0) + Var(\varepsilon_0) =$
 $\sigma^2 x_0' (X'X)^{-1} x_0 + \sigma^2 = \sigma^2 (x_0'(X'X)^{-1} x_0 + 1) = \sigma^2 (v_0 + 1)$

An estimate of σ^2 is $s^2 = MSE = y'(I-H)y /(n-k-1)$

Confidence and Prediction Intervals

(1- α) Confidence Interval on Mean Response at x_0 :

$$\hat{y}_0 \pm cd$$
, where $c = t_{n-(k+1), \alpha/2}$ and $d = s\sqrt{v_0}$

(1- α) Prediction Interval on New Observation at x_0 :

$$\hat{y}_0 \pm cd$$
, where $c = t_{n-(k+1), \alpha/2}$ and $d = s\sqrt{v_0 + 1}$

Sums of Squares

Sum of Squares Total (SST):
$$\sum_{i=1}^{n} (y_i - \overline{y})^2$$

Sum of Squares for Error (SSE): $\sum_{i=1}^{n} e_i^2 = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$

Sum of Squares for Regression (SSR): $\sum_{i=1}^{n} (\hat{y}_i - \overline{y})^2$

SSR = SST - SSE

Overall Significance Test

To see if there is any linear relationship we test:

H₀:
$$\beta_1 = \beta_2 = \ldots = \beta_k = 0$$

H₁: $\beta_j \neq 0$ for some *j*.

Compute

$$SSE = \sum (y_i - \hat{y}_i)^2 \quad SST = \sum (y_i - \overline{y}_i)^2 \quad SSR = SST - SSE$$

The F statistic is:
$$\frac{SSR/k}{SSE/(n-k-1)} = \frac{MSR}{MSE}$$

with F based on k and (n - k - 1) degrees of freedom.

Reject H₀ when F exceeds F $_{k,n-k-1(\alpha)}$.

Sequential Sums of Squares

SSR(x1) = SST - SSE(x1)

SSR(x2|x1) = SSR(x1,x2) - SSR(x1) =SSE(x1) - SSE(x1,x2)

SSR(x3|x1 x2) = SSE(x1,x2) - SSE(x1,x2,x3)

ANOVA Table Type 1 (sequential) sums of squares

Source of SS df Variation Regression SSR(x1,x2,x3)3 SSR(x1) x1 1 SSR(x2|x1)x2|x1 1 x3|x2 x1 SSR(x3|x2,x1)1 SSE(x1,x2,x3)Error n-4 SST Total n-1

ANOVA Table Type 3 (partial) sums of squares

SS Source of df Variation SSR(x1,x2,x3)Regression 3 x1|x2,x3 SSR(x1|x2,x3)1 x2|x1,x3 SSR(x2|x1,x3)1 x3|x1,x2 SSR(x3|x1,x2)1 SSE(x1,x2,x3)Error n-4 SST Total n-1

Scatter plot Matrix of the Air Data Set in S-Plus pairs(air)

air.lm<-lm(y~x1+x2+x3)

> summary(air.lm)\$coef							
Value Std. Error t value Pr(> t)							
(Intercept) -0.2	97329634	0.5552138923	-0.5355227	5.933998e-001		
x1	0.00	02205541	0.0005584658	3.9492854	1.407070e-004		
x2	0.0	50044325	0.0061061612	8.1957098	5.848655e-013		
x3	-0.0	76021950	0.0157548357	-4.8253090	4.665124e-006		
> summai	ry.aov	v(air.lm)					
	Df	Sum of Sq	Mean Sq	F Value	Pr(F)		
x1	1	15.53144	15.53144	59.6761	6.000000e-012		
x2	1	37.76939	37.76939	145.1204	0.000000e+000		
x3	1	6.05985	6.05985	23.2836	4.665124e-006		
Residuals	107	27.84808	0.26026				
> summai	ry.aov	v(air.lm,ssTy	/pe=3)				

Type III Sum of Squares

	Df	Sum of Sq	Mean Sq	F Value	Pr(F)
x1	1	4.05928	4.05928	15.59685	0.0001407070
x2	1	17.48174	17.48174	67.16966	0.0000000000
x3	1	6.05985	6.05985	23.28361	0.0000046651
Residuals	107	27.84808	0.26026		

>

Polynomial Models

 $y = \beta_0 + \beta_1 x + \beta_2 x^2 \dots + \beta_k x^k$

Problems:

- Powers of x tend to be large in magnitude
- Powers of x tend to be highly correlated

Solutions:

- Centering and scaling of x variables
- Orthogonal polynomials (poly(x,k) in S-Plus,
 - see Seber for methods of generating)

Plot of mpg vs. weight for 74 autos (S-Plus dataset auto.stats)

This graph was created using S-PLUS(R) Software. S-PLUS(R) is a registered trademark of Insightful Corporation.

```
summary(Im(mpg~wt+wt^2+wt^3))
```

Call: lm(formula = mpg ~ wt + wt^2 + wt^3) Residuals:

Min 1Q Median 3Q Max -6.415 -1.556 -0.2815 1.265 13.06

Coefficients:

	Value	Std. Error	t value	Pr(> t)
(Intercept)	68.1797	21.4515	3.1783	0.0022
wt	-0.0309	0.0214	-1.4430	0.1535
I(wt^2)	0.0000	0.0000	0.9586	0.3410
I(wt^3)	0.0000	0.0000	-0.7449	0.4588

Residual standard error: 3.209 on 70 degrees of freedom Multiple R-Squared: 0.705 F-statistic: 55.76 on 3 and 70 degrees of freedom, the p-value is 0

Correlation of Coefficients:

(Intercept)	wt	I(wt^2)	
wt -0.9958			
I(wt^2) 0.9841	-0.9961		
I(wt^3) -0.9659	0.9846	-0.9961	

```
wts<-(wt-mean(wt))/sqrt(var(wt))
```

```
summary(Im(mpg~wts+wts^2+wts^3))
```

Call: Im(formula = mpg ~ wts + wts^2 + wts^3) Residuals:

Min 1Q Median 3Q Max -6.415 -1.556 -0.2815 1.265 13.06

Coefficients:

	Value	Std. Erro	r t value	Pr(> t)
(Intercept)	20.2331	0.5676	35.6470	0.0000
wts	-4.4466	0.7465	-5.9567	0.0000
l(wts^2)	1.1241	0.4682	2.4007	0.0190
l(wts^3)	-0.2521	0.3385	-0.7449	0.4588

Residual standard error: 3.209 on 70 degrees of freedom Multiple R-Squared: 0.705 F-statistic: 55.76 on 3 and 70 degrees of freedom, the p-value is 0

Correlation of Coefficients:

(Intercept)	wts	l(wts^2)
wts -0.2800		
I(wts^2) -0.7490	0.4558	
l(wts^3) 0.3925	-0.8596	-0.6123

Orthogonal Polynomials

Generation is similar to Gram-Schmidt orthogonalization (see Strang, Linear Algebra) Resulting vectors are orthonormal X'X=I Hence (X'X)-1 = I and coefficients

 $= (X'X)^{-1}X'y = X'y$

Addition of higher degree term does not affect coefficients for lower degree terms

Correlation of coefficients = I

SE of coefficients = s = sqrt(MSE)

```
summary(Im(mpg~poly(wt,3)))
```

```
Call: Im(formula = mpg ~ poly(wt, 3))
Residuals:
```

Min 1Q Median 3Q Max -6.415 -1.556 -0.2815 1.265 13.06

Coefficients:

	Value Std.	Error	t value	Pr(> t)
(Intercept)	21.2973	0.3730	57.0912	0.0000
poly(wt, 3)1	-40.6769	3.2090	-12.6758	0.0000
poly(wt, 3)2	7.8926	3.2090	2.4595	0.0164
poly(wt, 3)3	-2.3904	3.2090	-0.7449	0.4588

Residual standard error: 3.209 on 70 degrees of freedom Multiple R-Squared: 0.705 F-statistic: 55.76 on 3 and 70 degrees of freedom, the p-value is 0

Correlation of Coefficients:

(Intercept) poly(wt, 3)1 poly(wt, 3)2 poly(wt, 3)1 0 poly(wt, 3)2 0 0 poly(wt, 3)3 0 0 0

19

Plot of mpg by weight with fitted regression line

Indicator Variables

- Sometimes we might want to fit a model with a categorical variable as a predictor. For instance, automobile price as a function of where the car is made (Germany, Japan, USA).
- If there are c categories, we need c-1 indicator (0,1) variables as predictors. For instance j=1 if car is made in Japan, 0 otherwise, u=1 if car is made in USA, 0 otherwise.
- If there are just 2 categories and no other predictors, we could just do a t-test for difference in means.

Boxplots of price by country for S-Plus dataset cu.summary

Histogram of automobile prices for S-Plus dataset cu.summary

Histogram of log of automobile prices for S-Plus dataset cu.summary

summary(lm(price~u+j))

```
Call: Im(formula = price ~ u + j)
Residuals:
Min 1Q Median 3Q Max
```

-15746 -4586 -2071 2374 22495

Coefficients:

	Value	Std. Error	t value	Pr(> t)
(Intercept)	25741.3636	2282.2729	11.2788	0.0000
U	-10520.5473	2525.4871	-4.1657	0.0001
j	-10236.0088	2656.5095	-3.8532	0.0002

Residual standard error: 7569 on 88 degrees of freedom Multiple R-Squared: 0.1723

F-statistic: 9.159 on 2 and 88 degrees of freedom, the p-value is 0.0002435

Correlation of Coefficients:

(Intercept) u

u -0.9037

j -0.8591 0.7764

summary(Im(price~u+g))

```
Call: Im(formula = price ~ u + g)
Residuals:
Min 1Q Median 3Q Max
```

-15746 -4586 -2071 2374 22495

Coefficients:

	Value	Std. Error	t value	Pr(> t)
(Intercept)	15505.3548	1359.5121	11.4051	0.0000
u	-284.5385	1737.1208	-0.1638	0.8703
g	10236.0088	2656.5095	3.8532	0.0002

Residual standard error: 7569 on 88 degrees of freedom Multiple R-Squared: 0.1723

F-statistic: 9.159 on 2 and 88 degrees of freedom, the p-value is 0.0002435

Correlation of Coefficients:

(Intercept) u

u -0.7826

g -0.5118 0.4005

Regression Diagnostics

Goal: identify remarkable observations and unremarkable predictors.

Problems with observations:

Outliers Influential observations

Problems with predictors:

A predictor may not add much to model.

A predictor may be too similar to another predictor (collinearity).

Predictors may have been left out.

Plot of standardized residuals vs. fitted values for air dataset

Plot of residual vs. fit for air data set with all interaction terms

Plot of residual vs. fit for air model with x3*x4 interaction

Call: Im(formula = air[, 1] ~ air[, 2] + air[, 3] + air[, 4] + air[, 3] * air[, 4]) Residuals:

Min 1Q Median 3Q Max -1.088 -0.3542 -0.07242 0.3436 1.47

Coefficients:

	Value	Std. Erro	or t value	Pr(> t)
(Intercept)	-3.6465	1.1684	-3.1209	0.0023
air[, 2]	0.0023	0.0005	4.3223	0.0000
air[, 3]	0.0920	0.0143	6.4435	0.0000
air[, 4]	0.2523	0.1031	2.4478	0.0160
air[, 3]:air[, 4] -	0.0042	0.0013	-3.2201	0.0017

Residual standard error: 0.4892 on 106 degrees of freedom Multiple R-Squared: 0.7091 F-statistic: 64.61 on 4 and 106 degrees of freedom, the p-value is 0

Correlation of Coefficients:

(Intercept) air[, 2] air[, 3] air[, 4] air[, 2] -0.0361 air[, 3] -0.9880 -0.0495 air[, 4] -0.9268 0.0620 0.9313 air[, 3]:air[, 4] 0.8902 -0.0661 -0.9119 -0.9892

This code was created using S-PLUS(R) Software. S-PLUS(R) is a registered trademark of Insightful Corporation.

>

Remarkable Observations

Residuals are the key Standardized residuals:

$$\mathbf{e}_{i}^{*} = \frac{\mathbf{e}_{i}}{SE(\mathbf{e}_{i})} = \frac{\mathbf{e}_{i}}{s\sqrt{i-h_{ii}}}$$

Outlier if |e_i*|>2

Hat matrix diagonals, h_{ii}

Influential if $h_{ii} > 2(k+1)/n$

Cook's Distance

$$d_{i} = (rac{e_{i}^{*}}{\sqrt{k+1}})^{2}(rac{h_{ii}}{1-h_{ii}})$$

Influential if $d_i > 1$

Plot of standardized residual vs. observation number for air dataset

Hat matrix diagonals

hat matrix diagonals

This graph was created using S-PLUS(R) Software. S-PLUS(R) is a registered trademark of Insightful Corporation.

Plot of wind vs. ozone

Cook's Distance

Plot of ozone vs. wind including fitted regression lines with and without observation 30 (simple linear regression)

This graph was created using S-PLUS(R) Software. S-PLUS(R) is a registered trademark of Insightful Corporation.

Remedies for Outliers

- Nothing?
- Data Transformation?
- Remove outliers?
- Robust Regression weighted least squares: b=(X'WX)⁻¹X'Wy
- Minimize median absolute deviation

Collinearity

High correlation among the predictors can cause problems with least squares estimates (wrong signs, low t-values, unexpected results).If predictors are centered and scaled to unit length, then X'X is the correlation matrix.

Diagonal elements of inverse of correlation matrix are called VIF's (variance inflation factors).

$$VIF_{j} = \frac{1}{1 - R_{j}^{2}}, where R_{j}^{2}$$

is the coefficient of determination for the regression of the jth predictor on the remaining predictors When $R_j^2 = .90$, VIF is about 10 and caution is advised. (Some authors say VIF = 5.) A large VIF indicates there is redundant information in the explanatory variables.

Why is this called the variance inflation factor? We can show that

$$\operatorname{Var}(\hat{\beta}_{j}) = \frac{1}{1 - R_{j}^{2}} \frac{\sigma^{2}}{\sum_{i=1}^{n} (x_{j} - \overline{x}_{j})^{2}}$$
$$= \operatorname{VIF}_{j} \operatorname{Var}[\hat{\beta}_{j} \text{ in simple regression}]$$

Thus VIF_j represents the variation inflation caused by adding all the variables other than x_j to the model.

Remedies for collinearity

- 1. Identify and eliminate redundant variables (large literature on this).
- 2. Modified regression techniques
 - a. ridge regression, $b=(X'X+cI)^{-1}X'y$
- 3. Regress on orthogonal linear combinations of the explanatory variables
 - a. principal components regression
- 4. Careful variable selection

Correlation and inverse of correlation matrix for air data set.

r<-cor(model.matrix(air.lm)[,-1])

> r **x1** x2 х3 1.0000000 0.2940876 -0.1273656 x1 x2 0.2940876 1.0000000 -0.4971459X3 -0.1273656 -0.4971459 1.0000000 > solve(r) x2 x3 **x1** 1.09524102 -0.3357220 -0.02740677x1 x2 -0.33572201 1.4312012 0.66875638 x3 -0.02740677 0.6687564 1.32897882 >

42

Correlation and inverse of correlation matrix for mpg data set

r<-cor(model.matrix(auto1.lm)[,-1])

> r I(wt^2) I(wt^3) wt 1.000000 0.9917756 0.9677228 wt I(wt^2) 0.9917756 1.0000000 0.9918939 I(wt^3) 0.9677228 0.9918939 1.0000000 \succ solve(r) I(wt^2) $I(wt^3)$ wt -3951.728 1983.884 2000.377 wt I(wt^2) 7868.535 -3980.575 -3951.728 I(wt^3) 1983.884 -3980.575 2029.459

Variable Selection

- We want a parsimonious model as few variables as possible to still provide reasonable accuracy in predicting y.
- Some variables may not contribute much to the model.
- SSE never will increase if add more variables to model, however MSE=SSE/(n-k-1) may.
- Minimum MSE is one possible optimality criterion. However, must fit all possible subsets (2^k of them) and find one with minimum MSE.

Backward Elimination

- 1. Fit the full model (with all candidate predictors).
- If P-values for all coefficients < α then stop.
- 3. Delete predictor with highest P-value
- 4. Refit the model
- 5. Go to Step 2.