Multiple Linear Regression

Corresponds to Chapter 11 of Tamhane & Dunlop

Slides prepared by Elizabeth Newton (MIT) with some slides by Roy Welsch (MIT).

Linear Regression

Review:
\nLinear Model:
$$
y=X\beta + \varepsilon
$$

\n $y-N(X\beta, \sigma^2I)$
\nLeast squares: $\hat{\beta}=(X'X)X'y$
\n $\hat{y} =$ fitted value of $y = X \hat{\beta} =$
\n $X(X'X)^{-1}X'y=Hy$
\n $e =$ error = residuals = $y - \hat{y} = y - Hy=(I-H)y$

Properties of the Hat matrix

- •• Symmetric: H'=H
- •• Idempotent: HH=H
- •• Trace(H) = sum(diag(H)) = $k+1$ = number of columns in the X matrix
- •• 1'H=vector of 1's (hence y and \hat{y} have same mean)
- •• 1'(I-H) = vector of 0's (hence mean of residuals is 0).
- •• What is H when X is only a column of 1's?

Variance-Covariance Matrices

Cov($\hat{\beta}$) = σ^2 (X'X)⁻¹ (as we saw last time) $(\widehat{\beta}) = \sigma^2 (X^* X)^{-1}$ β) = σ^2 (X' X) $^{-1}$

$$
Cov(\hat{y}) = Cov(Hy) = HCov(y)H
$$

$$
= H\sigma^2 H = \sigma^2 H
$$

 $=(I-H)\sigma^2 I(I-H) = \sigma^2 (I-H)$ () () () ()() *Cov e Cov I H y I H Cov y I H* = − = − −

Confidence and Prediction Intervals

V*ariance of m*ean response at x₀

$$
Var(\hat{y}_0) = Var(x_0 \hat{\beta}) = \sigma^2 x_0 (X' X)^{-1} x_0 = \sigma^2 v_0
$$

Variance of new observation at
$$
x_0
$$
, $y_0 = \hat{y}_0 + \varepsilon_0$
\n $Var(\hat{y}_0 + \varepsilon_0) = Var(\hat{y}_0) + Var(\varepsilon_0) =$
\n $\sigma^2 x_0 (X' X)^{-1} x_0 + \sigma^2 = \sigma^2 (x_0 (X' X)^{-1} x_0 + 1) = \sigma^2 (v_0 + 1)$

An estimate of σ^2 is s 2 = MSE = y'(I-H)y /(n-k-1)

Confidence and Prediction Intervals

(1-α) Confidence Interval on Mean Response at x_0 :

$$
\hat{\textbf{y}}_{0} \pm \textbf{c}\textbf{d}, \text{where } \textbf{c} = \textbf{t}_{n-(k+1), \textit{a/2}} \text{ and } \textbf{d} = \textbf{s}\sqrt{\textbf{v}_{0}}
$$

(1-α) Prediction Interval on New Observation at x_0 :

$$
\hat{y}_0 \pm cd
$$
, where $c = t_{n-(k+1), \alpha/2}$ and $d = s\sqrt{v_0 + 1}$

Sums of Squares

 $\sum_{i=1}$ *n i*=1 $y_i - y$ Sum of Squares Total (SST) : $\sum (\overline{\mathbf y}_i - \overline{\mathbf y})^2$

 $\sum \mathbf{e}_{i}^{2}=\sum$ === *n ii i n i* $\theta_i^2 = \sum_i (y_i - y_i)$ 1Sum of Squares for Error (SSE): $\sum e_i^2 = \sum (\bm y_i - \hat{\bm y}_i)^2$ 1 $\hat{\boldsymbol{\mathcal{Y}}}_i$)

 $\sum_{i=1}$ *n i* $y_i - y$ 1Sum of Squares for Regression (SSR): $\sum (\hat{y}_i - \overline{y})^2$ $\hat{y}_i - \overline{y}$

SSR = SST -SSE

Overall Significance Test

To see if there is any linear relationship we test:

H₀:
$$
\beta_1 = \beta_2 = \dots = \beta_k = 0
$$

H₁: $\beta_j \neq 0$ for some j.

Compute

$$
SSE = \sum (y_i - \hat{y}_i)^2 \quad SST = \sum (y_i - \overline{y}_i)^2 \quad SSR = SST - SSE
$$

The F statistic is:
$$
\frac{SSR/k}{SSE/(n-k-1)} = \frac{MSR}{MSE}
$$

with F based on k and $(n - k - 1)$ 1) degrees of freedom.

Reject H 0 when F exceeds F *k,n* −*k*−1(α) *.*

Sequential Sums of Squares

SSR(x1) = SST - SSE(x1)

$SSR(x2|x1) = SSR(x1,x2) - SSR(x1) =$ SSE(x1) - SSE(x1,x2)

SSR(x3|x1 x2) = SSE(x1,x2) - SSE(x1,x2,x3)

ANOVA TableType 1 (sequential) sums of squares

Source of SS df VariationRegression SSR(x1,x2,x3) 3 x1 SSR(x1) 1 x2|x1 SSR(x2|x1) 1 x3|x2 x1 SSR(x3|x2,x1) 1 Error SSE(x1,x2,x3) n-4 Total SST n-1

ANOVA TableType 3 (partial) sums of squares

Scatter plot Matrix of the Air Data Set in S-Plus pairs(air)

air.lm<- $Im(y-x1+x2+x3)$

Polynomial Models

- y=β $_0$ + β $_1$ x + β $_2$ x ² … + β_k x k Problems:
- Powers of x tend to be large in magnitude Powers of x tend to be highly correlated Solutions:
	- Centering and scaling of x variables Orthogonal polynomials (poly(x,k) in S-Plus, see Seber for methods of generating)

Plot of mpg vs. weight for 74 autos (S-Plus dataset auto.stats)


```
summary(lm(mpg~wt+wt^2+wt^3))
```
Call: $Im(formula = mpg \sim wt + wt^2 + wt^3)$ Residuals:

Min 1Q Median 3Q Max -6.415 -1.556 -0.2815 1.265 13.06

Coefficients:

Residual standard error: 3.209 on 70 degrees of freedom Multiple R-Squared: 0.705 F-statistic: 55.76 on 3 and 70 degrees of freedom, the p-value is 0

Correlation of Coefficients:


```
wts<-(wt-mean(wt))/sqrt(var(wt))
```

```
summary(lm(mpg~wts+wts^2+wts^3))
```
Call: $Im(formula = mpg \sim wts + wts^2 + wts^3)$ Residuals:

Min 1Q Median 3Q Max -6.415 -1.556 -0.2815 1.265 13.06

Coefficients:

Residual standard error: 3.209 on 70 degrees of freedom Multiple R-Squared: 0.705 F-statistic: 55.76 on 3 and 70 degrees of freedom, the p-value is 0

Correlation of Coefficients:

Orthogonal Polynomials

Generation is similar to Gram-Schmidt orthogonalization (see Strang, Linear Algebra) Resulting vectors are orthonormal X'X=I Hence $(X'X)^{-1} = I$ and coefficients

 $=(X^{\prime}X)^{-1}X^{\prime}y=X^{\prime}y$

Addition of higher degree term does not affect coefficients for lower degree terms

Correlation of coefficients = I

SE of coefficients $= s = sqrt(MSE)$

```
summary(lm(mpg~poly(wt,3)))
```
Call: $Im(formula = mpg ~ poly(wt, 3))$ Residuals:

Min 1Q Median 3Q Max -6.415 -1.556 -0.2815 1.265 13.06

Coefficients:

Residual standard error: 3.209 on 70 degrees of freedom Multiple R-Squared: 0.705 F-statistic: 55.76 on 3 and 70 degrees of freedom, the p-value is 0

Correlation of Coefficients:

(Intercept) poly(wt, 3)1 poly(wt, 3)2 poly(wt, 3)1 0 poly(wt, $3/2$ 0 0 poly(wt, 3)3 0 0 0 19

Plot of mpg by weight with fitted regression line

Indicator Variables

- Sometimes we might want to fit a model with a categorical variable as a predictor. For instance, automobile price as a function of where the car is made (Germany, Japan, USA).
- If there are c categories, we need c-1 indicator (0,1) variables as predictors. For instance j=1 if car is made in Japan, 0 otherwise, u=1 if car is made in USA, 0 otherwise.
- If there are just 2 categories and no other predictors, we could just do a t-test for difference in means.

Boxplots of price by country for S-Plus dataset cu.summary

price

cntry

Histogram of automobile prices for S-Plus dataset cu.summary

Histogram of log of automobile prices for S-Plus dataset cu.summary

summary(lm(price~u+j))

```
Call: Im(formula = price ~ u + j)Residuals:Min 1Q Median 3Q Max
```
-15746 -4586 -2071 2374 22495

Coefficients:

Residual standard error: 7569 on 88 degrees of freedom Multiple R-Squared: 0.1723

F-statistic: 9.159 on 2 and 88 degrees of freedom, the p-value is 0.0002435

Correlation of Coefficients:

(Intercept) u

u -0.9037

j -0.8591 0.7764 ²⁵

summary(lm(price~u+g))

```
Call: Im(formula = price ~ u + g)Residuals:Min 1Q Median 3Q Max
```
-15746 -4586 -2071 2374 22495

Coefficients:

Residual standard error: 7569 on 88 degrees of freedom Multiple R-Squared: 0.1723

F-statistic: 9.159 on 2 and 88 degrees of freedom, the p-value is 0.0002435

Correlation of Coefficients:

(Intercept) u

u -0.7826

g -0.5118 0.4005 ²⁶

Regression Diagnostics

Goal: identify remarkable observations and unremarkable predictors.

Problems with observations:

Outliers Influential observations

Problems with predictors:

A predictor may not add much to model.

A predictor may be too similar to another predictor (collinearity).

Predictors may have been left out.

Plot of standardized residuals vs. fitted values for air dataset

Plot of residual vs. fit for air data set with all interaction terms

Plot of residual vs. fit for air model with x3*x4 interaction

Call: $Im(formula = air[, 1] \sim air[, 2] + air[, 3] + air[, 4] + air[, 3] * air[, 4]$ Residuals:

Min 1Q Median 3Q Max -1.088 -0.3542 -0.07242 0.3436 1.47

Coefficients:

Residual standard error: 0.4892 on 106 degrees of freedom Multiple R-Squared: 0.7091 F-statistic: 64.61 on 4 and 106 degrees of freedom, the p-value is 0

Correlation of Coefficients:

(Intercept) air[, 2] air[, 3] air[, 4] air[, 2] -0.0361 air[, 3] -0.9880 -0.0495 air[, 4] -0.9268 0.0620 0.9313 air[, 3]:air[, 4] 0.8902 -0.0661 -0.9119 -0.9892

This code was created using S-PLUS(R) Software. S-PLUS(R) is a registered trademark of Insightful Corporation.

>

Remarkable Observations

Residuals are the key Standardized residuals:

$$
e_i^* = \frac{e_i}{SE(e_i)} = \frac{e_i}{s\sqrt{i - h_{ii}}}
$$

Outlier if $|e_i^*|>2$

Hat matrix diagonals, h_{ii}

Influential if h_{ii} > 2(k+1)/n

Cook's Distance

$$
d_{i}=(\frac{e_{i}^{*}}{\sqrt{k+1}})^{2}(\frac{h_{ii}}{1-h_{ii}})
$$

Influential if $d_i > 1$ 32

Plot of standardized residual vs. observation number for air dataset

Hat matrix diagonals

hat matrix diagonals

hat matrix diagonals

Plot of wind vs. ozone

Cook's Distance

Plot of ozone vs. wind including fitted regression lines with and without observation 30 (simple linear regression)

This graph was created using S-PLUS(R) Software. S-PLUS(R) is a registered trademark of Insightful Corporation.

Remedies for Outliers

- •• Nothing?
- •Data Transformation?
- Remove outliers?
- •• Robust Regression – weighted least squares: b=(X'WX)-1X'Wy
- •Minimize median absolute deviation

Collinearity

High correlation among the predictors can cause problems with least squares estimates (wrong signs, low t-values, unexpected results). If predictors are centered and scaled to unit length, then X'X is the correlation matrix.

Diagonal elements of inverse of correlation matrix are called VIF's (variance inflation factors).

$$
VIF_j = \frac{1}{1 - R_j^2}, \text{ where } R_j^2
$$

is the coefficient of determination for the regression of the jth predictor on the remaining predictors

When $R_i^2 = .90$, VIF is about 10 and caution is advised. (Some authors say $VIF = 5$.) A large VIF indicates there is redundant information in the explanatory variables.

Why is this called the variance inflation factor? We can show that

$$
\operatorname{Var}(\hat{\beta}_j) = \frac{1}{1 - R_j^2} \frac{\sigma^2}{\sum\limits_{i=1}^n (x_j - \overline{x}_j)^2}
$$

=
$$
\operatorname{VIF}_j \operatorname{Var}[\hat{\beta}_j \text{ in simple regression}]
$$

Thus VIF*^j* represents the variation inflation caused by adding all the variables other than x_i to the model.

Remedies for collinearity

- 1. Identify and eliminate redundant variables (large literature on this).
- 2. Modified regression techniques
	- a. ridge regression, $b=(X'X+cI)^{-1}X'y$
- 3. Regress on orthogonal linear combinations of the explanatory variables
	- a. principal components regression
- 4. Careful variable selection

Correlation and inverse of correlation matrix for air data set.

r<-cor(model.matrix(air.lm)[,-1])

 $> r$ x1 x2 x3 x1 1.0000000 0.2940876 -0.1273656x2 0.2940876 1.0000000 -0.4971459X3 -0.1273656 -0.4971459 1.0000000> solve(r) x1 x2 x3 x1 1.09524102 -0.3357220 -0.02740677x2 -0.33572201 1.4312012 0.66875638x3 -0.02740677 0.6687564 1.32897882 $>$ ⁴²

Correlation and inverse of correlation matrix for mpg data set

r<-cor(model.matrix(auto1.lm)[,-1])

 $> r$ wt $I(wt^2)$ $I(wt^3)$ wt 1.0000000 0.9917756 0.9677228 I(wt^2) 0.9917756 1.0000000 0.9918939 I(wt^3) 0.9677228 0.9918939 1.0000000 \triangleright solve(r) wt $I(wt^2)$ $I(wt^3)$ wt 2000.377 -3951.728 1983.884I(wt^2) -3951.728 7868.535 -3980.575 I(wt^3) 1983.884 -3980.575 2029.459

Variable Selection

- We want a parsimonious model as few variables as possible to still provide reasonable accuracy in predicting y.
- Some variables may not contribute much to the model.
- •SSE never will increase if add more variables to model, however MSE=SSE/(n-k-1) may.
- Minimum MSE is one possible optimality criterion. However, must fit all possible subsets (2 $^{\mathsf{k}}$ of them) and find one with minimum MSE.

Backward Elimination

- 1. Fit the full model (with all candidate predictors).
- 2. If P-values for all coefficients < α then stop.
- 3. Delete predictor with highest P-value
- 4. Refit the model
- 5. Go to Step 2.