Simple Linear Regression and Correlation.

Corresponds to Chapter 10 Tamhane and Dunlop

Slides prepared by Elizabeth Newton (MIT) with some slides by Jacqueline Telford (Johns Hopkins University) Simple linear regression analysis estimates the relationship between two variables.

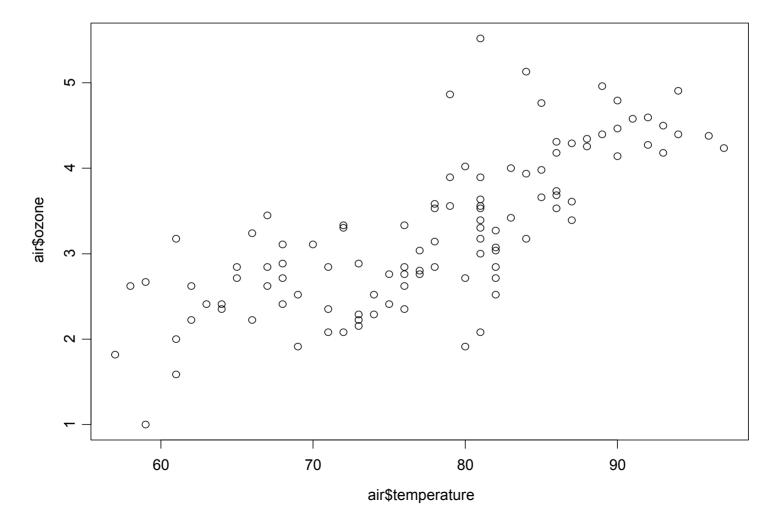
One of the variables is regarded as a **response** or **outcome variable (y)**.

The other variable is regarded as **predictor** or **explanatory variable (x)**.

Sometimes it is not clear which of two variable should be the response (e.g. height and weight). In this case, correlation analysis may be used.

Simple linear regression estimates relationships of the form y = a + bx.

Scatter plot of ozone concentration by temperature



A Probabilistic Model for Simple Linear Regression

Let $x_1, x_2, ..., x_n$ be specific settings of the predictor variable. Let $y_1, y_2, ..., y_n$ be the corresponding values of the response variable.

Assume that y_i is the observed value of a random variable (r.v.) Y_i , which depends X on according to the following model:

$$Y_i = \beta_0 + \beta_1 x_i + \varepsilon_i$$
 (i = 1, 2, ..., n)

Here ε_i is the random error with $E(\varepsilon_i)=0$ and $Var(\varepsilon_i)=\sigma^2$.

Thus, $E(Y_i) = \mu_i = \beta_0 + \beta_1 x_i$ (true regression line).

The x_i 's usually are assumed to be fixed (not random variables).

A Probabilistic Model for Simple Linear Regression

See Figure 10.1, p. 348 and also see page 348 for the four assumptions of a simple linear regression model.

Least Square Line Mathematics (invented by Gauss)

Find the line, i.e., values of β_0 and β_1 that minimizes the sum of the squared deviations:

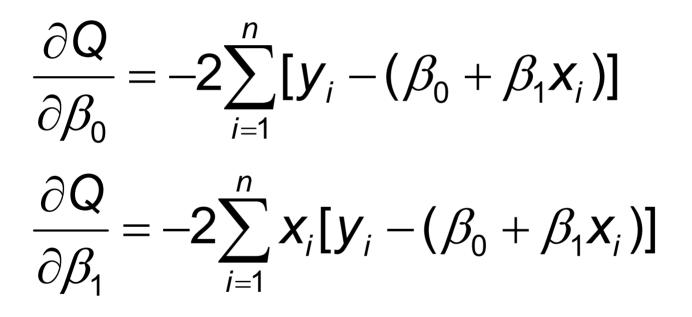
$$\mathbf{Q} = \sum_{i=1}^{n} [\mathbf{y}_i - (\beta_0 + \beta_1 \mathbf{x}_i)]^2$$

How?

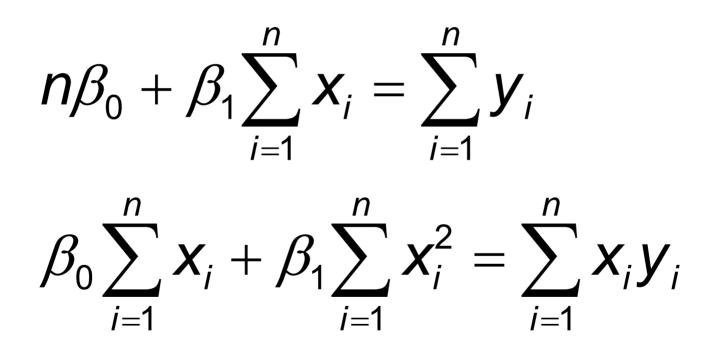
Solve for values of β_0 and β_1 for which

$$\frac{\partial \mathbf{Q}}{\partial \beta_0} = 0 \text{ and } \frac{\partial \mathbf{Q}}{\partial \beta_1} = 0$$

Finding Regression Coefficients



Normal Equations



8

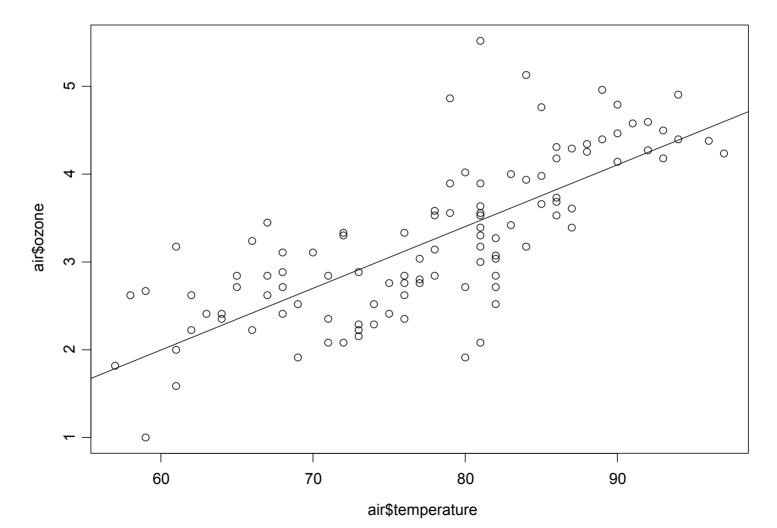
Solution to Normal Equations

$$\hat{\beta}_1 = \frac{\sum_{i=1}^n (x_i - \overline{x})(y_i - \overline{y})}{\sum_{i=1}^n (x_i - \overline{x})^2} = \frac{S_{xy}}{S_{xx}}$$

$$\hat{\beta}_0 = \overline{y} - \hat{\beta}_1 \,\overline{x}$$

Note that least squares line goes through (\bar{x}, \bar{y}) .

Fitted regression line



Fitted values of y_i : $\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_i$, i = 1, 2, ..., nResiduals: $e_i = y_i - \hat{y}_i = y_i - (\hat{\beta}_0 + \hat{\beta}_1 x_i)$, i = 1, 2, ..., n

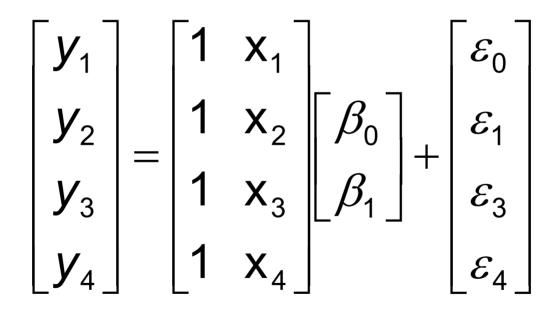
temperature ozone fitted resid 67 3.45 2.49 0.96 72 3.30 2.84 0.46 74 2.29 2.98 -0.69 62 2.62 2.14 0.48 65 2.84 2.35 0.50

Matrix Approach to Simple Linear Regression (what your regression package is really doing)

The model: $y=X\beta + \epsilon$

y is n by 1 X is n by 2 β is 2 by 1 ε is n by 1

 $Y = X\beta + \varepsilon$



Solution of linear equations

In linear algebra: Find x which solves Ax=b.

In regression analysis: Find β which solves X β =y Why can't we do this?

Least Squares

$$Q=(y-X\beta)'(y-X\beta)$$

= y'y - \beta'X'y - y'X\beta + \beta'X'X\beta
= y'y - 2 \beta'X'y + \beta'X'X\beta

 $\partial Q / \partial \beta = -2X'y + 2X'X\beta$

 $\partial Q / \partial \beta = 0 \rightarrow X'y = X'Xb$, where b= $\hat{\beta}$

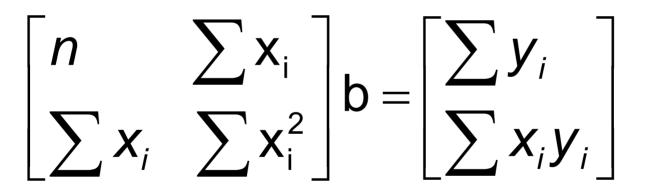
Least Squares continued

For simple linear regression:

$$X' X = \begin{bmatrix} n & \sum x_i \\ \sum x_i & \sum x_i^2 \end{bmatrix}$$
$$X' y = \begin{bmatrix} \sum y_i \\ \sum x_i y_i \end{bmatrix}$$

Least Squares continued

$$X'Xb = X'y$$



The Normal Equations as before

Least Squares continued

The Hat Matrix

b=(X'X)⁻¹ X'y

$$\hat{y}$$
=Xb = X(X'X)⁻¹X'y =Hy
H (n by n) is the Hat matrix
Takes y to \hat{y}
H is symmetric and idempotent HH=H
Diagonal elements of the hat matrix are
useful in detecting influential observations.

Expected value of b

$E(b) = E((X'X)^{-1}X'y]$ = E[(X'X)^{-1}X'(X\beta+\epsilon)] = E[(X'X)^{-1}X'X \beta+ (X'X)^{-1}X'\epsilon] = \beta

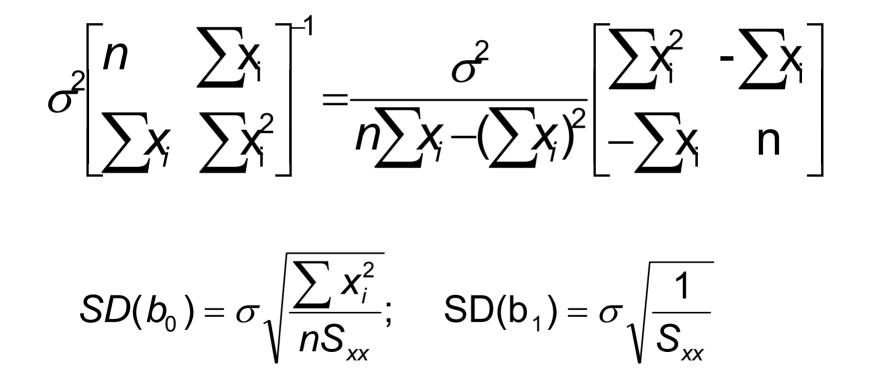
Hence b is an unbiased estimator of β .

Covariance of b

The covariance matrix of y is $\sigma^2 I$ b=(X'X)⁻¹X'y = Ay (where A is k by n) Cov(b) = A Var(y) A' = A $\sigma^2 I A = \sigma^2 A A'$ = $\sigma^2 (X'X)^{-1}X'X(X'X)^{-1}$ = $\sigma^2 (X'X)^{-1}$

Covariance of b

For simple linear regression, $\sigma^2(X'X)^{-1}$ =



<u>Estimation of σ^2 </u>

$$\mathbf{S}^{2} = \frac{\sum_{i=1}^{n} e_{i}^{2}}{n-2} = \frac{\sum_{i=1}^{n} (y_{i} - \hat{y}_{i})^{2}}{n-2}$$

Note: The denominator is n - 2 since two parameters are being estimated (β_0 and β_1).

 $E[S^2]=\sigma^2$ (See proof in Seber, Linear Regression Analysis)

Statistical Inference for β₀ and β₁

$$SE(\hat{\beta}_{0}) = s_{\sqrt{\frac{\sum x_{i}^{2}}{nS_{xx}}}} \text{ and } SE(\hat{\beta}_{1}) = \frac{s}{\sqrt{S_{xx}}}$$
$$\frac{\hat{\beta}_{0} - \beta_{0}}{SE(\hat{\beta}_{0})} \sim t_{n-2} \text{ and } \frac{\hat{\beta}_{1} - \beta_{1}}{SE(\hat{\beta}_{1})} \sim t_{n-2}$$

For ozone example: Coefficients:

ValueStd. Error t valuePr(>|t|)(Intercept)-2.22600.4614-4.82430.0000temperature0.07040.005911.95110.0000

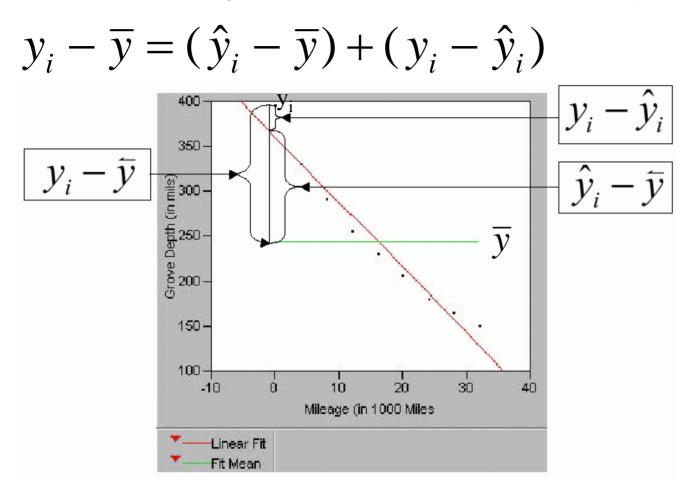
Sums of Squares

Sum of Squares Total (SST): $\sum_{i=1}^{n} (y_i - \overline{y})^2$

Sum of Squares for Error (SSE): $\sum_{i=1}^{n} e_i^2 = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$

Sum of Squares for Regression (SSR): $\sum_{i=1}^{n} (\hat{y}_i - \overline{y})^2$

Geometry of the Sums of Squares



SST = SSR + SSE, see derivation on p. 354

Coefficient of Determination (R-squared)

$$r^2 = \frac{SSR}{SST} = 1 - \frac{SSE}{SST} =$$

proportion of the variance in y that is accounted for by the regression on x

= square of correlation between y and \hat{y}

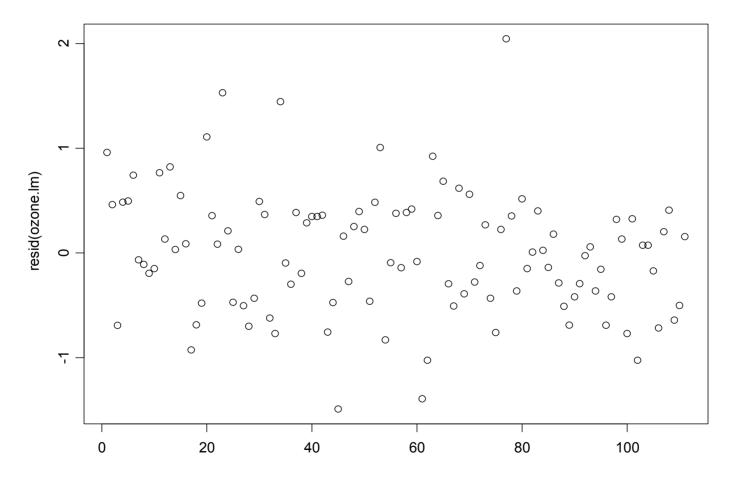
For ozone example: Multiple R-Squared: 0.5672 Analysis of Variance (ANOVA)

$$H_0: \beta_1 = 0 \ vs. \ H_0: \beta_1 \neq 0$$

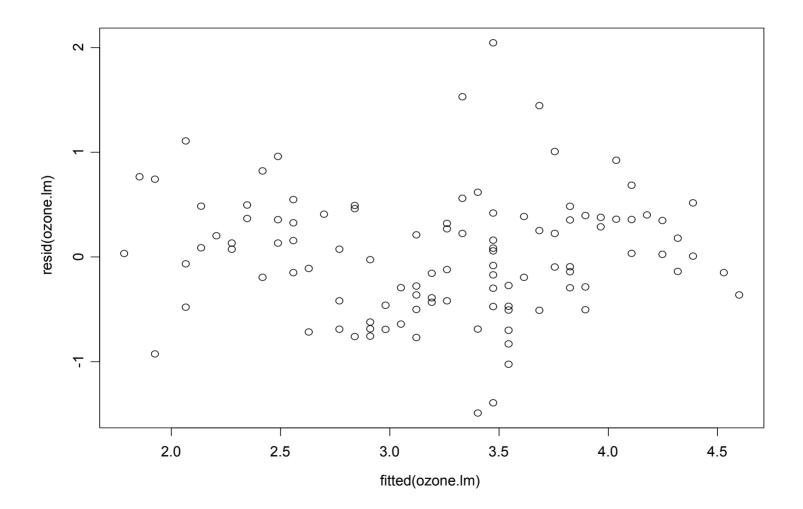
$$F = \frac{\text{SSR/1}}{\text{SSE/(n-2)}} = \frac{\text{MSR}}{\text{MSE}} = t^2$$

For ozone example: summary.aov(tmp) Df Sum of Sq Mean Sq F Value Pr(F) temperature 1 49.46178 49.46178 142.8282 0 Residuals 109 37.74698 0.34630

Regression Diagnostics Residual vs. observation number



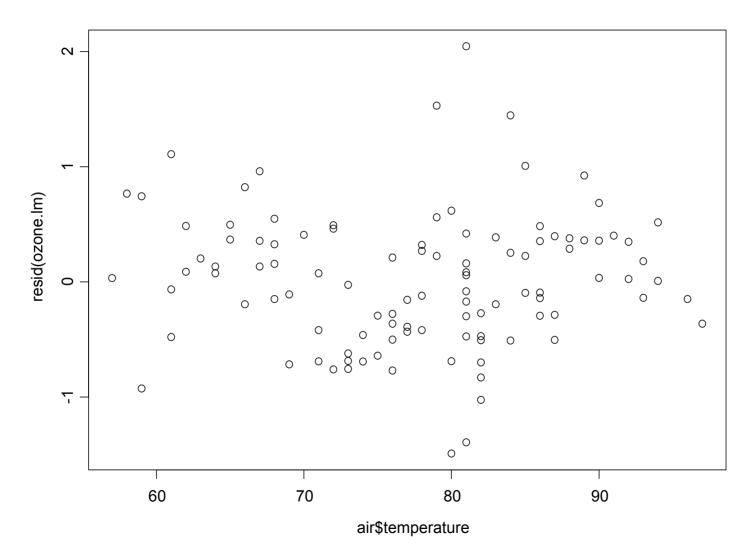
Regression Diagnostics residual vs. fitted value



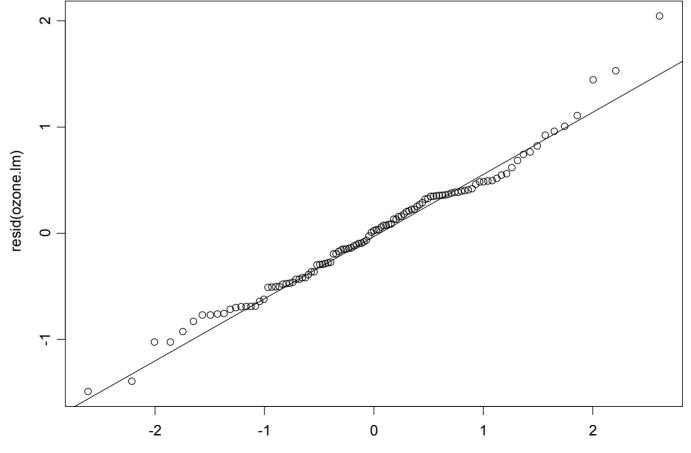
30

This graph was created using S-PLUS(R) Software. S-PLUS(R) is a registered trademark of Insightful Corporation.

Regession Diagnostics residual vs. x



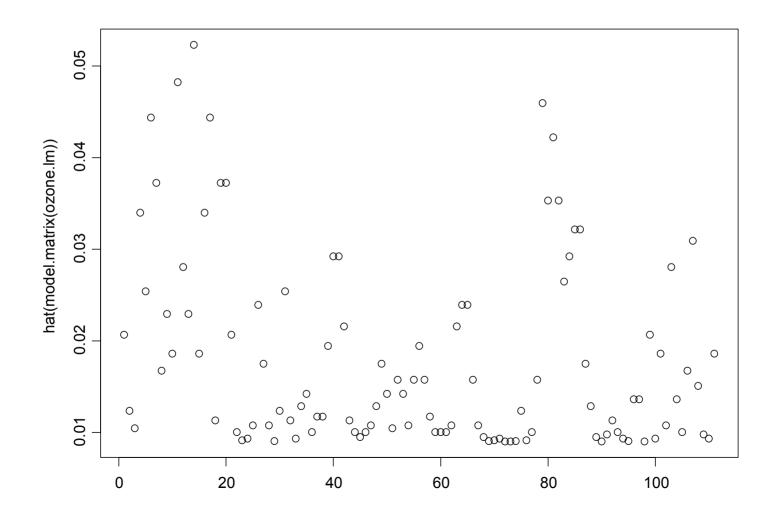
Regression Diagnostics qq plot of residuals



Quantiles of Standard Normal

32

Hat Matrix Diagonals



Some useful S-Plus commands

my.lm <- $lm(y \sim x, data=mydata, na.action=na.omit)$ includes intercept term by default summary(my.lm) gives coefficients, correlation of coefficients, R-square, Fstatistic, residual standard error summary.aov(my.lm) gives ANOVA table resid(my.lm) gives residuals fitted(my.lm) gives fitted values model.matrix(my.lm) gives model matrix