Inference in a Nutshell

Slides prepared by Elizabeth Newton (MIT)

Corresponds to Chapters 6-9 of Tamhane and Dunlop

Outline

Chapter 6: Basic Concepts of Inference Mean Square Error Confidence Interval Hypothesis Test

Chapter 7: Inference for Single Samples

Mean - Large Sample - z

Mean - Small Sample - t

Variance – Chi-square

Prediction and Tolerance Intervals

Outline (continued)

Chapter 8 – Inference for Two Samples

Comparing Means, Independent, Large Sample –z Comparing Means, Independent, Small Sample Variances equal – t Variances not equal – t with df from SEM

Matched Pairs – test differences – t

Comparing Variances – F

Outline (continued)

Chapter 9 - Inferences for Proportions and Count Data Proportion, Large sample -zProportion, Small sample – binomial Comparing 2 Proportions, large – z or Chi-square Comparing 2 Proportions, small – Fisher's Exact Matched Pairs – McNemar's Test One way Count – Chi square Two-way Count – Chi square Goodness of Fit – Chi square Odds ratio - z

Confidence Interval on the Mean

 $\hat{\mathbf{u}} \pm \mathbf{cd}$ is a two-sided CI for mean u where:

 \hat{u} = estimator of u = sample mean

d=standard deviation of û.

c=critical constant, for instance, $z_{\alpha/2}$ or $t_{n-1,\alpha/2}$.

 $z_{\alpha/2}$ is such that P(Z> $z_{\alpha/2}$)= $\alpha/2$.

 $z_{\alpha/2} = \Phi^{-1}(1-\alpha/2) = qnorm(1-\alpha/2) = -qnorm(\alpha/2)$ If a=0.05 then $z_{\alpha/2} = 1.96$.

If draw many samples and construct 95% CI's from them, 95% would contain true value of u.

Confidence Intervals

(See Figure 6.2 on page 205 of the course textbook.)

Hypothesis Tests

- H₀: null hypothesis, no change, no effect, for instance u=u₀
- H_1 : alternative hypothesis, $u \neq u_0$
- $\alpha = P(Type | error = P(reject H_0 | H_0 true))$
- $\beta = P(Type | I error = P(accept H_0 | H_0 false))$
- Power = function of $u = P(reject H_0 | u)$
- A two-sided hypothesis test rejects H_0 when $|\hat{u}-u_0|/d > c \leftrightarrow |\hat{u}-u_0| > cd \leftrightarrow$ $\hat{u}<u0$ -cd or $\hat{u}>u0$ +cd

Level a Tests

(See Table 7.1 on page 240 of the course textbook.)

P-Values

- P-Value is the probability of obtaining the observed result or one more extreme
- Two-sided P-Value
 - $= P(|Z| > |(\hat{u} u_0)|/d$
 - $= 2[1-\Phi[|(\hat{u}-u_0)|/d]]$
 - = $2^{(1-pnorm(abs(\hat{u}-u_0)/d))}$ in S-Plus

P-Values

(See Table 7.2 on page 241 of the course textbook.)

Power Function

Power is the probability of rejecting H₀ for a given value of u.

 $\pi(u) = P(\hat{u} < u_0 - cd | u) + P(\hat{u} > u_0 + cd | u)$

 $= \Phi[-c+(u_0-u)/d] + \Phi[-c+(u-u_0)/d]$

Power

(See Figure 7.3 on page 245 of the course textbook.)

Reject H₀

(1) If u_0 falls outside interval $\hat{u} \pm cd$.

(2) if \hat{u} falls outside interval $u_0 \pm cd$.

(3) if p-value is small.