
MIT Open Access Articles

MAC Design for Analog Network Coding

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Majid Khabbazian, Fabian Kuhn, Nancy Lynch, Muriel Médard, and Ali ParandehGheibi.
2011. MAC design for analog network coding. In Proceedings of the 7th ACM ACM SIGACT/
SIGMOBILE International Workshop on Foundations of Mobile Computing (FOMC '11). ACM, New
York, NY, USA, 42-51.

As Published: http://dx.doi.org/10.1145/1998476.1998484

Publisher: Association for Computing Machinery (ACM)

Persistent URL: http://hdl.handle.net/1721.1/72944

Version: Author's final manuscript: final author's manuscript post peer review, without
publisher's formatting or copy editing

Terms of use: Creative Commons Attribution-Noncommercial-Share Alike 3.0

https://libraries.mit.edu/forms/dspace-oa-articles.html
http://hdl.handle.net/1721.1/72944
http://creativecommons.org/licenses/by-nc-sa/3.0/

MAC Design for Analog Network Coding∗

Majid Khabbazian
University of Winnipeg

Canada
m.khabbazian@uwinnipeg.ca

Fabian Kuhn
University of Lugano (USI)

Switzerland
fabian.kuhn@usi.ch

Nancy Lynch
MIT Computer Science and

Artificial Intelligence Lab
lynch@csail.mit.edu

Muriel Médard
MIT Research Laboratory

of Electronics
medard@mit.edu

Ali ParandehGheibi
MIT Research Laboratory

of Electronics
parandeh@mit.edu

ABSTRACT
Most medium access control (MAC) mechanisms discard
collided packets and consider interference harmful. Recent
work on Analog Network Coding (ANC) suggests a differ-
ent approach, in which multiple interfering transmissions are
strategically scheduled. Receiving nodes collect the results
of collisions and then use a decoding process, such as ZigZag
decoding, to extract the packets involved in the collisions.

In this paper, we present an algebraic representation of
collisions and describe a general approach to recovering col-
lisions using ANC. To study the effects of using ANC on the
performance of MAC layers, we develop an ANC-based MAC
algorithm, CMAC , and analyze its performance in terms
of probabilistic latency guarantees for local packet delivery.
Specifically, we prove that CMAC implements an abstract
MAC layer service, as defined in [14, 13]. This study shows
that ANC can significantly improve the performance of the
abstract MAC layer service compared to conventional prob-
abilistic transmission approaches.

We illustrate how this improvement in the MAC layer can
translate into faster higher-level algorithms, by analyzing
the time complexity of a multi-message network-wide broad-
cast algorithm that uses CMAC .

Categories and Subject Descriptors
F.2.2 [Analysis of Algorithms and Problem Complex-
ity]: Nonnumerical Algorithms and Problems—computa-
tions on discrete structures;
C.2.2 [Computer-Communication Networks]: Network
Architecture and Design—wireless communication;
G.2.2 [Discrete Mathematics]: Graph Theory—network
problems

∗Based upon work under subcontract #18870740-37362-C
by Stanford U. and supported by DARPA. Further, sup-
ported in part by AFOSR grant FA9550-08-1-0159, NSF
grants CCF-0726514 and CCF-0937274, and by NSERC.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
FOMC’11, June 9, 2011, San Jose, California, USA.
Copyright 2011 ACM 978-1-4503-0779-6/11/06 ...$10.00.

General Terms
Algorithms, Theory

Keywords
analog network coding, MAC layer, multi-message broad-
cast, wireless network algorithms

1. INTRODUCTION
The nature of wireless networks is intrinsically different

from that of wired networks because the wireless medium
is shared among many transmitters. The conventional ap-
proach to the Medium Access Control (MAC) problem is to
use contention-based protocols in which multiple transmit-
ters simultaneously attempt to access the wireless medium,
operating under rules that provide enough opportunities for
all nodes to transmit. Well-known examples of such proto-
cols in packet radio networks are ALOHA [2], MACAW [4],
and CSMA/CA [3].

In contention-based protocols it is possible that two or
more nodes transmit their packets simultaneously, which can
result in a collision at a receiver. The colliding packets are
generally considered to be lost. Therefore, these protocols
strive to avoid simultaneous transmissions by nearby nodes.
Recently, Gollakota and Katabi [9] showed how one might
recover collided packets in an 802.11 system using ZigZag
decoding, if there are relatively few colliding packets and
enough transmissions involving these packets. Their scheme
requires the network to operate at a signal-to-noise ratio
(SNR) that is sufficiently high that noise can be neglected
and per-symbol detection can be assumed to be error-free in
the absence of a collision on that symbol. In fact, they sug-
gest that each collision can be treated as a linear equation
over the packets involved. Therefore, packets are recover-
able if the resulting system of linear equations has a unique
solution. This gives rise to the possibility of designing MAC
protocols that exploit Analog Network Coding (ANC) [10]
to increase network capacity. In such MAC protocols, unlike
conventional protocols, interference is not considered harm-
ful. In fact, such protocols strategically schedule simulta-
neous transmissions in order to increase network capacity.
Note that, as in digital network coding, packets are mixed
together in ANC. However, in digital network coding, the
sender mixes the contents of packets before transmission
whereas in ANC the wireless channel naturally mixes the
packets by adding the signals.

In this paper, we present a new MAC protocol, CMAC ,
which exploits Analog Network Coding, and prove that it
provides strong performance guarantees, in terms of proba-
bilistic latency bounds for local packet delivery. Specifically,
we prove that CMAC implements the formal probabilistic
abstract MAC layer specification introduced by Khabbazian
et al. in [14, 13] This specification assumes that packets ar-
rive at the MAC layer at arbitrary times, but with at most
one packet active at each node at any point. This specifica-
tion provides probabilistic upper bounds on the time for a
packet to be delivered to any neighboring node (the receive
delay bound), and on the total amount of time for a sender
to receive an acknowledgment of successful delivery to all
neighbors (the acknowledgment delay bound). It also pro-
vides a bound on the amount of time for a receiver to receive
some packet from among those currently being transmitted
by neighboring senders (the progress bound).

Note that this specification describes a MAC layer that
provides guarantees for local broadcast, not local unicast; this
captures the fundamental broadcast capability of wireless
networks. The receive and acknowledgment delay bounds
should be self-explanatory. The progress bound captures
the fact that, in many situations, the time required for a
receiver to receive a packet from some neighbor is consider-
ably shorter than the time needed to obtain a packet from a
specific neighbor. This difference turns out to be significant
for the performance of some higher-level protocols, such as
certain network-wide broadcast protocols, where any new
information is useful for advancing the protocol.

In Section 6, we prove that CMAC implements the proba-
bilistic MAC layer with receive, acknowledgment, and progress
bounds all of the form O

`
∆ + ∆

c
log ∆

ε

´
, where ∆ is the

maximum node degree and c is the maximum number of
packets for which a collision can be decoded. In particular,
if c is Ω(∆), then using ANC, a node can deliver a packet to
all of its neighboring nodes (and receive a packet from any
given neighboring node) in time O

`
∆ + log 1

ε

´
.

These latency bounds for CMAC allow us to compare
CMAC with more conventional MAC protocols. For exam-
ple, Khabbazian et al. [14, 13] described a conventional prob-
abilistic transmission MAC protocol, DMAC , which uses ex-
ponential decay. They showed that DMAC has receive and
acknowledgment delay bounds of the formO

`
∆ log

`
1
ε

´
log ∆

´
,

which are larger than those of CMAC , but has a smaller
progress bound, of the form O(log ∆). In Section 7, we
present another MAC protocol, DCMAC , which improves
the progress bound of CMAC to O(log ∆) without increas-
ing the receive and acknowledgment bounds. DCMAC achieves
these bounds by interleaving CMAC and DMAC .

Showing that CMAC implements the probabilistic ab-
stract MAC layer yields another important benefit: it allows
us to analyze the effect of using ANC on the time complexity
of higher-level algorithms such as in particular network-wide
broadcast algorithms. As an example, in Section 8, we com-
bine our analysis of CMAC with an analysis of a high-level
multiple-message global broadcast protocol over the proba-
bilistic MAC layer from [14, 13], thus obtaining time bounds
for multi-message broadcast over the basic network. Our re-
sults show that the time complexity of multi-message broad-
cast can be significantly improved using ANC, as compared
to conventional probabilistic transmission.

The remainder of the paper is organized as follows. In
Section 2, we discuss related work. Section 3 presents our

network assumptions, including the key facts about Analog
Network Coding. Section 4 describes and analyzes a simple
one-hop ANC algorithm. Section 5 describes the probabilis-
tic abstract MAC layer, as defined in [14, 13]. Sections 6
and 7 present our two algorithms, CMAC and DCMAC .
Section 8 describes a simple network-wide broadcast algo-
rithm that uses DCMAC and analyzes its time complexity.
Section 9 concludes. Complete details of this work appear
in our Technical Report [15].
Notation: Let C denote the set of complex numbers. We
use log to denote the base two logarithm and ln the natural
logarithm. For any positive integer n, [n] denotes the set
{1, . . . , n}.

2. RELATED WORK
Analog Network Coding was first presented in [10]. For

high SNR regimes, the asymptotic optimality of ANC was
recently shown in [19, 20]. Its asymptotic optimality in
terms of rate-diversity tradeoff was established in [6, 5]. The
use of ANC, as a generalization of ZigZag, in possible com-
bination with digital network coding, in order to increase
the throughput of packetized multiple-access systems, has
been considered in [22]. In that work, an algebraic model
for ANC was derived, which explicitly takes into account
symbols, digital network coding, modulation, and channel
effects such as attenuation, delay and additive combination
of signals. We use that model in this paper to model the al-
gebraic interaction among nodes. The use of ZigZag without
additional digital network coding has recently been consid-
ered by [23] to improve congestion control and maximize ag-
gregate utility of the users. That approach does not describe
how to implement a MAC specification, as we do in this pa-
per. In another related paper, Zhang, et al. [24] describe
an algorithm for physical-layer network coding. However,
the proposed algorithm assumes symbol-level synchroniza-
tion, carrier-frequency synchronization, and carrier-phase
synchronization. In contrast, the algorithms in [10] and [9]
make no such synchronization assumptions.

The first abstract MAC layer specification was defined
by Kuhn, Lynch, and Newport [16, 17, 18]. This basic
layer provides worst-case latency guarantees for packet re-
ceipt and acknowledgment. These papers also present and
analyze greedy network-wide broadcast algorithms over the
basic MAC layer. Khabbazian, et al. [14, 13] continued this
work by developing the probabilistic version of the MAC
layer specification that is used in this paper, presenting prob-
abilistic transmission algorithms to implement both layers,
analyzing network-wide broadcast algorithms over both lay-
ers, and showing how to combine the high-level and low-
level results systematically to obtain performance results for
network-wide broadcast over a collision-prone radio network.
Other work using abstract MAC layers includes algorithms
for Neighbor Discovery [7, 8].

3. THE NETWORK MODEL
Fix a static undirected graph, G = (V,E). Let n = |V | be

the number of vertices, ∆ the maximum degree, and D the
diameter, i.e., the maximum distance (in terms of number
of hops) between any two vertices in G. We assume that
n active nodes reside at the n vertices of G. Nodes have
unique identifiers. We assume that the nodes have local
knowledge of the graph; in particular, they know ∆ and
know the identifiers of their neighbors in G.

We assume a slotted system, with slots of duration tslot =
1. When a node transmits in some slot, its message reaches
all G-neighboring nodes, and no other nodes. Thus, each
node j, in each slot, is reached by some collection of packets
from its transmitting neighbors. What j actually receives is
defined as follows: (a) If j transmits, then it receives silence,
denoted by ⊥. Thus, a node cannot receive a packet while
it is transmitting. (b) If j does not transmit and is reached
by no packets, then it receives silence. (c) If j does not
transmit and is reached by exactly one packet from another
node, then it receives that packet. (d) If j does not transmit
and is reached by two or more packets, then it receives a
collision. We assume that each node stores all the received
packets and collisions, and uses analog network coding (such
as ZigZag decoding) to decode the collided packets.

A packet is essentially a vector of N symbols over a finite
field Fq, where q is a power of two. We represent a packet
as a polynomial with coefficients being the symbols of Fq
that form the packet. The mapping from the packet to the
corresponding physical signal is a result of modulation. For
a system such as ZigZag, which performs per-symbol detec-
tion, no channel coding precedes the modulation. For more
general ANC, however, there may also be a channel code,
requiring the use of interference cancellation over the entire
packet, rather than symbol-wise operations as in ZigZag.
For the sake of simplicity, we discuss here the case where
no channel code is added, although our discussion can be
extended to the case where we have channel coding (be-
cause the effect of the noise is not entirely negligible on a
symbol-by-symbol bases). We abstract the modulation to be
a one-to-one map M from symbols over Fq to the complex
number field

M : Fq → C.

Using the model of [22], an equivalent representation of
the collisions of w packets at receiver j in l time slots is
given by0BBB@

Cs1j (k)
Cs2j (k)

...
C
sl
j (k)

1CCCA =

0BBB@
As1i1 . . . As1iw
As2i1 . . . As2iw

...
...

A
sl
i1

. . . A
sl
iw

1CCCA
0BBB@

Si1(k)
Si2(k)

...
Siw (k)

1CCCA ,

k = 1, . . . , N , where Csj ∈ CN represents the collision in

time slot s, Si ∈ CN is the signal (packet) transmitted by
sender i, and Asi ∈ C are random variables corresponding to
the combination of the modulation and channel propagation
effects, as well as the transmission decision of sender i at
time slot s.

Note that ZigZag relies on there being non-zero time shifts
among colliding packets, whereas general ANC does not.
The process of decoding by inverting this matrix is more gen-
eral than the ZigZag procedure of [9]. For example, consider
the case where two different nodes collide twice in two differ-
ent time slots. If the offsets between two packets in the two
time slots are exactly the same, the ZigZag decoding process
fails. However, the transfer matrix A may still be full-rank
because of the change in the channel gains over time, and
hence, we may decode the packets by Proposition 1. The
decoding process results in the signals corresponding to the
original packets. The signals then have to be demodulated
to obtain the original data. This algebraic representation
formalizes the intuition introduced in [9] that every collision

is like a linear equation in the original packets. Let

A =

0BBB@
As1i1 As1i2 . . . As1iw
As2i1 As2i2 . . . As2iw

...
...

...
A
sl
i1

A
sl
i2

. . . A
sl
iw

1CCCA .

Proposition 1. Let P , |P | = w, be a set of packets.
Consider a node j. Let S, |S| = l, be a set of slots such that
in every slot in S, node j receives a packet in P or a collision
involving packets in P . The received packets/collisions can
be represented by a system of linear equations of the form
C(k) = A × S(k), where k = 1, 2, . . . , N and A is an l × w
transfer matrix. Given this representation, if the transfer
matrix A has rank w (i.e., full rank) over the field C, then
it is possible to decode all packets in P .

Proposition 1 follows from techniques described in [9, 22].
Note that the coding coefficients are not chosen by the trans-
mitters of the messages. They are mainly dictated by the
channel conditions and can be estimated through “physical
layer” techniques. For example, a correlation technique is
described in [9] to accurately estimate channel conditions.
Several other practical issues such as sampling offset, fre-
quency offset and phase tracking are thoroughly discussed
in [10] and [9]. Nevertheless, it is fair to say that the as-
sumptions in our model are well justified through practical
implementation of the ZigZag decoding algorithm on a soft-
ware radio platform.

One limitation of analog network coding and collision re-
covery techniques is that they require sufficiently high SNR
so that the effect of noise can be safely removed. In practice,
since the received signals are noisy, as the number of packets
involved in a collision increases, it becomes less likely that
the collision can be used for decoding. Hence, towards a
more realistic setup, we assume that any collision involving
more than c (a fixed parameter) packets is not useful and will
be discarded. The parameter c indirectly captures the effect
of noise as well as the physical layer detection algorithm,
without requiring us to change the model for different phys-
ical layer techniques. For instance, we may use the SigSag
decoding algorithm of Tehrani el al. [1], an improvement on
the ZigZag decoding algorithm, to significantly reduce the
effect of noise. Hence, the parameter c for SigSag would be
larger than that for ZigZag decoding. Throughout the pa-
per, we assume that 4 ≤ c ≤ ∆. Note that, based on our
network assumptions, at most ∆ packets may be involved
in a collision. Thus, a decoder with parameter c = ∆ is as
powerful as one with parameter c > ∆.

4. BASIC CODING STRATEGY
In this section, we describe and analyze a simple single-

hop ANC-based contention-resolution protocol, which we
call simply Coding. We use this protocol in our CMAC
algorithm, in Section 6.

4.1 Probability that a Matrix is Full-Rank
The heart of the analysis of Coding is a mathematical

lemma, Lemma 2, which expresses a lower bound on the
probability that a matrix B generated randomly from an
arbitrary matrix A has full rank. In Section 4.2, we use
such random matrices to model the transmission behavior

of the neighbors of a particular node k, where entry Bi,j
corresponds to the transmission behavior of node j in slot
i. The conclusion of Lemma 2 is used there to show that,
assuming that the algorithm executes for enough slots, with
high probability, node k receives enough information to re-
cover a set of packets.

Construction of a random matrix: Let ` and w be
positive integers. Let A be an arbitrary matrix of size
`×w, with elements in C−{0}. Let p be a real number,
0 ≤ p ≤ 1. We construct a random `×w matrix B from
A according to the following two-step procedure: Start
with B = A. First, for each i independently, keep row
i of B unchanged with probability p and set it to be
identically 0 with probability 1 − p. Second, for each
non-zero row i and each column j, independently, keep
Bi,j unchanged with probability p and set it to 0 with
probability 1− p.

Lemma 2. Let ` and w be positive integers. Let A be an
arbitrary matrix of size ` × w, with elements in C − {0}.
Further, let p and ε be real numbers, with 0 < p ≤ 1

2
and

0 < ε < 1. Let c be a positive integer with c ≥ 4 and wp ≤ c
2

.
Suppose that

` ≥

&
14e
e−1

1− p

„
w +

ln(w + 1) + 2 ln(1/ε)

p

«’
.

Let B be a random matrix constructed from A as described
above. Then, with probability at least 1 − ε, B has at least
w independent rows, each containing at most c non-zero el-
ements.

Proof (Sketch). Instead of fixing the number of rows
of B, assume that we construct B by adding rows until there
are w rows with at most c non-zero entries that span Rw.
The lemma then follows by showing that with probability at
least 1− ε, the resulting matrix has at most ` rows.

For each d ∈ [w], we define random variables Xd and Yd.
Let Xd be the smallest integer such that the sub-matrix
spanned by the rows with at most c non-zero entries among
the first Xd rows of B has rank d. Further, we define X0 = 0
and Yd = Xd − Xd−1. Note that to prove the lemma, we
need to show that Pr(Xw > `) < ε.

In the following, we refer to non-zeroed rows of B as the
rows that are not set to 0 at the end of the construction of B.
The non-zeroed rows of B are random vectors in Cw, where
each coordinate is non-zero independently with probability
p. Assume that we are given d − 1 linearly independent
vectors x1, . . . ,xd−1 for some integer d ≥ 1. The core of
the proof is to lower bound the probability that a new non-
zeroed row of B has at most c non-zero entries and is linearly
independent to the given d − 1 vectors. For simplicity, as-
sume that the vectors xi are vectors from the standard basis
of Cw. Hence, each of them is non-zero in exactly one coor-
dinate and an additional vector is linearly independent iff it
is non-zero in at least one coordinate in which none of the
d − 1 vectors xi is non-zero. The probability that all these
w − d + 1 coordinates are 0 in a random non-zeroed row
is (1 − p)w−d+1 since all coordinates are set to something
non-zero with probability p. The parameter c is chosen such
that the probability that a non-zeroed row has at most c
non-zero entries is lower bounded by some constant q. It
can be shown that the probability that a non-zeroed row

has at most c non-zero entries and is linearly independent
of x1, . . . ,xd−1 is at least

pd =
1

7
·
“

1− (1− p)w−d+1
”
.

Further it can be shown that the same bound holds if the
vectors x1, . . . ,xd−1 are arbitrary vectors in Cw. Therefore
for each d ≥ 0 and row i > Xd−1, if row i is not set to 0 in the
final step of the construction of B, the probability that row i
contains at most c non-zero entries and is independent of the
first Xd−1 rows is at least pd. Thus, the random variables Yd
are dominated by independent geometric random variables
Zd with parameter (1 − p)pd. Using a Chernoff bound, it
can be shown that

Pr(Xd ≤ `) ≤ Pr

dX
i=1

Zd ≤ `

!
≤ 1− ε.

This completes the proof sketch. Details of the proof appear
in [15].

4.2 The Coding Algorithm
Now we describe and analyze the Coding protocol. Let c

be the threshold parameter defined for ANC (in Section 3).
Let ρ = c

2∆
. Note that ρ ≤ 1

2
, because c ≤ ∆.

Definition 1 (Rε, where ε is a real, 0 < ε < 1).

Rε =

&
14e
e−1

1− ρ

„
∆ +

ln(∆ + 1) + 2 ln(1/ε)

ρ

«’

Lemma 3. Rε = O
`
∆ + ∆

c
log ∆

ε

´
.

The Coding algorithm has a single explicit parameter, ε.
It also uses c as an implicit parameter.

Coding(ε), where ε is a real, 0 < ε < 1: Assume I is
a set of nodes, 1 ≤ |I| ≤ ∆, and j is a distinguished
node adjacent to all nodes in I. All the nodes in I
participate in the algorithm, and j may or may not
participate. Each participating node i has a packet mi,
assumed fixed for the entire algorithm.
The algorithm runs for exactly Rε slots. Every partici-
pating node participates in all slots, with no node start-
ing or stopping participation part-way through the al-
gorithm. At every slot, each participating node i trans-
mits packet mi with probability ρ = c

2∆
.

Lemma 4. In Coding(ε), with probability at least 1 − ε,
node j receives all packets mi, i ∈ I, by the end of the algo-
rithm.

Proof. The probability that node j receives all packets
if it participates in the algorithm is at most equal to the
probability that j receives all packets if it does not partic-
ipate (if the node participates, it can only receive in time
slots where it does not transmit, otherwise, it can receive in
all time slots). So we assume without loss of generality that
j participates.

We construct a random matrix B of size Rε × |I|, in Rε
steps. In step r, 1 ≤ r ≤ Rε, we define row r, as follows. If
j transmits in slot r, then row r is identically 0. If j does
not transmit in slot r, then write I = {is|1 ≤ s ≤ |I|}. For
every s, 1 ≤ s ≤ |I|, let Br,s = 0 if node is does not transmit

in slot r; otherwise let Br,s be a non-zero complex number
(which corresponds to the channel gain from node is to node
j and the offset of is’s packet).

Now we apply Lemma 2, with ` in the statement of that
lemma equal to Rε, w in the lemma equal to |I|, and p = ρ.
Since

|I|ρ = |I| c
2∆
≤ c

2

and

` = Rε =

&
14e
e−1

1− ρ

„
∆ +

ln(∆ + 1) + 2 ln(1/ε)

ρ

«’
,

the conditions required by Lemma 2 hold. Consequently,
by Lemma 2, with probability at least 1 − ε, B has a set S
of |I| independent rows, each containing at most c non-zero
elements. Any row in S corresponds to a collision that j
receives during the execution of Coding(ε). Consequently,
by Proposition 1, j can decode all the packets mi, i ∈ I, by
the end of the algorithm, with probability at least 1−ε.

5. PROBABILISTIC MAC LAYER
SPECIFICATION

Now we are ready to consider MAC layers. Before present-
ing our ANC-based MAC algorithm CMAC , we give a for-
mal specification for MAC layer requirements. For this, we
use the probabilistic abstract MAC layer specification from
[14, 13]. This specification describes MAC-layer behavior in
a multi-hop network. It assumes that packets arrive from
the environment (a higher-level protocol) nondeterministi-
cally, at arbitrary times, and not according to any prede-
termined probability distribution. We assume that at most
one packet is active at a time at each node, that is, the en-
vironment waits for a node to complete its processing of one
packet before it provides that node with a new packet. We
do not assume that every node always has an active packet.
Our service provides guarantees for local broadcast rather
than local unicast, reflecting the fundamental broadcast ca-
pability of wireless networks.

According to our specification, a MAC layer provides an
external interface by which it accepts packets from its en-
vironment via bcast(m) input events and delivers packets
to neighboring nodes via rcv(m) output events. It also
provides acknowledgments to senders indicating that their
packets have been successfully delivered to all neighbors,
via ack(m) output events. Finally, it accepts requests from
the environment to abort current broadcasts, via abort(m)
input events.

The specification is implicitly parameterized by three pos-
itive reals, frcv , fack , and fprog . These bound delays for
a specific packet to arrive at a particular receiver, for an
acknowledgment to be returned to a sender, and for some
packet from among many competing packets to arrive at a
receiver. The specification also has corresponding param-
eters εprog , εrcv , and εack , which represent bounds on the
probabilities that the delay bounds are not attained. Fi-
nally, it has a parameter tabort, which bounds the amount
of time after a sender aborts a sending attempt when the
packet could still arrive at some receiver.

We model a MAC layer formally as a Probabilistic Timed
I/O Automaton (PTIOA), as defined by Mitra [21]. A MAC
layer PTIOA Mac is composed with an environment PTIOA
Env and a network PTIOA Net . This composition, written

as Mac‖Env‖Net , is itself a PTIOA, and yields a unique
probability distribution on executions (once nondeterminism
is resolved using various scheduling mechanisms, see [21]).

To satisfy our specification, a MAC layer Mac must guar-
antee several conditions, when composed with any Env and
with Net . To define these requirements, we assume some
simple constraints on Env , namely, we consider executions
α of Mac‖Env‖Net that are well-formed, in the sense that:
(a) they contain at most one bcast event for each m (i.e., all
packets are unique), (b) any abort(m)i

1 event is preceded
by a bcast(m)i but not by an ack(m)i or another abort(m)i,
and (c) any two bcasti events have an intervening acki or
aborti (i.e., each node handles packets one at a time).

The specification says that the Mac automaton must guar-
antee the following conditions, for any well-formed execution
α of Mac‖Env‖Net . There exists a cause function that maps
every rcv(m)j event in α to a preceding bcast(m)i event,
i 6= j, and that maps each ack(m)i and abort(m)i to a pre-
ceding bcast(m)i. The cause function must satisfy:

• Receive restrictions: If bcast(m)i event π causes
rcv(m)j event π′, then (a) Proximity: (i, j) ∈ E. (b)
No duplicate receives: No other rcv(m)j caused by π
precedes π′. (c) No receives after acks: No ack(m)i
caused by π precedes π′. (d) Limited receives after
aborts: π′ occurs no more than tabort time after an
abort caused by π.

• Acknowledgment restrictions: If bcast(m)i event
π causes ack(m)i event π′, then (a) No duplicate acks:
No other ack(m)i caused by π precedes π′. (b) No
acks after aborts: No abort(m)i caused by π precedes
π.

In addition, the Mac automaton must guarantee three
probabilistic upper bounds on packet delays—a receive de-
lay bound, an acknowledgment delay bound, and a progress
bound. Thus, if π is a bcast event in a closed execution β2,
then we say that π is active at the end of β provided that π
is not terminated with an ack or abort in β. The probabilis-
tic MAC layer guarantees the following probabilistic bounds.
Here, the notation Prβ refers to the conditional distribution
on executions that extend β. Assume i, j ∈ V , and t is a
nonnegative real.

• Receive delay bound: Let β be a closed execution
that ends with a bcast(m)i at time t. Let j be a neigh-
bor of i. Define the following sets of time-unbounded
executions that extend β: A, the executions in which
no abort(m)i occurs, and B, the executions in which
rcv(m)j occurs by time t + frcv . If Prβ(A) > 0, then
Prβ(B|A) ≥ 1− εrcv .

• Acknowledgment delay bound: Let β be a closed
execution that ends with a bcast(m)i at time t. Define
the following sets of time-unbounded executions that
extend β: A, the executions in which no abort(m)i
occurs, and B, the executions in which ack(m)j occurs
by time t+ fack and is preceded by rcv(m)j for every

1Here and elsewhere, subscripts are used to identify the node
at which the event occurs.
2An execution of a PTIOA is closed if it is a finite sequence
of discrete steps and trajectories, ending with a trajectory
whose domain is a right-closed time interval. Formal details
of such definitions appear in [12, 21].

neighbor j of i. If Prβ(A) > 0, then Prβ(B|A) ≥
1− εack .

• Progress bound: Let β be a closed execution that
ends at time t. Let I be the set of neighbors of j that
have active bcasts at the end of β, where bcast(mi)i is
the bcast at i, and suppose that I is nonempty. Sup-
pose that no rcv(mi)j occurs in β, for any i ∈ I. Define
the following sets of time-unbounded executions that
extend β: A, the executions in which no abort(mi)i
occurs for any i ∈ I, and B, the executions in which,
by time t + fprog , at least one of the following occurs:
an ack(mi)i for every i ∈ I, a rcv(mi)j for some i ∈ I,
or a rcvj for some packet whose bcast occurs after β.
If Prβ(A) > 0, then Prβ(B|A) ≥ 1− εprog .

The receive bound says that, with probability at least
1 − εrcv , a packet sent by node i is received by a particular
neighbor j within time frcv . The acknowledgment bound
says that, with probability at least 1 − εack , a packet sent
by node i is acknowledged within time fack , and moreover,
the acknowledgment is “correct” in the sense that the packet
has actually been delivered to all neighbors. The progress
bound says that, if a nonempty set of j’s neighbors have ac-
tive bcasts at some point, and none of these packets has yet
been received by j, then with probability at least 1− εprog ,
within time fprog , either j receives one of these packets or
something newer, or else all of these end with acknowledg-
ments. This is all conditioned on non-occurrence of aborts.

6. MAC LAYER ALGORITHM USING ANC
Now we present our new ANC-based MAC-layer algo-

rithm, CMAC , and show that it implements the probabilis-
tic MAC layer of Section 5 with certain delay and error
parameters. CMAC yields smaller receive and acknowledg-
ment delay bounds than conventional probabilistic transmis-
sion protocols such as the DMAC algorithm in [14, 13]. Its
progress bound, on the other hand, is larger. In Section 7,
we combine CMAC and DMAC to obtain a small progress
bound as well.

6.1 The CMAC Algorithm
The CMAC algorithm is based on the Coding algorithm

of Section 4.

CMAC(ε), where 0 < ε < 1: We group slots into
Coding phases, each consisting of Rε slots. At the be-
ginning of every Coding phase, each node i that has an
active bcast(m)i participates in Coding(ε) with packet
m. Node i executes exactly one Coding phase, and then
outputs ack(m)i at the end of the phase. However,
if node i receives an abort(m)i from the environment
before it performs ack(m)i, it continues participating
in the rest of the Coding phase but does not perform
ack(m)i.
Meanwhile, node i tries to receive packets from its
neighbors, in every slot. It may receive a packet di-
rectly, without any collisions, or indirectly, by decod-
ing collisions. When it receives any packet m′ from a
neighbor for the first time, it delivers that to the en-
vironment with a rcv(m′)i event, at a real time before
the time marking the end of the slot.

Note that, in a single slot, node i may receive several pack-
ets and deliver them to the environment, by decoding a col-

lection of received collisions. Also note that node i may con-
tinue processing a packet for some time after it is aborted;
thus, CMAC handles aborts differently from DMAC . Be-
sides increasing the tabort bound, this way of handling aborts
introduces the possibility that the environment may submit
a new packet while node i is still transmitting on behalf of
the aborted one. According to the rules of CMAC , node i
will begin handling the new packet at the start of the next
Coding phase.

We now give five lemmas expressing the properties of
CMAC (ε). These lemmas are analogous to some in [13]. The
“executions” referred to here are executions of the compo-
sition CMAC‖Env‖Net , for an arbitrary environment Env .
First, the non-probabilistic properties are satisfied:

Lemma 5. In every execution, the Proximity, No dupli-
cate receives, No receives after acks, No duplicate acks, and
No acks after aborts conditions are satisfied. Also, no rcv
happens more than time Rε after a corresponding abort.

Proof. Straightforward.

The next lemma provides an absolute bound on acknowl-
edgment time.

Lemma 6. In every time-unbounded execution α, the fol-
lowing holds. Consider any bcast(m)i event in α, and sup-
pose that α contains no abort(m)i. Then an ack(m)i occurs
by the end of the next Coding phase that begins after the
bcast(m)i.

Proof. Immediate from the definition of CMAC

The remaining properties are probabilistic. For these lem-
mas, we fix any environment Env and consider probabilities
with respect to the unique probability distribution on exe-
cutions of CMAC‖Env‖Net . The first probabilistic lemma,
which is analogous to Lemma 5.5 in [13], bounds the receive
delay. Its proof uses our result about Coding, Lemma 4.

Lemma 7. Let i, j ∈ V , i a neighbor of j. Let β be a
closed execution that ends with a bcast(m)i event. Let cp be
the first Coding phase that starts strictly after the bcast(m)i.
Define the following sets of time-unbounded executions that
extend β: A, the executions in which no abort(m)i occurs,
and B, the executions in which, by the end of coding phase
cp, a rcv(m)j occurs. If Prβ(A) > 0, then Prβ(B|A) ≥
1− ε.

Proof. Assume A, that is, no abort(m)i occurs. Let I
be the set of neighbors of j participating in Coding phase
cp. Since no abort(m)i occurs, i ∈ I, and so |I| ≥ 1. Then,
Lemma 4 implies that, with probability at least 1− ε, a rcvj
for every packet mi′ , i

′ ∈ I occurs in phase cp. In particular,
rcv(m)j occurs. Therefore, Prβ(B|A) ≥ 1 − ε, as needed.

The second probabilistic lemma is analogous to Lemma 5.6
in [13]. It bounds the acknowledgment delay and gives a
guarantee that acknowledgments are preceded by receives.

Lemma 8. Let i ∈ V . Let β be any closed prefix of a
time-unbounded execution that ends with a bcast(m)i event.
Let cp be the first Coding phase that starts strictly after
the bcast(m)i. Define the following sets of time-unbounded
executions that extend β: A, the executions in which no

abort(m)i occurs, and B, the executions in which, by the
end of coding phase cp, ack(m)i occurs and is preceded by
rcv(m)j for every neighbor j of i. If Prβ(A) > 0, then
Prβ(B|A) ≥ 1− ε∆.

Proof. Lemma 6 implies that ack(m)i occurs by the end
of phase cp. For the rcv(m)j events, by Lemma 7, the prob-
ability that each individual rcv(m)j event occurs by the end
of cp is at least 1− ε. Then, using a union bound, the prob-
ability that all the rcv(m)j events occur by the end of cp is
at least 1− ε∆.

The third probabilistic lemma is analogous to Lemma 5.4
in [13]. It gives a probabilistic bound for progress.

Lemma 9. Let j ∈ V and β be a closed execution that
ends at time t. Let I be the set of neighbors of j that have
active bcasts at the end of β, where bcast(mi)i is the bcast
at i. Suppose that I is nonempty. Suppose that no rcv(mi)j
occurs in β, for any i ∈ I. Let cp be the first Coding phase
that starts strictly after time t.
Define the following sets of time-unbounded executions that
extend β: A, the executions in which no abort(mi)i occurs
for any i ∈ I; B, the executions in which, by the end of cp,
at least one of the following occurs: a rcv(mi)j for some
i ∈ I, or a rcvj for some packet whose bcast occurs after β;
and C, the executions in which, by the end of cp, ack(mi)i
occurs for every i ∈ I.
If Prβ(A) > 0, then Prβ(B ∪ C|A) ≥ 1− ε.

Proof. As shown in the proof of Lemma 5.4 in [13],

Prβ(B ∪ C|A) ≥ Prβ(B|C̄ ∩A),

so, for the first conclusion, it suffices to show that Prβ(B|C̄∩
A) ≥ 1−ε. Thus, assume C̄∩A, that is, that by the end of cp,
not every i ∈ I has an ack(mi)i, and no abort(mi)i occurs for
any i ∈ I. Then some neighbor of j in I participates in phase
cp. Let I ′ be the set of neighbors of j participating in cp.
Note that every node in I ′ participates in all slots of phase
cp, since no node stops participating part-way through the
phase. Then |I ′| ≥ 1 and thus by Lemma 4, with probability
at least 1 − ε, a rcvj for every packet mi′ , i

′ ∈ I ′ occurs in
phase P. Therefore,

Prβ(B|C̄ ∩A) ≥ 1− ε,

as needed.

6.2 Implementing the Probabilistic MAC
Using the lemmas from Section 6.1, we can now show that

CMAC implements the probabilistic MAC layer with certain
parameter values. In this subsection, we fix ε, 0 < ε < 1,
and fix tCphase, the time for a Coding phase, to be Rε, as
defined in Section 4.2.

Theorem 10. CMAC (ε) implements the probabilistic ab-
stract MAC layer with parameters frcv = fack = fprog =
2tCphase, εrcv = εprog = ε, εack = ε∆, and tabort = tCphase.

Proof. Similar to the proof of Theorem 5.7 in [13], using
Lemmas 5-9.

The following corollary follows directly from Lemma 3 and
Theorem 10.

Corollary 11. CMAC (ε) implements the probabilistic
MAC layer with time bounds frcv , fack , fprog , and tabort
equal to

O
„

∆ +

‰
∆

c

ı
log

∆

ε

«
,

where εrcv = εprog = ε and εack = ε∆.

In some cases, where the threshold c is fairly large and ε
is not too small, this bound can be simplified as follows.

Corollary 12. Suppose that c = Ω(logn), ∆ = Ω(logn),
and ε ≥ n−κ for some constant κ. Then CMAC (ε) imple-
ments the probabilistic MAC layer with frcv , fack , fprog , and
tabort = O(∆) εrcv = εprog = ε, and εack = ε∆.

Similar bounds hold in the case where c is large compared
to ∆:

Corollary 13. If c = Ω(∆) then CMAC (ε) implements
the probabilistic MAC layer with frcv , fack , fprog , and tabort =
O(∆ + log 1

ε
), εrcv = εprog = ε, and εack = ε∆.

For comparison, the DMAC algorithm [14, 13] yields larger
bounds of frcv = fack = O

`
∆ log

`
1
ε

´
log ∆

´
, with εrcv = ε

and εack = ε∆. However, DMAC yields a smaller fprog
bound, of O(h log ∆), with εprog = (7

8
)h, for any positive

integer h. In the next section, we show how to reduce the
fprog bound to this level, while keeping the other bounds as
they are for CMAC .

7. IMPROVED MAC LAYER ALGORITHM
Our MAC layer implementation in Section 6 achieves good

frcv and fack bounds compared to DMAC but a worse fprog
bound. Now we describe a second MAC layer implemen-
tation that achieves both the O

`
∆ + ∆

c
log ∆

ε

´
receive and

acknowledgment bounds of CMAC , as well as the O(log ∆)
progress bound of DMAC . The new algorithm essentially
combines CMAC and DMAC using time-division multiplex-
ing. CMAC is used to guarantee the receive and acknowl-
edgment bounds, while DMAC guarantees the progress bound.
We call the combined algorithm DCMAC .

7.1 The DCMAC Algorithm
Technically, DCMAC applies the Coding subroutine de-

scribed in Section 4.2 and the Decay subroutine of [14,
13]. Decay operates for exactly σ = dlog(∆ + 1)e slots, in
which participating nodes transmit with successively dou-
bling probabilities, starting with 1

2σ
and ending with 1

2
.

DCMAC(ε), where 0 < ε < 1: We use odd-numbered
slots for Decay and even-numbered slots for Coding(ε).
We group odd slots into Decay phases, each consisting
of σ slots, and group even slots into Coding phases, each
consisting of Rε slots. The two types of phases are not
synchronized with respect to each other.
At the beginning of each Decay phase, each node i that
has an active bcast(m)i begins executing Decay with
packet m. At the beginning of each Coding phase, each
node i that has an active bcast(m)i begins executing
Coding(ε) with packet m and outputs ack(m)i at the
end of that Coding phase.

Meanwhile, node If node i receives an abort(m)i or per-
forms an ack(m)i, it performs no further transmission
on behalf of packet m in the odd slots; that is, it stops
participating in a Decay phase as soon as an abort or
ack happens. However, if node i receives an abort(m)i
before it performs ack(m)i, it continues participating
in the rest of the Coding phase and does not perform
ack(m)i.
i keeps trying to receive, in every slot. In even slots,
it may receive a packet directly, without collisions, or
indirectly, by decoding collisions. In odd slots, it does
not try to decode collisions, but just looks for packets
that arrive directly. When node i receives any packet
m′ for the first time, in either an odd or even slot, it
delivers that to its environment with a rcv(m′)i event,
at a real time before the time marking the end of the
slot.

Thus, as in CMAC , node i may receive several packets in
one slot, by decoding a collection of received collisions. Also
note that node i may handle two different packets in consec-
utive odd and even slots, because of the different handling
of aborts in the odd and even slots. However, i handles at
most one packet in each slot, odd or even.

As for CMAC , we give five lemmas expressing the prop-
erties of DCMAC , now in terms of executions of the compo-
sition DCMAC‖Env‖Net . The first four lemmas are similar
to their counterparts in Section 6, The fifth lemma, which
deals with the progress bound, is somewhat different because
it depends on Decay rather than Coding.

Lemma 14. In every execution, the Proximity, No dupli-
cate receives, No receives after acks, No duplicate acks, and
No acks after aborts conditions are satisfied. Also, no rcv
happens more than time 2Rε after a corresponding abort.

Proof. Straightforward.

Lemma 15. In every time-unbounded execution α, the fol-
lowing holds. Consider any bcast(m)i event in α and sup-
pose that α contains no abort(m)i. Then an ack(m)i oc-
curs at the end of the Coding phase that begins after the
bcast(m)i.

Proof. Immediate from the definition of DCMAC .

The remaining properties are probabilistic. Fix any en-
vironment Env and consider the unique probability distri-
bution on executions of DCMAC‖Env‖Net . The first prob-
abilistic lemma bounds the receive delay, and the second
bounds the acknowledgment delay and gives a probabilistic
guarantee that acknowledgments are preceded by receives.
The proofs are similar to those of Lemmas 7 and 8.

Lemma 16. Let i, j ∈ V , i a neighbor of j. Let β be a
closed execution that ends with a bcast(m)i event. Let cp be
the first Coding phase that starts strictly after the bcast(m)i.
Define the following sets of time-unbounded executions that
extend β: A, the executions in which no abort(m)i occurs,
and B, the executions in which, by the end of coding phase
cp, a rcv(m)j occurs. If Prβ(A) > 0, then Prβ(B|A) ≥
1− ε.

Lemma 17. Let i ∈ V and β be any closed prefix of a
time-unbounded execution that ends with a bcast(m)i event.
Further, let cp be the first Coding phase that starts strictly

after bcast(m)i. Define the following sets of time-unbounded
executions that extend β: A, the executions in which no
abort(m)i occurs, and B, the executions in which, by the
end of coding phase cp, ack(m)i occurs and is preceded by
rcv(m)j for every neighbor j of i. If Prβ(A) > 0, then
Prβ(B|A) ≥ 1− ε∆.

The final lemma gives the progress bound.

Lemma 18. Let j ∈ V and h be a positive integer. Let β
be a closed execution that ends at time t. Let I be the set of
neighbors of j that have active bcasts at the end of β, where
bcast(mi)i is the bcast at i. Suppose that I is nonempty.
Suppose that no rcv(mi)j occurs in β, for any i ∈ I.
Let dp be the hth Decay phase that starts strictly after time
t. Define the following sets of time-unbounded executions
that extend β: A, the executions in which no abort(mi)i
occurs for any i ∈ I; B, the executions in which, by the end
of Decay phase dp, at least one of the following occurs: a
rcv(mi)j for some i ∈ I, or a rcvj for some packet whose
bcast occurs after β; and C, the executions in which, by the
end of Decay phase dp, ack(mi)i occurs for every i ∈ I. If

Prβ(A) > 0, then Prβ(B ∪ C|A) ≥ 1− (7/8)h.

Proof. Analogous to that of Lemma 5.4 in [13].

7.2 Implementing the Probabilistic MAC
Using the lemmas from Section 7.1, we can now show that

DCMAC implements the probabilistic MAC layer with cer-
tain parameter values. Fix ε, 0 < ε < 1, and fix tDphase, the
time for a Decay phase, to be σ = dlog(∆ + 1)e. Let h be
any positive integer.

Theorem 19. DCMAC (ε) implements the probabilistic
MAC layer with parameters frcv = fack = 4tCphase, fprog =
2(h + 1)tDphase, εrcv = ε, εack = ε∆, εprog = (7

8
)h, and

tabort = 2tCphase.

Proof. Similar to the proof of Theorem 5.7 in [13], using
Lemmas 14-18.

The following corollary follows directly from Lemma 3 and
Theorem 19.

Corollary 20. DCMAC (ε) implements the probabilistic
MAC layer with frcv , fack , and tabort equal to

O
„

∆ +

‰
∆

c

ı
log

∆

ε

«
and fprog = O(h log ∆), where εrcv = ε, εack = ε∆, and
εprog = (7

8
)h.

Again, we specialize the bound to the case where c and ∆
are sufficiently large and ε is at most polynomially small in
n, as well as for the case where c is large compared to ∆.

Corollary 21. Suppose that c = Ω(logn), ∆ = Ω(logn),
and ε ≥ n−κ for some constant κ. Then, frcv = fack =
O(∆), fprog = O(h log(∆)), εprog = (7

8
)h, εrcv = ε, εack =

ε∆, and tabort = O(∆).

Corollary 22. If c = Ω(∆), DCMAC (ε) implements
the probabilistic MAC layer with frcv , fack , and tabort =
O(∆ + log 1

ε
), fprog = O(h log ∆), εrcv = ε, εack = ε∆, and

εprog = (7
8
)h.

These bounds compare favorably in all dimensions with
those of DMAC .

8. NETWORK-WIDE BROADCAST
In addition to defining the probabilistic abstract MAC

layer specification and providing the DMAC implementa-
tion of the specification, the earlier papers by Khabbazian,
et al. [14, 13] describe and analyze single-message and multi-
message network-wide broadcast protocols over the proba-
bilistic MAC layer. The authors show how to combine such
high-level protocols with the DMAC implementation to ob-
tain efficient protocols for network-wide broadcast over a
collision-prone radio network. In fact, a main point of those
papers is that one can use abstract MAC layer specifications
to split up the task of designing efficient high-level protocols
for the radio network model.

Since we use the same probabilistic MAC layer specifica-
tion as in [14, 13], we are now able to combine the network-
wide broadcast protocol from [14, 13] with our new MAC
implementations, to obtain efficient network-wide broadcast
protocols for physical networks supporting Analog Network
Coding. The results follow as easy corollaries of the results
so far in this paper and the high-level analysis results in [14,
13].

For instance, consider the problem of Multi-Message Broad-
cast (MMB). In this problem, an arbitrary number of uni-
quely-identified messages originate at arbitrary nodes in the
network, at arbitrary times; the problem is to deliver all
messages to all nodes. For simplicity, we assume that each
message fits in a single MAC-layer packet.

In our formulation, an MMB protocol has an external in-
terface by which it receives messages from its environment
via arrive(m) input events and delivers messages to the en-
vironment via deliver(m) output events. The Basic Multi-
Message Broadcast (BMMB) protocol from [16, 17] is a
greedy protocol, which works as follows:

Basic Multi-Message Broadcast Protocol
(BMMB): Every node i maintains a FIFO queue
named bcastq and a set named rcvd. Both are initially
empty. If node i does not have a pending MAC-layer
transmission and bcastq is not empty, node i composes
a packet containing the message m at the head of
bcastq, removes m from bcastq, and passes the packet
to the MAC layer for transmission, using a bcast
output event. If node i receives an arrive(m) input
event, it immediately performs a deliver(m) output
and adds m to the back of bcastq and to the rcvd set.
If node i receives a message m from the MAC layer, it
first checks rcvd. If m ∈ rcvd it discards the message.
Otherwise, node i immediately performs a deliver(m)
output, and adds m to the back of bcastq and to the
rcvd set.

We now consider executions of BMMB composed with
DCMAC and an environment that generates the messages.
Theorem 23 provides a probabilistic bound on the time for
a message to be delivered to all nodes, in the presence of a
bounded number k′ of concurrent messages. This theorem
uses two definitions from [13]:

Definition 2 (Nice executions). A bcast(m) event
that occurs at node i at time t0 in an execution is nice if
the corresponding ack(m) event occurs by time t0 +fack and
is preceded by a corresponding rcv(m) event at every neigh-
bor j of i. An execution is nice if all bcast events in the
execution are nice.

Definition 3 (The set overlap(m)). Let α be a nice
execution and m be a message such that arrive(m) occurs in
α. Then we define overlap(m) to be the set of messages m′

whose processing overlaps the interval between the arrive(m)
and the final ack(m) event for m anywhere in the network.
Formally, this means that an arrive(m′) event precedes the
final ack(m) event and the final ack(m′) event follows the
arrive(m) event.

The following theorem follows from Theorem 8.20 of [13]
and Corollary 20. It assumes an upper bound k on the total
number of messages that arrive from the environment in any
execution.

Theorem 23. Let m be a message and ε be a real, 0 <
ε < 1. Then BMMB composed with DCMAC (ε

2nk∆
) guar-

antees that, with probability at least 1 − ε, the following
property holds of the generated execution α: Suppose an
arrive(m)i event occurs in α. Let k′ = |overlap(m)|. Then
deliver(m) events occur at all nodes in α within time

O

 „
D + log

„
nk

ε

«
k′
«

log ∆+(k′−1)

„
∆ +

∆

c
log

∆nk

ε

«!
.

For comparison, the corresponding result forBMMB com-
posed with DMAC ([13], Theorem 8.21, paraphrased slightly)
is:

Theorem 24. Let m be a message and ε be a real, 0 <
ε < 1. Then BMMB composed with DMAC guarantees
that, with probability at least 1 − ε, the following property
holds of the generated execution α: Suppose an arrive(m)i
event occurs in α. Let k′ = |overlap(m)|. Then deliver(m)
events occur at all nodes in α by time

O
„„

D + ∆ log

„
nk

ε

«
k′
«

log ∆

«
.

Proof (of Theorem 23). The proof is similar to the
one for Theorem 24 in [13]. Choose εack = ε

2nk
, so 1 −

ε
2
− nkεack = 1 − ε. Then we obtain a time bound of

O((D + log(nk
ε

)k′)fprog) + (k′ − 1)fack .
Next, we plug in bounds for fprog and fack , based on

the bounds for DCMAC in Corollary 20. We have fprog =
O(log ∆), which yields the first term of the claimed bound.
For fack , we instantiate ε in Corollary 20 with εack

∆
= ε

2nk∆
,

and obtain fack = O(∆ + ∆
c
log(2nk∆2

ε
)), which is O(∆ +

∆
c
log(∆nk

ε
)). This yields the second term of the claimed

bound.

9. CONCLUSIONS
We have presented a MAC layer algorithm, CMAC , based

on Analog Network Coding. We have proved its basic cor-
rectness and performance properties by showing that CMAC
implements a formal probabilistic abstract MAC layer spec-
ification. This analysis shows that the new design improves
on a conventional probabilistic retransmission algorithm, like
DMAC , in two of three performance metrics (the receive and
acknowledgment delay bounds), while doing worse on one
(the progress bound). However, a hybrid design, DCMAC ,
which combines CMAC and DMAC , achieves the best of
both algorithms.

In addition to providing an objective basis for compar-
ing MAC layer designs, the abstract MAC layer allows us

to combine complexity bounds for MAC layer designs with
complexity bounds for higher-level protocols that run over
MAC layers. To illustrate this, we showed how to combine
a network-wide broadcast protocol, BMMB , with an ANC-
based MAC layer, and easily obtain complexity bounds for
the combination.

There are many possible directions for future work. First,
we would like to understand whether the particular trans-
mission strategies used in CMAC and DCMAC are opti-
mal, and if not, how they can be improved. We would
like to extend the algorithms and results to accommodate
packet losses. We would also like to compare ANC-based
MAC-layer strategies with more different kinds of MAC-
layer designs. Also, our MAC layer specifications provide
three kinds of latency bounds; we would also like to extend
the work to consider other metrics, such as throughput.

Network coding provides a much richer set of strategies
than what we have used in this paper; we would like to
extend our theory to take advantage of more of these strate-
gies. For example, our development of the MAC has consid-
ered physical-layer ANC and not higher-layer network cod-
ing. The use of our MAC and related approaches could be
considered in the presence of transport-layer network coding,
since the two network coding approaches are compatible [22].
Also, our work here has considered coding only for local node
interactions, but it invites questions of considering it for
larger, multihop networks, particularly when transport-layer
coding is integrated. The interaction between the broad-
cast MAC and network coding at the transport layer has
been shown to provide, in a simple, opportunistic fashion,
considerable gains in a multihop setting [11]. Moreover, a
MAC-aware coding approach in multihop networks can lead
to even more considerable gains [25]. It remains to extend
our theory to incorporate these new factors.

10. REFERENCES

[1] M. N. A. Tehrani, A. Dimakis. SigSag: Iterative
detection through soft message-passing. In Proc. of
IEEE INFOCOM, 2011.

[2] N. Abramson. ALOHA System-Another alternative
for computer communications. In Proc. of Fall Joint
Computer Conf., 1970.

[3] D. Bertsekas and R. Gallager. Data networks (2nd
ed.). Upper Saddle River, NJ, US: Prentice-Hall, Inc.,
1992.

[4] V. Bharghavan, A. Demers, S. Shenker, and L. Zhang.
MACAW: A medium access protocol for wireless lans.
In Proc. of ACM SIGCOMM, 1994.

[5] H. Bolcskei, R. U. Nabar, O. Oyman, , and A. J.
Paulraj. Capacity scaling laws in MIMO relay
networks. IEEE Transactions on Wireless
Communications, 5(6):1433–1443, 2006.

[6] S. Borade, L. Zheng, and R. Gallager.
Amplify-and-forward in wireless relay networks: Rate,
diversity and network size. IEEE Transactions on
Information Theory, 53(10):3302–3318, 2007.

[7] A. Cornejo, N. Lynch, S. Viqar, and J. Welch. A
neighbor discovery service using an abstract MAC
layer. In Proc. of the Allerton Conf. on
Communication, Control, and Computing, pages
1460–1467, 2009.

[8] A. Cornejo, S. Viqar, and J. Welch. Reliable neighbor
discovery for mobile ad hoc networks. In Proc. of 6th
DIALM-POMC, pages 63–72, 2010.

[9] S. Gollakota and D. Katabi. ZigZag decoding:
Combating hidden terminals in wireless networks. In
Proc. of ACM SIGCOMM, pages 159–170, 2008.

[10] S. Katti, S. Gollakota, and D. Katabi. Embracing
wireless interference: Analog network coding. In Proc.
of ACM SIGCOMM, pages 397–408, 2007.

[11] S. Katti, H. Rahul, W. Hu, D. Katabi, M. Médard,
and J. Crowcroft. XORs in the air: Practical wireless
network coding. IEEE/ACM Transactions on
Networking, 16(3):497–510, 2008.

[12] D. K. Kaynar, N. Lynch, R. Segala, and
F. Vaandrager. Theory of Timed I/O Automata,
Second Edition. Synthesis Lectures on Computer
Science. Morgan-Claypool Publishers, 2010.

[13] M. Khabbazian, D. Kowalski, F. Kuhn, and N. Lynch.
Decomposing global broadcast algorithms using
abstract MAC layers. MIT Technical Report
(MIT-CSAIL-TR-2011-010), February 2011.

[14] M. Khabbazian, F. Kuhn, D. Kowalski, and N. Lynch.
Decomposing broadcast algorithms using abstract
MAC layers. In Proc. of 6th DIALM-POMC, pages
13–22, 2010.

[15] M. Khabbazian, F. Kuhn, N. Lynch, M. Medard, and
A. Parandeh-Gheibi. Mac design for analog network
coding. MIT Technical Report
(MIT-CSAIL-TR-2010-036), July 2010.

[16] F. Kuhn, N. Lynch, and C. Newport. The abstract
MAC layer. MIT Technical Report
(MIT-CSAIL-TR-2009-021), May 2009.

[17] F. Kuhn, N. Lynch, and C. Newport. The abstract
MAC layer. In Proc. of the Int. Symp. on Distributed
Computing, pages 48–62, 2009.

[18] F. Kuhn, N. Lynch, and C. Newport. The abstract
MAC layer. To appear in special issue of Distributed
Computing, 2010.

[19] I. Maric, A. Goldsmith, and M. Médard. Analog
network coding in the high SNR regime. invited paper,
ITA Workshop, 2010.

[20] I. Maric, A. Goldsmith, and M. Médard. Analog
network coding in the high SNR regime. In Proc. of
Wireless Network Coding Workshop, 2010.

[21] S. Mitra. A Verification Framework for Hybrid
Systems. PhD thesis, Massachusetts Institute of
Technology, 2007.

[22] A. ParandehGheibi, J. Sundararajan, and M. Médard.
Collision helps - algebraic collision recovery for
wireless erasure networks. In Proc. of Wireless
Network Coding Workshop, 2010.

[23] D. Wischik and D. Shah. MAC3: Medium access
coding & congestion control. Presentation at the
Newton Institute for Mathematics, 2010.

[24] S. Zhang, S. Liew, , and P. Lam. Hot topic: Physical
layer network coding. In Proc. of ACM MOBICOM,
pages 358–365, 2006.

[25] F. Zhao and M. Médard. On analyzing and improving
COPE performance. In ITA Workshop, January 2010.

