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Abstract In sequential event prediction, we are given a “sequence database” of past
event sequences to learn from, and we aim to predict the next event within a cur-
rent event sequence. We focus on applications where the set of the past events has
predictive power and not the specific order of those past events. Such applications
arise in recommender systems, equipment maintenance, medical informatics, and
in other domains. Our formalization of sequential event prediction draws on ideas
from supervised ranking. We show how specific choices within this approach lead to
different sequential event prediction problems and algorithms. In recommender sys-
tem applications, the observed sequence of events depends on user choices, which
may be influenced by the recommendations, which are themselves tailored to the
user’s choices. This chicken-and-egg problem leads to sequential event prediction
algorithms involving a non-convex optimization problem. We apply our approach
to an online grocery store recommender system, email recipient recommendation,
and a novel application in the health event prediction domain.

Keywords Sequential Event Prediction · Supervised Ranking · Recommender
Systems

1 Introduction

Sequential event prediction refers to a wide class of problems in which a set of ini-
tially hidden events are sequentially revealed. The goal is to use the set of revealed
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events, but not necessarily their order, to predict the remaining (hidden) events
in the sequence. We have access to a “sequence database” of past event sequences
that we can use to design the predictions. Predictions for the next event are up-
dated each time a new event is revealed. There are many examples of sequential
prediction problems. Medical conditions occur over a timeline, and the conditions
that the patient has experienced in the past can be used to predict conditions that
will come (McCormick et al, 2011). Music recommender systems, e.g. Pandora, use
a set of songs for which the user has revealed his or her preference to construct a
suitable playlist. The playlist is modified as new preferences are revealed. Online
grocery stores such as Fresh Direct (in NYC) use the customer’s current shopping
cart to recommend other items. The recommendations are updated as items are
added to the basket. Motivated by this application, “sequential event prediction”
was formalized by Rudin et al (2011, 2012), who created a theoretical foundation
along with some simple algorithms based on association rules. In this work, we
present optimization-based algorithms for sequential event prediction. These al-
gorithms are based on the principle of empirical risk minimization. We apply our
algorithms to data from two applications: an online grocery store recommender
system, and medical condition prediction.

Recommender systems are a particularly interesting example of sequential
event prediction because the predictions are expected to influence the sequence
(e.g., Senecal and Nantel, 2004), and any realistic algorithm should take this into
account. For instance, there has recently been work showing that measurements
of user behavior can be used to improve search engine rankings (Agichtein et al,
2006a,b). For an online grocery store recommender system, items are added to
the basket one at a time. The customer may not have an explicit preference for
the order in which items are added, rather he or she may add items in whichever
order is most convenient. In particular, the customer may add items in the order
provided by the recommender system, which means the predictions actually alter
the sequence in which events appear. Our formulation allows for models of user
behavior to be incorporated while we learn the recommender system. In the case
where users add items top-down according to the recommendations, the result is
a non-standard optimization problem. Specifically, there are smooth, convex re-
gions where the order in which items are added to the basket remains the same,
punctuated with discontinuities. Even though the optimization problem is discon-
tinuous, we exploit the structure in the objective to show how a good solution
can be found. Namely, we use convex programming within smooth regions and a
simulated annealing strategy to traverse discontinuities.

The same formulation used for the online grocery store recommender system
can be directly applied to email recipient recommendation. Given a partial list
of recipients on an email, we wish to predict the remaining recipients. An email
recipient recommendation algorithm can be a very useful tool; an algorithm for
this purpose was recently implemented on a very large scale by Google and is
integrated into the Gmail system used by millions of people (Roth et al, 2010).

Medical condition prediction is a new yet active area of research in data mining
(Davis et al, 2010; McCormick et al, 2011). Accurate predictions of subsequent
patient conditions will allow for better preventative medicine, increased quality of
life, and reduced healthcare costs. Rather than a sequence of single items, the data
comprise a sequence of sets of conditions. Our formulation can be made to handle
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Fig. 1 An illustration of the online grocery store recommender system, in which items from
an unordered shopping list are sequentially added to the user’s basket. At each time step, the
set of items in the basket is used to predict future items that will be added.

sequences of sets, and we apply it to a medical dataset consisting of individual
patient histories.

The sequential event prediction problems we consider here are different from
time-series prediction problems, that one might handle with a Markov chain. The
recommender system problem has no intrinsic order in which groceries should be
added to the basket, and only the set of items in the basket are useful for predicting
the next one rather than the order in which those items were placed into the basket.
Figure 1 gives an illustration of this point. For instance, at time t = 2, apples and
cherries are in the basket and are together used to predict what will be added
next. The fact that apples were added before cherries is not necessarily useful.
In the medical condition prediction problem, collections of conditions occur at
different time steps, and we use all past collections of conditions to predict the
next collection. Figure 2 shows a sequence of these collections of conditions as
they occur over time. For instance, at time t = 1, we use the entire collection of
conditions {Hypertension, Sore throat, Gastric Ulcer} to make a prediction about
the next collection. At time t = 2, we use the two collections {Hypertension,
Sore Throat, Gastric Ulcer} and {Hypertension, Influenza} to make a prediction
about the following time step. The collections of conditions occur sequentially in
a certain order, however each collection is itself an unordered set of conditions.
For example, it might not be sensible at t = 2 to say that Hypertension preceded
Influenza. On the surface, the online grocery store recommender system and the
medical condition prediction problem seem quite different, but the methodology
we develop for both problems is quite similar, and could be adapted to a wide
range of other sequential event prediction problems.

We treat each step of sequential event prediction as a supervised ranking prob-
lem. Given a set of revealed events from the current sequence, our algorithms rank
all other possible events according to their likelihood of being a subsequent event
in the sequence. The accuracy of our prediction is determined by how far down
the list we need to look in order to find the next item(s) to be added.

Section 2.1 gives the formulation for the online grocery store recommender sys-
tem. Section 2.2 develops the formulation for medical condition prediction. Section
2.4 contains optimization strategies and algorithms. Section 3 contains experiments
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Fig. 2 An illustration of the medical condition prediction problem, in which collections of
medical conditions occur at various time steps. At each time step, we use past collections of
conditions to predict conditions that will subsequently be presented.

for the three applications. Our approach synthesizes ideas from supervised rank-
ing in machine learning, convex optimization, and customer behavior modeling to
produce flexible and powerful methods that can be used broadly for sequential
event prediction problems.

2 Supervised Ranking and Sequential Events

We start with the formulation for the online grocery store recommender system,
and then develop the formulation for medical condition prediction. We then show
how these formulations fit into a unified framework.

2.1 Online grocery store recommender system

The online store has an inventory of N items, Z being the set of these items.
Customer i comes to the store with a shopping list of items to be purchased
Xi ⊆ Z. The length of a particular shopping list, |Xi|, can vary from 1 to N and
is denoted Ti. A session begins with an empty basket and items from the list are
sequentially added to the basket at time steps t = 1, . . . , Ti. The item added to
basket i at time t is denoted zi,t. The entire basket at time t is denoted xi,t and
is equal to ∪tj=0zi,j . The items in the basket xi,t are also called “revealed events.”
The items that are on the shopping list that are not yet in the basket, Xi \xi,t, are
called “hidden events.” The basket is initially empty, xi,0 = zi,0 = ∅, and the final
basket xi,Ti

is equal to the shopping list Xi. Training is done using a collection of
m shopping lists, denoted Xm

1 . For the purpose of this paper, the recommender
system is designed to be a tool to assist the customer, i.e., there is no motive to
recommend higher priced items, promote sale items, etc., although these could be
incorporated in an extended version of our formulation.

The core of our supervised ranking method for sequential event prediction is
a ranking model of the relationship between items in the basket (revealed events)
and items that have not yet been added to the basket (hidden events). The rank-
ing model is a scoring function f(xi,t, a) that, given the current basket xi,t, scores
each item a ∈ Z \ xi,t according to the predicted likelihood that it is on the shop-
ping list. Ideally we would like f(xi,t, a) to be related to P(a|xi,t), the conditional
probability of adding a given that the items in xi,t have been added. The predic-
tions will be made by ordering the items in descending score, so we need only that
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f(xi,t, a) is monotonically related to P(a|xi,t) in order for the predictions to be
accurate. The list of items ranked according to the scoring function will be called
the “recommendation list.” Note that the recommendation list is ordered, whereas
the shopping list is unordered.

Our scoring function relies on a set of real-valued variables {λa,b}a,b to model
the influence that itemset a has on the likelihood that item b will subsequently be
added, for each itemset-item pair that we are willing to consider. Throughout the
paper we let A be the allowed set of itemsets, and we introduce a variable λa,b for
every a ∈ A and for every b ∈ Z. If itemset a and item b are likely to be purchased
together, λa,b will be large and positive. Also, λa,b can be negative in order to
model negative correlations between items that are not purchased together. The
influences of the itemsets in the basket are combined linearly to yield the score
for a given item. For example, suppose the basket contains items a1 and a2 and
A contains all itemsets with size less than or equal to 1. Item b is then scored as
f({a1, a2}, b;λ) = λ∅,b + λa1,b + λa2,b. For a general basket xi,t, the score of item
b is:

f(xi,t, b;λ) :=
∑

a∈A s.t.
a∈xi,t

λa,b. (1)

Our scoring model uses a total of |A|N variables: λ ∈ R|A|N . We focus primarily on
the straightforward implementationA = {all itemsets of size less than or equal to 1}.
The itemsets of size 1 give variables λa,b ∀a, b ∈ Z that describe pairwise influences
between items. The empty itemset gives rise to “base” scores λ∅,b that model the
likelihood of choosing item b in the absence of any information about the basket.
In this implementation, the number of variables is |A|N = N2 +N .

The dimensionality of the problem can be controlled by limiting the set |A|,
for instance using a maximum itemset size or a minimum support requirement,
where elements of A must be found often enough in the dataset. Alternatively, the
dimensionality of the problem could be reduced by separating items into categories
and using λA,b to model the influence of having any item from category A on item
b. For example, a1 and a2 could represent individual flavors of ice cream, and A

the category “ice cream.” The choice of which itemsets to consider is a feature
selection (or model selection) problem.

We will use the training set to fit vector λ. This means that we will construct
λ so that the scoring function f makes accurate predictions on the training set.
For the ith shopping list at time step t, we will define a set of items Li,t ⊂ Z that
should be ranked strictly higher than some other set of items Ki,t ⊂ Z on the
recommendation list. The value of the loss function depends on how much this is
violated; specifically, we lose a point every time an item in Ki,t is ranked above
an item in Li,t. We will subsequently explore different definitions of Li,t and Ki,t

and their effect on the recommendation list. The loss function, evaluated on the
training set of m shopping lists, is:

R0-1(f,Xm
1 ;λ) :=

1

m

m∑
i=1

Ti−1∑
t=0

1

Ti

1

|Ki,t|
1

|Li,t|
∑

l∈Li,t

∑
k∈Ki,t

1[f(xi,t,k;λ)≥f(xi,t,l;λ)].

(2)
In our algorithms, we use the exponential loss (used in boosting), a smooth up-
per bound on R0-1. Specifically, we use that 1[b≥a] ≤ eb−a, and add an `2-norm
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regularization term:

Rexp(f,Xm
1 ;λ) :=

1

m

m∑
i=1

Ti−1∑
t=0

1

Ti

1

|Ki,t|
1

|Li,t|
∑

l∈Li,t

∑
k∈Ki,t

ef(xi,t,k;λ)−f(xi,t,l;λ) + β||λ||22, (3)

where β is a parameter that determines the amount of regularization.
We now discuss how the sequence of items will be ordered during training, and

then will specify this formulation using two choices of Li,t and Ki,t.

2.1.1 Fitting a sequential prediction model to an unordered set

Although the shopping list is unordered, the predictions at each time step depend
on the set of items that have already been added to the basket, and thus depend
indirectly on the order in which items are added to the basket. To fit the model
variables to the training data, we must impose an order for the items to be added
to the basket. Here we allow the predictions to influence the ordering of the items.
Specifically, we assume that the customer prefers convenience, in that the next
item added to the basket is the most highly recommended item on their shopping
list. We then order the items according to:

zi,t+1 ∈ argmax
a∈Xi\xi,t

f(xi,t, a;λ). (4)

It may be that the argmax is not unique, i.e., there is a tie. Here we break ties
randomly to choose the next item. The order in which items are added to the basket
is a function of the model variables λ. When fitting the model variables, we do
not order the items a priori, rather we allow the ordering to change during fitting,
together with the model variables. Our assumption in (4) could be replaced by
an application-specific model of user behavior; (4) is not an accurate assumption
for all applications. On the other hand, a recommender system trained using this
assumption has properties that are useful in real situations, as we discuss below.

We will train the machine learning model to minimize the loss function (3)
with respect to variables λ, using (4). The qualitative effect of (4) is to put the
items that are (conditionally) more likely to be purchased into the basket sooner,
while leaving unlikely items for later. Once these items are in the basket, they
will be used for making the subsequent predictions. Thus the model variables
that generally play the largest role in the learning, and that are most accurately
estimated, correspond to items that are more likely to be purchased.

One could imagine training the model using all permutations of each shopping
list in the training set as an alternative to (4). As another alternative, one could
randomly permute the shopping lists and include only that ordering. Even though
these approaches potentially capture some realistic situations that our ordering
assumption does not, we argue that it is not a good idea to do either of these.
First, the number of possible permutations on even a moderately sized training
set makes it computationally intractable to train using all possible permutations.
Second, if the users do adhere, even loosely, to a behavioral strategy such as our
assumption in (4), the model would be forced to fit many permutations that would
rarely occur, and would treat those rare situations as equally important to the ones
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more likely to occur. For example, a randomly permuted shopping list could place
conditionally unlikely items at the beginning of the ordering. This could actually
create bias against the correct recommendations.

Under the assumption of (4), we will now work with two natural constructions
of the sets Li,t and Ki,t used to fit and evaluate the model. The resulting loss
functions can just as easily be applied to ordered data, where the sequence of
events is not influenced by the recommender system, without the assumption of
(4), as we show in our email recipient recommendation experiment.

2.1.2 List loss: recommend the whole list

In the first loss formulation, which we call the list loss, the model attempts to rank
the entire shopping list higher than all items that are not on the shopping list,
at every time step. A perfect model would have f(xi,t, l;λ) > f(xi,t, k;λ), for all
l ∈ Xi \ xi,t, and k ∈ Z \Xi, and for all i and t. To do this, we use (3) with Li,t

as the set of all items remaining on the shopping list, that is, Li,t := Xi \ xi,t,
and Ki,t as the set of items not on the shopping list, Ki,t := Z \Xi. Equation (2)
becomes:

Rlist
0-1(f,Xm

1 ;λ) :=

1

m

m∑
i=1

Ti−1∑
t=0

1

Ti(N − Ti)(Ti − t)

Ti∑
l=t+1

∑
k∈Z\Xi

1[f(xi,t,k;λ)≥f(xi,t,zi,l;λ)] (5)

and (3) then becomes:

Rlist
exp(f,Xm

1 ;λ) :=

1

m

m∑
i=1

Ti−1∑
t=0

1

Ti(N − Ti)(Ti − t)

Ti∑
l=t+1

∑
k∈Z\Xi

ef(xi,t,k;λ)−f(xi,t,zi,l;λ) + β||λ||22. (6)

2.1.3 Item loss: how far down the list is the next item?

We may not need the entire shopping list near the top of the recommendation list
as in the list loss, rather we might need only that one item from the shopping
list is highly ranked. In this way, the loss associated with a particular basket will
depend only on the highest ranked item that is still on the shopping list. We call
this formulation the item loss. Under the item loss, a perfect prediction would have
the top ranked item on the shopping list, that is maxa∈Xi\xi,t

f(xi,t, a;λ), at the
top of the recommendation list:

max
a∈Xi\xi,t

f(xi,t, a;λ) > f(xi,t, k;λ), for all k ∈ Z \Xi and for all i and t.

This can be realized using (2), where Li,t is the highest ranked item that remains
on the shopping list, which by assumption (4) is zi,t+1, and where Ki,t is the set
of items that are not on the shopping list, Z \Xi. Equation (2) is then equal to:

Ritem
0-1 (f,Xm

1 ;λ) :=
1

m

m∑
i=1

Ti−1∑
t=0

1

Ti(N − Ti)
∑

k∈Z\Xi

1[f(xi,t,k;λ)≥f(xi,t,zi,t+1;λ)] (7)
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and (3) becomes:

Ritem
exp (f,Xm

1 ;λ) :=
1

m

m∑
i=1

Ti−1∑
t=0

1

Ti(N − Ti)
∑

k∈Z\Xi

ef(xi,t,k;λ)−f(xi,t,zi,t+1;λ)+β||λ||22.

(8)
As an extreme example, suppose the recommendation list has a single item from

the shopping list at the top, and the rest of the shopping list at the bottom. The
list loss would be large, while the item loss would be small or zero. Qualitatively,
item loss forces a form of rank diversity which we will now discuss.

At the first time step t = 0, there is no knowledge of the event sequence so the
same recommendation list will be used for all shopping lists. Let us consider how
this recommendation list might be constructed in order to achieve a low item loss
for the following collection of example shopping lists:

Shopping list 1: onion, garlic, beef, peppers
Shopping list 2: onion, garlic, chicken
Shopping list 3: onion, garlic, fish
Shopping list 4: onion, garlic, lemon
Shopping list 5: onion, chicken, peppers
Shopping list 6: flour, oil, baking powder
Shopping list 7: flour, sugar, vanilla
Shopping list 8: flour, sugar, yeast

In these shopping lists, the three most frequent items are onion, garlic, and flour.
Using item loss, we incur loss for every shopping list that does not contain the
highest ranked item. A greedy strategy to minimize item loss places the most
common item, onion, first on the recommendation list, thus incurring 0 loss for
shopping lists 1-5. The second place in the recommendation list will not be given
to the second most frequent item (garlic), rather it will be given to the most
frequent item among shopping lists that do not contain onion. This means the
second item on the recommendation list will be flour. With onion ranked first and
flour ranked second, we incur 0 loss on shopping lists 1-5, and the loss is one for
each of shopping lists 6, 7, and 8. The ranks of the remaining items do not matter
for this time step, as these two ingredients have satisfied every shopping list. This
greedy strategy is the same as the greedy strategy for the maximum coverage
problem, in which we are given a collection of sets with some elements in common
and choose k sets to cover as many elements as possible. This algorithm has been
used for rank diversification (see, for instance, Radlinski et al, 2008). This is also
the same strategy as used in decision lists (Rivest, 1987). This greedy strategy
would be an efficient strategy to minimize item loss if we made a prediction only
at t = 0, however, it might not truly minimize loss, and even if it does happen
to minimize loss at time t = 0, it might not minimize loss over all time steps. In
practice, we find that minimizing item loss produces a diverse ranked list at each
time step: it attempts to ensure that an item from each shopping list is ranked
highly, as opposed to simply ranking items based on popularity.

The loss functions in (6) and (8) can also be used in the case of ordered data,
that is, when the sequence {zi,t}t is pre-specified rather than modeled using (4).
In our email recipient recommendation experiment, we treat the data as ordered
and use exactly the loss function in (6).
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2.2 Patient condition prediction

Here we tailor this formulation to patient condition prediction in the context of
data from a large clinical trial. In this trial, patients visited the doctor periodi-
cally and reported all medical conditions for which they were taking medications.
The names of the medical conditions were taken from the Medical Dictionary for
Regulatory Activities (MedDRA). The dataset includes activities such as vitamin
supplementation and flu shots as medical “conditions,” but mainly consists of con-
ditions that are not voluntarily chosen by the patients. We chose to predict both
voluntary and involuntary conditions/activities.

The notation is similar to that of the formulation in (2): Patient i makes Ti
visits to a doctor at time steps t = 1, . . . , Ti. At time t, he or she reports a set
of conditions zi,t ⊆ Z where Z is the set of all possible conditions and |Z| = N .
Note that in the online grocery store recommender system zi,j was a single item,
whereas for this problem zi,j is a set of conditions. A patient history is a record of
which conditions were reported at which times and forms a sequence of sets. We
treat the patient visits as ordered in time, as this order may be a useful feature
for prediction. However, each visit itself consists of a set of symptoms which we
treat as unordered. We denote the full patient history for patient i at time t as
xi,t = {zi,j}j=1,...,t. Given the current patient history, we predict the next set of
conditions in the sequence, that is, we use xi,t to predict the set zi,t+1. As before,
we use a scoring function fcond(xi,t, b) to score the likelihood that condition b is in
zi,t+1 given the patient history xi,t. The score of condition b is the base score of b,
namely λ∅,b, combined linearly with the influences of conditions from the patient
history:

fcond(xi,t, b;λ) := λ∅,b +
t∑

j=1

∑
a∈zi,j

λa,b. (9)

This model can be specialized further if desired. For instance, it may be that
conditions that occurred far in the past are less informative about the future than
conditions that occurred recently. In this case, we could add weights to (9) which
reduce the influence of conditions as the elapsed time increases. Additionally, the
score in (9) can easily be extended to include itemsets of size larger than 1.

We denote a complete patient history as Xi = xi,Ti
and train the algorithm

using m randomly selected complete patient histories. Unlike the online grocery
store recommender system, in patient symptom prediction it is not natural to
make a prediction before the patient’s first visit (t = 0), thus we make predictions
only at visits t = 1, . . . , Ti−1. Also, the same condition can occur at multiple visits
throughout the patient history, whereas in the online grocery store recommender
system items appear on a shopping list only once.

Some patients present chronic, pre-existing conditions that were present be-
fore their first visit and persisted after their last visit. Common chronic, pre-
existing conditions include Hypertension (high blood pressure), Hypercholestero-
laemia (high cholesterol), and Asthma. It is possible for a condition to be chronic,
pre-existing in one patient, but not in another. For instance, some patients de-
veloped Hypertension during the study, so Hypertension was not pre-existing in
these patients. We denote the set of chronic, pre-existing conditions for patient i as
Ci ⊆ Z, and place each chronic, pre-existing condition in the set of conditions for
each visit: c ∈ zi,j for all c ∈ Ci, for j = 1, . . . , Ti, and for all i. Chronic, pre-existing



10 Benjamin Letham et al.

conditions were used to make predictions for subsequent conditions, but we did
not attempt to predict them because predicting the recurrence of a chronic condi-
tion is trivial. We removed chronic, pre-existing conditions from the loss function
by defining z̃i,j = zi,j \ Ci as the set of reported conditions excluding chronic,
pre-existing conditions. We then adapt the framework of (2) and (3) for training
by setting Li,t = z̃i,t+1, the correct, subsequent set of non-trivial conditions, and
Ki,t = Z \ zi,t+1, all other possible conditions. Then (2) becomes:

Rcond
0−1 (fcond, Xm

1 ;λ) :=
1

m

m∑
i=1

Ti−1∑
t=1

[
1

(Ti − 1)(N − |zi,t+1|)
×

∑
k∈Z\zi,t+1

∑
l∈z̃i,t+1

1

|z̃i,t+1|
1[fcond(xi,t,k;λ)≥fcond(xi,t,l;λ)]

]
. (10)

If at a particular visit the only conditions reported were chronic, pre-existing
conditions, then z̃i,t+1 = ∅ and the inner most sum is simply not evaluated for
that i and t to avoid dividing by zero with |z̃i,t+1|. We further write (3) as:

Rcond
exp (fcond, Xm

1 ;λ) :=
1

m

m∑
i=1

Ti−1∑
t=1

[
1

(Ti − 1)(N − |zi,t+1|)
×

∑
k∈Z\zi,t+1

∑
l∈z̃i,t+1

1

|z̃i,t+1|
ef

cond(xi,t,k;λ)−fcond(xi,t,l;λ)

]
+ β||λ||22. (11)

2.3 A general view of sequential event prediction

The patient condition prediction problem in Section 2.2 generalizes the idea in
Section 2.1 from each event being a single item to each event being a set of items.
In other words, zi,t can be considered generally as a set, potentially of cardinality
1. The loss functions in (5), (7), and (10) were each shown to be specifications
of the general loss function (2), which can be considered to be a unified loss
function for sequential event prediction. Many problems can be expressed in this
framework, often without requiring much additional specification as we show with
email recipient recommendation. The loss function in (2) should be modified to
reflect the evaluation metric relevant to each particular problem, as we discuss
further when discusing related works in Section 4.

2.4 Optimization strategies and algorithms

The model variables λ are chosen to minimize the loss on the training set by
optimizing the appropriate loss function (Equation 6, 8, or 11). Our formulation
involves N2 +N variables (more generally, |A|N), which may be prohibitive, both
because of the computational complexity of the optimization problem as well as the
ability to accurately determine so many variables from a limited training set. First
we will present a strategy for constraining many of the variables and significantly
reducing the size of the optimization problem. Then we will present algorithms
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for optimization separately for ordered problems, like patient condition predic-
tion, and for unordered problems under the assumption of (4). Our optimization
algorithm for unordered problems are written for the purpose of exposition for
itemsets with size 0 or 1, but can easily be extended to general itemsets.

2.4.1 ML-constrained minimization

We have used two main strategies for fitting the model variables to the training set.
In our first strategy, which we will call one-stage minimization, each variable λa,b
is a free variable in the minimization problem, leading to an optimization problem
involving |A|N variables. Our second strategy, which we call Maximum likelihood

(ML)-constrained minimization, reduces the size of the optimization problem by,
for every non-empty itemset a, forcing each λa,b to be proportional to P̂(b|a), the
ML estimate of the conditional probability of having item b in a basket given that
itemset a is in the basket. Specifically, we set

λa,b = µaP̂(b|a) (12)

where µa is a free variable fit during the optimization and does not depend on
b. P̂(b|a) is estimated directly from the training data, prior to any optimization,
as the proportion of shopping lists containing b that also contain a. Then, the
ML-constrained model is:

fML(xi,t, b;λ∅,µ) := λ∅,b +
∑

a∈A\∅ s.t.
a∈zi,t

µaP̂(b|a). (13)

We are in essence modeling the full conditional probability P(b|xi,t) as a linear
mixture of the single-itemset conditional probabilities P(b|a) for every allowed
itemset a in xi,t. To use this strategy, we first compute the ML estimates of the
conditional probabilities. Then the N base scores λ∅,a and the |A| proportionality
coefficients µa are fit during the minimization, for an optimization problem on
|A| + N variables. Appropriate restrictions on |A| (for example, itemsets of size
less than or equal to 1) lead to an optimization problem over O(N) variables.
These variables are fit by minimizing the analogous list loss or item loss function:

Rlist
exp(fML, X

m
1 ;λ∅,µ) :=

1

m

m∑
i=1

Ti−1∑
t=0

[
1

Ti(N − Ti)(Ti − t)
×

Ti∑
l=t+1

∑
k∈Z\Xi

efML(xi,t,k;λ∅,µ)−fML(xi,t,zi,l;λ∅,µ)

]
+ β||λ∅||22 + β||µ||22. (14)

Ritem
exp (fML, X

m
1 ;λ∅,µ) :=

1

m

m∑
i=1

Ti−1∑
t=0

[
1

Ti(N − Ti)
×

∑
k∈Z\Xi

efML(xi,t,k;λ∅,µ)−fML(xi,t,zi,t+1;λ∅,µ)

]
+ β||λ∅||22 + β||µ||22. (15)
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For patient condition prediction, P̂(b|a) is the ML estimate of the probability
that condition b will occur at a future visit given that condition a is currently
presented. The ML-constrained model corresponding to (9) is then

fcondML (xi,t, b;λ∅,µ) := λ∅,b +
t∑

j=1

∑
a∈zi,j

µaP̂(b|a), (16)

and the loss function to be minimized is defined similarly to (11) as follows:

Rcond
exp (fcondML , Xm

1 ;λ∅,µ) :=
1

m

m∑
i=1

Ti−1∑
t=1

∑
k∈Z\zi,t+1

[
1

(Ti − 1)(N − |zi,t+1|)
×

∑
l∈z̃i,t+1

1

|z̃i,t+1|
ef

cond
ML (xi,t,k;λ∅,µ)−fcond

ML (xi,t,l;λ∅,µ)

]
+ β||λ∅||22 + β||µ||22. (17)

In the sections that follow, we will describe optimization algorithms in terms
of λ. All of these algorithms are suitable for the optimization step in the ML-
constrained minimization strategy by simply replacing λa,b with µaP̂(b|a), where

P̂(b|a) has already been computed.

2.4.2 Optimization for ordered problems

For patient condition prediction, (11) and (17) are convex in λ and the minimiza-
tion can be done easily using any algorithm for unconstrained nonlinear optimiza-
tion. For the recommender system, when the items are ordered (as they are in our
email recipient recommendations experiment) the loss functions (6), (8), (14), and
(15) are all convex. Because the number of variables can be very large, particularly
using the one-stage minimization strategy, here we use the limited memory im-
plementation of the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm (Byrd
et al, 1995; Zhu et al, 1997).

2.4.3 Optimization for the online grocery store recommender system

For the recommender system using the assumption in (4), the basket at any time
step is itself a function of the recommender system, i.e., of λ. Small changes
in λ can change zi,t+1, which in turn changes the basket, and thus changes all
subsequent predictions. This can significantly alter the value of the loss, and is
why the loss functions in (6) and (8) are generally discontinuous. To illustrate
the discontinuity, suppose there are three items in the inventory, bread, milk, and
eggs, and that a customer has only bread and milk on his or her shopping list. We
will take the variables λa,b to be, from row a to column b:

λa,b bread milk eggs

bread 0 1 0
milk 0 0 1
eggs 0 0 0
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Fig. 3 An illustration of how the model variables can be partitioned into regions that lead
to different orderings of the items in each shopping basket. The borders between regions
correspond to selections of model variables for which the argmax in (4) is not unique, i.e.,
there is a tie. The regions are polyhedral, and the objective function is convex over each region
but discontinuous at the borders.

Now consider two vectors of base scores [λ∅,bread, λ∅,milk, λ∅,eggs] which are arbi-

trarily close: λb
∅ = [0.5+ε, 0.5, 0] and λm

∅ = [0.5, 0.5+ε, 0]. We now show that even
though these sets of variables are arbitrarily close, they give very different values
of the objective function due to the ordering assumption of (4). Using λb

∅, bread
is the highest ranked item and will be the first item added to the basket, whereas
using λm

∅ , milk is the highest ranked item and will be the first item added to the
basket. On the next prediction in the sequence, if bread is in the basket then the
scores of milk and eggs are λ∅,milk +λbread,milk = 1.5 and λ∅,eggs +λbread,eggs = 0
respectively. Milk correctly has the higher score, and the loss is e−1.5. However, if
milk is the first item added, then on the next prediction in the sequence the scores
of bread and eggs are λ∅,bread + λmilk,bread = 0.5 and λ∅,eggs + λmilk,eggs = 1
respectively. Eggs is mistakenly given the highest score and we incur a larger loss
of e1−0.5 = e0.5. Thus, an ε-sized change in λ led to a large change in the value of
the objective.

The discontinuities occur at values of λ where there are ties in the ranked
list, that is, where the model is capable of producing multiple orderings. These
discontinuities partition the variable space into regions that correspond to different
orderings. Figure 3 is an illustration of how the space of λ is partitioned by different
orderings, with ties between items on the borders. The loss function is convex over
each region and discontinuities occur only at the region borders. We now show
that these regions are convex, which will lead to an optimization strategy.

Proposition 1 Take A the set of itemsets of size 1, along with the empty set. Let

Λz∗ be the set of λ ∈ RN2+N in one-stage minimization or (λ∅,µ) ∈ R2N in ML-

constrained minimization that can produce an ordering {z∗i,t}i,t under the assumption

of (4). Then, Λz∗ is a polyhedron.

Proof A particular ordering z∗ is produced when, at each time step, the next item
z∗i,t+1 has the highest score of the items in the shopping list. This needs to be true
for all training baskets i. The region of λ corresponding to ordering z∗ is, using
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one-stage minimization:

Λz∗ :=

{
λ : ∀i, t, z∗i,t+1 ∈ argmax

a∈Xi\x∗i,t
f(x∗i,t, a;λ)

}

=

λ : ∀i, t, z∗i,t+1 ∈ argmax
a∈Xi\x∗i,t

t∑
j=0

λz∗i,j ,a


where x∗i,t is z∗i,0 ∪ . . . ∪ z

∗
i,t. In other words, because z∗i,t+1 was chosen before z∗i,k

for all k > t + 1, it must be true that the score of z∗i,t+1 is greater than or equal
to the score of z∗i,k: f(x∗i,t, z

∗
i,t+1) ≥ f(x∗i,t, z

∗
i,k),∀k > t + 1. These constraints are

another way to define Λz∗ :

Λz∗ :=

{
λ :

t∑
j=0

λz∗i,j ,z
∗
i,t+1

≥
t∑

j=0

λz∗i,j ,z
∗
i,k
, (18)

i = 1, . . . ,m, t = 0, . . . , Ti − 2, k = t+ 2, . . . , Ti

}
.

Thus Λz∗ can be defined by a set of
∑m

i=1
1
2 (Ti − 1)Ti linear inequalities and

is a polyhedron. The result holds when using the ML-constrained minimization
strategy, for which

Λz∗ :=

{
λ∅,µ : λ∅,z∗i,t+1

+
t∑

j=1

µz∗i,j P̂(z∗i,t+1|z
∗
i,j) ≥ λ∅,z∗i,k

+
t∑

j=1

µz∗i,j P̂(z∗i,k|z
∗
i,j),

i = 1, . . . ,m, t = 0, . . . , Ti − 2, k = t+ 2, . . . , Ti

}
, (19)

which is also a collection of linear inequalities. ut

The proposition is true for each ordering z∗ that can be realized, and thus the
whole space can be partitioned into polyhedral regions. When the variables λ (or
equivalently µ) are constrained to a particular ordering Λz∗ , (6), (8), (14), and (15)
are convex because they are fixed positively weighted sums of convex functions.

2.4.4 Convex optimization within regions, simulated annealing between regions

Because Λz∗ is convex for each z∗, it is possible to find the optimal λ within Λz∗

using convex programming. Our goal is to minimize the loss across all possible
orderings z∗, so we need also to explore the space of possible orderings. Our first
approach is to use simulated annealing, as detailed in Algorithm 1, to hop between
the different regions, using convex optimization within each region.

Simulated annealing is an iterative procedure where λ is updated step by step.
Steps that increase the loss are allowed with a probability that depends on a
“temperature” variable. The temperature is decreased throughout the procedure
so that steps that increase the loss become increasingly improbable. The algorithm
begins with an initial ordering, then the minimizer within that region is found
by convex optimization. Then we use a simulated annealing step to move to a
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neighboring ordering, and the process is repeated. There are many “unrealizable”
orderings that can be achieved only by a trivial model in which all of the variables
λ equal the same constant so that the items are tied at every prediction. Thus,
randomly permuting the ordering as is usually done in simulated annealing will
often yield only trivial neighbors. An alternative strategy is to choose a direction
in the variable space (for example, the direction of gradient descent) and to step
in that direction from the current position of λ until the ordering changes. This
new ordering is a realizable neighbor and can be used to continue the simulated
annealing. Additional neighbors can be discovered by stepping in the variable space
in different directions, for instance orthogonal to the gradient. The move to the
new ordering is accepted with a probability that depends on the change in loss
between the optimal solutions for the two orderings, and the temperature variable.
This is done for a fixed number of steps, and finally the output is the best solution
that was encountered during the search.

Algorithm 1: A combination of convex optimization and simulated annealing
for fitting λ.

Data: Training set Xm
1 , number of simulated annealing steps TS , annealing schedule

Temp
Result: λbest

Begin with an initial ordering {zi,t}i,t
Form the constraints Λz associated with this ordering (Equation 18 or 19)
Solve the convex program λ∗ ∈ argminλ∈Λz

Rexp(f,Xm
1 ;λ) (Equation 6, 8, 14, or 15)

Set λbest = λ∗

for t = 1 to TS do
Find a neighboring ordering {z′i,t}i,t
Form the constraints Λz′ associated with the new ordering
Solve the convex program λ′∗ ∈ argminλ∈Λz′

Rexp(f,Xm
1 ;λ)

Sample a number q uniformly at random from [0, 1]
if exp((Rexp(f,Xm

1 ;λ∗)−Rexp(f,Xm
1 ;λ′∗))/Temp(t)) > q then

Accept this move: λ∗ = λ′∗

if Rexp(f,Xm
1 ;λ∗) < Rexp(f,Xm

1 ;λbest) then
λbest = λ∗

2.4.5 Gradient descent

When N is large, it can be expensive to solve the convex program at each step of
simulated annealing in Algorithm 1, particularly using the one-stage optimization
strategy which requires N2+N variables. One of the difficulties is operating on the
Hessian matrix, which contains more than N4 elements. It is possible to use a first-
order, constrained method such as projected gradient descent to solve the convex
program in Algorithm 1. However, projected gradient descent is known to behave
poorly when optimizing over polyhedral sets (Bertsekas, 1995), and we found that
it did not perform well in our experiments. Improvements on projected gradient
descent require a scaling matrix, which in this case would again have more than
N4 elements and could be prohibitively expensive for N large (Bertsekas, 1995).
It may be more efficient to use an unconstrained first-order method such as pure
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gradient descent. Variants of gradient descent, particularly stochastic gradient
descent, are known to have excellent scalability properties in large-scale learning
problems (Bottou, 2010). It is likely that a gradient descent algorithm will cross
the discontinuities, and there are no convergence guarantees. In Algorithm 2, we
ensure that the gradient descent terminates by imposing a limit on the number
of steps that increase the loss. We take as our result the best value that was
encountered during the search.

Algorithm 2: A gradient descent algorithm to fit λ.

Data: Training set Xm
1 , maximum number of steps that increase loss TG, step size γ

Result: λbest

Begin with some initial λ0 and the associated Rexp(f,Xm
1 ;λ0) (Equation 6, 8, 14, or

15).
Set: λbest = λ0

t = 0 (an index for all steps)
l = 0 (an index for steps that increase loss)
while l < TG do

Take a step of gradient descent:
λt+1 = λt − γ 5Rexp(f,Xm

1 ;λt)
if Rexp(f,Xm

1 ;λt+1) < Rexp(f,Xm
1 ;λbest) then

λbest = λt+1

if Rexp(f,Xm
1 ;λt+1) > Rexp(f,Xm

1 ;λt) then
l = l + 1

t = t+ 1

2.5 Baseline algorithms

There are not many baseline algorithms for sequential event prediction in the liter-
ature, and it is not clear how to adapt standard modeling techniques (e.g., logistic
regression) because they estimate full probabilities rather than partial probabili-
ties. The difficulties in using regression for the online grocery store recommender
system are discussed in Appendix A, and a more detailed discussion is in Rudin
et al (2012).

2.5.1 Association rules

Association rules are a tool from data mining that have been used for sequential
event prediction because they have the advantage of being able to model the
conditional probabilities directly. We will use a classic associative classification
algorithm as a baseline. In this context, an association rule is a rule “a → b,”
meaning that itemset a on the shopping list implies item b is also on the shopping
list. We define the confidence of rule “a→ b” to be the proportion of training lists
with itemset a that also have item b: Conf(a → b) = P̂(b|a) = #(a∪b)

#a . A natural
strategy for using association rules for sequential event prediction is to: 0) Specify
a set A of allowed itemsets. 1) Form all rules with left-hand side a an allowed
itemset in the basket and right-hand side b an item not in the basket. 2) For each
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right-hand side b, find the rule with the maximum confidence. 3) Rank the right-
hand sides (items not in the basket) in order of descending confidence, and use
this ranked list for predictions. This is the “max-confidence” algorithm, described
also by Rudin et al (2012).

In the online grocery store recommender system experiment, we set A to be
the set of itemsets of size less than or equal to 1. We use the email recipient rec-
ommendation experiment to demonstrate how all of the models and loss functions
generalize naturally to larger itemsets. In that experiment, we mine itemsets of
size up to 4 and use a minimum support requirement to control dimensionality,
where itemsets in A are required to appear in at least a certain fraction examples
in the dataset.

For patient condition prediction, a rule “a→ b” means that condition a implies
condition b at some future visit. For the max-confidence algorithm, we form all
rules with left-hand side a being a condition in the patient’s medical history, and
right-hand side b any of the non-chronic conditions.

2.5.2 Item-based collaborative filtering

There are a large number of collaborative filtering algorithms that have been
used for recommender systems. It is possible to use an item-based collaborative
filtering algorithm to make a prediction at each step in the sequence and so we use
cosine similarity item-based collaborative filtering (Sarwar et al, 2001) as a baseline
method. Cosine similarity is intended for a setting in which user i applies a rating
Ri,a to item a. To adapt it to sequential recommendations, we let Ri,a = 1 if user
i purchased item a, and 0 otherwise. For each item a, we construct the binary
“ratings” vector Ra = [R1,a, . . . , Rm,a]. We then compute the cosine similarity
between every pair of items a and b:

sim(a, b) =
Ra ·Rb

||Ra||2||Rb||2
. (20)

To make a prediction from a partial sequence xi,t, we score each item b as:

fsim(xi,t, b) :=

∑
a∈xi,t

sim(a, b)∑
a∈Z sim(a, b)

. (21)

In Section 4, we discuss in depth why item-based collaborative filtering is not a
natural fit for sequential event prediction problems. Nevertheless, since it is com-
monly used for similar problems, we use it as a baseline in one of our experiments.

3 Experiments and Discussion

We apply our method first to the patient condition prediction problem, then to the
online grocery store recommendation problem, and finally to the email recipient
recommendation problem. Each of the sequential event prediction strategies pre-
sented here (association rules, one-stage minimization, and ML-constrained mini-
mization) uses a set of values to describe the influence of event a on the subsequent
occurrence of event b. For association rules, the influence of a on b is Conf(a→ b),
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which is equivalent to the ML estimate P̂(b|a). Under ML-constrained minimiza-
tion, the influence variables are µaP̂(b|a), and the matrix of variables is thus ob-
tained by scaling each row of the association rule confidence matrix by µa. With
one-stage minimization, the influence variables are λa,b. We will give examples of
these influence variables for patient condition prediction and the online grocery
store recommender system, and discuss their interpretability. We then present
results from a large set of experiments showing that our method performs well
compared to the max-confidence association rule algorithm, and in the final set of
experiments, compared to cosine similarity item-based collaborative filtering.

3.1 Patient condition prediction

We applied our method to the medical histories of 2433 patients. Each patient
made multiple visits to the doctor, at an average of 6.4 visits per patient (standard
deviation, 3.0). At each visit, multiple conditions are reported, with an average of
3.2 conditions per visit (standard deviation, 2.0). We perform patient level predic-
tions, meaning for each patient we predict the conditions that the patient will ex-
perience in the future. Conditions came from a library of 1864 possible conditions.
Fitting model variables required an optimization problem on 3,476,360 variables
for the one-stage minimization strategy and 3,728 variables for ML-constrained
minimization.

To illustrate the behavior of our model, in Figure 4 we show the model influence
variables corresponding to the ten most frequent conditions, fitted to a randomly
selected set of 2190 (= 0.9× 2433) patients and normalized.

The association rule confidence matrix in Figure 4 shows Conf(a→ b) for each
pair of items in row a and column b. The high confidence values on the diagonal
indicate that the conditional probability of having these conditions in the future
given their past occurence is high. In many instances, but not all, these conditions
are chronic, pre-existing conditions. In addition to the high confidence values along
the diagonal, the rules with Hypertension and Nutritional support on the right-
hand side have higher confidences, in part because Hypertension and Nutritional
support are the most common conditions. The ML-constrained influence variables,
µaP̂(b|a), are a row-weighted version of the association rule confidence matrix, yet
the main features are different, and in fact the ML-constrained influence vari-
ables are similar to those of one-stage minimization, λa,b. With both minimization
strategies, the strength with which each condition predicts itself (the variables
on the diagonal) is greatly reduced. This is because in many instances these are
chronic, pre-existing conditions, and so they are excluded from the loss function
and the model has no reason to predict them. For both minimization strategies,
the variables along the top row show that Hypertension most strongly predicts
Hypercholesterolaemia, Prophylaxis, and Headache. Hypercholesterolaemia (high
cholesterol) is correlated with obesity, as is Hypertension, so they often occur to-
gether. Prophylaxis is preventative medicine which in this context almost always
means taking medications, such as aspirin, to preempt heart problems. Hyperten-
sion is a risk factor for heart problems, and so the connection with Prophylaxis is
also relevant. Finally, the frequency of Headaches is also known to increase with
obesity (Bigal et al, 2006). In our dataset, the reasons for Nutritional support are
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Fig. 4 An example of fitted model variables for the ten most frequent conditions in the patient
condition prediction problem, for one-stage minimization and ML-constrained minimization,
together with the association rule confidence matrix. This figure illustrates the differences
between the fitted variables of the different models. Row a column b is: Conf(a→ b) for asso-

ciation rules; µaP̂(b|a) for ML-constrained minimization; and λa,b for one-stage minimization.
Abbreviated symptoms are Nutritional support (Nutr. supp.), Hypercholesterolaemia (HCL),
Vitamin supplementation (Vit. suppl.), Gastroeophageal reflux disease (GERD), Hormone re-
placement therapy (HRT), and Hypothyroidism (Hypothyr.).

more varied so it is difficult to interpret the relation between Nutritional support
and Prophylaxis, Headache, and Hypertension.

To evaluate the performance of our method, we performed ten iterations of
random sub-sampling. For each iteration, we randomly sampled (without replace-
ment) a training set of 500 patients and a test set of 500 patients and applied
the max-confidence association rule algorithm, one-stage minimization, and ML-
constrained minimization. To set the amount of `2-norm regularization in the loss
function, β, we did 10-fold cross validation on each training set separately with
β = 0.001, 0.005, 0.01, 0.05, and 0.1. We then set β to the value that minimized the
mean error over the validation sets. With one-stage minimization, chosen values
of β ranged from 0.001 to 0.05, with β = 0.005 chosen most frequently. with ML-
constrained minimization β = 0.01 was always chosen. The error on the training
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Fig. 5 Training and test errors for patient condition prediction.

and test sets were evaluated using (10), and boxplots of the results across all 10
iterations are in Figure 5. When evaluating the test error in Figure 5, we excluded
conditions that were not encountered in the training set because these conditions
were impossible to predict and resulted in a constant error for all methods. The
median error including conditions not encountered in the training set was 0.22
for max-confidence association rules, 0.14 for one-stage minimization, and 0.14 for
ML-constrained minimization.

Our method, using both minimization strategies, performed very well compared
to max-confidence association rules, which seems to have had an overfitting prob-
lem, judging from the difference between training and test results. ML-constrained
minimization used far fewer variables than one-stage minimization (about 3000
compared to about 3.5 million) and generalized well.

3.2 Online grocery store recommender system

Our recommender system dataset is derived from the publicly available ICCBR
Computer Cooking Contest recipe book (ICCBR, 2011). The original dataset is
1490 recipes, each of which, among other things, contains a list of ingredients. We
treated the ingredients in each recipe as unordered items on a shopping list.

To illustrate the effect of the minimization strategy and the loss function, we
first fit the model to a reduced dataset consisting of the most popular 15 ingredi-
ents and recipes containing more than one of the top 15 ingredients. A randomly
selected set of 100 recipes was used to train the model using the convex program-
ming within regions, simulated annealing between regions algorithm (Algorithm 1).
The model was trained using both the one-stage minimization and ML-constrained
minimization strategies, for both the list loss and the item loss.

Figure 6 shows the ordered recommendations provided by the model to a user
with an empty basket (t = 0). These ranked lists are determined entirely by the
base scores λ∅.
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ML-constrained minimization One-stage minimization
Frequency Item loss List loss Item loss List loss

Salt Salt Salt Salt Salt
Onion Garlic Garlic Garlic Onion
Garlic Sugar Onion Sugar Garlic
Flour Onion Oil Onion Oil
Sugar Oil Water Flour Sugar
Water Water Sugar Milk Water
Butter Bell pepper Bell pepper Oil Flour
Pepper Pepper Milk Egg Butter

Oil Parsley Parsley Water Pepper
Egg Milk Egg Pepper Bell pepper

Bell pepper Flour Butter Bell pepper Egg
Vanilla Egg Pepper Butter Milk
Milk Butter Flour Parsley Parsley

Parsley Lemon juice Lemon juice Lemon juice Vanilla
Lemon Juice Vanilla Vanilla Vanilla Lemon Juice

Fig. 6 Ranked recommendations to a user with an empty basket, using a 15 item dataset.
In the first column, items are ranked according to their frequency. The remaining columns
present the ranked recommendations provided by the model for ML-constrained and one-stage
minimization, each under both the list loss and the item loss.

Subsequent recommendations are influenced by the items in the basket accord-
ing to λa,b or µaP̂(b|a). The normalized, fitted values of these variables are shown
in Figure 7 for the list loss. The main features of the influence variables in Figure
7 are numbered. The different features in Figure 7 are rooted in the relative base
scores (Figure 6) and the assumption from (4) that items are always added in the
order in which they are recommended. We now describe each numbered feature
individually:
Feature 1: There are two main clusters of ingredients that are commonly used
together: a baking cluster (vanilla, flour, sugar, egg, milk, and butter), and a cook-
ing cluster (onion, garlic, pepper, oil, bell pepper, parsley, and lemon juice). The
frequency ranking in Figure 6 shows that cooking recipes are more popular than
baking recipes.
Feature 2: The model variables associated with the cooking cluster are weak. This
is because, as seen in Figure 6, cooking ingredients have higher base scores and
will be chosen anyway.
Feature 3: The model variables associated with the baking cluster are much larger
than those of the cooking cluster because baking ingredients must overcome the
bias of lower base scores.
Feature 4: Lemon juice, parsley, and bell pepper have a negative influence on the
other cooking ingredients (salt, onion, garlic, pepper, and oil). These three ingre-
dients have the lowest base scores of the cooking ingredients and will be added
to the basket only after all other cooking ingredients from the recipe have been
added, so the negative influence variables often have no effect. Because these are
also the least common of the ingredients, their corresponding variables are rarely
used and are not fit accurately. (Recall that the size of the training set is 100
recipes.)
Feature 5: Baking ingredients predict the rare cooking ingredients (lemon juice,
parsley, and bell pepper), although not as strongly as they predict other baking
ingredients. Given one baking ingredient in the basket, there are likely to be more
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Fig. 7 Model influence variables for the online grocery store recommender system fit to a 15
item dataset using list loss. The element in row a column b is: Conf(a → b) for association

rules; µaP̂(b|a) for ML-constrained minimization; and λa,b for one-stage minimization. The
large, overlayed numbers correspond to main features which are described in the text.

baking ingredients in the basket. Once all of the baking ingredients have been
added to the basket, the rare cooking ingredients are the next most likely ingre-
dients in a baking recipe. This feature cannot be present in the ML-constrained
minimization variables because there each row must be proportional to the corre-
sponding row in the association rule confidence matrix.
Feature 6: Salt is given a fairly constant, negative influence. From the associa-
tion rule confidence matrix, it is clear that although salt is popular, it is a poor
predictor of other ingredients. In recipes that contain salt, the influence of salt
on other items is constant, thus salt is essentially not being used for subsequent
predictions. The fact that the score is negative comes from the fitting and is ar-
bitrary; the same effect holds no matter what the score of salt is, so long as it is
constant across all items.
Feature 7: The very strong influence from lemon juice to sugar and water is prob-
ably spurious. Lemon juice is the rarest item and would usually have been added
last. As a result, its influence variables were not used much in the fitting and were
not reliably estimated. The model variables for Parsley and Bell Pepper are ques-
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tionable for the same reason. This shows how the one-stage minimization model
may be prone to overfitting on items that are rare in the training set.

The t = 0 recommendation list in Figure 6 demonstrates the connection be-
tween item loss and rank diversity discussed in Section 2.1.3. In this case, rank
diversity entails having both a cooking ingredient and a baking ingredient high
on the recommendation list. With item loss, the first recommendation is the most
likely ingredient, salt, which is used in both baking and cooking. The next two
ingredients are a cooking ingredient (garlic) and a baking ingredient (sugar), even
though onion is ranked higher than sugar in frequency.

To study the test performance of the different methods, we did an experiment
using the 250 most frequently occurring ingredients. This excluded only very rare
ingredients that appeared in less than 5 recipes, for instance “alligator.” Again,
each recipe was treated as a shopping list containing certain items from Z, the set
of 250 ingredients.

We fit the model using one-stage minimization and ML-constrained minimiza-
tion, using both list loss and item loss. Training and test sets each of 100 shopping
lists were selected using random sub-sampling without replacement. The models
were evaluated using the zero-one loss in (5) or (7). Training and test sets were
sampled independently for 20 trials to provide a distribution of training and test
losses for a total of (20 trials)×(2 loss functions)×(100 training lists + 100 test lists)
= 8,000 shopping list evaluations for each minimization strategy. The results for
Algorithm 1 (convex programming / simulated annealing) and Algorithm 2 (gra-
dient descent) were very similar. We found that Algorithm 2 scaled better with the
dimensionality of the dataset, so we report the results of Algorithm 2 here. The
amount of `2-norm regularization in the loss function, β, was set using 3-fold cross
validation on each training set, separately with β = 0.0001, 0.001, 0.01, 0.1, 1, and
10. We then set β to the value that minimized the mean error over the validation
sets. With list loss and one-stage minimization, chosen values of β ranged from
0.001 to 0.1, with 0.001 chosen most frequently. With list loss and ML-constrained
minimization, chosen values of β ranged from 0.01 to 1, with 0.1 chosen most
frequently. With item loss and one-stage minimization, chosen values of β ranged
from 0.0001 to 0.01, with 0.001 chosen most frequently. With item loss and ML-
constrained minimization, chosen values of β ranged from 0.01 to 1, with 0.01
chosen most frequently. The training and test errors across the 20 trials are shown
as boxplots in Figures 8 and 9 for list loss and item loss respectively.

As before, the test error presented in the figures excludes items that were not
present in the training set, as these items necessarily cannot be well predicted
using any algorithm. To provide some level of detail about this, the median list
loss test error including items not encountered in the training set was 0.41 for
max-confidence association rules, 0.34 for one-stage minimization, and 0.35 for
ML-constrained minimization. The median item loss test error was 0.22 for max-
confidence association rules, 0.18 for one-stage minimization, and 0.18 for ML-
constrained minimization.

The large difference between training and test errors, particularly using item
loss, suggests that that there is some overfitting despite the `2-norm regulariza-
tion. This is not surprising given the number of possible items (250) and the
number of shopping lists used for training (100). A larger training set would lead
to better generalization (and less of an observable difference between the meth-
ods), although if it were desirable to fit a model individually to each customer
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Fig. 8 List loss training and test errors for the online grocery store recommender system.

Fig. 9 Item loss training and test errors for the online grocery store recommender system.

the training data may truly be very limited. This is related to the “cold start”
problem in recommender systems, when predictions need to be made when data
are scarce.

For both loss functions, our method performs very well compared to the as-
sociation rule baseline. One-stage minimization tends to perform slightly better,
although it does so at a much higher computational cost. With this dataset, ML-
constrained minimization solves an optimization problem on 500 variables whereas
one-stage minimization requires solving an optimization problem on 62,500 vari-
ables. The best choice of minimization strategy depends on the application. One-
stage minimization may be better for applications with few variables and plenty of
computational power. ML-constrained minimization is probably a better choice for
high-dimensional problems, or when the user is willing to sacrifice some accuracy
for a significantly faster runtime.
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3.3 Email recipient recommendation

For the email recipient recommendation experiment, we use the Enron email
dataset (http://www.cs.cmu.edu/∼enron/), a collection of about 500,000 email
messages from about 150 users. We limited our experiments to the “sent” folders
of the 6 users who had more than 2000 emails in their “sent” folders and only
considered emails with more than 2 recipients (using the “To” and “CC” fields),
yielding a reduced dataset of 1845 emails with a total of 1200 unique recipients.
The number of recipients per email ranged from 3 to 6. We formed a sequence
of recipients by placing the sender in the first position in the sequence, and then
appending the addresses in the “To” and “CC” fields in the order in which they
appear in the email. The sender is always known in an email recommendation
system, which is why we chose to predict the sequence starting from the sender
being known.

We evaluated algorithm performance across 10 iterations, each iteration using
randomly selected training and test sets of 500 emails each. For each iteration, we
applied the FP-Growth algorithm (Borgelt, 2005) to the training set to find item-
sets of size up to 4, with a minimum support requirement of 3 emails. These item-
sets formed the allowed set A used for one-stage minimization, ML-constrained
minimization, and max-confidence association rules. The median number of al-
lowed itemsets across the 10 iterations was 625.5 (minimum 562, maximum 649),
including the empty set. We used the training and test sets to evaluate the perfor-
mance of one-stage minimization, ML-constrained minimization, max-confidence
association rules, and cosine similarity item-based collaborative filtering. For one-
stage minimization and ML-constrained minimization, we used the list loss in (6)
and (14) respectively, and we set the amount of `2-norm regularization in the loss
function, β, using 10-fold cross validation on each training set separately with
β = 0, 0.001, 0.01, and 0.1. For both one-stage minimization and ML-constrained
minimization, for all iterations, β = 0 minimized mean error over the validation
sets and was chosen. The minimum support requirement when choosing the item-
sets serves as a form of regularization, which may be why `2-norm regularization
was not necessary. In Figure 10 we evaluated performance using the zero-one loss
in (5). As before, the test error in Figure 10 excludes recipients who were not
present in the training set as these cannot be predicted from the training data and
form a constant bias. Including these recipients, the median test errors for cosine
similarity item-based collaborative filtering, max-confidence association rules, one-
stage minimization, and ML-constrained minimization were 0.218, 0.213, 0.201,
and 0.203 respectively.

For this experiment, we additionally evaluated performance using the mean
average precision. Mean average precision is a combination of precision and recall
that is frequently used to evaluate ranking performance in information retrieval
(Järvelin and Kekäläinen, 2000; Yue et al, 2007). The average precision of a ranked
list is the average of the precision values computed at each of the relevant items.
The average precision across many ranked lists is averaged to obtain the mean
average precision. We measure average precision at each prediction (that is, each
step in the sequence) and compute mean average precision by averaging over both
time steps and sequences. We follow the procedure of McSherry and Najork (2008)
to account for the presence of ties in the ranked lists. Figure 11 shows the mean
average precision for each of the 10 iterations. Even though our methods were not
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Fig. 10 Training and test errors for email recipient recommendation.

Fig. 11 Mean average precision for email recipient recommendation. Larger numbers indicate
better performance.

optimized to maximize mean average precision, they perform well relative to both
max confidence association rules and cosine similarity item-based collaborative
filtering.

4 Related Work

This work is related to previous work on recommender systems, medical condition
prediction, time-series modeling and supervised ranking.

There are many different approaches to recommender systems. Adomavicius
and Tuzhilin (2005) give a review of current methods. Shani et al (2005) work
with sequential recommendations using Markov decision processes, which differs
from our approach in that our approach does not assume the Markov property.
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Collaborative filtering methods have been especially common in recommender sys-
tems (see Sarwar et al, 2001, for a review). Some collaborative filtering methods
rely on additional user information such as demographics and are not appropri-
ate for our setting. Item-based collaborative filtering methods, cosine similarity
in particular, are an extremely popular type of recommender system that are re-
lated to our approach as they consider only relations between various items in the
sequence database (Sarwar et al, 2001; Linden et al, 2003). However, item-based
collaborative filtering is generally not appropriate for these sequential prediction
problems. Collaborative filtering algorithms are generally evaluated according to
regression criteria (measuring accuracy in ratings) rather than ranking criteria,
and is thus designed for a completely different type of learning framework. Also,
when applying item-based collaborative filtering using the weighted sum method
(Section 3.2.1 in Sarwar et al, 2001), we needed to compute an inner product of
the similarities with the “ratings” for all co-rated items. However, for an incom-
plete basket, we do not have the ratings for all co-rated items, since there is no
natural way to differentiate between items that have not yet been purchased in
this transaction and items that will not be purchased in this transaction, as both
have a “rating” of 0 at time t. Thus, the only ratings that are available are ratings
of “1” indicating that an item is in the basket. In other words, our approach is
intrinsically sequential, whereas it is unnatural to force item-based collaborative
filtering into a sequential framework. Additionally, cosine similarity in particular
is a symmetric measure (sim(a, b) = sim(b, a)) and thus not related to the con-
ditional probability of b given a. In general, item-based collaborative filtering is
not based in a machine learning framework, in that (20) and (21) are not based
on either loss minimization (as our ranking algorithms are) or probabilistic mod-
eling (as the association rule approach is). These differences help explain why in
our email recipient recommendation experiment cosine similarity item-based col-
laborative filtering was outperformed by our methods, both in terms of our loss
function and average precision.

Medical recommender systems are discussed by Davis et al (2008, 2010). The
output of their system is a ranked list of conditions that are likely to be subse-
quently experienced by a patient, similar to the ranked recommendation lists that
we produce. Their system is based on collaborative filtering rather than bipartite
ranking loss which is the core of our method. Duan et al (2011) develop a clinical
recommender system which uses patient conditions to predict suitable treatment
plans. Much of the work in medical data mining uses explanatory modeling (e.g.,
finding links between conditions), which is fundamentally different from predic-
tive modeling (Shmueli, 2010). Most work in medical condition prediction focuses
on specific diseases or data sets (see Davis et al (2010) for a literature review).
Email recipient recommendation has been studied with several approaches, often
incorporating the email content using language models, or finding clusters in the
network of corresponding individuals (Dom et al, 2003; Pal and McCallum, 2006;
Balasubramanyan et al, 2008; Carvalho and Cohen, 2008; Roth et al, 2010).

A large body of research on time series modeling dates back at least to the
1960’s and provides many approaches for sequential prediction problems. Recent
applications to medicine in general and patient level prediction in particular in-
clude Enright et al (2011), Stahl and Johansson (2009), and Hu et al (2010).
Our ML-constrained minimization strategy was motivated by the mixture transi-
tion distribution developed by Berchtold and Raftery (2002) to model high-order
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Markov chains. However, as we discussed earlier, typical time-series approaches fo-
cus specifically on the order of past events whereas in our applications the historical
order seems of peripheral importance.

Our model and fitting procedure derive from previous work on supervised rank-
ing. Many approaches to ranking have been proposed, including methods based
on classification algorithms (Herbrich et al, 1999; Chapelle and Keerthi, 2010;
Joachims, 2002; Freund et al, 2003; Burges et al, 2005), margin maximization
(Shashua and Levin, 2002; Yan and Hauptmann, 2006), order statistics (Lebanon
and Lafferty, 2002; Clémençon and Vayatis, 2008), and others (Cao et al, 2007;
Rudin, 2009). The loss functions that we use derive from the bipartite misranking
error, and the exponential upper bound is that used in boosting. Our list loss is
in fact exactly the misranking error; thus minimizing list loss corresponds to max-
imizing the area under the ROC curve (Freund et al, 2003). Other loss functions
can be substituted as is appropriate for the problem at hand, for example our
item loss is a good fit for problems where only one relevant item needs to be at
the top. Minimizing misranking error does not imply optimizing other evaluation
metrics, such as average precision and discounted cumulative gain as illustrated in
Yue et al (2007) and Bertsimas et al (2011). Our formulation could potentially be
adapted to optimize other evaulation metrics, as is done in Yue et al (2007) and
Bertsimas et al (2011), if these metrics are the quantity of interest. The theoret-
ical framework underpinning ranking includes work in statistics, learning theory,
and computational complexity (Cohen et al, 1999; Freund et al, 2003; Clémençon
et al, 2008; Cossock and Zhang, 2008; Rudin and Schapire, 2009). Our work is also
related to the growing fields of preference learning and label ranking (Fürnkranz
and Hüllermeier, 2003; Hüllermeier et al, 2008; Dekel et al, 2004; Shalev-Shwartz
and Singer, 2006).

5 Conclusions

We have presented a supervised ranking framework for sequential event prediction
that can be adapted to fit a wide range of applications. We provided formulations
for an online grocery store recommender system (unordered sequences of events),
and for medical condition prediction (ordered sets of events). We showed how the
online grocery store recommender system formulation could be directly applied to
email recipient recommendation (ordered sequence of events). The same methods
could be also be extended to other applications, such as unordered sequences of
sets. In the recommender system setup, the predictions alter the sequence of events
and the loss function is not continuous. Using the fact that the variable space can
be partitioned into convex sets over which the loss function is convex, we presented
two algorithms for approximately minimizing the loss. For applications in both
the recommender system domain and the medical condition prediction domain,
the supervised ranking models performed well in experiments, and better than the
max-confidence and cosine similarity baselines.

There are many other applications where the set of past events matters for
predicting the future, rather than the order of past events. Our optimization-
based methodology is a direct and practical approach for prediction tasks with
this property.
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A Regression and Sequential Event Prediction

When using our model or association rules for sequential event prediction, we assume that,
at each time step, only the set of items in the basket is useful for the prediction and not the
order in which they were added. In this section we will discuss a natural regression approach
that does not make this assumption.

Let Xi be an indicator variable that is 1 if item i is in the current basket and 0 otherwise.
Suppose we wish to apply regression (e.g., logistic regression) to create a model for each item
separately. Consider the model for the last item (item m), where the predictor variables will
be Xi for i ∈ {1, . . . ,m−1}, and Xm will be the response variable. This model would provide:

P (Xm = 1|X1 = x1, . . . , Xm−1 = xm−1) =
1

1 + exp(f)
,

where f =
∑m−1
i=1 λixi + λ0,m, with each xi ∈ {0, 1}.

Because the data are being revealed sequentially, the correct application of this technique
is not straightforward. Only a partial basket is available when predictions need to be made. It
is incorrect to substitute the current state of the basket directly into the formula above. For
instance, if the current basket contains items 1 and 2, so X1 = 1 and X2 = 1, it is incorrect to
write P (Xm|X1 = 1, X2 = 1) = 1

1+exp(f)
, where f = λ1 + λ2 + λ0,m. This statement would

be equivalent to the expression:

P (Xm = 1|X1 = 1, X2 = 1) = P (Xm = 1|X1 = 1, X2 = 1, X3 = 0, . . . , Xm−1 = 0),

which is clearly false in general.
On the other hand, it is possible to integrate in order to obtain conditional probability

estimates:

P (Xm = 1|X1 = 1, X2 = 1) =∑
x3={0,1},...,xm−1={0,1}

P (Xm = 1|X1 = 1, X2 = 1, X3 = x3 . . . , Xm−1 = xm)×

P (X3 = x3, . . . , Xm−1 = xm),

where estimates of P (X3 = x3, . . . , Xm−1 = xm) would need to be made also for every one
of the 2m−3 combinations of x3, . . . xm−1. Thus, this approach would rely on a large number
of uncertain estimates (given limited data, and even moderately large m), each introducing
errors into the final estimate.

The difficulties in using regression methods for sequential event prediction are discussed
in further detail in Rudin et al (2012).
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