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Abstract

This thesis presents a system for automatically building 3-D optical and bathymetric
maps of underwater terrain using autonomous robots. The maps that are built improve
the state of the art in resolution by an order of magnitude, while fusing bathymetric
information from acoustic ranging sensors with visual texture captured by cameras. As
part of the mapping process, several internal relationships between sensors are auto-
matically calibrated, including the roll and pitch offsets of the velocity sensor, the atti-
tude offset of the multibeam acoustic ranging sensor, and the full six-degree of freedom
offset of the camera. The system uses pose graph optimization to simultaneously solve
tor the robot’s trajectory, the map, and the camera location in the robot’s frame, and
takes into account the case where the terrain being mapped is drifting and rotating by
estimating the orientation of the terrain at each time step in the robot’s trajectory. Rel-
ative pose constraints are introduced into the pose graph based on multibeam submap
matching using depth image correlation, while landmark-based constraints are used in
the graph where visual features are available. The two types of constraints work in con-
cert in a single optimization, fusing information from both types of mapping sensors
and yielding a texture-mapped 3-D mesh for visualization. The optimization framework
also allows for the straightforward introduction of constraints provided by the partic-
ular suite of sensors available, so that the navigation and mapping system presented
works under a variety of deployment scenarios, including the potential incorporation
of external localization systems such as long-baseline acoustic networks. Results of us-
ing the system to map the draft of rotating Antarctic ice floes are presented, as are
results fusing optical and range data of a coral reef.

Thesis Supervisor: Hanumant Singh
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Chapter 1

Introduction

I.I Autonomous underwater mapping

This thesis addresses the problem of building three dimensional maps of unstructured,
dynamic underwater environments using autonomous underwater vehicles (AU Vs). It
concentrates on the two main methodologies for high resolution imaging, optical and
acoustic, seeking to create metric, self-consistent maps while increasing the spatial cov-
erage of optical maps and the spatial resolution of acoustic maps, combining the two
modalities when possible. The technology of autonomous underwater vehicles has ma-
tured quickly in recent years, and they are now routinely used for research in physical
oceanography, geology {551, fisheries management {71, and archaeology {141}, as well as
in disaster response {5} {22]. Even so, using AUVs to build optical and bathymetric
maps remains a difficult problem, not only because the problem of knowing where an
AUV is at any point in time (the problem of localization.) is difficult, but also because
the calibration of on-board sensors and the modeling of vehicle motion is hard.

To begin with, an AUV operates underwater, beyond the reach of the electromag-
netic waves of GPS satellites, and through six degrees of freedom. When an AUV is
making bathymetric maps with acoustic sensors, it must operate typically within 50
meters of the terrain being mapped to ensure reasonable resolution, though this range
depends on the acoustic frequency of the instrument being used and the desired map
resolution. When using a color camera, an AUV must work within about 4 meters of the
area being mapped, because of the rapid wavelength-dependent attenuation of light in
water, and because particles floating in the water cause backscatter which occludes the

scene of interest. Working this close to the seafloor or any other solid terrain further
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complicates localization, because acoustic signals from navigation beacons may reflect
strongly off of the terrain, confounding position estimates. It also means that an AUV
must move to avoid crashing into the terrain being mapped, preventing the use of any
assumption about straight line motion. In addition, most AUV navigation tasks take
place in an unstructured environment, free of the man-made objects which in other
environments have been used to provide easy-to-identify features (corners, edges, and
planes). More recently, AUVs have been tasked to build maps of terrain which may
itself be moving through space. In these cases, the desire is to build maps relative to
some object that is moving in an unknown, though constrained, fashion, such as a ship
hull {621, an ice floe, or an iceberg {31}, which further complicates the integration of
geo-referenced sensors such as compasses and moored navigation beacons.

The system presented in this thesis is not specific to autonomous underwater vehi-
cles; it can be applied to any underwater system with sufficient on-board sensing, partic-
ularly remotely operated vehicles (ROVs), manned submersibles, and towed packages.
These vehicles generally have much greater power capacity than AUVs, either because
they are being powered through a tether to the surface, or because they are simply
larger and able to carry more batteries {151. The primary benefit of additional power
from a mapping perspective is that it is often possible to use flood lights or high-rate
strobes, enabling the capture of video-rate imagery for denser coverage of the terrain.
Since ROVs and manned submersibles generally carry similar or better attitude and ve-
locity sensors than autonomous vehicles, a mapping system developed specifically for

AUVs is generalizable to the case of more capable platforms.

1.2 'The Seabed AUV

This thesis proceeds through the steps necessary for the production of acoustic and op-
tical maps in the challenging environments described above. These steps include sensor
offset calibration, navigation recovery, and estimation of environmental motion. All of
this work is based on real-world field campaigns using the Seabed AUV {52} (see figure
1-1), a hover-capable robot usually used for seafloor imaging, with an acoustic multi-
beam sensor in addition to one or more color cameras. Two scenarios are examined
in detail: building acoustic “bathymetric” maps of the extent below sea level (draft) of
drifting, rotating ice floes in Antarctica, and building 3-D maps fusing bathymetry and

visual texture of an area of coral reef in Puerto Rico.



Figure 1-1: The Seabed AUV without its fairings, in under ice configuration. The upper
hull contains the control computer, multibeam sonar, doppler velocity log, and camera.
The lower hull contains batteries and the fibre optic gyro. Additional science sensors
are scattered around the robot. An ultra-short baseline transponder is mounted to the
front strut.

There are several important features about the AUV as evidenced by the photo-
graph in figure 1-1. First of all, the AUV is unusual in that it is not torpedo-shaped, and
has three thrusters with no other control surfaces. The upper hull contains buoyant syn-
tactic foam, and the lower hull contains batteries and other heavier material, pushing
the center of gravity away from the center of buoyancy and thereby increasing passive
roll and pitch stability. The three-thruster configuration enables the robot to turn in
place using differential steering, and to move vertically, allowing it to work close to the
seafloor. It is also clear from the photograph that the sensors used for the navigation
system are distributed about the robot, as are the mapping sensors. The primary navi-
gation sensors on the AUV include a depth sensor (lower hull, aft), a north-seeking fibre
optic gyro, measuring roll, pitch, true heading, angular velocity, and acceleration (lower
hull, midships), an acoustic transducer (lower hull, forward) for determining ranges to
a fixed array of beacons, an ultra-short baseline transponder (forward strut) for deter-
mining ranges to a beacon on the support ship, and a doppler velocity log (DVL, upper
hull, aft), which measures 3-axis velocity relative to local terrain, as well as roll, pitch,

and magnetic heading. In addition, there is a conductivity-temperature-depth (CTD)
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Figure 1-2: An example of imperfect control over 100 seconds of a dive. The graph on
the left shows depth swinging through 40 centimeters while the robot is attempting
to maintain a constant depth of 25 meters, which is coupled with changes in attitude
shown on the right. The heading value on the right has been shifted to make all three
variables visible at once. Data are shown at the sampling rates of the sensors: about 1.3
seconds for depth, and o.1 seconds for attitude.

sensor mounted on the forward strut, which provides an independent depth estimate.
All of the sensors operate at different rates, with no hardware synchronization.

The sensors are mounted this way due to mundane considerations of buoyancy, ca-
ble routing, and lack of space, and often need to be moved around to make room for new
scientific payloads or operating scenarios. Consequently; on any given dive it is imprac-
tical to attempt to determine the AUV’s center of mass or buoyancy, which sometimes
results in the AUV fishtailing or porpoising due to imperfectly tuned control constants,
as shown in figure 1-2. This figure shows oscillations that are more characteristic of
what one would expect from a towed vehicle, where the depth is dependent on wave
action. Under more stable configurations, Seabed’s depth and attitude behave as shown
in figure 1-3. While this kind of stability is nice from an efficiency standpoint, it is not
necessary for the mapping system presented here, as the AUV behaved less than ideally
as in figure 1-2 while the under ice data used for much of the thesis were collected.

The multibeam sensor in the under ice configuration is on the upper hull, aft of
the DVL. It runs independently of the other sensors, at a rate dependent on range to
the terrain, but generally at about ten pings per second. There is minimal acoustic
interference between the multibeam and the DVL and acoustic modem, which is fil-

tered out in the initial processing of the multibeam data. When mapping the seafloor,
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Figure 1-3: Plots of typical AUV behavior, again over 100 seconds of a deployment.
During this dive, the robot was attempting to maintain constant altitude over the
seafloor, and shows better stability than in the previous figure.

the multibeam is mounted on the lower hull, forward of the battery housing. The AUV
can accommodate up to four synchronized cameras and a single strobe, but usually only
runs with one or two cameras. Under ice, an upward-facing camera was mounted near
the front of the robot in the upper hull, and relied on ambient light. Usually at least
one camera is mounted in the front of the lower hull, and a xenon strobe is mounted
in the rear of the lower hull.

The internal camera calibration parameters (focal length and lens distortion) may
change during the course of a cruise, as the AUV is handled in rough conditions, as
shown in figure 1-4. Fortunately the problem of refraction due to the use of a flat
water-glass-air interface in the camera housing is largely accommodated for as radial
lens distortion — the claims in {59} are valid, but minimal in specific conditions prac-
ticed with the Seabed AUV. In spite of the possibility of impacts jarring calibration
parameters, we assume in this work that (underwater) camera calibration is available,
and in fact use {2}, a free implementation based on {68}, to calibrate cameras in a salt
water test tank.

Building a correct bathymetric map requires knowing all six degrees of freedom of
the vehicle or towed sled’s pose at the time of each multibeam ping or image acquisi-
tion, so on-board and post-processing software must be able to compensate for unstable
motion and rough conditions. The location of the mapping sensors must also be cali-

brated relative to the navigation frame of the vehicle, which in this system is done as
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Figure 1-4: Roll and accelerometer readings during a rough recovery in the Bering Sea.
The high acceleration rates occurred when the AUV collided with the ship.

part of the mapping processes, described in the following chapters. Finally, it must be
noted that in any ocean deployment, the desire for high-quality data is subsumed by

operational constraints and the fundamental equation of field robotics, namely

Nrecovem’es = Ndeployments

the result of which is often incomplete data. See {341 for a discussion of AUV recovery

from under Arctic ice cover, for example.

1.3 Simultaneous localization and mapping

The problems of robot navigation and mapping are coupled by the fact that mapping
sensors can be used to provide feedback into navigation estimates. For the last few
decades, this coupling has been extensively explored in the robotics literature as Si-
multaneous Localization and Mapping (SLAM). Problems in SLAM can be thought of
as large optimization tasks, in which a set of cost functions which capture the inconsis-
tencies between the robot’s measurements of its own motion and of the environment
are minimized. A good introduction and overview of the subject is presented in {58}.
Measurements are made in a probabilistic framework, allowing the cost functions to
be weighted according to the confidence with which a measurement is made or a con-

straint introduced.
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Early work in SLAM addressed the problem of recursively estimating the robot’s
position and the location of all the landmarks in a map, the canonical example using
an extended Kalman filter (EKF) {54}. More recently there has been increased interest
in treating the entire pose history of a robot, rather than just the final or most-recent
pose, because of conditional independences between variables that arise from such a
formulation. One such formulation is the delayed-state information filter, which {ro}
used for vision-based mapping underwater in a system called Visually Augmented Nav-
igation (VAN). The formulation used in this thesis, which relies more explicitly on
the contributions of graph theory in matrix factorization, is square root information
Smoothing and Mapping (SAM) {81, which considers the structured nature of the con-
straints in the navigation and mapping problem through the use of a pose graph. The
sparsity of the pose graph is reflected by the sparsity of the Jacobian matrix of the cost
function, yielding an efficient optimization which can also be used incrementally {29].
This formulation is described in more detail in the next chapter.

Working with acoustic sensors underwater presents additional challenges to local-
ization and mapping. A multibeam or sidescan sonar can only be used incrementally
to build a map, as each “ping” yields on the order of 100 to 500 ranges as a function
of angle (in the case of multibeam) or time (in the case of sidescan sonar). Individual
pings must be aggregated as the AUV moves and the sensor footprint sweeps over an
area in order for distinguishing features of the terrain to become visible. Incorporating
these sensors into a SLAM framework thus requires a decision about the scale at which
features or landmarks are identified. One possibility, used in {491, is to build small in-
dependent maps, treating each as self-consistent, and then to align the maps in a global
space. Another is to treat each range measurement as a hypothesis about whether a
region of space is vacant or occupied; this approach is used in {12} and {1}. Finally, a
bathymetric map can be built “by hand” by manually selecting sensed terrain features
that should line up, adjusting the map to force these alignments, and then iterating
until the finished product is acceptable. This is the approach taken by {6}, which is not
a SLAM approach at all, but is in common use in the oceanographic community. The
approach followed here is closer to {49} than the others. Small submaps are aligned,
each alignment induces a relative constraint between two AUV poses, and then the
entire robot trajectory is smoothed over to accommodate these constraints together
with the AUV’s navigation estimates.

Most of the SLAM methods mentioned above share common underlying theoreti-

14



cal assumptions that the noise in the system (in measurement and control) is Gaussian,
or closely approximated as Gaussian, and that the models of measurement and control
are linear, or reasonably linearizable. Under the assumption of Gaussian noise and good
linearization, the systems described above are optimal, in the sense that the results they
provide are the Bayesian maximum likelihood solutions. The differences between them
are largely to do with efficiency, though it is worth noting that the SAM technique it-
eratively re-linearizes the system at each step in the optimization, rather than relying
on (for example) a Taylor series approximation as the EKF does. In addition to these
techniques, many nonparametric SLAM frameworks exist which make no assumption
of Gaussian noise, most notably those based on the particle filter, (again, see {58} for
a good introduction and overview), or Rao-Blackwellized particle filter, which reduces
the problem inherent to particle filters of sampling in a high dimensional space by in-
troducing a set of Kalman filters for the motion half of the problem. These include
many occupancy grid methods, including {12}, {9}, and {1}. While particle filters are
well-suited for underwater robotics due to the non-Gaussian nature of acoustic ranging
measurements, we found the SAM framework to be a natural fit to the AUV mapping
problem, in particular because of the ease with which the pose graph can be adjusted to
fit the available data and the set of parameters being solved for (see chapter 2). We com-
pensate for the non-Gaussian nature of the problem with aggressive outlier rejection,

a theme we will return to throughout the thesis.

1.4 Navigation and mapping relative to drifting,

rotating terrain

There has been increased interest recently in the idea of using underwater vehicles to
map areas that are not fixed to the seafloor. Those concerned with security of ocean-
going vessels would like to use robots to autonomously inspect hulls for sabotage, a
challenging problem due to the general lack of distinguishing “terrain” on the side of a
ship that could be used as a navigation landmark. Nonetheless, researchers have used
SLAM techniques to map ship hulls using either multibeam, as in {62}, or using cam-
eras, as in {30} — the former uses a filtering approach, while the latter uses a pose graph
optimization approach similar to what is used in this thesis. While neither of these

studies explicitly allow for the ship to move, it is clearly a forthcoming step in the re-

I5



search.

More directly relevant to the work here is the recent use of AUVs to map moving
icebergs. Icebergs present a very challenging and risky target for mapping, as they can
be quite large, fast moving, and have significant draft. A good proof of concept of a
solution to this problem is presented in {31}, in which the goal is to map the sides of
a moving, rotating iceberg with multibeam while circumnavigating it. The approach
therein augments the set of variables being estimated with the velocity (in translation
and rotation) of the iceberg, so that deformations that might otherwise be introduced
into the map to make it self-consistent are instead used to estimate iceberg motion. A
significant accomplishment of their work is that the iceberg is not itself instrumented;
all iceberg motion estimation must be derived from vehicle odometry and the consis-
tency of the derived map, using only a prior model assuming approximately constant
iceberg velocity. By contrast, in this thesis we present a method for mapping the un-
derside of drifting ice floes which makes use of measurements of floe rotation available
from the ship moored to the floe. Another significant difference is that the work in
this thesis uses a free-swimming AUV, while the work in {31} estimates a full six degrees
of freedom for vehicle motion, their use of a ship as an AUV proxy limits the extent of

the possible motion of the mapping platform.

1.5 Fusion of optical and acoustic data

As AUV technology has improved in the last decade there has been a strong push in
the community to improve the high-resolution “microbathymetric” mapping capability
of AUVs, using techniques including stereo imagery, high frequency multibeam sonar,
structured light, and combinations of different modalities. There has been a clear pro-
gression in the state of the art, starting with 2-D optical maps (photomosaics) {48} {161,
and optical maps with sparse 3-D information created using structure from motion {47},
to visual SLAM solutions {10} {30]. As dense 3-D maps require either the use of a rang-
ing sensor such as multibeam, or significant image overlap (each point on the terrain
must be imaged from at least two locations), there has been increased use of stereo
cameras (see, e.g. {431, {23} and {35 and structured light. Of particular interest here
are techniques that combine the best features of optical cameras with the capabilities
of acoustic ranging sensors.

The approach in {25} combines multibeam bathymetry with multiple 3-D stereo

16



models using mesh registration. For simplicity, only sparse stereo models are com-
puted, though the approach should work equally well with a good dense stereo algo-
rithm. Navigation estimates are computed using VAN, and stereo meshes and multi-
beam maps are registered using the Iterated Closest Point algorithm {67}, after which
a single mesh is built from the individual pieces to create a large scale visualization. At
a higher resolution, {50} replaces multibeam entirely with a laser and camera combi-
nation, with very impressive results. This requires precise calibration, however, and
is currently only suited to use on a tethered remotely operated vehicle (ROV) due to
the need for continuous imaging and relatively high power. On the other hand, their
ranging system can be used as a drop-in replacement for multibeam in SLAM systems,
and the fact that a camera is already used in the system suggests that building texture-
mapped models will be a near-term research goal.

Finally, there has been recent work on directly coupling a single camera with a multi-
beam sensor on an AUV. The authors in {21} describe a method for calibrating a pair
of such sensors on an AUV using a target in a test tank. Given the limitations of work-
ing in the field and the lack of a suitably large tank, the approach presented in this
thesis does not rely on an explicit relative sensor calibration, but instead derives the
relationship as a side-effect of the SLAM algorithm. Further examples of tight inte-
gration between cameras and acoustic sensors are presented in {42} and {411, which are

concerned with local area imaging, rather than with the creation of large area maps.

1.6 Assumptions made throughout the thesis

Each navigation and mapping technique described in this thesis makes assumptions
about the data it uses. These assumptions are described along with the algorithms, but
for clarity and explicitness, they are quickly listed here as well. The fundamental as-
sumption underlying any navigation and mapping technique that attempts to maximize
map consistency is that there will be sufficient redundancy in the available data to con-
strain the set of possible solutions. For mapping with AUVs, this means in particular
that absolute sensors measuring depth, attitude, and sound speed are available, as are
sensors measuring the 3-D velocity vector. Such sensors are ubiquitous on AUVs. In
addition, for the specific cases addressed here, we assume that the intrinsic parameters
of on-board cameras including lens distortion have been calibrated in water, that there

is at least 20% overlap image-to-image and trackline-to-trackline, and that similar side-
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to-side overlap is provided on adjacent multibeam transects. For mapping rotating ice
floes, we assume rotation rates less yielding less than 15 degrees over the course of a dive.
Finally, we assume that sensors provide asynchronous timestamped data with minimal
latency, that the mounting positions of cameras and multibeam sonar heads are known
relative to the velocity sensor to within about 15 centimeters, and that the vehicle is
reasonably stable in roll and pitch. Most notably, we do not assume that any absolute
positioning system is available, such as GPS or high-frequency acoustic tracking sys-
tems. These assumptions are quite mild, in that underwater vehicles must satisfy all of
them in order to be useful as scientific and engineering research platforms — an exces-
sively unstable vehicle will not make it into the water and thus will not be providing

data to a navigation and mapping system.

1.7 Organization of the thesis

The contributions of the thesis include: a method for improving navigation by recover-
ing roll and pitch offsets between the attitude sensor and the 3-D odometer, an efficient
automatic method for matching 3-D structure from multibeam data to add constraints
to the pose graph, the generalization of the navigation task to moving and rotating
terrain, and the simultaneous incorporation of visual and acoustic data into a single
mapping framework. The upshot of these contributions is the possibility to produce
maps including visual texture with resolution five times better than the current state
of the art.

The thesis proceeds with the steps necessary to build acoustic, optical, and inte-
grated maps using AUVs. In the next chapter, we examine the basic problem of AUV
navigation using odometry and external navigation beacons, introducing the SAM pose
graph which is elaborated throughout the thesis. Even this basic navigation problem is
a SLAM problem, as the locations of navigation beacons are estimated simultaneously
with the trajectory of the robot. The first novel application of the pose graph is to
compute attitude offsets between navigation sensors on the AUV, making use of the
redundancy between the DVL, the fibre optic gyro, and the depth sensor. We then
proceed in chapter 3 to incorporate the first mapping sensor, the multibeam sonar. We
describe how local multibeam maps are matched to provide pose constraints between
poses in the graph, how match confidence is estimated, and show results mapping fixed

terrain. We then move to optical mapping in chapter 4, focusing on dense mapping of
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a 2-D area of sea floor. We examine two different kinds of constraints that matched
images can provide on the pose graph, and compare the mapping problem using SAM
to traditional techniques in photomosaicking. We continue with the simultaneous con-
struction of a 3-D optical map, fusing multibeam sonar with dense imagery, using the
pose graph to model constraints induced by both sensors at the same time. In chap-
ter 5 we augment the pose graph to take into account the case where the terrain being
mapped is moving and rotating, and closely examine the particular case of mapping
the draft of an ice floe. Finally, we discuss results, implications, limitations, and future

work in chapter 6.

19



Chapter 2

AUYV Navigation

2.1 Underwater localization

As mentioned in the previous chapter, most underwater vehicles carry a diverse suite of
navigation sensors which together provide a redundant and often conflicting set of pose
estimates. Underwater, a body can move through six degrees of freedom, and on most
vehicles four of these six degrees of freedom are directly measurable: depth, roll, pitch,
and heading. This is the case on manned submersibles and tethered remotely operated
vehicles as well as on free-swimming AUVs. Onboard pose estimators often simply
accept measured values as truth, or minimally filter measured values to smooth out
noisy signals. Underwater localization is then reduced to estimating the remaining two
degrees of freedom corresponding to horizontal position. There are several approaches
commonly in use, described below in order of the amount of additional infrastructure
required.

Firstly, an underwater vehicle can be equipped with a velocity sensor. On any vehicle
expected to work within a few hundred meters of the seafloor, the typical sensor will be
a doppler velocity log (DVL), which measures 3-D velocity relative to the terrain. These
sensors only work within range of the terrain, however, which is dependent on their
operating frequency. For 1200 kHz systems, for example, the working range is about 40
meters. Lower-frequency units can achieve much greater range, at the expense of larger
transducer sizes. When DVLs are out of range of hard terrain, velocity can usually
still be measured relative to the water mass, but the AUV will not be able to detect
the motion of the water itself as it moves through it. When a DVL is not available,

velocity estimates can be derived from thruster speed or electrical current draw, or
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by integrating accelerometer measurements, but these are usually not the preferred
methods because they are noisy. Regardless, once a 3-D velocity estimate has been
determined, a pose estimate can be derived by integrating the velocity estimate using
the vehicle’s attitude sensor to determine the direction of motion in the geo-referenced
frame. The pose estimate will be relative to an arbitrary origin, but can be used for
relative navigation. For navigation in an Earth-fixed frame, either velocity estimates
must be available on the surface, where GPS can anchor the trajectory, or additional
infrastructure is required.

External navigation infrastructure is often provided underwater by a network of
acoustic beacons. The particular system used depends on the deployment context, but
it is usually a long-baseline (LBL) or ultra-short baseline (USBL) network. In these
networks, positions are computed based on the acoustic travel time of signals sent
between the vehicle and a set of beacons. The beacons may be moored to the seafloor
or attached to a surface buoy or ship, but they generally have a location known to the
underwater vehicle. The vehicle localizes by interrogating the network, transmitting
an acoustic signal. The beacon responds with its own acoustic signal, and the vehicle
determines its range to the beacon by measuring the response time and multiplying
by the speed of sound. In traditional LBL navigation, the robot interrogates all of
the beacons in the network simultaneously, and if, after outlier rejection, at least two
reasonable ranges can be determined, a fix is computed geometrically by intersecting
the horizontal plane at the robot’s depth with the two spheres induced by the ranges
to the LBL beacons {40}. If the ranges are in fact reasonable, then in a network with
two beacons there will be two solutions, symmetric about the line between the beacons
(called the baseline ), and the ambiguity is resolved by laying out the network ahead of
time to keep the vehicle to one side of the baseline at all times. A simple on-board pose
estimator may take these fixes as truth, using high rate velocity-based pose updates as
it moves, and resetting the integrated position based on acoustic fixes when they are
available. The two methods can also be used together in a complementary filter {64}

There are several variations to LBL that are dictated by context. In the case of
USBL, a 2-D bearing measurement (comprising azimuth and elevation) to the beacon
can be made, though the use of a transducer array. A vehicle’s location can be esti-
mated passively by listening to the interrogations and responses and then measuring
the difference in travel times, yielding a hyperbolic solution {24]}. Finally, position fixes

estimated on the surface (e.g. through acoustic devices too large to carry onboard a
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vehicle) can be combined with GPS measurements and then transmitted to an under-
water vehicle, either via tether, or using an acoustic modem. Another approach is to
compute ship-relative fixes underwater, and then add global context from GPS via an
acoustic link {11}. Regardless of the approach, each position estimate using an external
sensor can be thought of as a kind of measurement, analogous to the measurements
made by the other on-board sensors, and these measurements must be combined in
some way to estimate the vehicle’s trajectory. We use the abstraction of a pose graph

as a tool to perform this estimation.

2.2 Pose graphs

Because they are used as a tool throughout the thesis, we begin with a description of
pose graphs as a representation of the navigation and mapping problem, starting with
the simple example of integrating velocities to form an estimated robot trajectory. The
pose graph consists of two types of nodes, pose nodes, and factors, which are connected
in a bipartite fashion. The pose nodes represent variables to be estimated, while the
factors represent constraints on the variables in the pose nodes to which they are con-
nected. In other words, the pose nodes as a group encapsulate the trajectory, map,
and other parameters, and the factors as a group encapsulate the robot’s measurements
and other indirectly measured constraints. The error function captures the difference
between what is measured and what is predicted by a given trajectory and map; each
factor therefore encapsulates a small part of the total error function, and carries with
it a measurement of some kind and a matrix which weighs the contribution of the fac-
tor in the overall error function relative to the others. This weight matrix is called an
information matrix, because in the linear case if it is set equal to the inverse of the
measurement covariance matrix, then the solution with the least overall squared error
will be the best linear unbiased estimator of the parameters. The structure of the pose
graph directly mirrors the sparsity structure of the error Jacobian function, as changes
in variables only affect the error terms of factors to which the pose nodes representing
the variables are connected. See {8} for an excellent introduction, including a descrip-
tion of how the sparsity of the problem and the structure of SLAM problems in general
lead to efficient solutions. An example pose graph for AUV odometry integration is
shown in figure 2-1.

Throughout the thesis, the six degree of freedom AUV pose at time ¢ will be desig-
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This factor encapsulates
the prior distribution on
the first pose node.

Time Xo

These factors encapsulate /70071
\ 4 odometry measurements
between nodes.

These factors encapsulate
absolute measurements of
depth and/or attitude.

Open circles are pose nodes,
encapsulating variables to be
estimated. These are 6-DOF
nodes representing an AUV pose
at a particular point in time.

Small closed circles are factor
nodes, or simply factors.They
encapsulate measurements made
by the robot, and hence the
/ error function being minimized.
Each factor’s error function only
depends on the values of the
pose nodes adjacent to it.

Each factor’s error
function is weighted by an
information matrix A, so
the squared error is of
the form

e = f(X)TAf(X)

where X is the set of
adjacent pose nodes.The X4
function f and the shape
of A depend on the type
of factor node.

Figure 2-1: The pose graph for integrating velocity measurements and absolute depth
and attitude measurements into an AUV trajectory estimate. The trajectory is “an-

chored” by the first factor node, which encapsulates the prior estimate of the starting
AUV position.
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nated X;. Landmarks, with three degrees of freedom, are designated L;. Other quanti-
ties to be estimated (sensor offsets, floe orientations, and so on) will also be designated
with capital letters. Pose nodes will be referred to interchangeably with the variables
they encapsulate, to make the nomenclature less cluttered. Factors are represented
by uppercase script letters, so an odometry factor Oy, x,,, will thus relate pose nodes
X¢ and X, rather than something like Px, and Px,, ,. An AUV pose X; comprises
six scalars (z,y, 2, p, ¢, 0) where (z,y, z) represents meters north, east, and down (to-
ward the center of the Earth) from an arbitrarily defined local origin (at sealevel). The
AUV’s local frame is defined to have the z axis pointing forward, y axis pointing star-
board, and = axis pointing downward, so that (p, ¢, 0) represent roll (rotation about the
x axis), pitch (rotation about the y axis), and heading (rotation about the z axis). These
frame orientations keep everything right-handed, with positive values for z underwa-
ter, and imply that heading angles correspond to what one would expect to read on a
true north seeking compass.

In figure 2-1 the odometry factor O, linking poses X; and X, carries with it
the 6-DOF measurement of relative motion O, 1, such that the error will be zero if
Xit1 = Xi ® Oypy41, where the @ symbol designates the compounding operation from
{54} To be explicit, X;, X; 1 and O, ;11 can be equivalently expressed as 4 x 4 matrices

of the form
R, ¢

Xt —
01><3 1

with R; the 3 x 3 rotation matrix derived from the roll, pitch, and heading values in

T
X;, and t; the 3 x 1 translation vector [ Ty z ] in X;. Then

RtROt,t+1 RttOz,t-H +t

X1 = Xy @O0 = Xiq1 = XiOp 41 =
O1><3 1

These are strictly rigid body motions, so the last row of each transformation matrix
is always [ 0001 ] Another way to think about these matrices is as transforma-
tions: X; transforms points from the AUV’s local reference frame at time step ¢ to the
world frame, and Oy ;; transforms points from the AUV’s reference frame at time ¢+ 1
to the AUV’s reference frame at time ¢. Clearly, in the absence of other constraints,
a zero error solution can be obtained by “walking down the chain,” multiplying the

previous pose by the odometry measurement to obtain the next pose.

24



The error function for an odometry node is then derived from the difference be-
tween the measured odometry O, ;1 and the odometry implied by the relative trans-
formation between X, and X, for a given set of values for these pose nodes. The error
can be expressed compactly as (X;116 X;) — Oy 411, where AS B is defined as B~' & A,
and the inversion can be derived from the matrix expression above. This error vector
has six elements, corresponding to the six degrees of freedom for the relative pose, so
three of the terms capture angle differences and must be normalized to lie between —
and 7. This amounts to comparing 3-D rotations by subtracting Euler angles, which
is only valid for small differences; fortunately for odometry factors the angles involved
are very small. Other formulations for comparing 3-D rotations include using the axis
of a normalized quaternion as in {33], or using the Rodrigues vector (axis of rotation
multiplied by rotation magnitude), equivalent to members of the Lie algebra se(3) as in
{57}. Throughout the thesis, we assume small angles and simply use angular differences,
which has been well justified by several data sets collected by the AUV.

The goal of the SAM algorithm is to find values for all the variables in the pose

nodes, such that the overall error function

E e}A].-e].-

is minimized, where the sum is over all factors in the graph, and Ar is the information
matrix for factor F. This is a weighted nonlinear least squares problem, because the
error term e for each factor is in general the result of a nonlinear function, particularly
because of the conversion from rotation matrices to Euler angles. The optimization
can be solved with a good initialization point by code publicly available {27} from the
authors of {29}. The overall translation ambiguity of the problem is addressed by either
forcing the first pose to lie at the origin, or by “anchoring” it with a prior factor Xj, as
shown in the figure, which has error function e = X, — Aj, so that the error is zero if

the pose X, matches the “measurement” contained in the factor.

2.3 AUV pose graph navigation

Using a pose graph for underwater navigation requires deciding on a set of pose node
and factor types. The first question to address concerns the number of degrees of free-

dom in the pose nodes representing the AUV’s state. The Seabed AUV carries two
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independent attitude sensors, an absolute depth sensor, a 3-axis velocity log, and a 3-
axis rotation rate sensor. This means that of the six degrees of freedom that the robot
can move through, there are absolute measurements available for four (z, roll, pitch,
and heading). While it might be tempting for the sake of simplicity to use a pose graph
optimizer only to estimate the remaining two degrees of freedom, there is sufficient la-
tency and noise in the measurements to benefit from estimating all six. In addition, the
framework makes adding partial measurements of this type straightforward: the pose
graph shown in figure 2-1 contains factors representing these kinds of measurements.
Additional external absolute measurements of position (e.g. from GPS or long-baseline
navigation networks) will be added in the next section.

Each kind of measurement that can be made by the AUV must correspond in the
graph to a type of factor node; each type of factor node has its own error function
and rules about the kind and number of pose nodes to which it must be connected.
The on-board depth and attitude sensors measure four degrees of freedom, and are
represented by the factor nodes &}, with the exception of the prior on the first pose,
AXp, which includes a prior on x and y to anchor the trajectory in space. Although the
navigation sensors are not synchronized, the update rates are high enough that they can
be interpolated to a fixed time base, or to the rate of a reasonably fast sensor; we choose
to use the doppler velocity log, which provides an update at about 7 Hz as the “base”
sensor. The error function for these 4-DOF measurements X; = [ Z Py (ﬁt 0, | is

simply

T T

€x, = | 2t pr P 0t:| _[ét Pt Qgt ét]
i.e. the difference between what is predicted by the pose and what is measured by
the sensors, again with the angle differences fixed to be between —7 and 7 radians.
The associated information matrix is diagonal, with fixed values [ 16 57 57 57 |,
based on the expected accuracy of the sensors — these correspond to variances of 0.0625
meters in depth, and one degree in each of roll, pitch, and heading. These attitude
variances are reasonable because the primary attitude sensor, a fibre-optic gyro, does
not rely on the Earth’s magnetic field to determine heading; the standard deviation
according to the manufacturer is 0.01 degree in roll and pitch, and o.1 degree times the
secant of latitude in heading, but a larger variance is used to allow for latency:

The 6-DOF odometry factors O, ;1 incorporate relative measurements made by

the doppler velocity log (DVL). Each DVL sensor reading includes velocity measure-
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ments along the three orthogonal axes in the sensor’s reference frame, relative to the
sea floor; these measurements are rotated into the vehicle’s reference frame as forward,
starboard, and downward velocities [ uovow ]T. The origin of the AUV’s frame is set
at the DVL, rotated to make the frame “level,”accounting for roll and pitch biases in the
mount. It is important to note that these velocity measurements are terrain-relative, so
if the terrain is not flat (relative to gravity) there will be a nonzero w component to the
velocity vector even if the AUV is not ascending or descending. Changes in attitude,
on the other hand, are provided by the fibre-optic gyro, and are independent of the
local terrain. An odometry factor, therefore, contains a measurement capturing the

local translation

ox U
dy | =0tR | v
0z w

and a measurement capturing the local change in rotation, which is computed by con-
verting the rotation rates into axis-angle form, and then multiplying the angle by ¢¢ and
converting back to Euler angles. The rotation matrix R in the above equation captures
the permutation from the DVL frame to the vehicle frame, which includes roll and
pitch bias terms mentioned above.

Building the pose graph in this way allows both odometry measurements and ab-
solute depth and attitude measurements to contribute to the overall estimation of the
trajectory. Since these measurements together overconstrain the system, using all of
them should provide a better trajectory estimate than simply using the depth and at-
titude measurements as truth, which is how the on-board pose estimator on the AUV
uses them. In fact, the redundancy provided by these sensors enables us to improve the
calibration of the DVL bias, as will be shown in section 2.5.

Since the system is overconstrained it is important to consider the starting esti-
mate for the trajectory, because without a good starting point the iterative optimiza-
tion process can converge to a local minimum, or even fail to converge. For this case, it
is sufficient to initialize each pose node with a modification of the “forward chaining”
procedure described above, integrating the velocity at each node to produce a pose es-
timate, but forcing the local attitude and depth to match interpolated values provided
by the depth sensor and fibre-optic gyro. The SAM framework then smooths out the
trajectory based on a combination of the odometry and the absolute sensors. Because

the disagreement between these sensors is generally small, initializing the graph this
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way is sufficient to yield a good solution.

2.4 External navigation beacons

There are two possibilities for incorporating LBL and USBL measurements into the
pose graph. To keep the navigation as close to the traditional methodology as possible,
the measurement factors could capture Euclidean distance from the 2-D position fixes
induced by LBL interrogations — this might be how one would incorporate GPS fixes
into a pose graph, for example. A more flexible approach is to treat the problem like a
small SLAM scenario, in which each measurement is an individual range to one of the
beacons, the locations of which are not fixed. As each beacon is uniquely identifiable by
the robot, data association is not an issue. This landmark-based pose graph for SLAM is
shown in figure 2-2. The graph includes pose nodes for estimating the location of each
beacon in the map, factors capturing the range measurements, and factors capturing
the prior estimate of each beacon’s location. The pose nodes do not have orientations,
because the beacons are omnidirectional, and the ranging factors only have a single
error term, so the information matrix is a scalar, i.e. the inverse variance of the range
measurement.

A nice effect of using the pose graph framework in this way is that individual ranges
can contribute independently to the trajectory estimate, since each measurement con-
strains part of the whole trajectory, rather than just the robot’s pose at a particular
point in time. In the extreme case, LBL measurements could be used to constrain the
trajectory even if no consistent fix can ever be made at a single point in time — this is
analogous to using these ranges to compute “running fixes” in traditional navigation.

The addition of acoustic landmarks into the pose graph exposes some of the under-
lying assumptions about the SAM framework. Most important is the use of the term
~variance in describing the range measurements to the beacons. If one treats each mea-
surement as a random variable, then describing the measurement with only two terms
(the value and its variance) tends to imply that the underlying distribution of the vari-
able is Gaussian. Acoustic signals, however, are notoriously subject to multipath and
refraction, and yield ranges which are decidedly non-Gaussian, as can be seen in figure
2-3. One approach to this problem would be to rely on a range model which more accu-
rately reflects the physics, or to switch to a non-parametric estimator such as a particle

filter. The approach taken here is to use aggressive outlier rejection, removing ranges
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Figure 2-2: The pose graph extended to make use of an external acoustic navigation net-
work. Depth and attitude measurement factors are not shown. The additional factors
R.; are scalar range measurements from pose X; to 3-DOF pose nodes representing
the location of the acoustic beacons L; in space. The factors £; capture prior estimates
of the beacon locations.
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Figure 2-3: Ranges taken to a set of four LBL beacons and one USBL beacon during an
under-ice AUV dive. The vertical axis is a log scale to show the range of outliers, and
the noise is decidedly non-Gaussian. On the right are position fixes induced by two
pairs of LBL beacons and the single USBL fix, both with outliers rejected.

that imply excessive robot speed. It is important to note that while the factor only en-
capsulates the measurement and its variance, there is no real reliance on the shape of
the underlying distribution; the error function is assumed to be nonlinear and is solved
iteratively.

Incorporating these acoustic beacons into the SAM framework still requires us to
choose an appropriate variance value. As is clear from the right side of figure 2-3, the
various position fixes vary widely compared to the desired centimeter-level resolution
of the final map. Since each range measurement is a scalar, it is straightforward to adjust
the information term at each factor and see how the resulting AUV trajectory changes.
Figure 2-4 shows three trajectories, one of which only uses AUV proprioception, and
two of which use differing values for the variance of the acoustic range measurement.
As expected, varying the weight changes the computed trajectory. Unfortunately, no
choice of weight appears to be optimal. Using a variance of 100 meters in the range
measurement (A = 0.1) might produce a consistent map, but the map will remain biased
due to the consistent influence of refraction which varies according to position — this is
particularly the case with under-ice data, when the AUV is traveling close to the surface
under an acoustically reflective barrier. Decreasing the variance to 4 meters (A\ = 0.5)
reveals the instability of the problem, as the best solution for these data places two

of the acoustic beacons above sea level, even with a strongly weighted prior on their
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Integrated vs. Absolute AUV Pose Estimates
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Figure 2-4: Trajectory estimates resulting from different weights applied to the acoustic
range measurement factors. The \ values are the square root of the information (inverse
variance) used in each factor. The “integrated” trajectory uses the basic pose graph
shown in figure 2-1.

locations.

The conclusion to be drawn from adding acoustic beacons to the pose graph is that
the variability of acoustic navigation is too high to make it useful for building high-
resolution (centimeter scale) bathymetric maps. On the other hand, it is entirely rea-
sonable to use acoustic navigation for AUV tracking and recovery (i.e. operationally)
and for building maps on the scale of a few meters, which is in fact what is often
done. This conclusion is consistent with what was found in {1}, which incorporated
both USBL and multibeam measurements into a particle-filter framework, producing
maps built from close range (the AUV was 20 meters from the seafloor) but with one

meter bin sizes.

2.5 Calibration of navigation sensors

As mentioned above, as an AUV moves through the water, it measures its 3-DOF veloc-
ity relative to the terrain, and also measures its absolute depth and possibly its horizon-
tal position using acoustic beacons. The redundancy of these measurements provides
the capability to calibrate the attitude offset of the velocity sensor relative to the level
frame of the robot. If this offset is not determined, then the position estimate com-

puted by integrating velocity measurements will be incorrect — if there is a pitch bias,
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Figure 2-5: The pose graph used to estimate the roll and pitch bias of the DVL. The
error function in each odometry node takes into account the roll and pitch bias encap-
sulated in the 2-DOF pose node B with prior B, so that the integrated vertical velocity
better matches the position estimates of the absolute depth sensor.

then some component of forward velocity will instead be attributed to vertical motion,
and a roll bias will cause starboard velocity to be similarly confused with vertical mo-
tion. A heading bias, on the other hand, will not appear as phantom vertical motion,
but will cause incorrect horizontal positions to be estimated, as forward and starboard
velocities will be confused with each other.

There have been a few attempts to calibrate this attitude offset using LBL, most
notably in {32} and more recently in {561. Both of these attempts framed the prob-
lem in the language of control theory, and drove a bias error term toward zero by
teeding LBL position estimates back through a proportional controller. As shown in
the previous section, acoustic localization is not currently accurate enough to produce
centimeter-level bathymetric maps, so we calibrate the DVL roll and pitch offsets us-
ing only proprioceptive sensors. An alternate approach using only 3-axis accelerometers
and a gyrocompass (i.e. no absolute depth sensor) is described as preliminary work us-
ing only simulated data in {60}. Our calibration takes place as part of the pose graph
optimization, using a graph like that shown in figure 2-5. This graph differs from those
discussed earlier in that it contains factor nodes which connect to three pose nodes
rather than just one or two. This is perfectly acceptable in the framework, and is one
reason why factor graphs are easier to visualize than SLAM hypergraphs, in which con-
straints are captured by edges (which can connect more than two nodes) rather than
by factor nodes.

The modified odometry factors in the figure have the same relative attitude error
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term as the odometry factors from above, since bias in roll and pitch do not affect
the relative attitude change between two poses. The translation is affected by bias,
however, so the translation portion of the error term does take the estimated roll bias
p and pitch bias ¢ into account. Recall that the odometry error term from above was
eo,, = (X; © X;) — Oy ;. The first term expands to

R'R;, R't;— Rt
01x3 1

The upper-left term, the relative attitude change, is retained, while the upperright

term is changed in this factor to R;"t; — R}"t; where R; is computed from

Pri‘é
Oi + o
0

As above, the resulting 4 x 4 matrix is converted back into a 6-DOF vector. Designating
this biased transformation as (X; ©p5 X;), the new error function for the odometry
factors becomes (X; ©p X;) — O, ;. The bias pose node can be initialized to the value
in the prior factor B in the graph optimization, which will also constrain the extent of
allowable bias based on the value in its information matrix. In the experiments in this
thesis, however, we initialized the bias to zero and did not use a prior factor to limit
the optimization.

The results of including roll and pitch bias in the pose graph optimization are shown
in figure 2-6 for one dive. The depth of the AUV, as computed from integrated vertical
velocities, matches measurements from the absolute depth sensor much more closely
than before the optimization, though the match is still not perfect. This is because ve-
locity integration is always subject to drift, and because the velocity measured is relative
to the local terrain, which is not flat. In later chapters we will also show how including
this step in the mapping process changes the estimate of the robot’s trajectory, and is

therefore useful as a preliminary navigation refinement.
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Figure 2-6: A comparison of absolute depth values for a dive with integrated vertical
velocity. On the left, the vertical velocity vector used at each time step assumes zero
roll and pitch bias. On the right, the velocity has been compensated by roll and pitch
biases computed using the pose graph in figure 2-5.
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Chapter 3

Multibeam Navigation and Mapping

3.1 Incrementally building a multibeam map

Multibeam echo sounders are the underwater analog to the laser scanners used in ter-
restrial robots. They produce a set of ranges in a fan-shaped pattern with a field of
view of 90 to 120 degrees. For seafloor mapping, the sensors are oriented in “profiling”
mode, pointing straight down from the vehicle to which they are attached, so that the
field of view is perpendicular to the direction of travel. Because of the finite speed
of sound (about 1500 meters per second in sea water), the principles of operation of
multibeam sonars are different than those of laser scanners. Laser scanners measure
ranges effectively instantaneously, and line scans are effected by a spinning platform in
the sensor. Multibeam sonars, on the other hand, measure a whole set of ranges with a
single pulse of sound, by “beam forming” the emitted pulse into a fan shape, and then
measuring the difference in time of arrival (or the phase differential) of the echoes at
several different transducer positions within the sonar head. This allows a ship or an
underwater vehicle to create a dense bathymetric map even if it is moving faster than
a meter per second through the water. It is important to note that proper beam form-
ing requires good knowledge of the speed of sound, which varies with water density;
changes in sound speed aftect both the ranges measured by the sensor and their angles
from the sensor head. These sound speed measurements are generally provided by a
separate CTD (conductivity-temperature-depth) sensor.

Building a map with multibeam data is thus just a question of geometry — if the pose
S; of the multibeam sonar head is known at the time ¢ of each ping, then the range from

each beam can be placed into a globally-referenced point cloud, which can eventually
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be gridded into a map. The mapping problem is then reduced to determining the head’s
location at particular points in time. The AUV navigation problem, introduced in the
previous chapter, provides a good starting estimate of the AUV’s trajectory, so a first
cut at multibeam mapping needs the 6-DOF pose offset P between the AUV’s frame
and the multibeam head, as well as synchronization information so that the best pose
estimate can be used at each ping time. To summarize, if X; is the AUV’s pose at time
t, P is the multibeam head pose offset, R; is the rotation describing the beam angle for

beam j, and b, ; is the range for beam j at time ¢, then the corresponding point p; ; is
th = Xt @ P @ Rj @ bt,j

and the mapping problem requires estimating X; and P.

One pervasive problem in underwater mapping is lack of available ground truth.
With terrestrial robots, it is often possible to check a map against a benchmark, which
can be produced using surveying equipment using GPS and fixed laser scanners. Un-
derwater neither GPS nor lasers work, and the sensors available for validation are the
same as those used to build maps in the first place. Only in test tanks which can be
drained can ground truth be determined. In the ocean, then, the best metric we can
use for measuring map “goodness” is self-consistency. The easiest way to measure self-
consistency in a multibeam map is to grid, or bin the map down to a fixed resolution,
and then to check the variance of the gridding. By doing so, the map is effectively re-
duced from a 3-D point cloud to a “2.5-D”height map, in which each (z, y) location has
a single value for depth, height, or draft (). The area being mapped is divided into a
regular grid, and then the points within each grid cell are grouped. The mean z value
becomes the depth value for the cell, and the variance of the z value for the points is an
estimate of the consistency of the data. While the consistency of a map can be visually
estimated by examining the binning variances in regions seen by multiple tracklines, a
quantitative measure of the goodness of the entire map is the average variance over all
the cells, or (equivalently; if the number of cells does not change from map to map) by

the sum of the variances over all the cells.



3.2 Determining sensor offset

As mentioned above, knowledge of the 6-DOF offset between the AUV frame and
the multibeam is a prerequisite for the ability to build a consistent map. While the
translation offset is relatively easy to approximate with a tape measure, determining
the attitude offset presents more of a problem. In {53}, it was shown that the three de-
grees of freedom in the attitude offset can be treated independently; if one considers
roll first, then pitch, and finally heading, assuming that the multibeam is mounted in
the typical profiling configuration. Fortunately, the influence of errors in the estimate
of each of these degrees of freedom are relatively easy to recognize. The estimation of
these parameters requires the AUV to move through a specialized motion, such that
the terrain being mapped is ensonified more than once, and from different attitudes.
For roll offset estimation, for example, the AUV should either rotate over the terrain
being mapped, or move over the same patch of flat terrain from opposing directions.
Estimation of the attitude offset is often done manually, using software such as MB-
System. {61, or other commercial solutions. Here we estimate the attitude offset auto-
matically, assuming sufficient overlap in the AUV’s trajectory and sufficient generality
of the AUV’s motion, by examining the total variance of gridded maps produced using
each hypothesized attitude offset.

The assumptions of general motion and sufficient overlap have been justified em-
pirically when the AUV moves through typical lawnmower-style survey patterns such
as those shown in the previous chapter. For each degree of freedom, the system starts
with an approximate initial guess using the nominal mounting angle of zero degrees for
mapping the seafloor (the starting roll estimate is 180 degrees for mapping the under
side of sea ice), and then steps through a small set of offsets, producing a gridded map

for each angle. The error term being minimized is the sum of variances of each grid

bin:
6(9)221\%222—22

ceM "¢ zec
where the outer sum is over each cell in the gridded map, and the inner sum is over each
point in the given grid cell. The error function is well-behaved when the robot’s motion
in sufficiently general, as shown in figure 3-1. As expected ([53D, the greatest error is
contributed by the roll offset, followed by the pitch and heading offsets — the vertical

axes on the graphs in the figure are different from each other. When the multibeam is
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Figure 3-1: The effect of attitude offsets on binned map variances. The vertical axes
on the graphs show the sum of variances over each grid cell in the computed map,
tor the given attitude offset. The left graph shows the error function for roll offset
optimization, the middle for pitch offset optimization, and the right for heading offset
optimization. The optimization proceeds in order from left to right, and each rotation
axis is treated independently given the biases already computed.

mounted far from the DVL, we also compute an estimate for the fore-aft translation
offset (the vehicle’s = axis) in the same manner, because of the influence of the long
lever arm produced when the vehicle pitches.

Once the minima of the functions in figure 3-1 are determined, we perform a quadratic
interpolation around the minimum to avoid overfitting. The local quadratic curves are
shown in red in the figure, and gridded maps showing the overall improvement after
estimating the three degrees of freedom in the attitude offset are shown in figure 3-2.

It is important to remember when considering the estimation of these offsets that
the AUV must move through sufficiently general motion over the same patch of terrain,
and that the AUV’s attitude must be reasonably well known. The estimation is also
predicated on the assumption that that offset between the AUV and the multibeam
is fixed over the course of the entire dive, or equivalently that any bias in the AUV’s
attitude estimate is fixed or compensated for over the course of the dive. In some
cases, these assumptions are not justified; in figure 1-2 there appear to be biases in the
AUV’s roll which change from trackline to trackline, and in fact on this particular dive
different multibeam roll offsets are produced by the estimator depending on which
tracklines are chosen to use in the optimization. More troubling is the fact that if only
every other trackline is used to estimate the attitude offset, then the optimization is
no longer well-behaved, as the variance can be minimized by moving the multibeam
head into a configuration where the grid is reduced to one dimension from two. In

this particular exceptional case, the problem can be resolved by bringing in domain
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Figure 3-2: Multibeam maps before and after sensor offset calibration. The top row
shows the mean depth at each grid cell (units are meters), while the bottom shows the
variance (units are meters squared). The left column is before sensor attitude optimiza-
tion, and the right is after. The largest reduction in variance is produced after the roll
offset has been computed.
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knowledge (that certain areas of terrain are flat), but it reinforces the conclusion that

assumptions made must be justified.

3.3 Constraints induced by multibeam matches

At this point in the mapping process, the reliance of map self-consistency has already
been used to improve the map by contributing to the estimation of the offset of the
multibeam head. We now return to the pose graph framework, to show how self-
consistency can be used to further refine the map by taking into account overlapping
tracklines and loop closures. In the smoothing and mapping framework, environmental
constraints can be incorporated either through the use of landmarks, or through pose
constraints that do not arise from sequential odometry. In early SLAM research, the
map was defined as the location of a collection of landmarks, and the corresponding
pose graph was similar to that shown in figure 2-2 in the previous chapter, but with
potentially large numbers of natural landmarks instead of a handful of localization bea-
cons. Because multibeam sonars can only be used to build maps incrementally, and
are of low resolution (relative to laser scanners, for example), distinctive landmarks are
difficult to identify and differentiate from one another in single scans. For this reason,
multibeam mapping efforts using SLAM such as {51} and {1} do not rely on landmarks,
but instead either make use of relative pose constraints (in the former case), or directly
use an occupancy grid representation which dispenses with the need for the explicit
connection of mapping regions (in the latter case). The approach presented here lies
between these two. We build small submaps where the AUV’s trajectory crosses over
itself and find the transformation that best aligns them, and then determine a relative
pose constraint induced by the match. The smoothing and mapping algorithm then
treats this constraint like the others in the graph, and optimizes over the whole tra-
jectory. Most notably, the smoothing step does not force the individual submaps to
remain static — rather the whole trajectory (and hence the map) is warped to minimize
the overall error described by all of the constraints. An example pose graph is shown
in figure 3-3.

The submaps themselves are produced using the starting trajectory estimate and
multibeam head offset already generated, taking into account the footprint of the sen-
sor on the terrain, as well as the shape of the planned mission. Crossover points are

thus planned for, and tracklines are designed to be close enough to each other to allow
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Figure 3-3: An example pose graph showing the types of constraints induced by match-
ing multibeam submaps. Each matched submap induces a single relative pose constraint
Ci j, shown here with dashed edges linking the poses to the cross-match factor node.

significant sensor footprint overlap from leg to leg. As will be shown below; both “inter-
sections” in the trajectory and parallel tracklines can be used to produce relative pose
constraints. Once two gridded submaps are built, they are aligned by scanning over a
horizontal displacement between the two of them, and finding the (z, y) displacement

which minimizes the average difference in depths between the two maps, namely

1 _ _
N Z (Za.am) — Z(2yw+Am7y+Ay))2
OVCI'laP (z,y)EMiN(z+Az,y+Ay)EMs

where the sum is over all cells that contain data in both maps, and Z;, , ,, is the mean
depth for the cell a location (z, y) in map k. By searching only for a horizontal displace-
ment which aligns the maps, we are assuming that the attitude and depth of the AUV
is well-known by this point in the mapping process, which should be the case given
the refinement of the trajectory using absolute depth and attitude sensors. An exam-
ple submap alignment is shown in figure 3-4, which shows gridded maps containing the
two submaps both before and after they have been aligned. The corresponding variance
images are shown in figure 3-5, from which it is clear that the alignment has improved
the local self-consistency of the combined map. The use of depth image alignment dif-
terentiates this technique from more general scan matching methods which use a full
6-DOF alignment step, often based on the iterated closest point algorithm {671, which
works well for general scan matching, but is better suited for use with point clouds
(as opposed to gridded depth maps) produced by dense sensors such as laser scanners.

Searching over only two dimensions is simple, and it limits the influence of noise in the
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Figure 3-4: Two submaps from difterent portions of the AUV’s trajectory, combined
into a single gridded map. These are the mean bin values, representing sea ice draft.
The image on the left is before the maps have been shifted to maximize the correlation
between them, and the post-shifted map is on the right.

submap binning, which can lead to overfitting when unnecessary degrees of freedom
are searched over. Overfitting is also avoided by locally estimating the best match by

fitting a 2-D quadratic to the error surface, as discussed in the next section.

3.4 Estimating the information matrix

The smoothing and mapping system requires an information matrix for each factor
in the pose graph, which is usually provided by covariance estimates of the velocity
sensors on board the AUV. In the case of submap matching, however, the confidence
in a match depends entirely on the shapes of the submaps being matched, and the shape
of the error surface being minimized. A confidence estimate is provided by fitting a 2-
D quadratic locally to the error surface being minimized. The equation in the previous

section provides an error term for each (z,y) offset estimate, to which we then fit a
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Figure 3-5: The variance within each grid cell for the two maps shown in figure 3-4.
Shifting one map relative to the other clearly improves the consistency of the gridding.
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quadratic, namely a function of the form
e(z,y) = ax® +by* + cry +drv + fy + g =p'x

This is done by grouping several error estimates in the neighborhood of the empirical

minimum found in the depth error search into a linear system Ap = e:

X-{ €1
x5 €3
D
T
x| en

and then solving for p using linear least squares. The extremum of the quadratic is

given where the first derivative equations equal zero:

-l

The shape of the equation around the extremum is governed by the second derivative

(Hessian matrix) of the quadratic, which is

H— 2a c
c 2b

If the analytical minimum from the quadratic is too far from the empirically found
minimum or if the determinant of the Hessian is too close to zero (or if it is negative)
then the fit is poor, and the match is rejected. Otherwise, the Hessian provides the
shape of the local error surface, which translates directly into the information matrix
(so A = H) for the relative pose constraint. Figure 3-6 shows an example error surface,
with the empirical minimum shown along with the minimum of the quadratic fit, and
the eigenvectors of the Hessian matrix, which give the major and minor axes of the fit
paraboloid.

Once the local submap match has been found and the information matrix deter
mined, it must be transformed into a frame of reference appropriate for the pose graph.
The pose graph only contains a pose node for each sampling period of the DVL, which

is typically running at about 7 Hz and is fixed over the course of a dive. The multi-
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Figure 3-6: The normalized correlation surface. Each pixel in the image corresponds
to the average squared difference between the first submap and the second, which has
been shifted by the (z,y) coordinates of the pixel. The empirical minimum of the
surface is shown by the red x, while the minimum of the fitted quadratic is shown by
the red square. The lines from the red square are the scaled eigenvectors of the Hessian
of the quadratic.

beam can run at up to 10 Hz, depending on the distance between the head and the
terrain being imaged, and according to configuration parameters. A schematic of this
relationship is shown in figure 3-7. In the figure, the global (z, y) relationship between
the poses s and ¢, which are not represented in the pose graph, is established by depth
image correlation, as described above. The relative constraint between these two poses
is C;; = t© s, and the information matrix A must be rotated from the global frame into
a local frame relative to pose t. This is done using the local heading of pose s, assuming
that the pitch and roll differences between the two frames are minimal. The informa-
tion matrix rotates as A’ = RTAR, where R is the 2 x 2 rotation matrix corresponding
to the (global) heading at pose s.

Once this relative constraint has been determined, a constraint between poses X
and X can be determined by locally interpolating the odometry constraints between
nodes X; and X, to determine a local virtual constraint C; ; = s © X; (and similarly

C;+ =t © Xj). These three local constraints are combined to determine C, ;:

Ci,j - C@s @ Csﬂg @ C;tl
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Figure 3-7: The relationship between AUV poses at the time a multibeam ping happens
and at the rate of the DVL. Cross-links in the pose graph connect the pose nodes
nearest in time to the multibeam ping times.

Once again, the information matrix must be rotated to account for any differences in
the headings between nodes X; and s, though this rotation in general should be quite
small, since the time difference between the two poses is much less than one second.
For each matched submap, a single relative pose constraint of the type C; ; is added
to the graph in this way, using the multibeam pings nearest the center of each submap
to “anchor” the constraint. The number of factors added to the graph depends on
the trajectory of the dive, but as long as the number of these cross-constraints does
not increase more than linearly with the size of the graph, the sparsity of the overall

system remains intact.

3.5 Results

We applied the AUV navigation and mapping technique described above and in the
previous chapter to eight dives undertaken by the Seabed AUV in 2010. Seven of the
dives were under sea ice floes near Antarctica, and were attempts to map the shape
and draft of the ice above the AUV. In these cases, the multibeam head and the DVL

were oriented upward, so that the AUV was navigating relative to ice that in several
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Figure 3-8: Topology of the pose graph for two multibeam mapping dives. The under-
ice dive on the left only uses cross links between the diagonal section of the dive and
the legs of the lawnmower pattern, while the coral reef dive on the right uses three
links per trackline with each adjacent trackline.

cases was drifting, and in one case rotating — we address this additional complication
in chapter 5. Under ice, the AUV operated at a constant depth between 15 and 25
meters, and the lawnmower tracklines were spaced to have the same distance apart as
the vehicle’s depth. The eighth dive took place on a coral reef in Puerto Rico, during
which the AUV worked at a constant altitude of three meters, and took pictures every
three seconds at the same time that it was acquiring multibeam data. Trajectory graphs
with the relative pose constraints induced by matched multibeam submaps for onc
under-ice dive (on the left) and the coral reef dive (on the right) are shown figure 3-
8. Under ice, each dive included a long diagonal track (sometimes at different depth
than the primary grid) which crossed over the lawnmower tracklines, and we used only
the intersection points as places to search for submap matches. The coral reef dive
did not have a diagonal track. In all cases, there was significant trackline-to-trackline
overlap to search for map matches from adjacent lines, but we only did this with the
coral reef data, to validate the approach. It is worth noting that the coral reef dive
does not use cross-links at every possible point; this is because many potential links
are automatically rejected when the Hessian computed from the match indicates a fit
which is not concave enough.

The optimized trajectories of the AUV are shown in figure 3-9 for these two dives.
In these graphs, the intermediate trajectory marked “attitude corrected” shows the re-

sult on the trajectory estimate of optimizing for the roll and pitch bias in the attitude
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Figure 3-9: The changes induced to the AUV trajectory after adding cross-links to the
pose graph, for the two graphs shown in figure 3-8.

sensor, as described in the previous chapter. The graphs show the degree to which the
optimization changes the initial trajectory estimate: for the coral reef dive, the change
in the final pose after 1034 meters of transit was 1.53 meters, while for the under ice
dive, the relative change after 3250 meters of transit was 2.5 meters. In both of these
particular cases, and in the six other under-ice dives, the adjustment to the final pose
was always less than 0.5% of the distance travelled, which is consistent with the liter-
ature (31, {65D suggesting that the state of the art in AUV navigation precision (with
no feedback from mapping sensors) is 0.5% of the distance travelled.

The error terms induced by the submap links highlighted in figure 3-8 are shown
in figure 3-10, again with the under-ice dive on the left and the coral reef dive on the
right. For each link, the initial relationship between the poses is shown in blue, and
the optimized relationship is shown in red. The links are shown as a small circle at the
(x,y) location of one pose, and a line drawn to the (z,y) location of the second pose.
The correct location of the second pose relative to the first is drawn with an x, together
with an ellipse representing the information matrix induced by the submap matching.
The graphs in the second row of the figure show a particular pair of constraints, to
illustrate the typical behavior of the smoothing and mapping algorithm: the map is
smoothed so that the errors added by the cross-links are minimized together with the
errors caused by deviation from the measured odometry:

Overall, the iSAM algorithm is able to minimize the weighted squared error repre-

sented in the pose graph because the approach we have taken steers the process suf-

48



ficiently to avoid local minima or non-convergence. Most importantly, prospective
cross-links with low confidence are thrown out altogether, rather than allowed to even
weakly contribute to the overall squared error. This is also the case with the noisy
acoustic absolute positioning systems examined in the previous chapter: rather than
adding very noisy measurements with low information (high variance), we leave the
measurements out altogether in the interest of maintaining the stability of the system.
For multibeam submap matching, this means rejecting links with Hessian determinants
less than o.o001, or with fitted minima that are more than two grid cells away from what
was empirically found to be the best match. The resulting pose graphs generally have
normalized x? error on the order of 1073, though this metric is not entirely meaningful
as it is not scale-free (i.e. scaling all the information matrices will change the x? error
even though the solution remains the same).

Finally, the most direct measurement of the improvement in maps created using
this technique comes from the created maps themselves. As mentioned previously,
there is no ground truth available, so map self-consistency is the best metric we can
use. Figure 3-11 shows the improvements in the variance for binned multibeam maps
at several stages of the algorithm. Better maps have lower binning variances, so bet-
ter maps will have more mass on the left side of the histograms. These graphs show
that in addition to minimizing the error in the pose graph (including the consistency
of the locally matched multibeam submaps), the algorithm also improves the overall
consistency of the multibeam maps, including the majority portions of the dive that
were not explicitly matched. Moreover, the large shift in the mass of the multibeam
variance histograms indicates an improvement in the effective resolution of the maps
being built. While the coral reef data were acquired from a range of only three meters,
the fact that most of the binning variance is less than one centimeter is a strong re-
sult — gridding the final map to a five centimeter scale is entirely reasonable with this
variance. In the next chapter, we will see how this estimate can be further improved

through the addition of visual features acquired with a camera.
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Figure 3-11: Histograms of binning variance at four different steps in the multibeam
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to distinguish. Each stage of the algorithm should improve the overall map — as can be
seen here, the largest improvement comes from optimizing the roll and pitch offsets
of the navigation estimate, though each stage improves the map incrementally.
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Chapter 4

Building Visual Maps with Cameras

4.1 Background

Researchers in computer vision, robotics, and photogrammetry have been building
maps from camera images for decades. While the approaches have different names
(structure from motion, visual SLAM, bundle adjustment) and may start with different
information (only visual SLAM assumes odometry information may be available, for
example), the underlying mathematics are very similar, and the goals are the same: to
recover the camera motion and the 3-D structure of the world from a sequence of im-
ages. A good elucidation of the field is given in {17]. This chapter of the thesis quickly
reviews the basics, and then delves into the particulars of underwater 3-D scene recon-
struction and integration with multibeam data.

The use of cameras for navigation in robotics can be loosely divided into two ap-
plications: as odometers, and as a source of landmarks. The former case uses image
matches made over small displacements to provide an independent estimate of local
robot motion, while the latter case treats images as containing information that will
allow the robot to recognize its position at a later point in time. A pair of cameras
calibrated together can yield metric 6-DOF relative pose estimates, called stereo visual
odometry, a technique widely used in terrestrial robotics {19} {45}. The information can
be used in either direction, in fact: stereo visual odometry can inform robot motion,
and robot motion can inform camera calibration {35}. Underwater, a DVL generally
provides more reliable odometry information over short distances than does a camera,
without any calibration requirements {35}.

Computer vision has progressed recently to the point that place recognition in some
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environments is possible. This means that robots are able to localize after many kilo-
meters of transit, correcting large accumulated drift in odometry and allowing loop
closures which enable very large area SLAM. This ability has arisen from the shift in
the field from the recognition of individual features to the recognition of feature collec-
tions. State of the art implementations use a learned probabilistic model of the kinds
of features that are often seen together, and more usefully the unusual scenes that are
therefore better suited to identifying particular places {46]. These techniques work
particularly well in areas built by people, where unique scenes are more common than

in natural environments — underwater place recognition is still an elusive goal.

4.2 Image matching

At the foundation of all of the approaches to using images for navigation must lie a
technique for determining when regions of two different images correspond to the same
point in the world. Although at video rates dense correspondences can be made using
optical flow techniques {20H18}, most modern approaches are based on image features,
which are “salient” or uncommon areas that are then encoded to a descriptor vector,
whose coefficients are derived from the image content. The most well known of these
features is SIFT {371, which selects local maxima in scale space as the salient pixels,
and then encodes them using histograms of image gradient orientations around the
selected pixel at the found image scale. The key features of effective detectors and
descriptors such as SIFT are that they produce high-quality matches, and that they are
robust to changes in scale, orientation, and lighting, so that the same point in space
can be imaged from different points of view and still be correctly recognized.

The characteristics desired from such detectors of course depend on the underlying
application. For underwater mapping, lighting and viewpoint invariance are important,
but because the AUV attempts to maintain constant distance from the terrain, we don’t
expect large changes in scale nor large image changes that cannot be reasonably well-
modeled with translation and rotation. Computational complexity is also less of an
issue, since the mapping algorithms all take place after the AUV has been recovered
from the ocean. With images from the Seabed AUV, each image is preprocessed to ac-
count for the illumination pattern of the strobe, features are found using a scaled Harris
corner detector, and they are described using coeflicients of Zernike polynomials. This

combination is effective at finding features in images with low frame-to-frame overlap,
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and is robust to image rotation. It is described in detail in {48}. Image preprocessing,
and color correction in particular, is an ongoing research problem; see {26} for recent
developments, and {611 for a formulation based on adaptive lighting. A typical image
pair with matched features is shown in figure 4-1.

Detected features are then matched image to image — each descriptor in one im-
age is compared to all the descriptors in a candidate matching image, using Euclidean
distance to compare descriptor vectors (this is not very well grounded, but it is typi-
cal practice). Only definitive matches are retained, and outliers in the set of matches
between a pair of images are rejected using either RANSAC {13} or least median of
squares {39]. For outlier rejection, we use consistency with an image-to-image affine
transformation as the model if we expect the scene to be approximately planar, and
consistency with a fundamental matrix (i.e. with epipolar geometry) as the model if we
expect the scene to have good 3-D structure. While epipolar geometry is valid for any
pair of images of the same scene, recovery of the fundamental matrix is only possible

if the scene is sufficiently non-planar (see {63)).

4.3 Constraints induced by matched image pairs

We use the common pinhole model of image formation, which captures perspective

T
projection in the matrix equation p = KX, where p = [ u vow ] is a homoge-

neous image coordinate, and X = [ XY 7 T is a point in the world, relative to the
coordinate frame defined with the origin at the camera’s center of projection, z-axis
parallel to the image’s horizontal axis, y-axis parallel to the image’s vertical axis, and
z-axis pointing from the image center out toward the scene. The camera calibration
matrix K contains information about the camera which does not change from image
to image: the focal length, pixel aspect ratio, and location of the center of the image.
Without knowledge of K or the camera motion, it is only possible to reconstruct the
scene up to a projective ambiguity. Matters are complicated underwater by the fact
that light bends as it passes from water into the (air-filled) pressure housing containing
the camera, effectively narrowing the camera’s field of view and introducing nonlinear
distortion — the distortion is reasonably well-captured by typical radial lens distortion
models, but see {59} for an analysis of refraction underwater with planar interfaces.

For this reason, calibrating the intrinsic properties (the K matrix and the distortion
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Figure 4-1: Two typical images captured by Seabed over a coral reef, with matched
teatures shown. The images generally have about 50% overlap, so each point on the
seafloor is usually seen in only one or two images.

55



parameters) greatly facilitates mapping.

Given a calibrated camera and a set of matched features over a pair of images, there
are two possible ways to constrain the pose graph. The 3 x 3 calibration matrix K allows
us to use normalized image coordinates, and gives rise to the essential matrix E, which
specializes the fundamental matrix to the normalized case. The essential matrix can be
estimated from five matched pixels, and it can be decomposed into a 3-D rotation and
a translation vector (a fast essential matrix estimator and method for extracting cam-
era rotation and translation direction is given in {44]). This means that even without
incorporating any prior estimate of the camera motion from AUV odometry, a pair of
image matches in principle can inform five of the six degrees of freedom of the camera
motion between two points in time — only the scale of the motion is not recoverable.
A 5-DOF relative pose constraint factor can then be introduced into the pose graph,
in the same way as a 2-DOF relative pose constraint is used to link multibeam submap
matches. The error term for the factor is similar to a 6-DOF odometry factor, but only
takes the direction of camera translation into account, ignoring scale. Because the es-
sential matrix captures the motion of the camera, rather than the AUV, an additional
pose node captures the 6-DOF extrinsic relationship between the camera’s frame and
the AUV’s frame. This can either be estimated as part of the pose graph, or hard-coded
as a constant into the optimization. Each matched image will thus introduce five scalar
constraints into the pose graph, and potentially only six additional variables will have
to be estimated over the whole trajectory.

An alternative approach, used in this thesis and more common to visual SLAM, is
to treat each matched image feature as a proper landmark, with a 3-D location which
must be estimated. This formulation adds four scalar constraints to the graph for each
matched feature, namely the (z,y) pixel coordinate of the imaged point in each of
the two photographs in which it is seen, but also adds three parameters that must be
estimated, namely the 3-D location of the imaged point. Each matched feature thus
has a net effect of introducing one more constraint into the graph. Since each image
pair must have at least five matched features to determine an essential matrix, it makes
sense to use this approach rather than the one mentioned above, even though the size
of the overall problem will be larger. The resulting pose graph is shown in figure 4-2,
which also includes a pose node for the camera’s location on the AUV. A prior factor
is linked to the camera’s extrinsic pose, allowing for an “eyeball” calibration to seed the

optimization. We will return to this pose graph momentarily.
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Figure 4-2: The bundle adjustment, or visual SLAM pose graph. Each matched feature
is a single 3-D landmark L, and the factors Z; ; capture the pixel reprojection error. An
additional pose node C' captures the 6-DOF relationship between the camera and the
DVL, with prior C.

4.4 Photomosaicking

Before proceeding to the full recovery of the AUV motion and the 3-D scene structure,
it is worth discussing underwater 2-D photomosaicking. Mosaics are a useful product
in and of themselves, because they provide a bird’s eye view of a scene which cannot be
imaged from far away, similar to an aerial image of the ground. It is often the case that
navigation and calibration information is unavailable, especially with legacy data, and
it is worthwhile to consider how much can be derived from imagery alone. There is
usually not sufficient image-to-image overlap underwater to apply full structure from
motion techniques, as many scene points may only be imaged once. Finally; it is reason-
able to assume that a good mosaic can only be improved by the addition of navigation
data, so a robust mosaicking technique is a good starting point for full 3-D reconstruc-
tion.

Starting from the assumption that images are available in the order in which they
were acquired, a sequence of linear chains can be built by matching images from consec-
utive time steps. Features are extracted and described as above, and matches are made

along the chain. If a pair of images cannot be matched, the chain is broken and a new
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chain started, dividing the graph of image links into connected components. An initial
mosaic is built from each connected component by assigning an affine transformation
to each image which minimizes the pixel matching error (i.e. each matched feature
should be warped to the same pixel in the global mosaic pixel space). Affine transfor-
mations are used for image warping rather than full projective warps because it keeps
the optimization semi-linear, and because the camera tends to point in approximately
the same direction throughout the dive, removing the need for the more oblique views
provided by projective transformations.

Using affine warps reduces the mosaicking problem to finding the solution to a ho-
mogeneous system (of the form Ap = 0). In order to prevent excessive warping to make
teatures match and to yield solutions which are nontrivial, nonlinear terms are intro-
duced which constrain the degree to which distortion is allowed. As described in {48},
these quadratic terms attempt to restrict the affine degrees of freedom of the transfor-
mations, and are empirically weighted against the feature matching terms to produce
a balanced result. Misalignments are inevitable because of the 3-D nature of the scene,
so the final mosaic is rendered using the ubiquitous multiresolution spline technique
{4]. Once an initial mosaic is computed, hypotheses about cross links are determined
from overlapping images, more images are matched, and the algorithm repeats. After
several iterations, a graph with many loops and track-to-track links describes the topol-
ogy; for the coral reef data the topology is shown in figure 4-3 and a rendering of the
corresponding mosaic is shown in figure 4-4.

The photomosaicking problem is quite similar to the pose graph optimization prob-
lem: each image corresponds to a pose node, with six degrees of freedom correspond-
ing to the six parameters of an affine transformation. Factors in the graph join nodes
which represent matched images, and each image also attaches to a factor restricting
the extent of the allowed image warp. The graph is sparse, as it is in the smoothing and
mapping problem. The overall error function is largely linear, however, and the non-
linear parts are quadratic, yielding a Jacobian that can be readily computed in closed
form. Most importantly, the sparsity of the system means that the size of the problem
grows linearly with the number of links in the graph, mirroring the complexity of the

AUV mapping problem.
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Figure 4-3: Link topology of about half of the coral reef dive. This shows the connec-
tivity of one connected component of the image link graph. Each blue circle represents
one image. Blue lines connect matched images that were captured sequentially in time,
while red lines connect matched images that were not captured sequentially. Of the
1476 images acquired during the dive, these 744 images were matched automatically
into the largest connected component. The location of each image in the graph is esti-
mated from the photomosaic rendering, not from the AUV trajectory as recovered by
the pose graph optimization.
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Figure 4-4: The largest mosaic from the coral reef data set, corresponding to the link
topology shown in the previous figure.
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4.5 Bundle adjustment

Moving from 2-D photomosaicking to 3-D reconstruction, the link topology deter-
mined in the mosaicking process is added into the pose graph, with each matched fea-
ture contributing one landmark with two observations, as shown above in figure 4-2.
Each visual observation landmark in the graph is linked to two factors, one for each
observation. Each observation factor is also linked to the pose node X; corresponding
to the AUV’s pose at the time the image was acquired, and the node representing the
camera’s extrinsic location relative to the AUV. Using the equivalent 4 x 4 matrix X
to represent the AUV’s pose at time ¢, and C to represent the the camera’s pose in the

AUV’s frame, and the 3 x 1 vector L for a landmark imaged at homogeneous pixel

T
location p, , = [ us vy 1 } , then the error in the observation factor Z; ; is
1
X,CL, - K P,

where both vectors in the subtraction have been “regularized” so that their third coor
dinate is equal to one — the error function measures actual pixel reprojection error, in
normalized coordinates. Note that all three factors in the first term of the equation are
being solved for in the pose graph optimization. For the 2 x 2 information matrix, we
experimentally chose a matrix with one-fifth the calibrated focal length on the diago-
nal, corresponding to a variance of five pixels. This means the observed visual features
are not individually weighed strongly enough to overwhelm the influence of the AUV
odometry, but that as a group the visual features are ultimately able to “pull” tracklines
together and close loops. A detail of the mosaic shown in figure 4-4 is shown in figure
4-5 — this figure shows part of the starting conditions for the bundle adjustment pose
graph. The bundle adjustment will significantly reduce the reprojection error in the
figure by incorporating the vehicle navigation information and the 3-D structure of the
scene, as shown below in figure 4-6.

It is important to note that all of the images captured in the dive that have been
matched with at least one other image can be used in the pose graph — in other words,
the mosaicking process can end with several independent connected components, and
each of these connected components containing at least two images can be added to
the pose graph. The components must have two images because they must contain

matched features (landmarks). Without navigation information provided by the solu-
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Figure 4-5: A detail of the mosaic in figure 4-4. This shows six images blended by
simple averaging. The image boundaries are boxed in yellow; and images with enough
matched features to infer an affine transformation linking them are connected by a red
line joining their centers. Individual matched features are connected with short green
lines; the length of these lines is equal to the mismatching error in the set of affine
transformations that defines the mosaic — many are short and thus difficult to see at
this scale. These matches are then used as input to the bundle adjustment pose graph,
which recovers 3-D structure that reduces this reprojection error.
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tion to the pose graph optimization, the complete dive cannot be visualized since each
mosaic is independent. We will show below that the optimized trajectory provides
enough information to allow the disconnected mosaics to be visualized as a single map.

Each pose node in the graph must be initialized for the optimization. The AUV
pose nodes are initialized using odometry, and the extrinsic camera location is initial-
ized using the “eyeball” calibration or nominal mounting parameters — typically the
camera is mounted about 1.4 meters forward of the DVL, and is rotated 9o degrees,
so that the camera x axis points to vehicle starboard, and the camera y axis points aft.
The landmark locations are initialized by triangulation from the AUV pose and camera
location estimates, which is a rather noisy guess at the 3-D scene structure, particularly
when the AUV has moved a long distance between acquiring matched images. Since
it is unlikely that a perfect triangulation will exist for a given feature, the location of a
landmark is initialized to the 3-D point closest to the two camera rays under the start-
ing navigation estimate. No weight is given to this initial estimate (there is no prior
factor on the landmark locations), but in order to reduce false matches landmarks with
ranges differing by more than 20% of the vehicle’s altitude as estimated by the DVL
are not used.

Even with landmark pruning, there are still more than enough features to improve
the map; for the coral reef data set, 19315 features of 35593 were rejected, and 1501
matched image pairs were used involving 1072 images of 1476 total images acquired
during the course of the dive. Figure 4-6 shows the estimate of the AUV’s trajectory
before and after the bundle adjustment step, and the pixel reprojection error in ac-
tual (non-normalized) pixels using the start estimates for the camera pose and AUV
trajectory, and the improvement in this error after the optimization.

The incorporation of matched visual features into the pose graph not only gives
us an improved estimate of the AUV’s trajectory and a sparse set of 3-D scene points,
but it also provides an improvement on the 2-D photomosaic, by providing a means to
link disconnected subgraphs in the link topology together. Without navigation data,
any missing link in the starting chain of image matches irrevocably separates a potential
global view into disassociated components — rather than assuming the AUV’s navigation
estimate and the extrinsic camera calibration are perfect and attempting to render a
mosaic from pieces, bringing both the image features and the navigation information

together in a single framework allows for an improvement of both.
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Figure 4-6: The change in the estimated AUV trajectory using only visual landmarks
in the pose graph. This is the result of pose-graph visual SLAM, or bundle adjustment
with odometry. On the left is the estimated trajectory, and on the right are histograms
of the pixel reprojection error before and after the optimization. The DVL roll-pitch
optimization described in chapter 2 is applied before bundle adjustment.

4.6 Fusing multibeam and vision

Up to this point, we have described how to incorporate information from two distinct
mapping sensors into the estimate of the AUV’s trajectory, improving the consistency
of the generated maps. The two mapping sensors complement each other well, as each
provides good feedback under different environmental circumstances. It makes sense,
then, to use information from both sensors when they are available. It should come
as no surprise that doing so requires augmenting the pose graph to incorporate both
types of mapping constraints. Such a graph is shown in figure 4-7.

This pose graph is built incrementally — before performing the full optimization
several intermediate optimizations are undertaken to ensure that the full problem has
a good initialization point. As always, we start by computing an estimate of the roll and
pitch bias of the DVL. The images must be preprocessed and matched into a set of 2-
D photomosaics, as described above. We seed the estimate of the camera’s extrinsic
location relative to the AUV using a subset of all the matched image features, and then
perform the full bundle adjustment. Finally, the multibeam data are incorporated into
the graph though the submap matching process described in the previous chapter. The
complete pose graph has all of the nodes and factors used in the vision-only graph, plus

the relative pose constraints shown as dashed lines in figure 4-7. It is important to note

64



Figure 4-7: Adding multibeam constraints to the bundle adjustment pose graph allows
both types of mapping sensors to be incorporated into the problem at the same time.
Although they are present in the pose graph, this figure does not show factors repre-
senting depth and attitude measurements to reduce clutter.

that while there are several steps taken to seed the initial estimates used for the scene
structure and the camera offset, the final optimization incorporates all the constraints
available: odometry, depth, and attitude constraints from the AUV’s proprioceptive
sensors, landmark measurements from visual features, and relative pose constraints
from multibeam submap matches. Because each image may contain dozens of features,
there are generally many more constraints on the map and trajectory provided by the
camera than by the multibeam sensor. The final optimization estimates six values for
each AUV pose, three values for each matched feature, and six values for the camera
location in the AUV frame. If there are n poses being estimated, £ matched visual
feature pairs, and [ multibeam submap constraints, then the graph will have n + k + 1
pose nodes, and about 2n + 2k + [ factors, depending on how often absolute depth and

attitude measurements are taken.

Results

At each step in the process, the influence of the additional information on the quality

of the map must be considered. We can consider each sensor modality independently.
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Figure 4-8: After adding multibeam constraints to the bundle adjustment problem, the
AUV’s trajectory is further refined to the final estimate shown on the left. On the right
the pixel reprojection errors are shown, compared to the results in figure 4-6.

Consistency in the multibeam map is measured by the variance in the binning step and
reduction in the weighted error of cross links in the pose graph. At the same time, pixel
reprojection error is used to check consistency in the use of visual features in the map.
The rest of the discussion focuses on the coral reef dive directly, in which 50 multi-
beam pose constraints were combined with 17023 visual landmarks over 26010 AUV
poses. The change in trajectory after incorporating multibeam data into the bundle
adjustment result is shown in figure 4-8, together with the change in pixel reprojection
error. The minimal change in reprojection error after the multibeam data are incorpo-
rated shows that using both mapping sensors does not have a detrimental effect on the
quality of the bundle adjustment solution. Unsurprisingly, the portion of the dive with
the most image landmarks (the right side of the trajectory shown in figure 4-8) is not
altered as much by the addition of multibeam data as is the later portion of the dive,
where there were fewer constraints.

The change in multibeam map consistency is shown in figures 4-9 and 4-10. The first
of these shows the reduction in the weighted error in the pose graph optimization: this
is the error that the smoothing and mapping algorithm is directly trying to minimize, so
one would expect an improvement in all cases. The graph on the left shows the starting
and ending pose graph error for the multibeam constraints when no visual landmarks
are used, while the graph on the right shows the same errors when both multibeam

constraints and visual landmarks are used together. The results for this data set are
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Figure 4-9: The reduction in error in multibeam submap matching (relative pose error).
The left graph shows the result of using only multibeam constraints, while the graph on
the right shows the starting error from bundle adjusted navigation, and the final result
after using the full pose graph from figure 4-7. The final error on the right is comparable
to the final error on the left, and the final sum of squared errors on the right is lower
than on the left.

somewhat unexpected: initializing the AUV’s trajectory using bundle adjustment yields
multibeam pose constraints that have weighted error an order of magnitude higher than
the case where no visual landmarks are used. The result of the combined optimization,
however, is that the relative pose constraints have a lower weighted error than the final
result when bundle adjustment was not used. The visual features, in other words, make
the AUV’s trajectory less consistent for multibeam to begin with, but afford a better
overall solution once the optimization is performed.

The changes in binning variance for the built multibeam maps are shown in figure
4-10. These histograms, like those shown in the previous chapter, show the change in
consistency of the maps as an effect of the pose graph optimization — the algorithm
does not directly attempt to reduce binning variance over the whole map, but only as a
side effect of the added pose constraints induced by submap matching. The graph on
the left shows that adding visual features to the multibeam mapping process described
in the previous chapter results in a multibeam map that has about the same consistency
as the best result from multibeam mapping without the addition of visual data. The
final binned bathymetry map is shown in figure 4-11.

So if adding multibeam data to the bundle adjusted estimate only marginally im-

proves the vision-only result, and adding visual data to the multibeam estimate only
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Figure 4-11: The bathymetry map incorporating both multibeam cross links and visual
landmarks. On the left is the mean depth in each bin in meters, and on the right is the
variance in each bin. Each grid cell is five centimeters on a side.
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marginally improves the multibeam-only result, why use both sensors? There are two
answers: first of all, using both sensors can be a big help in environments where the
data are not as rich as on a coral reef, where there is a large amount of visual texture
and 3-D topography (i.e. both sensors perform well in this situation). Secondly, even
in situations like in Puerto Rico, fusing the two sensors together gives us a new way
in which to visualize the environment: the imagery can be texture-mapped onto the
multibeam bathymetry, because we have the 6-DOF AUV pose at the time of every
ping and image capture, as well as the 6-DOF offsets to both mapping sensors.

Visualization

While visualization is not the focus of this thesis, a reasonable (if not scalable) visu-
alization can be built as follows: for each image, the ray from the camera center is
determined from the AUV’s pose, the camera calibration, and the camera’s location
in the AUV’s frame. Then, for each grid cell in the bathymetric map, the image with
camera ray passing closest to the grid’s center is chosen as the best source of texture in-
formation for the grid. The cell center’s 3-D point is projected into the camera, and the
imaged pixel is chosen as the texture coordinate for that point in space. One can either
use a full photomosaic for the texture image, or the collection of images individually.
Regardless, there will be seams in the visualization that result from the coarse appli-
cation of a fine texture to a lower resolution mesh. Still, the visualization is enough to
qualitatively verify that the map is a good one, as changes in bathymetry can be seen to
correspond to changes in visual texture, as can be seen (with difficulty on paper, unfor-
tunately) in figure 4-12. When the mosaicking process results in several disconnected
sets of image links, a single mosaic can be quickly created by using the scene structure
recovered from the pose graph optimization to find affine image transformations map-
ping pixel locations to landmark locations with the z coordinate removed, effectively
yielding an ortho-rectified rendering of the scene. Even though finding a set of transfor-
mations this way does not directly use the image-to-image matching constraints found
in the initial mosaicking process, the resulting rendering is still good enough that it can
be used as the texture map for the multibeam bathymetry, or as a useful visualization
product in its own right, as shown in figure 4-13. Improving visualization is a distinct
thread of research, which has been taken up in earnest elsewhere in the literature — see

{25} for a good solution based on stereo imagery, for example.
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Figure 4-12: Rendering of the multibeam bathymetry, partially texture-mapped using
the photomosaic from figure 4-4. Color on the non-texture-mapped portion of the
bathymetry corresponds to depth, with red corresponding to 17.75 meters and blue to
21 meters.

Comparing 3-D structure from vision and multibeam

‘We have focused to this point on the consistency of the sensors individually: It is also
worth asking about the consistency in the two different 3-D estimations of scene struc-
ture that are built by the mapping sensors. The multibeam gives us relatively dense
bathymetry directly, and the bundle adjustment produces a sparser set of 3-D points.
How well to they compare? Figure 4-14 shows an outline of two histograms of the ver-
tical distance in meters between visual landmarks and the corresponding grid cell in
the bathymetry. Both histograms clearly show a rather wide unimodal distribution —
this width is explained by the vastly different resolutions of the mapping sensors, as
each pixel images a region in space that is much smaller than the 25 square centimeters
captured by a single multibeam grid cell. The two distributions are shifted relative to
each other: the blue line, representing the result of the initial combined optimization,
shows a bias of about 0.2 meters between the bathymetry as measured by the two sen-
sors. The red line in the figure shows the same comparison after changing the initial
camera location in the optimization by moving it vertically by this bias. At first glance,
this change might not be surprising: the camera has been moved by a distance approx-

imately equal to the discrepancy between the ranges measured by the two sensors, and
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Figure 4-13: The full 2-D mosaic, formed by individually determining affine image trans-
formations mapping feature pixel locations to the scene structure as estimated by the

pose graph optimization. This rendering is at 50% of full resolution, and incorporates
1109 images from 37 distinct mosaics.
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Figure 4-14: The disparity in scene depth computed from multibeam and from camera
teatures. The blue line shows the difference when starting the combined optimization
with an “eyeball” estimate of the camera location, while the red line shows the difference
after re-starting the optimization with a camera location that has been shifted by the
peak in the blue line. The black line is at zero, for reference. The final error in the two
optimization runs is approximately equal, as are the pixel reprojection error histograms.

this has seemingly removed the bias. But it is important to realize that the bias has been
removed without affecting the final overall optimization error, and the pixel reprojec-
tion error histograms have also remained essentially unchanged — in fact the histograms
are so similar that it is not useful to show plots of them. This means that the camera
can be moved vertically in the AUV’s frame at least by this small amount without any
penalty in the optimization error.

The fact that such a large shift in the scene structure can take place without sig-
nificantly affecting the optimization error or the pixel reprojection errors is somewhat
disturbing. It indicates that the error surface being minimized over is wide and flat
at the bottom, at least with respect to the z position of the camera relative to the
AUV. There are two explanations for this. The first is that the AUV is attempting to
maintain a constant altitude over the seafloor while capturing images, and the lack of
relative vertical motion means that this region of the error space is not being exercised.
The second is that the pose graph as it has been defined does not directly compare the
3-D structure of the scene as measured by the two sensors. Only the depths of visual

features are computed in the optimization, while the constraints in the map that are
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contributed by multibeam are of the form of relative AUV poses. Thus the data fusion
is somewhat indirect, in that it takes place through the reconstruction of the AUV’s
trajectory. While future dives can be planned to allow for increased vertical motion
to better constrain the estimate of the camera’s position, directly linking the scene

structure measured by the two sensors is future work, as will be discussed in chapter 6.
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Chapter 5

Mapping in drifting, rotating

environments

5.1 Motivation

To this point, we have focused on map making in mostly static environments. While
the coral reef environment used in the previous chapter is full of moving animals, and
plants that sway in the current, making data association more challenging, the under-
lying terrain being mapped was fixed to the earth. We now turn our attention to the
situation in which the environment being mapped is not anchored, in particular to the
case of mapping the 3-D structure of drifting, rotating ice floes. AUVs are especially
well-suited to the task of mapping the shape of icebergs and ice floes: it is much more
dangerous for people to work under ice than in open water, and tethered robots are
more constrained than usual when the support ship cannot maneuver arbitrarily with
respect to the robot. Tethers can also become hung up on “stalactites” hanging from
ice, complicating operations and recovery, and AUVs can operate over much greater
ranges than tethered vehicles when a ship cannot reach the area of interest (under shelf
ice, for example).

Moreover, there are compelling scientific reasons to measure the 3-D structure of
ice floes, particularly in Antarctica. Because of the influence of snow, the thickness of
ice in the southern ocean is not easily remotely measurable {36} {38}. The only reliable
way to determine the correlation (if any) between the height of ice above sea level (free-

board) and the thickness of ice is to directly measure it, using surveying equipment or
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laser altimeters to determine freeboard, and drilling holes by hand to measure thick-
ness. A multibeam sonar can be used on an AUV to measure the thickness of ice below
sea level (draft), so the efficiency of determining the amount of ice in a given floe can
be greatly improved by combining draft measurements from AU Vs with remote surface
altimetry measurements and manual snow depth measurements. This is exactly what
the Seabed AUV was used for on the “Icebell” expedition in November 2010, which is
the source of the data in this chapter.

Acoustically mapping the underside of an Antarctic ice floe with an AUV might
be as simple as reorienting the multibeam and DVL sensors to point upward, figuring
out the necessary code changes to handle the new coordinate transformations for the
sensors, and using the techniques described in previous chapters to build a map. This
is largely the case for fast ice (ice that is grounded to the seafloor so that it does not
move), though of course many nontrivial operational changes must be undertaken to
ensure the AUV can be recovered after a dive. Under drifting ice, operations quickly
become the primary concern, and acoustic navigation aids must be used to track the
AUV to prevent vehicle loss (see {24} and {341} for discussions of under ice navigation
and AUV operations). For an AUV, navigating with respect to drifting terrain appears
much the same as navigating in a current: the vehicle might “crab” to compensate for
moving in a direction different from the vehicle’s heading. Once the floe starts to
rotate, however, the AUVs onboard navigation will deteriorate, because heading rela-
tive to the terrain (typically the Earth) is provided by the north-seeking gyrocompass,
so the estimated location of goal points will be incorrect from trackline to trackline.
While floe rotation rates are often small for the size of surveys carried out on the Ice-
bell expedition, one floe in particular exhibited a rotation rate high enough to severely
impact the quality of the resulting map. Figure 5-1 shows this floe’s orientation as mea-
sured by the ship’s compass, which serves as a proxy as the ship was moored to the floe
throughout the dive. The floe rate of about 2.8 degrees per hour confounded the AUV’s
navigation estimate as shown on the right side of the figure. At the same time, the floe
was drifting at an average rate of 2 centimeters per second, which was compensated for
by the crabbing motion mentioned above.

There has been little work using AUVs to map drifting and rotating ice. The ex-
ception is {31}, which describes an algorithm to map the shape of icebergs using AUVs
which circumnavigate them. That work also uses a SLAM approach, but the mapping

is based on particle filters, and does not involve an AUV transiting beneath the ice.
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Figure 5-1: On the left, the floe orientation over the course of a 3 hour dive, as mea-
sured by the compass of a ship moored to the floe. The confusion in the AUV’s initial
trajectory estimate is shown on the right.

The thrust of the work, however, is that rotation needs to be accounted for in order to
produce anything meaningful, and they provide an algorithm for doing so based on the
established literature in terrain-relative navigation. Our approach is similar in that the
orientation of the ice is explicitly estimated as part of the SLAM solution, but we do
so using the already-described framework of pose graph optimization, so little of the

algorithm has to change in order to account for the rotating world frame.

5.2 Augmenting the pose graph

There are a few possible ways to change the pose graph to move from a global refer-
ence frame to a terrain-relative frame. One possibility is to add a seventh degree of
freedom to each AUV pose node, and then to change the attached factors to account
for the transformation from world heading to terrain-relative heading. This is a rather
intrusive approach, and unnecessarily reduces the sparsity of the system, as the mea-
surements of AUV attitude are independent of the external measurements of terrain
orientation. Instead, we attach pose nodes with a single degree of freedom represent-
ing terrain orientation to each AUV attitude measurement factor, as shown in figure
5-2. Since all the factors connecting AUV pose nodes in the graph only measure relative
pose (odometry), only the attitude measurement factors constrain the global orienta-

tion of the whole trajectory, so it makes sense to inject a terrain-relative orientation
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Figure 5-2: The multibeam mapping pose graph, augmented with world heading pose
nodes and their factors. Each AUV attitude measurement prior has a corresponding
world orientation pose node, which converts the world-relative heading measurement

to the terrain-relative reference frame. Changes from the pose graph in chapter 3 are
highlighted.
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In other words, the attitude measurement factor is trying to enforce a terrain-relative
attitude in the AUV pose node, rather than a world-relative attitude.

The augmented pose graph contains additional factors connecting the terrain ori-
entation pose nodes which limit the allowed rotation rate of the terrain. This prevents
solutions which might use the additional degree of freedom for each AUV pose to over-
fit the multibeam submap matches. Finally, measurement factors are added when an
external sensor is available to measure the terrain orientation relative to the global ref-

erence frame. This might be provided by instrumenting an ice floe with a compass, or
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as in the case here, by mooring a GPS-equipped ship to the floe throughout the course
of the dive. Because the connection between the ship and the ice is not entirely rigid
and GPS is not an ideal heading measurement system, small variations in the measured
heading are to be expected, which are allowed by using a variance value of one degree

in the terrain orientation measurement factors.

5.3 Results

The pose graph shown in figure 5-2 is a schematic for a real-world dive. In the field,
sensor update rates vary significantly, such that there can easily be ten or more AUV
pose nodes for each terrain orientation measurement. The number of cross links in-
duced by submap matches also depends on the trajectory of the dive, and the shape
of the terrain being mapped, since ambiguous terrain may be rejected outright by the
matcher if the determinant of the Hessian is too low. For the ice floe data set, a large
section of the mapped terrain was quite flat, resulting in fewer cross links than in other
data sets — only five cross links were used in the optimization producing the binned
multibeam map and the variance image shown in figure 5-3. This floe is striking in the
large area of flat, or “level” ice, and the large protrusion in the lower right corner of
the image. The draft of this feature is so deep that it shadows the neighboring terrain
in the footprint of the sensor, even through the AUV was moving at least ten meters
deeper than the extent of the protrusion.

The variance image in figure 5-3 is unexpectedly large compared to the binning vari-
ance in the coral reef data in figure 4-11 of the previous chapter. There are a few reasons
tor this difference. The most dramatic influence is the terrain itself: the bathymetry of
the coral reef data varies from about 18 to 21 meters, while the draft of the ice floe data
varies from near zero up to about 18 meters, sometimes very abruptly. Because the grid
is effectively a planar projection of depth (or draft), areas of high slope will have high
variance, which can be seen in the figure. More disturbing is the roll bias, which is visi-
ble in the variance image as bands of high variance in areas where the sensor footprint
overlaps on adjacent tracklines. This is caused by time-varying roll bias in the attitude
sensor, visible in figure 5-4. While the AUV was operating in a configuration that was
less stable in Antarctica than in Puerto Rico, causing it to “fishtail” as it moved, the
fibre optic gyro is not a sensor to be lightly dismissed as producing faulty data. A po-

tential workaround is to only use alternating tracklines in the generation of the final
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Figure 5-3: Binned multibeam map of the rotating ice floe draft. The mean draft for
each bin is shown on the left in meters, and the variance of each bin on the right. The
colormap on the right is compressed because of the deep protrusion in the lowerright
corner. The variances are generally higher than typical because of varying roll and pitch
biases (see text).

map, since the roll offset seems to be consistent along nearly identical headings. This
requires a separate treatment of the calibration of the multibeam head attitude offset,
however, because the optimization of the offset depends on the AUV moving in op-
posing directions. The cause and potential solutions to the heading-dependent roll and
pitch variation is thus still a subject of ongoing research.

More abstractly, the computed trajectory and changes in multibeam binning vari-
ance are shown in figure §-5. The reduction in variance achieved by adding the cross
track constraints is not very large, because there were only five cross links added to the
pose graph. This is a result of the small area of the survey, combined with the large
region of flat ice which contained several areas where matches were rejected due to
inconclusive map matching (i.e. a low Hessian determinant in the quadratic fit of the
correlation surface). As expected, modeling the rotation of the terrain yields a marked
improvement in the consistency of the generated map, as does optimizing over the
attitude of the multibeam head relative to the DVL.

While adding the ability to account for terrain rotation and thus moving from a
geo-referenced map to a local map required a large structure to be added to the pose
graph, the new structure does not interfere with the relative relationships induced by
multibeam map matches or visual landmarks. It is therefore possible to combine multi-

beam and visual mapping of a drifting, rotating target, by combining the technique in
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from an under-ice dive. There are two independent sensors which measure attitude,
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this chapter with that of the previous chapter. Due to the scientific requirements of
the ice mapping mission prohibiting the use of a strobe, however, we do not have suf-
ficient visual data from under the ice to build a useful map, and such efforts will have

to wait for future expeditions.
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Chapter 6

Discussion

6.1 Summary of contributions

The essential contribution of this thesis is an end to end system. for building optical
and acoustic maps of underwater terrain using autonomous robots. Making this system

function well required solving many sub-problems:

* Auto-calibration of navigation sensor roll and pitch offsets using the vertical ve-
locity estimate of the DVL and the absolute depth sensor to improve the initial
navigation estimate. In some cases this first step yielded the most significant

improvement in map consistency of the whole system.

* Optimization of the multibeam transducer head offset, automating the “patch

test” processing that is often otherwise performed by hand.

* Determining relative pose constraints induced by matched multibeam submaps,
using a 2-D correlation-based search with a quadratic fit providing an estimate
of the quality of the match (and hence the information matrix used in the pose

graph).

* Incorporating acoustic range data and visual features from cameras together in
a single mapping framework, and computing the extrinsic camera calibration as
part of the SLAM solution.

* Mapping drifting and rotating terrain by augmenting the trajectory being esti-

mated with the orientation of the world frame.
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* Producing a visualization of the combined map incorporating 3-D structure from

multibeam and texture information from imagery.

‘We used the pose graph throughout as a convenient representation of the relationship
between the variables being estimated and the constraints on those variables induced by
the structure of the problems, and because an efficient and easily customizable software
package for pose graph optimization (SAM) was available.

While this document has focused on the analysis of acquired data, much of the
work involved was pure oceanographic field robotics: building, operating, maintaining,
and recovering underwater vehicles in many different sea and weather conditions. The
system has been deployed on several similar, but not identical robots, with a diverse ar-
ray of available navigation and mapping sensors, to the benefit of biologists, geologists,

fisheries scientists, and ice scientists.

6.2 Comparison with earlier techniques

A summary of the methods presented in this thesis and others in the literature is shown
in table 6.1. The technique described here stands out in that it includes many of the
best features of other published techniques, including scalability, recovery of the full
AUV trajectory, calibration of navigation sensors and of the camera location, and the
possibility of being implemented in an on-line or incremental fashion. Another unique
feature of this method is that it incorporates constraints from visual features, multi-
beam submap matches, and vehicle odometry simultaneously in a single optimization.
Rather than using the two sensor modalities to build two maps which are then fused,
each sensor instead has a chance to “correct” the others while a single estimate of the
trajectory and map are being determined. In addition, while all multibeam mapping
resolution depends to some extent on the operational scenario and the particulars of
the hardware being used, we report better experimental binning resolution (0.25 me-
ters resolution from 2§ meter range, and 0.05 meters resolution from 3 meter range)
than other multibeam mapping methods in the literature. Only the work of Roman et
al. exceeds this resolution for dense coverage by using a laser sheet, the bulk of which
requires an ROV at this time. While all of the techniques using cameras in this com-
parison make use of sparse features and therefore recover only sparse structure from

cameras, the use of stereo cameras by Williams et al. allows for the computation of
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dense structure, but this is not fused with structure from multibeam within the navi-

gation and mapping framework.

6.3 Future research

There are several directions still to be pursued in this work, many of which are large re-
search projects in and of themselves. The first problem is dealing with synchronization
and latency in the data. The pose graphs used in this thesis did not allow for timing mis-
takes in the data, but rather allowed for a limited degree of measurement error through
the information matrices encoded in the factors of the graph. In reality, however, there
are unmodeled latencies between the sensors, and a limited amount of hardware syn-
chronization available to reduce this latency. In figure 6-1, for example, it is clear that
the two depth signals shown are highly correlated, but with a time offset. The lower
rate signal is from a Paroscientific depth sensor, which uses the oscillating frequency
of a quartz crystal to determine pressure, while the higher rate signal is from a strain
gauge that is expected to be noisier. While the strain gauge does produce a noisy sig-
nal, it “sees” changes in depth sooner than does the Paroscientific sensor — correlating
the signals reveals a latency of about 0.7 seconds, or seven multibeam pings, more than
enough to reduce map quality. Determining and accounting for this latency and oth-
ers in the system — especially between the camera and multibeam sensors themselves —
would provide significant improvement.

Another problem for future work addresses the indirect nature of the approach used
here for improving the consistency of multibeam maps. The approach used in chap-
ter 3 attempts to improve the overall consistency of the map by adding constraints on
individual map subsections. The optimization should improve the local consistency
of these regions, but it will not necessarily improve the overall map consistency while
doing so. In contrast, the landmark-based approach used to incorporate visual features
into the map directly aims to minimize pixel reprojection error for every matched fea-
ture, so all of the visual data acquired is used at once in the optimization. To fully ad-
dress the problem with range data, either the overall map consistency should be used as
an error metric in the optimization, or more cross links should be introduced to ensure
a better global reduction in binning variance. The latter solution carries with it the
risk of reducing the sparsity of the pose graph, but it could still be applied using the

tframework presented here. Adding a global consistency metric, however, would likely
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Table 6.1: A brief comparison of underwater navigation and mapping techniques.

Method

Mapping sensors,
coverage

Applications, notes

Eustice {10}

Roman {49}

Roman, Inglis, Rutter

[50}

Williams, Pizarro,
Barkby, Mahon,
Johnson-Roberson

{66}, {1, {251

Pizarro, Gracias {471,

[x6}

Stereo visual odometry,

e.g. {431, {351, {451

Fairfield {12}

Kimball {31}

This thesis

One camera, Sparse
structure

Multibeam, one
meter gridding

Multibeam, one
camera, laser sheet,
sub-centimeter

gridding

Multibeam and
stereo cameras, one
meter gridding,
sparse structure

One camera, sparse
structure

Stereo cameras,
sparse structure

Multibeam,
meter-scale
gridding

Multibeam, 7
meter gridding

Multibeam and
one camera,
centimeter-scale
gridding, mixed
structure

Wide-area visual surveying. Delayed-state
SEIF, can calibrate camera extrinsics, exploits
sparsity for scalability.

Wide-area medium-resolution surveying.
Delayed-state EKF. Relative pose constraints
induced from submap matches.

Close-up high-resolution mapping of
archaeological and geological sites with ROV.
Delayed state EKF with relative pose
constraints.

Particle filter, builds distinct stereo and
multibeam maps and fuses them with ICP.

No explicit SLAM, uses odometry to resolve
scale ambiguity, can calibrate magnetic
compass bias.

Augmentation of low-fidelity odometry
sensors. No explicit SLAM, uses odometry to
calibrate camera rig extrinsics. Subject to
unbounded drift.

Mapping complex structures, caves. Particle
filter, maps complex 3-D shapes using octree
occupancy volume.

Mapping uninstrumented rotating icebergs.
Particle filter, mapping and navigation in two
distinct phases.

Wide area surveys of rotating terrain.
Square root SAM, exploits sparsity for
scalability. Calibrates navigation
sensors and camera extrinsics, fuses
mapping sensors with trajectoryina
single optimization.
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Figure 6-1: The AUV carries two depth sensors with different characteristics. The
Paroscientific sensor is expected to have higher accuracy than the CTD, but it has
a slower sampling rate, and there is latency between the two signals. The cross-
correlation between the two signals interpolated to the faster time base shows a peak
at about 0.7 seconds of latency:.

require a change in problem representation or at the very least a large reorganization
of the pose graph to make use of something like an occupancy grid, so that the binned
output is treated directly by the optimizer. The most straightforward approach would
be to represent each cell of the grid with a pose node estimating depth, and connecting
each such node to AUV pose nodes which measure range to that cell (via a measure-
ment factor). The problem is that as the optimizer runs, the connectivity of the graph
would change, as changes in the estimate of the AUV’s trajectory would yield measure-
ments of different areas of the terrain, and hence different grid cells. While current
graph optimization engines allow for incremental updates to the graph structure to be
made {28}, these are generally in the form of new landmarks being introduced, new
poses being added, or new measurements connecting poses and landmarks being made.
We are suggesting a change that would be akin to a wholesale reassignment of several
observations from one landmark to another, which would likely seriously impair op-
timization efficiency, as the sparsity structure of the Jacobian would radically change
from iteration to iteration. An efficient implementation capable of such reorganiza-
tion remains an open question, but it would both allow the direct optimization over
the full multibeam map, and provide a means for the bathymetry as measured by the
multibeam to be directly compared to the scene structure as measured by the camera,

pulling the two sets of depth estimates together and improving the flatness of the error
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Figure 6-2: An example graph for using acoustic ranges which takes into account the
finite travel time of the signal. The three highlighted factors each capture a single
measurement of range to one of the two beacons. The two AUV poses attached to a
given range factor may differ by meters in typical LBL deployments.

surface relative to the z position of the camera.

In addition to these two directions the research might take in the future, there
are a few smaller changes that could be made within the current framework. The fact
that range measurements are not effectively instantaneous distinguishes underwater
robotics from ground and aerial systems, where lasers are often used for ranging. Under-
water, both navigation measurements (USBL, LBL) and mapping measurements (multi-
beam and other acoustic systems) take place over two points in time, and therefore the
mapping system should use the robot’s pose at both points in time when making the
map. Figure 6-2 illustrates the idea, in which the measurement factor R; j); for a given
range uses the total travel time for an acoustic signal, and compares that against the
total two-way range from the AUV at time ¢; to the beacon b (or to terrain) and back to
the AUV at time ¢;. As mentioned above, the current pose graph does not model the
terrain directly, so this modification to the graph would only be possible for LBL and
USBL ranges. It should be kept in mind however for the future project of more tightly
linking the map to the pose graph.

Another line of research concerns dealing with rotating ice floes. In the situation
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presented here, the ice floe being mapped was “instrumented by proxy” using the GPS
onboard the ship moored to the floe. In many situations (e.g. on icebergs or over
long-term deployments) this is not possible and the orientation of the terrain must be
induced from the navigation and mapping sensors of the AUV. Another way to think
of this is that the terrain-relative heading of the AUV must be determined from the
global heading and the map as it is being built. One approach to solving this problem is
active: the AUV can decouple its motion from that of the terrain by holding still for a
period of time while it observes the motion of the floe, and then uses that observation
as a prior as it starts to navigate. This presumes that the terrain motion is observable
with the available sensors, and that the AUV is capable of holding station, neither of
which should be taken for granted, but it does suggest that the problem is solvable if

such behavior is programmed into the robot’s missions.

6.4 Lessonslearned

The work presented in this thesis is the result of five years of data collection and ex-
perimentation in underwater mapping using AUVs. The pose graph optimization algo-
rithms presented here for building multibeam maps were applied to data from seven
under-ice dives, each of which covered from 100 to 300 meters square, and the algo-
rithm combining visual features with multibeam bathymetry was applied to data from
a single dive in Puerto Rico covering about 30 meters square. These particular dives
were chosen because they presented the most interesting cases — only in Antarctica
was the goal to map a rotating, drifting object, and of the data collected only the coral
reef in Puerto Rico had both rich visual texture and a high degree of variability in the
bathymetry. In addition to these cases, there are compelling visual data from an ex-
pedition to Alaska involved the use of four synchronized cameras in two stereo pairs.
Using calibrated stereo cameras allows for the direct creation of dense texture-mapped
range data with each image capture, potentially removing the additional utility added
by multibeam. Even though the extrinsic calibration can be automatically computed
using AUV motion {35}, accurate dense 3-D reconstruction from stereo requires very
good intrinsic camera calibration, and of course depends on the degree to which pixel
correspondences can be established. In cases where the seafloor is devoid of significant
texture (as in a muddy bottom), multibeam is an excellent complement to a stereo pair

and should be used whenever available.
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More directly relevant to the algorithms presented here are a few steps which can
be taken to increase the chances of building a consistent and useful map. First of all,
sufficiently redundant information must be provided by the mapping sensors. For the
coral reef dive, the planned-for image overlap was about 50% horizontally, with the
AUV attempting to maintain constant altitude of three meters with one meter trackline
spacing and a lens with field of view of about 35 degrees in water. The vertical image
overlap, dictated by strobe recharge times and vehicle velocity, was about 30%. In order
to build large mosaics, close loops, and ultimately build a large 3-D model, side-to-side
overlap appears to be quite important. The multibeam sensor has an effective field
of view of about 9o degrees, so there was more than 50% overlap from trackline to
trackline over the coral reef. Under ice, the trackline spacing was set to be equal to the
depth, also affording 50% overlap and yielding highly redundant data. The diagonal
tracklines shown in the trajectory plots are particularly helpful, and executing these at
depths different than those used during the primary survey or using zig-zag patterns
instead of straight diagonal transects only serve to increase the usefulness of the data
both in mapping and in checking data consistency and validity.

In addition to redundant mapping data, it is clear from a data quality perspective
that a highly stable platform is desirable. The Seabed AUV is typically very stable, but
its under-ice configuration required a buoyancy redistribution which reduced stability.
A well-instrumented platform can compensate for instability, but the increased roll
and pitch amplitudes exacerbate the problems induced by unmodeled latency in the
sensors, as mentioned above.

Finally, it is common sense that one should take into account the expected ter-
rain when choosing which sensors to deploy on an AUV. Generally speaking, cameras
provide better constraints on navigation than do range sensors, because of their high
resolution and because modern feature detectors are very good at identifying distinct
landmarks. But each sensor has terrain to which it is particularly well-suited. Over a
coral reef, with rich visual texture and variable bathymetry, both cameras and multi-
beam sensors should be used. Over a muddy or sandy bottom, or in turbid water, multi-
beam is more important. But if power and payload constraints are minimal, it makes
sense to use every sensor one has access to, since in oceanography (and in field robotics

in general) the unexpected often comes to pass.



6.5 Conclusion

This thesis has presented a complete system for building bathymetric maps of the
seafloor incorporating visual texture, as well as 3-D maps of rotating ice floes using
an autonomous underwater vehicle. The system improves the state of the art by a fac-
tor of five, while automating several calibration steps that were often before performed
by hand. Moreover, the ability to measure the draft of ice floes from below with this
precision enables scientific inquiry that was not previously possible, which is precisely
the purpose of this kind of field robotics. The system has shown itself to be gener-
alizable to several different deployment scenarios, with varying sensor configurations
and degrees of control stability — in short the post-processing steps described here are
independent of the particular hardware used to collect the data, except for the easy-
to-meet assumptions of measurability of depth, attitude and velocity. While this work
has revealed several additional lines of research to be pursued, the system as it stands
robustly and autonomously creates accurate and useful high-resolution 3-D visual maps

of underwater terrain.
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