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\—' Acquire a broader perspective on Monte Carlo simulations

Monte Carlo methods in science = using randomness to solve problems

—— (Metropolis) Calculation of

thermodynamical properties Mathematically similar:
of a system of many (A= P(x)A(x) or [ p(n)A(x)dx
interacting particles > i

where y belongs to a space of

Importance sampling — . . :
—— P Ping possible configurations/values

numerical evaluation of
integrals / weighted sums > (A= > Alx)

i SAMPLED

—* Optimization — search for global minima
— ““to go downhill, and uphill once in a while...”

—= Simulations of physical phenomena

© Creativity to interpret different phenomena probabilistically
or to identify stochastic behavior

e other...



Simulations of physical phenomena

—— Radiation transport - MCNP

Neutrons (or photons) travel across a given material where
they can be scattered, absorbed, leak ... go through fission
(neutrons), pair production (photons), etc.

—= Absorption in space / Nuclear decay in time

Particles that survive with probability p or don’t with
probability 1-p — laws of the type ePX, ePt where p is related
to c.x., life-times, etc.

— Random walks

—= Solid-state diffusion

— e other...



Statement of the problem

initially after certain time t =m S " ”
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Monte Carlo simulation

Atomistic approach: the vacancy mechanism

Causes for vacancies: i ] the vacancy moves
e Impurity doping = .
e Radiation damage /I and interchanges

e Thermal activation H | places with the atoms

— the vacancy keep track of the wandering of the atoms:
follows a random walk / final distance traveled = Ax
\ MC simulation \t
/ histogram
computer = finite medium
U

Periodic Boundary Conditions

(for th \ m trajectory of the vacancy in 3D
or the vacancy

m dynamics in 2D



Recovering results...
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we can calculate D = <Ax2>/2t with

M
(a*)=%>"x" M =#particles tracked
=1

D =2x10°-1.4x10°
(1.36x10° in the paper)

or by fitting: Ln(c) = const — x? /(4Dt) (physical units)

PBC # infinite medium, because there is a maximum distance!
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To simulate an infinite medium at large t, we must take a larger lattice



Conclusions

e \We simulated solid state self diffusion using a
Monte Carlo algorithm

e MC can be used to simulate very different

systems & dynamics

e Random numbers are very useful to solve a
large variety of problems.




