Critical Analysis of a Relevant Paper and Comparison with an MCNP Simulation of Slowing Down Time

> 22.106 Term Paper Presentation Chris Handwerk 10 May 2005

Paper Citation

Benyon, T.D. and Mondal, M. A. W., "The Application of Space-Dependent Multigroup Theory to the Analysis of Neutron Slowing Down Time Experiments I: Light and Heavy Water Moderators,"1971, *J. Phys. D: Appl. Phys.*, 4, 1843-1855.

Focus

- Introduces new numeric solution method
- Solution of Neutron Transport Equation (NTE)
 - P1 Approximation
 - Diffusion Approximation
- Comparison with experimental results (3)
 - Metric: Neutron Slowing Down
 - Only 1 presented here
- MCNP simulation results for 1st experiment

Experiment #1

- Möller (1966)
- 1 m³ cube H₂O
- Dilute Indium Sulfate
- Fast neutron source

Image removed due to copyright considerations.

Please see:

Experiment # 1 graph cited from: Benyon, T. D., and M. A. W. Mondal. "The Application of Space-Dependent Multigroup Theory to the Analysis of Neutron Slowing Down Time Experiments I: Light and Heavy Water Moderators." *J. Phys. D: Appl. Phys.* 4 (1971): 1843-1855.

Experiment #1 Comparison with MCNP Simulation

Image removed due to copyright considerations.

Please see:

Experiment # 1 comparison graph cited from: Benyon, T. D., and M. A. W. Mondal. "The Application of Space-Dependent Multigroup Theory to the Analysis of Neutron Slowing Down Time Experiments I: Light and Heavy Water Moderators." *J. Phys. D: Appl. Phys.* 4 (1971): 1843-1855.

Possible Sources of Discrepancy

	Numeric Soultion/Experiment	MCNP Simulation
Quantity Measured	Gamma flux from (n,γ) capture in Indium	Neutron Flux
Detector Type	Gamma Point	Flux tally
Detector Distribution	??	Concentric Spheres
Source Isotropy	??	Yes

Conclusions

- New method (C) matches experimental results well when applied to P1 approximation
- MCNP simulation results differ at greater distances from source
- Unearthing error will provide greater insight into original solution/experimental methods or simulation model

Experiment #2

- Chen and Lidofsky (1967)
- "Large tank of water"
- 14.1 MeV neutron source

Images removed due to copyright considerations.

Please see:

Experiment # 2 graph cited from: Benyon, T. D., and M. A. W. Mondal. "The Application of Space-Dependent Multigroup Theory to the Analysis of Neutron Slowing Down Time Experiments I: Light and Heavy Water Moderators." *J. Phys. D: Appl. Phys.* 4 (1971): 1843-1855.

Experiment #3

• Möller (1966)

• 1 m³ cube D₂O

 Fast neutron source Image removed due to copyright considerations.

Please see:

Experiment # 3 graph cited from: Benyon, T. D., and M. A. W. Mondal. "The Application of Space-Dependent Multigroup Theory to the Analysis of Neutron Slowing Down Time Experiments I: Light and Heavy Water Moderators." *J. Phys. D: Appl. Phys.* 4 (1971): 1843-1855.

Normalized Flux as a Function of Time at 4 cm

Time (microseconds)

Normalized Flux as a Function of Time at 8 cm

Time (microseconds)

Normalized Flux as a Function of Time at 12 cm

Time (microseconds)

Normalized Flux as a Function of Time at 16 cm

Time (microseconds)

Normalized Flux as a Function of Time at 20 cm

Time (microseconds)