22.106 Neutron Interactions and Applications (Spring 2005)

Problem Set No. 4
Due: April 7, 2005

Problem 1

Write down the Neutron Transport Equation defining all the terms in the equation. Derive the streaming term in the Transport equation.

Problem 2

Derive the escape probability $P\left(E^{\prime} \rightarrow E\right)$. Discuss how you would calculate this quantity using MCNP. Discuss the conditions under which you would or would not expect the MCNP calculation to agree with a numerical evaluation of your analytical expression.

Problem 3

Consider one-dimensional neutron transport in a purely scattering medium where the cross section $\sigma(x)$ is a known function of position. Apply the same kind of argument used for Problem 2 to derive an expression for the probability $P\left(x^{\prime} \rightarrow x\right)$ that a neutron will go the distance from x ' to x without scattering, where $\mathrm{x}>\mathrm{x}$ ' but otherwise both are arbitrary. Discuss your result as compared to $P\left(E^{\prime} \rightarrow E\right)$

Problem 4

Define the variable lethargy u and show that the average increase in lethargy per collision is given by

$$
\xi=1+\frac{\alpha \ln \alpha}{1-\alpha} \sim 2 / A \text { for } \mathrm{A} \gg 1
$$

where $\alpha=\left\lfloor(A-1)^{2} /(A+1)^{2}\right\rfloor$. Discuss how ξ can be used to estimate the collision density in a medium where $\mathrm{A}>1$.

