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Abstract

We study the problem of an auctioneer who wants to maximize her profits. In our model, there are n
buyers with private valuations drawn from independent distributions F1, ..., Fn. When these distributions
are known to the seller, Myerson’s optimal auction [21] is a well known mechanism that maximizes
revenue. However, in many cases it is too strong to assume that the seller knows these distributions.

We propose an alternative model where the seller only knows the mean µi and variance σ2
i of each

distribution Fi. We call mechanisms that only use this information parametric auctions. We construct
such auctions for all single-dimensional downward closed environments. For a very large class of distri-
butions, including (but not limited to) distributions with a monotone hazard rate, our auctions achieve
a constant fraction of the revenue of Myerson’s auction.

When the seller has absolutely no knowledge about the distributions, it is well known that no auction
can achieve a constant fraction of the optimal revenue when the players are not identically distributed.
Our parametric model gives the seller a small amount of extra information, allowing her to construct
auctions for which (1) she does not know the full distribution of valuations, (2) no two bidders need to
be drawn from identical distributions and (3) the revenue obtained is a constant fraction of the revenue
in Myerson’s optimal auction.

For digital goods environments we present a different parametric auction that not only gives a better
approximation to the optimal auction, but that is also optimal in a new sense, which we call maximin
optimality. Informally, an auction is maximin optimal if it maximizes revenue in the worst case over an
adversary’s choice of the distribution. We show that our digital parametric is maximin optimal among
the class of posted price mechanisms.

1 Introduction

We study the problem of selling a good in an auction, when the seller has limited information about what
buyers are willing to pay. Specifically, we consider the problem of selling a good to n buyers, where each
buyer is interested in purchasing one unit of the good. Each player i has a value vi for the good, drawn
from a distribution Fi. Starting with the work of Myerson [21], one traditionally assumes that the seller
knows these distributions F1, ..., Fn. This assumption allows the seller to design an auction that maximizes
her revenue.

Parametric Auctions. The assumption that the seller has full knowledge of the distributions F1, ..., Fn
is very strong. We use a strictly weaker assumption, namely

the seller only knows the mean µi and standard deviation σi of each Fi.

We call auctions where the seller only needs to know these parameters of the distribution parametric auctions.
We construct such an auction for a very general setting: single-dimensional downward closed environments.
We show that our auction obtains a significant fraction of the revenue when (1) the distributions F1, ..., Fn
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have a monotone hazard rate, (2) we are in a matroid environment and the distributions are regular and,
(3) we are in a digital goods environment and the distribution is arbitrary.

Our Benchmark. Letting F be the distribution from which valuations are drawn, our benchmark is the
revenue obtained by the optimal auction on F . We denote this benchmark by Rev(OPT,F ). More generally,
for any auction A and any distribution F we denote by Rev(A,F ) the expected revenue that A obtains when
valuations are drawn from F , and by Revi(A,F ) the expected revenue that auction A obtains from player
i. Thus, Rev(A,F ) =

∑n
i=1Revi(A,F ). For every auction A that we construct, we will seek to give a lower

bound on the competitive ratio
Rev(A,F )

Rev(OPT,F )
.

The idea of evaluating auctions by analyzing their competitive ratio was introduced by [17], and has
been used widely in the literature. An incomplete list of applications includes prior-free auctions [15, 16],
prior-independent auctions [11], simple1 auctions [19], auctions with correlated bidders (where the optimal
auction is not known) [25, 12, 22] and auctions where bidders have multi-dimensional types [6].

1.1 Performance relative to the Optimal Auction

Our Results for Digital Goods with Monotone Hazard Rate Distributions. We construct a
parametric auction A for the digital goods setting. When each distribution Fi has a monotone hazard rate,
we can show that

Rev(A,F )
Rev(OPT,F )

≥ 1
e
> 36%.

We remark that our results hold no matter how many players there are, and what asymmetries may exist
among them. (Notice that the best prior-free auctions can only obtain a constant fraction of Myerson’s
revenue when players are identically and independently distributed.)

Our Results for Digital Goods with Arbitrary Distributions. Our auction A guarantees good
revenue only when each distribution Fi has a monotone hazard rate. For arbitrary independent distributions,
we construct a different digital auction A. The competitive ratio of A will be constant in the number of
players and will not depend on the asymmetries of the players. However, it will be a function of the ratios
µi

σi
. This is intuitive because if σi is very large compared with µi, then the seller has very little information

about Fi, and one cannot expect her to collect significant revenue from player i.
More concretely, we can give the following bound on the expected revenue that our auction A obtains

from each player i
Revi(A,F )

Revi(OPT,F )
≥ ρ(

µi
σi

),

where ρ(·) is a function of µi

σi
that we define in section 4. We remark that

• ρ(µi

σi
) is always positive.

• When each Fi has a monotone increasing hazard rate, ρ(µi

σi
) > 10.5%.

• More generally, for a very wide class of distributions Fc, the function ρ(µi

σi
) is bounded below by a

constant. Let c be a constant and define Fc = {F : E[F ] = µ, V ar(F ) = σ2, µσ > c > 0}. We call
distributions in this class c-informative. When Fi is c-informative, we have ρ(µi

σi
) > ρ(c) > 0. We

remark that the class Fc is very general. Any distribution F over a bounded domain [0, B] with mean
µ > cB is in Fc. Furthermore, any distribution with a monotone hazard rate belongs to the class F1.

1The authors study, among others, Vickrey auctions with reserve prices, which are much simpler than the Myerson optimal
auction when distributions are not identical.
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This last observation implies that for all F1, ..., Fn belonging to the class Fc, our auction A has a
competitive ratio

Rev(A,F )
Rev(OPT,F )

> ρ(c).

Our results for Downward Closed Environments with Monotone Hazard Rate Distributions.
We construct a parametric auction B for downward closed single-dimensional settings. When each distribu-
tion Fi has a monotone hazard rate, our auction B obtains a competitive ratio

Rev(B,F )
Rev(OPT,F )

≥ 1.23%.

Our results for Matroid Settings with Regular Distributions. More generally, when the distribu-
tions F1, ..., Fn are regular2, belong to the class Fc for some constant c, and we are in a matroid environment,
our auction B has a competitive ratio of

Rev(B,F )
Rev(OPT,F )

≥ 1
2
· ψ(c) > 0

where ψ(x) is a positive increasing function defined in section 7.
We remark that, when the distributions F1, ..., Fn are unknown to the seller, most of the known auctions

with a constant competitive ratio are digital goods auctions. There are few competitive auctions for general
downward closed settings that we are aware of, and all of them assume some similarity between bidders.3 In
contrast, our auction B obtains a constant competitive ratio even when all buyers have distinct distributions.

1.2 Maximin Optimality and our digital auction A
Our digital auction A is competitive with the optimal auction, where the competitive ratio depends on µi

σi
.

Examining the competitive ratio is a meaningful way to give revenue guarantees when the full distribution is
not known. However, there can be a multiplicity of different auctions which achieve a constant competitive
ratio, and it may be difficult to decide which one is the “best” among all parametric auctions.

We restrict ourselves to a simple class of digital auctions, called posted price mechanisms. In these
mechanisms, each player i is given a take-it-or-leave-it price that does not depend on the other players’ bids.
We will show that our auction A is one such mechanism.

Ideally, the “best” posted price mechanism A∗ should satisfy Rev(A∗,F ) ≥ Rev(A,F ) for all distributions
F and all other posted price mechanisms A. Indeed, if the seller knows the distribution F , an optimal posted
price mechanism exists: it is Myerson’s optimal digital auction. Unfortunately, it is unlikely that such a
mechanism exists in the parametric case.4 Any definition of optimality for parametric auctions needs to
take into account the uncertainty that the seller has over the distribution F . Since this is a worst-case
uncertainty, we give a new definition of optimality for parametric auctions which is based on maximizing
the worst case revenue.

Definition 1. Let C be a class of mechanisms. A parametric mechanism A∗ is maximin optimal for the
class C if A∗ ∈ C and for all vectors µ,σ we have

A∗ = argmax
A∈C

min
F :E[F ]=µ,V ar(F )=σ2

Rev(A,F ).

2A distribution is regular if its associated virtual valuation function is increasing.
3For example, Dhangwatnotai, Roughgarden, and Yan [11] assume that for any bidder i with a valuation vi drawn from a

distribution F , there exist another bidder j whose valuation vj is also drawn from the same distribution F . See the related
work section for more details.

4Informally, consider any price vector (p1, ..., pn) and a posted price mechanism A that uses p1, ..., pn as reserve prices. If the
p1, ..., pn are within a certain range (that depends on the given means and standard deviations), there will exist a distribution
F on which auction A is optimal. However, for a different vector (p′

1, ..., p
′
n) in the same range, there will exist a different

distribution F ′ on which a different auction A′ will be optimal.
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We highlight that, A∗ is the unique mechanism in C maximizing worst-case revenue.

We show in section 6 that our digital auction A is maximin optimal for the class of posted price mecha-
nisms.

1.3 Our Techniques

We make extensive use of Chebyshev-type inequalities. These bounds are frequently used in robust optimiza-
tion, but to the best of our knowledge they have not been applied to auction theory or mechanism design
before. While we focus on matroid and downward closed environments in this paper, we believe that these
techniques can be more widely applied in other areas of mechanism design.

2 Preliminaries

Bayesian Valuations. We assume that valuations are drawn from a probability distribution. The ith

buyer’s valuation is a random variable Vi over some domain Di ⊂ R+. Vi’s cumulative distribution function
is Fi : Di → [0, 1], where Fi(x) = Pr[Vi ≤ x]. We denote by V = (V1, ..., Vn) the vector of valuations,
by D = D1 × ... ×Dn its domain, and by F = F1 × ... × Fn its joint distribution function. We denote by
v = (v1, ..., vn) ∈ D the vector of realized valuations. When we want to emphasize player i’s valuation, we
write the vector v = (v1, ..., vn) as v = (vi, v−i).

Auctions An auction is given by a pair (A,P ) where A : D × ∆D → [0, 1]n is an allocation rule and
P : D ×∆D → Rn+ is a payment rule. If the auctioneer faces a bid vector v = (v1, ..., vn), then he sells to
player i with probability Ai(v), and charges her a price Pi(v) when the item is sold. Each player can only
be sold one copy of the good.

We emphasize that A(v,F ) not only depends on the valuations v1, ..., vn but also on the distribution F ,
but will sometimes write Ai(v,F ) = Ai(v) when F is clear from context. Furthermore, we will often take
v−i as fixed and write Ai(v,F ) = Ai(vi).

Downward Closed, Matroid and Digital Good Environments. We study single dimensional envi-
ronments, where each domain Di is a subset of R. An environment is a collection of sets I, where each S ∈ I
is a subset of the set of players {1, ..., n}. In a downward closed environment, the collection I must satisfy
the downward closure condition: if S ∈ I and R ⊂ S, then R must also be in the collection I. In a matroid
environment, the collection I must be a matroid (see [24] for a definition). In a digital goods environment,
I is the collection of all subsets of {1, ..., n}. An auction for an environment I can only allocate goods to a
set S ∈ I.

Truthfulness and Monotonicity If player i obtains the good with probability Ai and pays a price Pi,
her utility is vi ·Ai−Pi. A buyer with valuation vi can attempt to increase her utility by lying, and reporting
a bid v′i 6= vi. An auction is truthful if players have no incentive to misreport their true valuation. That is, for
every player i, for every valuation vector v, and every v′i 6= vi, we have vi ·Ai(v)−Pi(v) ≥ vi ·Ai(v′)−Pi(v′),
where v′ = (v′i, v−i). It is well known [21, 1] that the auction (A,P ) is truthful if and only if Ai(vi, v−i)
is monotonic in vi and Pi(vi, v−i) = Ai(vi, v−i)vi −

∫ vi

0
Ai(zi; v−i)dzi. An important corollary is that, for

any monotonic allocation rule A(·), there exists a unique payment rule P (·) that makes the auction (A,P )
truthful. Thus, it suffices to specify a monotonic allocation rule A(·) to specify a truthful auction.

Deterministic Auctions. The value Ai(v) is the probability that player i obtains the good given that
the bid vector is v. We focus on deterministic allocations, where Ai(v) ∈ {0, 1}. If an allocation Ai(v) is
deterministic and truthful, then monotonicity implies that, for every v−i, there exists a reserve price p∗(v−i)
such that the auction sells to player i when vi > p∗(v−i). The payment that makes this allocation truthful
is charging player i a price of p∗(v−i) dollars if she wins.
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Monotone Hazard Rate and Regularity Given a differentiable cumulative distribution function Fi,
let fi(v) = d

dvFi(v) be its induced density function. The function hi(v) = fi(v)
1−Fi(v)

is called the hazard rate
of Fi. The distribution Fi has a monotone hazard rate if hi(v) is increasing. The distribution Fi is called
regular if the virtual valuation function φi(v) = v − 1

hi(v)
is increasing. An immediate consequence is that

any distribution with a monotone hazard rate is regular.

Revenue We denote by Rev((A,P ),F ) =
∫
D

∑n
i=1Ai(v)Pi(v)dF (v) the expected revenue obtained by

an auction (A,P ) when valuations follow distribution F , and by Revi((A,P ),F ) =
∫
D
Ai(v)Pi(v)dF (v) the

expected revenue obtained from player i.

Distribution Parameters. Player i’s valuation is a random variable Vi with mean E[Vi] = µi, E[(Vi −
µi)2] = σ2

i . We will write µ = (µ1, ..., µn) and σ = (σ1, ..., σn).

Parametric Auctions Informally, an auction (A,P ) is parametric if its allocation and payment functions
can be computed from the valuation vector v and the µ,σ parameters. More formally, we have the following
definition.

Definition 2. A parametric auction is a pair of functions (A,P )

1. A : Rn × Rn × Rn → [0, 1]n

2. P : Rn × Rn × Rn → Rn

3. Ai(v,µ,σ) is the probability that player i wins a copy of the good when bids are v and the mean and
standard deviation vectors of the distribution are µ,σ.

4. Pi(v,µ,σ) is the price that player i has to pay when bids are v and the mean and standard deviation
vectors of the distribution are µ,σ.

For convenience of notation, whenever µ and σ are clear we will write A(v) and P (v).

Posted Price Mechanisms A posted price mechanism for digital goods is a digital auction where player
i is offered a take-it-or-leave-it price pi(F ) that does not depend on the players’ bids. Player i gets a copy
of the good if and only if vi > Pi(F ). The optimal digital auction when F is known is a posted price
mechanism. Player i is given a price p∗i = argmaxpi

pi · (1 − Fi(pi)). All of the parametric digital auctions
that we construct are posted price mechanisms, where Pi only depends on the parameters µi, σi of player i’s
distribution.

3 Further Related Work

3.1 Detail-Free Mechanisms

The Wilson doctrine [28] states that a good mechanism should require as little knowledge about the valuations
of the players as possible. Our paper follows the spirit of the Wilson doctrine, removing the assumption that
the seller knows the distribution of buyer valuations and replacing it by the strictly weaker assumption that
the seller knows only the first and second moments of these distributions.

Baliga and Vohra [2] and Segal [26] have proposed explicit detail-free bayesian auctions where the seller
does not need to know the distribution of valuations. However, these auctions are competitive with the
optimal auction only when the buyers’ valuations are identically and independently distributed from the
same (unknown) distribution F .
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Prior-Free auctions. Goldberg, Hartline, Karlin, Saks and Wright [17] consider auctions where the val-
uations are not necessarily drawn from a distribution. To measure the performance of the auctions, they
introduce a revenue benchmark F2(v1, ..., vn),5 and construct auctions that always achieve a constant frac-
tion of this benchmark, for all valuation vectors. As made explicit by Hartline and Roughgarden [18], any
auction that achieves a constant fraction of F2 on all valuation vectors, will also achieve a constant fraction
of the optimal auction’s revenue, as long as valuations are identically and independently distributed.

Our results are incomparable to the existing prior-free auctions. We assume that the valuations are drawn
from a distribution, and that the seller has some limited information about this distribution. However, all
the previous prior-free auctions are competitive with the optimal auction only when the valuations are
independently and identically distributed. In contrast, our results apply in the more general setting where
buyers’ valuations can be drawn from distinct distributions.

Prior Independent Auctions An auction is prior-independent if the distributions F1, ..., Fn are assumed
to exist, but the seller does not know what they are. In this setting, Dhangwatnotai, Roughgarden and Yan
[11] construct an auction that has a constant competitive ratio, as long as bidders satisfy a symmetry con-
dition which they call non-singularity. Their analysis requires that, for every bidder i, there exist another
bidder j whose valuation is drawn from the same distribution as i’s valuation. Our result is again, in-
comparable to theirs. By assuming that the seller knows the mean and variance of each Fi, we can give
approximately optimal auctions even when the bidders are arbitrarily asymmetric. That is, our auctions
do not require any two distributions to be identical in order to guarantee a constant fraction of Myerson’s
revenue.

We are aware that the mechanisms in [11] can be transformed into competitive auctions with asymmetric
bidders where the auctioneer gets one sample from each distribution F1, ..., Fn. These samples are “extra
information”, in the same way that the mean and variance of the distributions are extra information. We
remark that our assumptions are incomparable: the seller may know µi and σi without having access to
samples from the distribution Fi, and knowing one sample does not give a good estimate of the mean or
variance.

3.2 Empirical Estimation of Auctions

One of the main motivations of our work is the application of optimal auctions in practice. This requires
estimating the distribution of bidder values. Ostrovsky and Schwarz [23] study the effect of reserve prices on
ad auctions. They derive their reserve prices by estimating means and standard deviations of bidder values
using previous auction data, and then assuming that valuations are drawn from a log-normal distribution
with the estimated mean and standard deviation.

Our work proposes a more conservative way to set reserve prices. Instead of finding these prices by
assuming that valuations are drawn from a specific distribution family (in the above case, a log-normal
distribution), our auction sets the lowest reserve price that is compatible with any distribution with mean µ
and standard deviation σ. We are very interested in doing an empirical analysis of auctions using this more
conservative way of setting reserve prices.

3.3 Simultaneous Welfare and Revenue

Daskalakis and Pierrakos [9] study the VCG auction with arbitrary reserve prices, and show that there is
a way to set reserve prices in order to simultaneously approximate optimal social welfare and revenue. We
use these auctions for matroid and downward closed environments, and our analysis relies on a reduction to
auctions with only one player, a technique that was used in [9]. We highlight two differences with this paper.
First, the auction in [9] uses knowledge of the distribution, while ours uses only knowledge of the parameters
µ, σ. Second, their auction guarantees a constant fraction of the optimal revenue for all regular distributions,

5Do not confuse the revenue benchmark F2 with our distribution classes Fc. In our results, Fc will always refer to a class
of distributions.
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while ours guarantees a constant fraction of the optimal revenue for all c−informative distributions, where c
is a constant. We remark that there are regular distributions which are not c-informative for any constant c,
and that there are c-informative distributions which are not regular. Thus, the two classes are incomparable.

3.4 The maximin approach to robust mechanism design

We defined a maximin optimal mechanism as one that maximizes revenue in the worst case over the choice
of the distribution F , as long as F has the pre-specified mean µ and standard deviation σ.

This is a new definition, but it is not without precedent. It follows Wald’s maximin model for decision
making under non-bayesian uncertainty [27]. In this model, a decision maker has to maximize a function
f(a, s), that depends on her action a and an unknown state of the world s. Wald’s model suggests that the
player take an action a∗ = maxaminsf(a, s) that maximizes the worst case payoff over all possible states of
the world.

As an example of this concept in mechanism design, Chung and Ely [8] study the problem of an auctioneer
who knows the distribution of player valuations, but where the players can have arbitrary beliefs about each
other. They show that a dominant strategy truthful auction will guarantee the maximum “worst-case
revenue” in equilibrium, where the worst case is taken over the choice of players’ beliefs.

4 Digital Parametric Auctions with Arbitrary Independent Dis-
tributions

We now construct a digital auction A which is competitive with the optimal auction. The competitive ratio
will depend on the ratio µi

σi
.

Our parametric digital auction A

A(v,µ,σ)

1 Find ki = argmaxt[(µi − σit) · t2

1+t2 ].
2 For each player i, set the reserve price ri = µi − σiki.
3 Sell a copy of the good to player i if and only if vi > ri.

Theorem 1. For any distribution F with mean µ and standard deviation σ, we have

Revi(A, F )
Revi(OPT, F )

≥ (1− 3
2
σ

µ
ki) = (

1
2
σ

µ
k3
i ).

Proof.
We prove this via a series of lemmas. First, we characterize ki in terms of µi

σi
.

Lemma 1. Let ri = µi − σiki be player i’s reserve price in auction A. We have that ki is the unique real
solution to the cubic equation µi

σi
= 1

2 (3k + k3)

Proof of Lemma 1. The value ki is obtained by maximizing the differentiable function (µi − σik) · k2

1+k2 over
k ≥ 0. Note that finding ki is equivalent to finding the value k maximizing ln(µi− σik) + 2 ln k− ln(1 + k2).
Taking derivatives of this function, we obtain that ki satisfies the equation

− σi
µi − σiki +

2
ki
− 2ki

1 + k2
i

= 0.

Multiplying the denominators out, we get

−σiki(1 + k2
i ) + 2(1 + k2

i )(µi − σiki)− 2k2
i (µi − σik) = 0.
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Canceling out some terms and rearranging gives

−σiki(1 + k2
i ) + 2(µi − σiki) = 0

2µi = 3σiki + σik
3
i

µi
σi

=
1
2

(3ki + k3
i ),

which is what we wanted to show.
Note that this cubic equation has exactly one real root because the function 1

2 (3ki + k3
i )− µi

σi
is strictly

increasing. Indeed, it’s derivative is 3
2 + 3

2k
2
i > 0. This completes the proof of Lemma 1.

With this characterization of ki in hand, we can give a lower bound on the expected payment from player
i.

Lemma 2. Let F be a distribution with mean µ and standard deviation σ. The expected revenue that
auction A obtains from player i is at least µi − 3

2σiki = 1
2σik

3
i .

Proof of Lemma 2. The expected revenue obtained from player i is (µi−σiki) · (1−Fi(µi−σiki)). However,
we do not know the value 1−Fi(µi−σiki). We need to give a lower bound. To do this, we use the following
one-sided version of Chebyshev’s inequality.

(Cantelli’s Inequality) For every real-valued distribution with mean µ and variance σ2, we have

1− F (µ− σk) ≥ k2

1 + k2

From Cantelli’s inequality, we obtain a bound of (µi − σiki) · k2
i

1+k2
i

on the revenue collected from player

i. From Lemma 1, we know that ki satisfies µi

σi
= 1

2 (3ki + k3
i ). Multiply both sides of the equation by σi to

obtain µi = 1
2σi(3ki + k3

i ). Now we can write µi− σiki = 1
2σi(ki + k3

i ) = 1
2σiki(1 + k2

i ). The lower bound on
the expected auction revenue becomes

(µi − σiki) k2
i

1 + k2
i

=
1
2
σiki(1 + k2

i )
k2
i

1 + k2
i

=
1
2
σik

3
i .

Using again the fact that µi − σiki = 1
2σi(ki + k3

i ), we can write this revenue bound as µi − 3
2σiki. This

completes the proof of Lemma 2.

We remark that if σi = 0, then the player’s valuation is µi with probability 1. Thus, the expected revenue
from player i is µi.

We have given a lower bound on the revenue that A obtains from each player i. We can also give an upper
bound on the revenue that the optimal auction obtains from player i by noting that a truthful, individually
rational auction6 will always charge a price pi lower than the player’s valuation vi. Thus, the expected
revenue of the auction satisfies E[pi] ≤ E[vi] = µi. Using this together with the above lemma, we can bound
the player-i competitive ratio of auction A as follows

Revi(A,F )
Revi(OPT,F )

≥ µi − 3
2σiki

µi
= 1− 3

2
σi
µi
ki.

This completes the proof of the theorem. Q.E.D.
6An auction is individually rational if no player gets negative utility from participating. If a player does not buy a copy of

the good, her price is zero. If she buys a copy of the good, her price pi is less than her value vi.
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4.1 A constant competitive Ratio

Theorem 1 tells us that Revi(A,F ) ≥ (1− 3
2
σi

µi
ki)Revi(OPT,F ) for every player i. Thus, we can bound the

revenue over all players as

n∑
i=1

Revi(A,F ) ≥
n∑
i=1

(1− 3
2
σi
µi
ki)Revi(OPT,F ) ≥ min

i
(1− 3

2
σi
µi
ki)

n∑
i=1

Revi(OPT,F ).

This gives us the competitive ratio

Rev(A,F )
Rev(OPT,F )

≥ min
i

(1− 3
2
σi
µi
ki).

One key informal observation is that the competitive ratio mini(1 − 3
2
σi

µi
ki) is constant whenever µi

σi
is

bounded below by a constant for all players. Thus, for a very large class of distributions, our parametric
auction obtains a constant fraction of the revenue. We remark that, unlike previous auctions, we make no
assumptions on players having identical distributions.

More formally, make the following definitions:

1. The function k(a) maps a to the unique real root of the cubic equation 1
2 (k3 + 3k) = a.

2. The function ρ(a) def= 1 − 3
2

1
ak(a). We can also write ρ(a) = 1

2
1
ak

3(a) by our definition of k(a). (See
lemma 1).

3. For any constant c > 0, the class of distributions Fc def= {F : E[F ] = µ, V ar(F ) = σ2, µσ > c}.
We can now show the following theorem.

Theorem 2. For any constant c > 0, let F = F1 × ... × Fn be a distribution where each Fi is in the class
Fc. Then

Rev(A,F )
Rev(OPT,F )

≥ ρ(c).

Proof. Theorem 1 tells us that Rev(A,F )
Rev(OPT,F ) ≥ mini ρ(µi

σi
). The fact that Fi ∈ Fc implies that µi

σi
> c. If we

show that the function ρ(·) is increasing, we can conclude that ρ(µi

σi
) > ρ(c) for all i, which gives us

min
i
ρ(
µi
σi

) > ρ(c).

Now we show that ρ(a) is an increasing function of a when a ≥ 0. Since ρ(a) def= 1− 3
2

1
ak(a), it’s derivative

is ρ′(a) = 3
2

1
a2 k(a)− 3

2
1
ak
′(a).

The function k(a) was defined implicitly as 2a = k3 +3k. Implicit differentiation gives us 2 = 3k2 ·k′(a)+
3k′(a), which we can rewrite as k′(a) = 2

3
1

1+k2(a) . Plugging this into our expression for ρ′(a) we obtain

ρ′(a) =
3
2

1
a2
k(a)− 1

a
· 1

1 + k2(a)
.

We can multiply the above equality by a2 · (1+k2(a)) without changing the sign of ρ′(a). To prove ρ′(a) ≥ 0,
it suffices to show

a2 · (1 + k2(a))ρ′(a) ≥ 0

3
2
k(a)(k2(a) + 1)− a ≥ 0

k3(a) +
1
2
k3(a) +

3
2
k(a)− a ≥ 0

9



k3(a) + 0 ≥ 0.

Since k(0) = 0 and k is an increasing function, we have k3(a) ≥ 0 when a ≥ 0. This shows that ρ(·) is an
increasing function when a > 0, and thus that ρ(µi

σi
) > ρ(c) when Fi ∈ Fc. We can conclude that when all

F1, ..., Fn ∈ Fc, the competitive ratio of A satisfies the bound

Rev(A,F )
Rev(OPT,F )

≥ min
i
ρ(
µi
σi

) > ρ(c).

This completes the proof of the theorem. Q.E.D.

4.2 The competitive ratio of A when the distributions have a monotone hazard
rate.

As mentioned in the introduction, the class Fc is a very large class of distributions. In particular, any
distribution F with a monotone hazard rate belongs to the class F1. Barlow, Marshall and Proschan [4] noted
that for a random variable X with monotone hazard rate, E[X2] ≤ 2E[X]2. Since V ar(X) = E[X2]−E[X]2,
this gives us V ar(X) ≤ E[X]2. Taking square roots, we obtain σ ≤ µ or, equivalently, µ

σ > 1.
Theorem 2 tells us that the auction A has a competitive ratio greater than ρ(1) when the distributions

F1, ..., Fn are in F1. In particular, this is true when the distributions have a monotone hazard rate. We can
use this to conclude the following corollary.

Corollary 1. When each Fi has a monotone hazard rate, the competitive ratio of A is bounded below by

Rev(A,F )
Rev(OPT,F )

≥ ρ(1) > 10.5%.

Proof. The fact that Rev(A,F )
Rev(OPT,F ) ≥ ρ(1) is immediate from Theorem 2 and the fact that a distribution

with monotone hazard rate satisfies µ
σ > 1. We need to show via a computation that ρ(1) > 10.5%. Recall

that ρ(1) = 1− 3
2

1
1 ·k(1). Solving the cubic equation k3 +3k = 2 gives us k(1) = 3

√
1 +
√

2− 1
3
√

1+
√

2

∼= 0.596.

Plugging this into the formula for ρ(1), we obtain ρ(1) > 10.5%.

5 A Better Digital Auction for Distributions with Monotone Haz-
ard Rate

In the previous section, we presented a digital auction A and showed that it obtained a constant competitive
ratio for a wide class of distribution, including all distributions with an increasing hazard rate.

In this section, we give a simpler auction A which will guarantee an even better competitive ratio, under
the assumption that each Fi has an increasing hazard rate. Unlike our auction A, we cannot give any
guarantees on the competitive ratio when the Fi do not have increasing hazard rates.

Our auction will use the following observation from Barlow and Marshall [3]:

Fact 1. Let F be a distribution over the real numbers with monotone hazard rate. Let µ be the mean of F .
Then 1− F (µ) ≥ 1

e .

We can now describe our competitive parametric auction

A(v,µ,σ)
1 Set a reserve for player i at ri = µi.
2 Sell a copy of the good to player i if and only if vi > ri.

10



Theorem 3. For all distributions F with monotone hazard rate, we have

Rev(A,F )
Rev(OPT,F )

≥ 1
e

Proof. The proof is immediate using Barlow and Marshall’s observation and the fact that the optimal auction
cannot obtain more than µi expected revenue from player i.

The expected revenue that A obtains from player i is µi · (1− F (µi)). By the above observation, this is
greater than or equal to µi · 1e . Since the optimal auction cannot obtain more than µi expected revenue from
player i, our theorem is proved. Q.E.D.

6 Maximin Optimality and our auction A
Recall our definition of maximin optimality for parametric auctions.

Definition. Let C be a class of mechanisms. A parametric auction A∗ is maximin optimal for class C if
A∗ ∈ C and

A∗ = argmax
A∈C

min
F :E[F ]=µ,V ar(F )=σ2

Rev(A,F ).

Theorem 4. The auction A is maximin optimal for the class C of parametric posted price mechanisms.

Proof. First, we note that A ∈ C, the class of posted price auctions. Player i’s posted price is ri = µi− σiki.
Now we need to show that A maximizes the worst-case revenue among any such mechanisms.

In Theorem 1, we used Cantelli’s inequality to show that

Rev(A, F ) ≥
n∑
i=1

(µi − σiki) · k2
i

1 + k2
i

.

To prove Theorem 4, it suffices to show that for any µ,σ and any parametric posted price mechanism
A(v,µ,σ), there exists a distribution F with mean µ and standard deviation σ such that

Rev(A,F ) <
n∑
i=1

(µi − σiki) · k2
i

1 + k2
i

.

Since the digital auction A(v,µ,σ) is a parametric posted price mechanism, it is completely characterized
by a vector of reserve prices (p1(µ,σ), ..., pn(µ,σ)). The auction sells a copy of the good to player i if and
only if vi > pi. Thus, player i’s expected payment is pi · (1− Fi(pi)).

We will prove the theorem by showing that, for each player i, there exists a distribution Fi with mean
µi and variance σi on which player i’s expected payment is less than or equal to (µ− σki) · k2

i

1+k2
i
. We split

into two cases: pi > µi and pi ≤ µi.
Assume pi > µi and write pi = µi + σi

ti
, for some positive ti. Consider the family of distributions

{C(k;µi, σi)}k∈R where C(k;µi, σi) takes the values

H(k;µi, σi) = µi +
σi
k

with probability
k2

1 + k2
,

L(k;µi, σi) = µi − σik with probability
1

1 + k2
.

Let player i’s valuation vi be drawn from distribution C(k;µi, σi). When k is smaller than ti, the auction
will sell the good if and only if vi = H(k;µi, σi), and it will charge player i the reserve price pi = µi + σi

ti
.

The expected revenue collected from player i in this case is (µi + σi

ti
) · k2

1+k2 . Taking the limit as k → 0, our

expected revenue becomes arbitrarily small. In particular, it becomes smaller than (µ− σki) · k2
i

1+k2
i
.
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Now assume pi ≤ µi. Write pi = µi − σiti. Since A 6= A, at least one player i must have ti 6= ki. We
focus on this player. Choose Fi to be the distribution distribution C(ti;µi, σi). For this distribution, the
valuation vi will be

H(ti) = µi +
σi
ti

with probability
t2i

1 + t2i
,

L(ti) = µi − σiti with probability
1

1 + t2i
.

The auction A only sells to player i when vi > µi − σiti.7 For this particular distribution, the auction
will sell at price µi − σiti, but only when the valuation is H(ti) = µi + σi

ti
. This happens with probability

t2i
1+t2i

. Thus, the expected revenue collected from player i will be

(µi − σiti) · t2i
1 + t2i

< (µi − σiki) · k2
i

1 + k2
i

,

where the last inequality is because ki is the unique maximum of the function f(t) = (µi − σit) · t2

1+t2 ,
and because we assumed ki 6= ti. We have shown that, when pi < µi, there exists a distribution Fi for which
the expected revenue collected from player i is less than or equal to (µi − σiki) · k2

i

1+k2
i
.

The above analysis holds for each player individually. However, since A is a digital auction, we can simply
consider a product distribution F = (F1, ..., Fn), where each Fi is chosen to limit the amount of revenue that
A collects from player i. Adding up over all players, we conclude that there exists a distribution F such that

Rev(A,F ) ≤
n∑
i=1

(µi − σiki) · k2
i

1 + k2
i

.

Recalling that our parametric auction A satisfies Rev(A, F ) ≥∑n
i=1(µi−σiki) · k2

i

1+k2
i

for all distributions
F with mean µ and standard deviation σ, we obtain that A maximizes worst-case revenue. This concludes
the proof of Theorem 4. Q.E.D.

7 Parametric Auctions For Matroid and Downward Closed Envi-
ronments

We present in this section a parametric auction for general single-dimensional domains. Our competitive
ratio will be a function that depends on the distribution parameters. When the distributions F1, ..., Fn are
regular and belong to the class Fc for some constant c > 0, we will obtain a constant competitive ratio
for matroid environments. When the distributions F1, ..., Fn have a monotone hazard rate, we will obtain
a competitive ratio for all downward closed environments. Recall that both matroid and downward closed
environments are characterized by a family of feasible sets I, where each I ∈ I is a subset of {1, ..., n}. The
environment specifies that we can only produce a final allocation that is a set of I.

Our parametric auction will be a VCG auction with reserve prices r. Because we do not know the
distributions F1, ..., Fn, we cannot set optimal monopoly reserve prices. Instead, we will need to set the
reserve price for player i using only the parameters µi, σi. Recall the definition of a second-price auction
with lazy reserve prices r = (r1, ..., rn) [11].

7For this proof, the strictness of the inequality matters. If we sold when vi ≥ µi−σiti, then a similar argument would apply,
but we would need to use a distribution C(ti + ε;µi, σi) for arbitrarily small values of ε.
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V CG− Lr(v)
1 Run the VCG auction to obtain an outcome (x, π), where x is an allo-

cation in I that maximizes social welfare, and π is the corresponding
vector of V CG prices.

2 Sell only to players i in the set S = {i : vi > ri}. That is, if vi ≤ ri,
then set player i’s allocation to be xi = 0 and her price to be πi = 0.

3 Charge every player i in the set S the price max(πi, ri).

With this definition in hand, we can now define our single-good auction B.

B(v,µ,σ)

1 Find ki = argmaxt[(µi − σit) · t2

1+t2 ].

2 For each player i, set the reserve price qi = µi − 3
2σiki.

3 Run the auction V CG− Lq to determine a price and allocation.

Theorem 5. Let c > 0 be a constant and let F1, ..., Fn be regular distributions in the class Fc. There exists
a positive increasing function ψ such that, for all matroid environments

Rev(B,F )
Rev(OPT,F )

≥ 1
2
ψ(c) > 0

Proof. If the distribution Fi is known, one way to set the reserve price ri is to choose ri = pi
def= argmaxp p ·

(1 − Fi(p)). Call pi the optimal monopoly price. Dhangwatnotai, Roughgarden, and Yan [11] study the
auction V CG − Lp that sets the optimal monopoly prices as reserve prices. They show that for matroid
settings and regular distributions F1, ..., Fn, the auction V CGp obtains a revenue of at least 1

2 of the optimal
auction. We will show that our auction B obtains a constant fraction of V CG − Lp. Combining this with
Dhangwatnotai, Roughgarden, and Yan’s result, we can conclude that our auction B obtains a constant
fraction of the optimal revenue.

We first prove that qi ≤ pi. Since pi is the optimal monopoly price, it satisfies (1−Fi(pi))·pi ≥ (1−Fi(r))·r
for any r 6= pi. In particular, we can plug in r = µi − σiki, player i’s reserve price in our digital auction A.
This gives us (1−Fi(pi)) · pi ≥ (µi − σiki) · 1−Fi(µi − σiki). Applying Cantelli’s inequality and our results
from lemma 2, we obtain

pi · (1− Fi(pi)) ≥ (µi − σiki) · (1− Fi(µi − σiki)) ≥ (µi − σiki) k2
i

1 + k2
i

= µi − 3
2
σiki = qi.

Since 1 − Fi(pi) < 1, we have pi ≥ (1 − Fi(pi))pi ≥ qi. This shows that our parametric reserve price qi is
always less than or equal to the optimal monopoly reserve price pi.

Now we proceed to show that V CG−Lq is competitive with V CG−Lp. Our strategy will be to reduce
this problem to proving a lower bound on qi

pi
, and then proving said lower bound. Given a vector of valuations

v = (v1, ..., vn), let π(v) be the vector of prices charged by the VCG auction (without reserves). We remark
that, since we are using the VCG with lazy reserve prices, the VCG prices are the same regardless of whether
we use q or p as reserve prices.

Let W ∈ I be the set of winners in the VCG auction without reserve prices. The revenue of the auction
V CG− Lp is ∑

i∈W
Pr[vi ≥ pi] ·max(πi(v), pi).

The revenue of our parametric auction V CG− Lq is∑
i∈W

Pr[vi ≥ qi] ·max(πi(v), qi).
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Since pi ≥ qi, we have Pr[vi ≥ qi] ≥ Pr[vi ≥ pi]. Thus, it suffices to give a lower bound for

max(πi(v), qi)
max(πi(v), pi)

≥ C

for some constant C, for all players i and valuation vectors v. If we can prove such a lower bound, then we
can show that max(πi(v), qi) ≥ C ·max(πi(v), pi), and taking probabilities over F on both sides we obtain

Rev(V CG− Lq,F ) ≥ C ·Rev(V CG− Lp,F ).

We first note that, for all v, we have max(πi(v),qi)
max(πi(v),pi)

≥ qi

pi
. If πi ≥ pi, then πi is also greater than or equal

to qi (because pi ≥ qi) and we have max(πi(v),qi)
max(πi(v),pi)

= 1 ≥ qi

pi
. If πi ≤ pi, then max(πi, pi) = pi, and we have

max(πi(v),qi)
max(πi(v),pi)

≥ qi

pi
.

Now it suffices to give a lower bound qi

pi
≥ C. In particular, we show qi

pi
≥ ψ(µi

σi
) for some increasing

function ψ(·).8Recall that qi is equal by definition to qi(µi, σi) = µi − 3
2σiki, where ki is the unique real

solution to the equation µi

σi
= 1

2 (k3 + 3k). To bound qi

pi
, it suffices to give an upper bound on pi. We do this

by separating in two cases.
The first case is when pi < µi. In this case, we have qi

pi
≥ 1− 3

2
σi

µi
· ki. The expression 1− 3

2
σi

µi
· ki is the

function ρ(µi

σi
) defined in section 4. We showed in theorem 2 that this function is increasing with µi

σi
.

The second case is when pi ≥ µi. Since pi is the optimal monopoly reserve price, it must be the case that
pi · (1− Fi(pi)) ≥ r · (1− F (r)) for any price r 6= pi. In particular, we can choose ri

def= µi − σiki. As in our
analysis above and in theorem 1, we have ri · (1 − F (ri)) ≥ µi − 3

2σiki = qi. Thus, the optimal monopoly
reserve price must satisfy pi · (1− Fi(pi)) ≥ qi.

Since pi ≥ µi, we can write pi = µi+σit for some non-negative t. Using a right-tailed version of Cantelli’s
inequality, we can give a bound

1− Fi(µi + σit) ≤ 1
1 + t2

.

Combining this with the fact that pi · (1− Fi(pi)) ≥ qi, we have the inequality

(µi + σit) · 1
1 + t2

≥ qi

µi + σit ≥ qi(1 + t2)

qi(1 + t2)− σit− µi ≤ 0.

Thus, in order for pi = µi+σit to be the optimal monopoly reserve price, the above quadratic polynomial
in t must be less than zero. Since the principal coefficient of this polynomial is qi > 0, the polynomial is
only negative between its roots. Thus, we must have that t lies in some interval [z1, z2] where z1, z2 are the
roots of qi(1 + t2)− σit− µi = 0, and we can write pi = µi + σit ≤ µi + σiz2.

We now have to write z2 in terms of µi, σi. Recall that z2 is the largest root of the quadratic equation
qi(1 + t2)− σit− µi = 0. Divide both sides of this equation by µi to obtain

qi
µi

(1 + t2)− σi
µi
t− 1 = 0.

Since qi = µi − 3
2σiki, we have that qi

µi
= 1 − 3

2
σi

µi
ki

def= ρ(µi

σi
), our function defined in section 4. Thus, we

can write our equation as
ρ(
µi
σi

) · (1 + t2)− σi
µi
t− 1 = 0.

8In section 7.1 we give an explicit constant lower bound for distributions with monotone hazard rate.
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For convenience of notation, write a def= µi

σi
. We want to solve ρ · (1 + t2)− 1

a t− 1 = 0. Using the quadratic
formula, we get

z2 =
1 +

√
1 + 4a2ρ− 4a2ρ2

2aρ

z2 =
1

2aρ
+

√
1

4a2ρ2
+

4a2ρ

4a2ρ2
− 4a2ρ2

4a2ρ2

z2 =
1

2aρ
+

√
1

4a2ρ2
+

1
ρ
− 1.

Since ρ is a function of a = µi

σi
, the root z2 is also a function of a. Furthermore, the function z2(a) is

decreasing with both ρ and a. Since ρ is an increasing function of a, we conclude that z2 is decreasing in
a = µi

σi
. We conclude that

pi = µi + σit ≤ µi + σiz2(
µi
σi

)

where z2(·) is a decreasing function. Combining this with the fact that ρ(µi

σi
) is by definition equal to qi

µi
, we

get
qi
pi

=
qi

µi

pi

µi

=
ρ(µi

σi
)

1 + σi

µi
t
≥ ρ(µi

σi
)

1 + σi

µi
· z2(µi

σi
)
.

Define

ψ(
µi
σi

) =
ρ(µi

σi
)

1 + σi

µi
· z2(µi

σi
)
.

By our analysis above, the numerator is increasing in µi

σi
and the denominator is decreasing in µi

σi
. Thus ψ(·)

is an increasing function. Note also that ψ(µi

σi
) ≤ ρ(µi

σi
), so ψ(·) is also a lower bound on qi

pi
for the case

pi ≤ µi.
Since ψ(·) is increasing, and we assumed that the distributions F1, ..., Fn are in the class Fc, we can infer

that
qi
pi
> ψ(c).

From our analysis above, we conclude that Rev(V CGq,F ) ≥ ψ(c) ·Rev(V CGp,F ).
Finally, applying Theorem 3.7 from Hartline and Roughgarden [19] we get

Rev(V CGp,F )
Rev(OPT,F )

≥ 1
2
.

Combining this with our result we obtain

Rev(V CGq,F )
Rev(OPT,F )

≥ 1
2
· ψ(c).

Since B = Rev(V CGq,F ), this proves our theorem. Q.E.D.

7.1 An explicit lower bound for distributions with monotone hazard rate.

In theorem 5, we gave a parametric auction for matroid environments with a competitive ratio bounded below
by 1

2ψ(c) for all regular distributions in Fc. In this section, we give an explicit bound for all distributions
with a monotone hazard rate. Our auction applies to the more general downward closed environments.

Theorem 6. Let I be a downward closed environment. When each Fi has a monotone hazard rate, the
competitive ratio of our auction B is bounded below by

Rev(B,F )
Rev(OPT,F )

> 0.90%.
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Proof. Recall that a key step in the proof of theorem 5 was giving a bound qi

pi
≥ ψ(µi

σi
), where qi is our

parametric reserve price and pi is the monopoly reserve price that the optimal auction would set. This
allowed us to conclude that Rev(B,F )

Rev(OPT,F ) ≥ 1
2ψ(µi

σi
). By improving the bound on qi

pi
, we can improve the

competitive ratio of our auction.
In this proof, we show that for Fi with monotone hazard rate, the ratio qi

pi
satisfies the bound

qi
pi
≥ 2.47%.

Once we show this, we can apply a result from [11] arguing that V CG − Lp obtains a 1
e fraction of the

expected revenue of the optimal auction on monotone hazard rate distributions and general downward
closed environments. Combined with our lower bound on qi

pi
, we can apply our reasoning from theorem 5 to

show
Rev(B,F )

Rev(OPT,F )
≥ 1
e
· 2.47% ≥ 0.90%.

We use two facts about distributions with a monotone hazard rate

1. When Fi has a monotone hazard rate, µi

σi
≥ 1.9 Thus, we have Fi ∈ F1 for each player i.

2. For any distribution Fi with a monotone hazard rate and with mean µi, we have 1− Fi(µi) ≥ 1
e . [3]

We now give a bound on qi

pi
. Recall that qi is equal by definition to qi(µi, σi) = µi − 3

2σiki, where ki is
the unique real solution to the equation µi

σi
= 1

2 (k3 + 3k). We now give a bound on pi by separating into two
cases.

We begin with the case where pi ≤ µi. In this case, as shown in theorem 5, we have qi

pi
≥ 1 − 3

2σiki
def=

ρ(µi

σi
). We showed in theorem 2 that ρ(·) is an increasing function. Since Fi has a monotone hazard rate,

the observation above tells us that µi

σi
≥ 1. Thus,

qi
pi
≥ ρ(1) ≥ 10.5%.

The complicated case is when pi ≥ µi. Since pi is the optimal monopoly reserve price, it satisfies
pi · (1 − Fi(pi)) ≥ r · (1 − Fi(r)) for every r 6= pi. In particular, we can choose r = µi and obtain
pi · (1− Fi(pi)) ≥ µi · (1− Fi(µi)) ≥ µi

e .
Write pi = µi +σit for some t > 0. We will give an upper bound on t. A right-tailed version of Cantelli’s

inequality tells us that

1− Fi(pi) = 1− Fi(µi + σit) ≤ 1
1 + t2

.

Combining this with the fact that pi · (1− Fi(pi)) ≥ µi

e , we get

(µi + σit)
1

1 + t2
≥ µi

e
.

(1 +
σi
µi
t) ≥ 1 + t2

e
.

Since Fi has a monotone hazard rate, σi

µi
≤ 1. This yields 1 + t ≥ 1 + σi

µi
t. Combining this with our above

inequality, we get

1 + t ≥ 1 + t2

e
.

A calculation shows that t satisfies this inequality only if t ≤ e
2 + 1

2

√−4 + 4e+ e2 ≤ 3.25. Thus, we have
pi ≤ µi + 3.25σi ≤ 4.25µi, where the last inequality is derived by using the fact that µi ≥ σi.

9Barlow, Marshall and Proschan [4] noted that for a random variable X with montone hazard rate, E[X2] ≤ 2E[X]2. Since
V ar(X) = E[X2]− E[X]2, this gives us V ar(X) ≤ E[X]2. Taking square roots, we obtain σ ≤ µ.
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We can now give the following bound on qi

pi
:

qi
pi
≥ µi − 3

2σiki

4.25µi
=

1− 3
2
σi

µi
ki

4.25
=
ρ(µi

σi
)

4.25
≥ ρ(1)

4.25

where the last inequality is because ρ(·) is an increasing function and µi

σi
≥ 1. Since ρ(1) ≥ 10.5%, we obtain

qi

pi
≥ 2.47%. Using the reasoning from theorem 5, we conclude that

Rev(B,F )
Rev(OPT,F )

≥ 0.90%.

Q.E.D.

8 Conclusion and Future Work

We introduced parametric auctions, a new type of auction where the seller only needs to know the parameters
µi, σi of the buyer distributions F1, ..., Fn. For digital goods environments, matroid environments, and
downward closed environments, we constructed auctions that obtained a constant fraction of the optimal
auction revenue for a large class of distributions, including all monotone hazard rate distributions and many
irregular distribution. Furthermore, our digital auction A is the best parametric posted price mechanism in
a maximin sense. When an adversary chooses the distribution F , our auction A maximizes the worst-case
revenue.

Our results make extensive use of moment bounds both for general distributions and for monotone hazard
rate distributions. The theory of moment bounds is very well developed, but to the best of our knowledge
has never been applied to auctions before. In the future, we are interested in analyzing parametric auctions
with multi-dimensional types, extending our work to other settings such as public goods, and evaluating
empirically the performance of our parametric auctions. We believe that our model and techniques are very
robust, and that they can be widely applied.
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