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Enriques diagrams, arbitrarily near points,
and Hilbert schemes

Steven KLEIMAN, Ragni PIENE, and
with Appendix B by Ilya TYOMKIN

ABSTRACT. Given a smooth family F/Y of geometrically irreducible surfaces,
we study sequences of arbitrarily near T-points of F/Y; they generalize the
traditional sequences of infinitely near points of a single smooth surface. We
distinguish a special sort of these new sequences, the strict sequences. To each
strict sequence, we associate an ordered unweighted Enriques diagram. We
prove that the various sequences with a fixed diagram form a functor, and we
represent it by a smooth Y'-scheme.

We equip this Y-scheme with a free action of the automorphism group of
the diagram. We equip the diagram with weights, take the subgroup of those
automorphisms preserving the weights, and form the corresponding quotient
scheme. Our main theorem constructs a canonical universally injective map
from this quotient scheme to the Hilbert scheme of F/Y’; further, this map is
an embedding in characteristic 0. However, in every positive characteristic, we
give an example, in Appendix B, where the map is purely inseparable.

1. Introduction

In the authors’ paper [15], Proposition (3.6) on p. 225 concerns the locus H(D)
that sits in the Hilbert scheme of a smooth irreducible complex surface and that
parameterizes the complete ideals Z with a given minimal Enriques diagram D. The
latter is an abstract combinatorial structure associated to a sequence of arbitrarily
near points rendering Z invertible. The proposition asserts that H(D) is smooth
and equidimensional.

The proposition was justified intuitively, then given an ad hoc proof in [15].
The intuitive justification was not developed into a formal proof, as this proof is
surprisingly long and complicated. However, the proof yields more: it shows H(D)
is irreducible; it works for nonminimal D; and it works for families of surfaces.
Further, it works to a great extent when the characteristic is positive or mixed, but
then it only shows H (D) has a finite and universally injective covering by a smooth
cover; this covering need not be birational, as examples in Appendix B show.

Originally, the authors planned to develop that formal proof in a paper that
also dealt with other loose ends, notably, the details of the enumeration of curves

2000 Mathematics Subject Classification. Primary 14N10; Secondary 14C20, 14H40, 14KO05.
Key words and phrases. Enriques diagrams, arbitrarily near points, Hilbert schemes, prop-
erty of exchange.


http://arxiv.org/abs/0905.2169v3

2 S. KLEIMAN AND R. PIENE

with eight nodes. However, there is so much material involved that it makes more
sense to divide it up. Thus the formal proof alone is developed in the present paper;
the result itself is asserted in Corollary 5.8l Here, in more detail, is a description
of this paper’s contents.

Fix a smooth family of geometrically irreducible surfaces F'//Y and an integer
n > 0. Given a Y-scheme T, by a sequence of arbitrarily near T-points of F/Y,
we mean an (n + 1)-tuple (to,...,t,) where tg is a T-point of F}O) = F xy T and
where ¢;, for i > 1, is a T-point of the blowup F:(FZ) of F:(szl) at t;_1. (If each t; is, in
fact, a T-point of the exceptional divisor Eg;) of F:(Fl), then (¢o, ..., t,) is a sequence
of infinitely near points in the traditional sense.) The sequences of arbitrarily near
T-points form a functor in T', and it is representable by a smooth Y-scheme F(),
according to Proposition [34] below; this result is due, in essence, to Harbourne [11]
Prp. 1.2, p. 104].

We say that the sequence (tg,...,t,) is strict if, for each 4,7 with 1 < j < 4,
the image T() C F:(FZ) of ¢; is either (a) disjoint from, or (b) contained in, the strict
transform of the exceptional divisor EFEF] ) of F:(FJ i (b) obtains, then we say that
t; is prozimate to t; and we write t; > t;.

To each strict sequence, we associate, in Section 3, an unweighted Enriques
diagram U and an ordering 6: U == {0,...,n}. Effectively, U is just a graph
whose vertices are the t;. There is a directed edge from t; to t; provided that

j+1 < i and that the map from F}i) to F}j 1 is an isomorphism in a neighborhood

of T® and embeds T in EFEF] AR addition, U inherits the binary relation of
proximity. Finally, 6 is defined by 6(¢;) := ¢. This material is discussed in more
detail in Section 2. In particular, to aid in passing from (to,...,t,) to (U, 6), we
develop a new combinatorial notion, which we call a prozimity structure.

Different strict sequences often give rise to isomorphic pairs (U, 6). If we fix
a pair, then the corresponding sequences form a functor, and it is representable by
a subscheme F (U, ) of F(™) which is Y-smooth with irreducible geometric fibers
of a certain dimension. This statement is asserted by Theorem B.I0, which was
inspired by Roé’s Proposition 2.6 in [25].

Given another ordering #’, in Section 4 we construct a natural isomorphism

Dy o : F(U, 6‘) — F(U, 9/).

It is easy to describe ®p g- on geometric points. A geometric point of F(U, ) cor-
responds to a certain sequence of local rings in the function field of the appropriate
geometric fiber of F//Y. Then 6 o §~! yields a suitable permutation of these local
rings, and so a geometric point of F(U, 6'). However, it is harder to work with
arbitrary T-points. Most of the work is carried out in the proofs of Lemmas [£.]]
and L2 and the work is completed in the proof of Proposition [£.3l

We easily derive two corollaries. Corollary [14] asserts that Aut(U) acts freely
on F(U, 0); namely, v € Aut(U) acts as @y g where 0’ := 6 o y. Corollary [L.5]
asserts that U: F(U, 6)/Aut(U) is Y-smooth with irreducible geometric fibers.

A different treatment of F'(U, ) is given by A.-K. Liu in [20]. In Section 3 on
pp. 400-401, he constructs F(™. In Subsection 4.3.1 on pp.412-414, he discusses
his version of an Enriques diagram, which he calls an “admissible graph.” In Sub-
sections 4.3.2, 4.4.1, and 4.4.2 on pp. 414-427, he constructs F(U, ), and proves it
is smooth. In Subsection 4.5 on pp. 428-433, he constructs the action of Aut(U) on
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ENRIQUES DIAGRAMS, ARBITRARILY NEAR POINTS, AND HILBERT SCHEMES 3

F(U, 0). Of course, he uses different notation; also, he doesn’t represent functors.
But, like the present authors, he was greatly inspired by Vainsencher’s approach in
[28] to enumerating the singular curves in a linear system on a smooth surface.

Our main result is Theorem 5.7l It concerns the Enriques diagram D obtained
by equipping the vertices V' € U with weights my satisfying the Proximity Inequal-
ity, my > 3y mw. We discuss the theory of such D in Section 2. Note that
Aut(D) C Aut(U). Set d := >, (™%""). Theorem 7 asserts the existence of a
universally injective map from the quotient to the Hilbert scheme

U: F(U, 0)/Aut(D) — Hilb, .

Proposition [5.4] implies that ¥ factors into a finite map followed by an open
embedding. So ¥ is an embedding in characteristic 0. However, in any positive
characteristic, ¥ can be ramified everywhere; examples are given in Appendix B,
whose content is due to Tyomkin. Nevertheless, according to Proposition 5.9 in
the important case where every vertex of D is a root, ¥ is an embedding in any
characteristic. Further, adding a nonroot does not necessarily mean there is a
characteristic in which ¥ ramifies, as other examples in Appendix B show.

We construct ¥ via a relative version of the standard construction of the com-
plete ideals on a smooth surface over a field, which grew out of Zariski’s work in
1938; the standard theory is reviewed in Subsection 5.1. Now, a T-point of F'(U, )
represents a sequence of blowing-ups F}Z) — F}Zfl) for 1 <i<mn+1. On the final
blowup F:(Fnﬂ), for each i, we form the preimage of the ith center 7). This preim-
age is a divisor; we multiply it by mg-1(;), and we sum over i. We get an effective
divisor. We take its ideal, and push down to Fpr. The result is an ideal, and it
defines the desired T-flat subscheme of F. The flatness holds and the formation
of the subscheme commutes with base change owing to the generalized property of
exchange proved in Appendix A. Appendix A is of independent interest.

It is not hard to see that W is injective on geometric points, and that its image
is the subset H(D) C Hilbfp sy parameterizing complete ideals with diagram D on
the fibers of F/Y. To prove that ¥ induces a finite map onto H (D), we use a sort
of valuative criterion; the work appears in Lemma and Proposition 5.4 An
immediate corollary, Corollary [5.5] asserts that H (D) is locally closed. This result
was proved for complex analytic varieties by Lossen [21 Prp. 2.19, p. 35] and for
excellent schemes by Nobile and Villamayor [23, Thm. 2.6, p. 250]. Their proofs
are rather different from each other and from ours.

In [26] and [27], Russell studies sets somewhat similar to the H(D). They
parameterize isomorphism classes of finite subschemes of F' supported at one point.

In short, Section 2 treats weighted and unweighted Enriques diagrams and
proximity structures. Section 3 treats sequences of arbitrarily near T-points. To
certain ones, the strict sequences, we associate an unweighted Enriques diagram U
and an ordering . Fixing U and 6, we obtain a functor, which we represent by a
smooth Y-scheme F(U, 6). Section 4 treats the variance in §. We produce a free
action on F(U, 6) of Aut(U). Section 5 treats the Enriques diagram D obtained by
equipping U with suitable weights. We construct a map ¥ from F (U, 6) / Aut(D)
to Hilbp,y, whose image is the locus H(D) of complete ideals. We prove H (D)
is locally closed. Our main theorem asserts that ¥ is universally injective, and in
fact, in characteristic 0, an embedding. Appendix A treats the generalized property
of exchange used in constructing ¥. Finally, Tyomkin’s Appendix B treats a few
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4 S. KLEIMAN AND R. PIENE

examples: in some, V¥ is ramified; in others, there’s a nonroot, yet ¥ is unramified.

2. Enriques diagrams

In 1915, Enriques [4, IV.I, pp. 350-51] explained a way to represent the equi-
singularity type of a plane curve singularity by means of a directed graph: each
vertex represents an arbitrarily near point, and each edge connects a vertex rep-
resenting a point to a vertex representing a point in its first-order neighborhood;
furthermore, the graph is equipped with a binary relation representing the “prox-
imity” of arbitrarily near points. These graphs have, for a long time, been called
Enriques diagrams, and in 2000, they were given a modern treatment by Casas in
[2] Sec. 3.9, pp. 98-102].

Based in part on a preliminary edition of Casas’ monograph, a more axiomatic
treatment was given by the authors in [16] § 2], and this treatment is elaborated
on here in Subsection [ZIl In this treatment, the vertices are weighted, and the
number of vertices is minimized. When the diagram arises from a curve, the vertices
correspond to the “essential points” as defined by Greuel et al. [5] Sec. 2.2], and
the weights are the multiplicities of the points on the strict transforms. Casas’
treatment is similar: the Proximity Inequality is always an equality, and the leaves,
or extremal vertices, are of weight 1; so the rest of the weights are determined.

At times, it is convenient to work with unweighted diagrams. For this reason,
Roé [25], §1], inspired by Casas, defined an “Enriques diagram” to be an unweighted
graph, and he imposed five conditions, which are equivalent to our Laws of Proxim-
ity and of Succession. Yet another description of unweighted Enriques diagrams is
developed below in Subsection 2.3] and Proposition 24 under the name of “proxim-
ity structure.” This description facilitates the formal assignment, in Subsection [Z.7]
of an Enriques diagram to a plane curve singularity. Similarly, the description fa-
cilitates the assignment in Section Bl of the Enriques diagram associated to a strict
sequence of arbitrarily near points.

At times, it is convenient to order the elements of the set underlying an En-
riques diagram or underlying a proximity structure. This subject is developed in
Subsections2.2]and 2-3]and in Corollary[2.5l It plays a key role in the later sections.

Finally, in Subsection 2.6, we discuss several useful numerical characters. Three
were introduced in [I5 Sct. 2, p. 214], and are recalled here. Proposition 2.8
describes the change in one of the three when a singularity is blown up; this result
is needed in [17]

2.1 (Enriques diagrams). First, recall some general notions. In a directed graph,
a vertex V is considered to be one of its own predecessors and one of its own
successors. Its other predecessors and successors W are said to be proper. If there
are no loops, then W is said to be remote, or distant, if there is a distinct third
vertex lying between V and W; otherwise, then W is said to be immediate.

A tree is a directed graph with no loops; by definition, it has a single initial
vertex, or root, and every other vertex has a unique immediate predecessor. A final
vertex is called a leaf. A disjoint union of trees is called a forest.

Next, from [16] § 2], recall the definition of a minimal Enriques diagram. It
is a finite forest D with additional structure. Namely, each vertex V is assigned a
weight my,, which is an integer at least 1. Also, the forest is equipped with a binary
relation; if one vertex V is related to another U, then we say that V is proximate
to U, and write V > U. If U is a remote predecessor of V', then we call V' a satellite
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of U; if not, then we say V' is free. Thus a root is free, and a leaf can be either free
or a satellite.
Elaborating on [16], call D an Enriques diagram if D obeys these three laws:

(Law of Proximity) A root is proximate to no vertex. If a vertex is not
a root, then it is prorimate to its immediate predecessor and to at most
one other vertez; the latter must be a remote predecessor. If one vertex is
prozimate to a second, and if a distinct third lies between the two, then it
too is prorimate to the second.

(Proximity Inequality) For each vertex V,
my Z ZW>—V mw.

(Law of Succession) A wvertex may have any number of free immediate
successors, but at most two immediate successors may be satellites, and
they must be satellites of different vertices.

Notice that, by themselves, the Law of Proximity and the Proximity Inequality
imply that a vertex V' has at most my immediate successors; so, although this
property is included in the statement of the Law of Succession in [16] § 2], it is
omitted here.

Recovering the notion in [15], call an Enriques diagram D minimal if D obeys
the following fourth law:

(Law of Minimality) There are only finitely many vertices, and every leaf
of weight 1 is a satellite.

In [15], the Law of Minimality did not include the present finiteness restriction;
rather, it was imposed at the outset.

2.2 (Unweighted diagrams). In [25] §1], Roé defines an Enriques diagram to be an
unweighted finite forest that is equipped with a binary relation, called “proximity,”
that is required to satisfy five conditions. It is not hard to see that his conditions are
equivalent to our Laws of Proximity and Succession. Let us call this combinatorial
structure an unweighted Enriques diagram.

Let U be any directed graph on n + 1 vertices. By an ordering of U, let us
mean a bijective mapping

0: U —={0,...,n}
such that, if one vertex V' precedes another W, then 6(V) < 0(W). Let us call the
pair (U, 0) an ordered directed graph.

An ordering 0 need not be unique. Furthermore, if one exists, then plainly U
has no loops. Conversely, if U has no loops—if it is a forest—then U has at least
one ordering. Indeed, then U has a leaf L. Let T be the complement of L in U.
Then T inherits the structure of a forest. So, by induction on n, we may assume
that T has an ordering. Extend it to U by mapping L to n.

Associated to any ordered unweighted Enriques diagram (U, ) is its proximity
matriz (p;;), which is the n + 1 by n + 1 lower triangular matrix defined by

1, ifi=y;
pij =< —1, if #71i is proximate to #71j;
0, otherwise.
The transpose was introduced by Du Val in 1936, and he named it the “proximity

matrix” in 1940; Lipman [19] p. 298] and others have followed suit. The definition
0185071.tex: January 25, 2011



6 S. KLEIMAN AND R. PIENE

here is the one used by Roé [25] and Casas [2] p. 139].
Note that (U, 6) is determined up to unique isomorphism by (p;;).

2.3 (Proximity structure). Let U be a finite set equipped with a binary relation.
Call U a prozimity structure, its elements vertices, and the relation proximity if the
following three laws are obeyed:

(P1) No vertez is proximate to itself; no two vertices are each proximate to
the other.

(P2) FEvery vertex is proximate to at most two others; if to two, then one of
the two is prozimate to the other.

(P3) Given two vertices, at most one other is proximate to them both.

A proximity structure supports a natural structure of directed graph. Indeed,
construct an edge proceeding from one vertex V' to another W whenever either W
is proximate only to V or W is proximate both to V and U but V is proximate
to U (rather than U to V). Of course, this graph may have loops; for example,
witness a triangle with each vertex proximate to the one clockwise before it, and
witness a pentagon with each vertex proximate to the two clockwise before it.

Let us say that a proximity structure is ordered if its vertices are numbered,
say Vo, ..., Vy, such that, if V; is proximate to V;, then i > j.

Proposition 2.4. The unweighted Enriques diagrams sit in natural bijective cor-
respondence with the prorimity structures whose associated graphs have no loops.

Proo¥r. First, take an unweighted Enriques diagram, and let’s check that its
proximity relation obeys Laws (P1) to (P3).

A vertex is proximate only to a proper successor; so no vertex is proximate to
itself. And, if two vertices were proximate to one another, then each would succeed
the other; so there would be a loop. Thus (P1) holds.

A root is proximate to no vertex. Every other vertex W is proximate to its
immediate predecessor V and to at most one other vertex U, which must be a
remote predecessor. Since an immediate predecessor is unique in a forest, V must
lie between W and U; whence, V' must be proximate to U. Thus (P2) holds.

Suppose two vertices W and X are each proximate to two others U and V. Say
V' is the immediate predecessor of W. Then U is a remote predecessor of W so
U precedes V. Hence V is also the immediate predecessor of X, and W is also a
remote predecessor of X. Thus both W and X are immediate successors of V', and
both are satellites of W; so the Law of Succession is violated. Thus (P3) holds.

Conversely, take a proximity structure whose associated graph has no loops.
Plainly, a root is proximate to no vertex. Suppose a vertex W is not a root. Then
W has an immediate predecessor V. Plainly, W is proximate to V. Plainly, W is
proximate to at most one other vertex U, and if so, then V is proximate to U. Since
U cannot also be proximate to V by (P1), it follows that V is the only immediate
predecessor to W.

Every vertex is, therefore, preceded by a unique root. Plainly the connected
component of each root is a tree. Thus the graph is a finite forest.

Returning to U, V, and W, we must show that U precedes W. Now, V is
proximate to U. So V is not a root. Hence V has an immediate predecessor V'.
If V! = U, then stop. If not, then V' is proximate to U owing to the definition
of the associated graph, since V is proximate to U. Hence, similarly, V' has an
immediate predecessor V”. If V" = U, then stop. If not, then repeat the process.
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ENRIQUES DIAGRAMS, ARBITRARILY NEAR POINTS, AND HILBERT SCHEMES 7

Eventually, you must stop since the number of vertices is finite. Thus U precedes
W. Furthermore, every vertex between U and W is proximate to U. Thus the Law
of Proximity holds.

Continuing with U, V', and W, suppose that W' is a second immediate successor
of V and that W’ is also proximate to a vertex U’. Then U’ # U since at most one
vertex can be proximate to both V' and U by (P3).

Finally, suppose that W is a third immediate successor of V' and that W” is
also proximate to a vertex U”. Then U"” # U and U" # U’ by what we just proved.
But V is proximate to each of U, U’, and U”. So (P2) is violated. Thus the Law
of Succession holds, and the proof is complete. O

Corollary 2.5. The ordered unweighted Enriques diagrams sit in natural bijective
correspondence with the ordered proximity structures.

ProoOF. Given an unweighted Enriques diagram, its proximity relation obeys
Laws (P1) to (P3) by the proof of Proposition24l And, if one vertex V is proximate
to another W, then W precedes V. So ¢(W) < §(V) for any ordering 6. Hence, if
V is numbered (V') for every V, then the proximity structure is ordered.

Conversely, take an ordered proximity structure. The associated directed graph
is, plainly, ordered too, and so has no loops. And, the Laws of Proximity and
Succession hold by the proof of Proposition 24l Thus the corollary holds. O

2.6 (Numerical characters). In [I5] Sct. 2, p. 214], a number of numerical characters
were introduced, and three of them are useful in the present work.

The first character makes sense for any unweighted Enriques diagram U, al-
though it was not defined in this generality before; namely, the dimension dim(U)
is the number of roots plus the number of free vertices in U, including roots. Of
course, the definition makes sense for a weighted Enriques diagram D; namely, the
dimension dim(D) is simply the dimension of the underlying unweighted diagram.

The second and third characters make sense only for a weighted Enriques dia-
gram D; namely, the degree and codimension are defined by the formulas

deg(D) = Xy ep ("");
cod(D) := deg(D) — dim(D).
It is useful to introduce a new character, the type of a vertex V of U or of V.
It is defined by the formula
0, if V is a satellite;
type(V) := ¢ 1, if V is a free vertex, but not a root;
2, if V is a root.
The type appears in the following two formulas:
dim(A) = > e type(V); (2.6.1)
cod(A) =3 ca [(mVQH) — type(V)]. (2.6.2)
Formula [Z6.2 is useful because every summand is nonnegative in general and pos-

itive when A is a minimal Enriques diagram.

2.7 (The diagram of a curve). Let C be a reduced curve lying on a smooth surface

over an algebraically closed ground field; the surface need not be complete. In

[15] Sec. 2, p. 213] and again in [16], Sec. 2, p. 72|, we stated that, to C, we can
0185071.tex: January 25, 2011



8 S. KLEIMAN AND R. PIENE

associate a minimal Enriques diagram D. (It represents the equisingularity type
of C; this aspect of the theory is treated in |2 p. 99] and [5] pp. 543-4].) Here is
more explanation about the construction of D.

First, form the configuration of all arbitrarily near points of the surface lying on
all the branches of the curve through all its singular points. Say that one arbitrarily
near point is proximate to a second if the first lies above the second and on the
strict transform of the exceptional divisor of the blowup centered at the second.
Then Laws (P1) to (P3) hold because three strict transforms never meet and, if two
meet, then they meet once and transversely. Plainly, there are no loops. Hence, by
Proposition [2Z4] this configuration is an unweighted Enriques diagram.

Second, weight each arbitrarily near point with its multiplicity as a point on
the strict transform of the curve. By the theorem of strong embedded resolution,
all but finitely many arbitrarily near points are of multiplicity 1, and are proximate
only to their immediate predecessors; prune off all the infinite unbroken successions
of such points, leaving finitely many points. Then the Law of Minimality holds.

Finally, the Proximity Inequality holds for this well-known reason: the multi-
plicity of a point P’ on a strict transform C’ can be computed as an intersection
number m on the blowup at P’ of the surface containing C’; namely, m is the
intersection number of the exceptional divisor and the strict transform of C’; the
desired inequality results now from Noether’s formula for m in terms of multiplici-
ties of arbitrarily near points. (In [2] p. 83], the inequality is an equality, because
no pruning is done.) Therefore, this weighted configuration is a minimal Enriques
diagram. It is D.

Notice that, if K is any algebraically closed extension field of the ground field,
then the curve C'x also has diagram D.

Proposition 2.8. Let C be a reduced curve lying on a smooth surface over an
algebraically closed field. Let D be the minimal Enriques diagram of C, and P €
C a singular point of multiplicity m. Form the blowup of the surface at P, the
exceptional divisor E, the proper transform C' of C, and the union C"” .= C' UE.
Let D’ be the diagram of C', and D" that of C". Then

cod(D) — cod(D’) > (mg'l) —2 and cod(D) — cod(D”) = () — 2;
equality holds in the first relation if and only if P is an ordinary m-fold point.

PROOF. We obtain D’ from D by deleting the root R corresponding to P and
also all the vertices T that are of weight 1, proximate to R, and such that all
successors of T are also (of weight 1 and) proximate to R (and so deleted too).
Note that an immediate successor of R is free; if it is deleted, then it has weight 1,
and if it is not deleted, then it becomes a root of D’. Also, by the Law of Proximity,
an undeleted satellite of R becomes a free vertex of D’.

Let o be the total number of satellites of R, and p the number of undeleted
immediate successors. Then it follows from the Formula ([226.2) that

cod(D) — cod(D’) = (") =2+ 0 +p.

Thus the asserted inequality holds, and it is an equality if and only if ¢ = 0 and
p =0. So it is an equality if P is an ordinary m-fold point.

Conversely, suppose 0 = 0 and p = 0. Then R has no immediate successor V'

of weight 1 for the following reason. Otherwise, any immediate successor W of V'

is proximate to V' by the Law of Proximity. So W has weight 1 by the Proximity
0185071.tex: January 25, 2011



ENRIQUES DIAGRAMS, ARBITRARILY NEAR POINTS, AND HILBERT SCHEMES 9

Inequality. Hence, by recursion, we conclude that V is succeeded by a leaf L of
weight 1. So, by the Law of Minimality, L is a satellite. But ¢ = 0. Hence V does
not exist. But p = 0. Hence R has no successors whatsoever. So P is an ordinary
m-fold point.

Furthermore, we obtain D” from D by deleting R and by adding 1 to the weight
of each T proximate to R. So a satellite of R becomes a free vertex of D", and
an immediate successor of R becomes a root of D”. In addition, for each smooth
branch of C' that is transverse at P to all the other branches, we adjoin an isolated
vertex (root) of weight 2.

The number of adjoined vertices is m — > ;.. mz. So, by Formula (Z6.2),

cod(D) — cod(D”) = (m;rl) -2+ 1R [(mgﬂ) — type(T)]
= Y r[("M5) = (type(T) + 1)] = [m = g g mr].

The right hand side reduces to (7;1) — 2. So the asserted equality holds. O

3. Infinitely near points

Fix a smooth family of geometrically irreducible surfaces 7: FF — Y. In this
section, we study sequences of arbitrarily near T-points of F'/Y. They are defined in
Definition 3.3l Then Proposition [3.4] asserts that they form a representable functor.
In essence, this result is due to Harbourne [11] Prp. 1.2, p. 104], who identified the
functor of points of the iterated blow-up that was introduced in [14] Sct. 4.1, p. 36]
and is recalled in Definition [311

In the second half of this section, we study a special kind of sequence of arbi-
trarily near T-points, the strict sequence, which is defined in Definition[3.5l To each
strict sequence is associated a natural ordered unweighted Enriques diagram owing
to Propositions B.8 and 2.4l Finally, Theorem asserts that the strict sequences
with given diagram (U, ) form a functor, which is representable by a Y-smooth
scheme with irreducible geometric fibers of dimension dim(U). This theorem was
inspired by Roé’s Proposition 2.6 in [25].

Definition 3.1. By induction on ¢ > 0, let us define more families

7@, p) 5 pli-1)
which are like 7: F — Y. Set 7(%) := . Now, suppose (" has been defined. Form
the fibered product of F*) with itself over F(*~1) and blow up along the diagonal
A Take the composition of the blowup map and the second projection to be
7T(i-i—l)'

In addition, for i > 1, let ¢®: F(® — FG=1) be the composition of the blowup
map and the first projection, and let E() be the exceptional divisor. Finally, set
0 = 71; 50 (O = 70,

Lemma 3.2. Both 7 and ¢ are smooth, and have geometrically irreducible
fibers of dimension 2. Moreover, E® is equal, as a polarized scheme, to the bundle
]P’(Q}r(i,l)) over FU=1  where Q}r(i,l) is the sheaf of relative differentials.

PROOF. The first assertion holds for i = 0 by hypothesis. Suppose it holds for

1. Consider the fibered product formed in Definition [3.J] Then both projections are

smooth, and have geometrically irreducible fibers of dimension 2; also, the diagonal

A® is smooth over both factors. It follows that the first assertion holds for 7 + 1.

The second assertion holds because Q}r(i,l) is the conormal sheaf of AW, O
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Definition 3.3. Let T be a Y-scheme. Given a sequence of blowups

(n+1) (1)
it g L I B =F xy T

whose ith center T F}i) is the image of a section t; of Féi)/T for 0 <i<mn,
call (to,...,tn) a sequence of arbitrarily near T-points of F/Y .
For 1 <i < n+ 1, denote the exceptional divisor in F}Z) by E(TZ).

The following result is a version of Harbourne’s Proposition 1.2 in [I1], p. 104].

Proposition 3.4 (Harbourne). AsT wvaries, the sequences (to, ..., tn) of arbitrarily
near T-points of F/Y form a functor, which is represented by F™ Y.

Given (to,...,t,) and i, say (to,...,t;) is represented by 7;: T — F®). Then
71, = 7,_1 where T_1 is the structure map. Also, F}Hl) = pi+h) X pay T where
FOHD 5 PO s 70D - correspondingly, t; = (15,1) and Erfpiﬂ) = B0 xpw T
moreover, T is the scheme-theoretic image of Egpiﬂ) under gag,f—H) : F:(Fiﬂ) — F:(Fi).
Finally, @(TH_l) is induced by "tV and F}H_l) — T is induced by w(+Y.

PrROOF. First, observe that, given a section of any smooth map a: A — B,
blowing up A along the section’s image, C' say, commutes with changing the base
B. Indeed, let Z be the ideal of C, and for each m > 0, consider the exact sequence

0—ZImt - Im 1™ /T™ — 0.

Since a is smooth, Im/Im+1 is a locally free Oc-module, so B-flat. Hence form-
ing the sequence commutes with changing B. However, the blowup of A is just
Proj@,, Z™. Hence forming it commutes too.

Second, observe in addition that C' is the scheme-theoretic image of the excep-
tional divisor, E say, of this blowup. Indeed, this image is the closed subscheme of
C whose ideal is the kernel of the comorphism of the map E — C. However, this
comorphism is an isomorphism, because E = P(I/I?) since a is smooth.

The first observation implies that the sequences (to,...,t,) form a functor,
because, given any Y-map T’ — T, each induced map

FY xr T = F9 xp T

is therefore the blowing-up along the image of the induced section of F}i) xp T’ / T.

To prove this functor is representable by F(™) /Y, we must set up a functorial
bijection between the sequences (to,...,t,) and the Y-maps 7,: T — F(). Of
course, n is arbitrary. So (to,...,t;) then determines a Y-map 7;: T — F®  and
correspondingly we want the remaining assertions of the proposition to hold as well.

So given (tg,...,t,), let us construct appropriate Y-maps 7;: T — F@ for
—1 < i < n. We proceed by induction on ¢. Necessarily, 7_1: T — Y is the
structure map, and correspondingly, F}O) = F(O x 1) T owing to the definitions.

Suppose we’ve constructed 7;_1. Then F}i) = F® Xpa-n T. Set 7, = pit;
where p1 : F}i) — F® is the projection. Then 7,_; = 7. Also, t; = (14, 1);
so t; is the pullback, under the map (1,7;), of the diagonal map of F®) /FG=1),
Therefore, owing to the first observation, F}Hl) = pl+h) X (P& x F) F}i) where
F}i) — FO xpioy FO is equal to 1 x 7;. Hence F}Hl) = FU+D) x ) T where
FUt) 5 PG g 70D Tt follows formally that E(TiH) = E0+H) x o) T, that
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F}Hl) — F}i) is induced by ¢+ and that F}Hl) — T is induced by 70+,
By the second observation above, T is the scheme-theoretic image of E(Tl D,
Conversely, given a map 7,: T — F("), set i =@ ox(Mr for 0 <i < n;

$0 Ti_1: T — FU=1_ Set F}i) = F® x oy T where the map FO — F(-1) ig

7@ for 0 < i < n+1. Then 7; defines a section t; of F}i)/T. Furthermore, blowing

up its image yields the map F:(Fiﬂ) — F:(Fi) induced by ¢+ because, as noted

above, forming the blowup along A commutes with changing the base via 1 x 7;.

Thus (tg,...,t,) is a sequence of arbitrarily near T-points of F/Y.

Plainly, for each T', we have set up the bijection we sought, and it is functorial
in T. Since we have checked all the remaining assertions of the proposition, the

proof is now complete. (I

Definition 3.5. Given a sequence (%, ...,t,) of arbitrarily near T-points of F/Y,

let us call it strict if, for 0 < i < n, the image T of ¢; satisfies the following %

conditions, defined by induction on i. There are, of course, no conditions on 7).

Fix i, and suppose, for 0 < j < i, the conditions on T) are defined and satisfied.
The ¢ conditions on T involve the natural embeddings

egg}i): Erfrj) SN F:(Fi) for 1 <j <4,

which we assume defined by induction; see the next paragraph. (The image eg,z l)ErEFJ )

can be regarded as the “strict transform” of EPEFJ ) on F:(Fi).) The jth condition
requires e EY) either (a) to be disjoint from T or (b) to contain T as a
subscheme.

Define egﬂ’iﬂ) to be the inclusion. Now, for 1 < j < i, we have assumed
that eg’i) is defined, and required that its image satisfy either (a) or (b). If (a) is
satisfied, then the blowing-up F}Hl) — F}i) is an isomorphism on a neighborhood
of e(Tj’ Z-)E(Tj ), namely, the complement of T); so then e(Tj’ RIS naturally to an
embedding eg’ B i (b) is satisfied, then 7' is a relative effective divisor on the

T-scheme e(j*i)Egpj), because Erfrj) and T are flat over T, and the latter’s fibers
are effective divisors on the former’s fibers, which are P's; hence, then blowing up

e(Tj’i)E(Tj) along T yields an isomorphism. But the blowup of e(T"i)E(Tj) embeds

naturally in F:(Fi). Thus, again, egﬂ" D lifts naturally.

Definition 3.6. Given a strict sequence (tg, ..., t,) of arbitrarily near T-points of
F/Y, say that ¢; is prozimate to t; if j < i and e(j“’i)E(T]H) contains T'(%),

Lemma 3.7. Let (to,...,t,) be a strict sequence of arbitrarily near T-points of
F/Y. Fien+1>i>j>k>1. Then ¥ ..ot = k9 gng 7G-1) 4
the scheme-theoretic image of egp’Z)EFEF]) under <p§3) e wgﬁ). Set

20 = BV B (e D).

If 7 > k and Zg,f) # 0, then gpg) ~-~<p¥) induces an isomorphism Zg,f) -, 7=,

and t;_1 is proximate to ti_1; moreover, then Z(Ti) meets no eg’i)E(Tl) forl #£ 4, k.

PROOF. The formula <p¥+1) e cpg)egc’i) = egpk’j) is trivial if 4 = j. It holds by

construction if ¢ = j + 1. Finally, it follows by induction if ¢ > j + 1. With k := j,

this formula implies that E(TJ ) is the scheme-theoretic image of e(Tj"i)E(Tj ) under
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<P(Tj+l) . @(Ti); whence, Proposition B4 implies that 7= is the scheme-theoretic

image of e(Tj’i)E(Tj) under go(Tj) e go(Ti).
Suppose j > k and Zg) # (. Now, for any [ such that ¢ > > j, both egc’l)E(Tk)

and e(Tj’l)E(Tj ) are relative effective divisors on F}l) /T, because they’re flat and
divisors on the fibers. Hence, on either of egpk ’Z)Egpk) and egf ’l)ErEFJ ), their intersection

er,f) is a relative effective divisor, since each fiber of er,f)

)

is correspondingly a divisor.

In fact, each nonempty fiber of Zg is a reduced point on a P'.
Since gpgf“) e gpgf)egf’i) = egf’j) and since egf’j) is the inclusion of Erfrj), which
is the exceptional divisor of the blowing-up ¢ : FU) — FG=1 along TU—V the

map gp(Tj) . ~<p¥) induces a proper map e: Zg) — TU-1D_ Since the fibers of e are

isomorphisms, e is a closed embedding. So since Zg) and TU—1 are T-flat, e is an
isomorphism onto an open and closed subscheme.

Since <p(Tj) e wg)e(f’i) = e(f’j_l), it follows that e(f’j—l)E(Tk) contains a non-
empty subscheme of TU~1 . So since (to, ..., tn) is strict, egpk’jfl)ErEFk) contains all
of TU=1 as a subscheme. Thus t;—1 is proximate to tj_1.

It follows that <p(Tj) induces a surjection Z(Tj) — TU=D_ If 4 = j, then this
surjection is just e, and so e is an isomorphism, as desired.

Suppose ¢ > j. Then Z(Tj) ﬂT(j) = (. Indeed, suppose not. Then both
egé’j)E(Tk) and E(Tj) meet 7). So since (toy...,tn) is strict, Z(Tj) contains TU) as
a closed subscheme. Both these schemes are T-flat, and their fibers are reduced

points; hence, they coincide. It follows that egc’jH)E(Tk) and e(Tj’jH)E(Tj) are dis-

joint on FUTY | But these subschemes intersect in Z¥+1). And Z;Hl) = () since
ZPEFZ) # () and erpl) maps into Z¥+1). We have a contradiction, so ZPEFJ) NTY = 0.

Therefore, gp(TjH) induces an isomorphism Z(Tj D~y Z;j ). Similarly, gpgﬂ)
induces an isomorphism Z(TIH) - Z(Tl) for Il = j,...,i — 1. Hence go(TJ) ---go(TZ)

induces an isomorphism er,f) =2, TG,

Finally, suppose Zg) meets eg’i)E(Tl) for I # j,k, and let’s find a contradic-
tion. If I < j, then interchange I and j. Then, by the above, TU~=1) lies in both
egpk"jfl)Eng) and egpl’jfl)ErEFl). Therefore, TU~1) is equal to their intersection, be-
cause TU—1 is flat and its fibers are equal to those of the intersection. It follows
that egpk’j)Eng) and eg,f’j)Eg) are disjoint on F). But both these subschemes con-
tain the image of Z(Ti), which is nonempty. We have a contradiction, as desired.

The proof is now complete. O

Proposition 3.8. Let (tg,...,t,) be a strict sequence of arbitrarily near T-points
of F/Y . Equip the abstract ordered set of t; with the relation of proximity of Defi-
nition B6l Then this set becomes an ordered proximity structure.

PRrOOF. Law (P1) holds trivially.

As to (P2), suppose t; is proximate to ¢; and to t; with j > k. Then T®
lies in eg€+1’i)E(Tk+1) N e(TjH"i)E(TjH). So Lemma [B.7 implies ¢; is proximate to tj.
Furthermore, the lemma implies the intersection meets no egplﬂ’i)ErEFlH) for l # j, k.
So t; is proximate to no third vertex ¢;. Thus (P2) holds.

As to (P3), suppose ¢; and t; are each proximate to both t; and ¢; where
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i>j>k>1l Givenp >k, set ZP) = e¥+1’p)E(Tl+1)ﬂeg€+l’p)E(Tk+l). Then
TW C ZW, Now, Z® is T-flat with reduced points as fibers by Lemma B77l But
T® is a similar T-scheme. Hence T() = Z(®), Similarly, TU) := Z0).

Lemma B.7] yields gp(TjH) ---go(Ti)e(Tm’i) = e(Tm’j) for m = k,I. So gp(TjH) "'SD(Ti)
carries T into TW). Now, this map is proper, and both T and T are T-flat
with reduced points as fibers; hence, T - T Tt follows that

P GO T0 © G ¢ (GG = BEHY,

Hence ZU+Y) meets Erfpjﬂ), contrary to Lemma 37 Thus (P3) holds. O

Definition 3.9. Let’s say that a strict sequence of arbitrarily near T-points of
F/Y has diagram (U, 0) if (U, 0) is isomorphic to the ordered unweighted Enriques
diagram coming from Propositions and 2.4

The following result was inspired by Roé’s Proposition 2.6 in [25].

Theorem 3.10. Fix an ordered unweighted Enriques diagram (U, 0) on n + 1
vertices. Then the strict sequences of arbitrarily near T-points of F/Y with diagram
(U, 0) form a functor; it is representable by a subscheme F(U, 0) of F"), which
is Y -smooth with irreducible geometric fibers of dimension dim(U).

PROOF. If a strict sequence of arbitrarily near T-points has diagram (U, 6),
then, for any map 7" — T, the induced sequence of arbitrarily near T’-points plainly
also has diagram (U, #). So the sequences with diagram (U, ) form a subfunctor
of the functor of all sequences, which is representable by F(™ /Y by Proposition 3.2

Suppose n = 0. Then U has just one vertex. So the two functors coincide, and
both are representable by F', which is Y-smooth with irreducible geometric fibers
of dimension 2. However, 2 = dim(U). Thus the theorem holds when n = 0.

Suppose n > 1. Set L := #~'n. Then L is a leaf. Set T := U — L. Then T
inherits the structure of an unweighted Enriques diagram, and it is ordered by the
restriction 8|T. By induction on n, assume the theorem holds for (T, 6|T).

Set G := F(T, |T) ¢ F"V and H := 7;'G ¢ F"). Then H represents the
functor of sequences (to, . .., t,) of arbitrarily near T-points such that (o, ..., tn—1)
has diagram (T, 0|T) since 77, = 7;_; by Proposition B4 Moreover, H is G-
smooth with irreducible geometric fibers of dimension 2 by LemmaB2l And G is Y-
smooth with irreducible geometric fibers of dimension dim(T) as the theorem holds
for (T, 6|T). Thus H is Y-smooth with irreducible geometric fibers of dimension

dim(T) + 2.

Let (hg,...,h,) be the universal sequence of arbitrarily near H-points, and
HY c F ;}) the image of h;. We must prove that H has a largest subscheme S
over which (hg, ..., hy) restricts to a sequence with diagram (U, 6); we must also

prove that S is Y-smooth with irreducible geometric fibers of dimension dim(U).
But, (ho, ..., hn_1) has diagram (T, §|T). So H® satisfies the i conditions of
Definition for i =0,...,n— 1. Hence S is defined simply by the n conditions
on H™: the jth requires eg’n)Eg) either (a) to be disjoint from H™ or (b) to
contain it as a subscheme; (b) applies if L is proximate to §71(j — 1), and (a) if
not, according to Definition Let P be the set of j for which (b) applies. Set

S = hn1<ﬂ g EY — | eg’“E}j))

JjeEP Jj¢pr
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14 S. KLEIMAN AND R. PIENE

Plainly, S is the desired largest subscheme of H.

It remains to analyze the geometry of S. First of all, Fé") =F® X pm-1 G by
Proposition [3.4} so Fén) = H since H := 7, 'G. Also, F;I") = F™ X p-1y H and
hn = (Cn, 1) where (,: H < F, again by Proposition[3.4l Hence

FJ) = FY xg H=H x¢ H and h, = (1,1).
( ?")E(j) (j,n)E(j)

Plainly, forming e is functorial in T'; whence, e}y 0 = (eg o) xaq H.
Hence, h;le(lfl’")Eg) = eg’n)Eg). Therefore,

5= () 4™ ESD — | J G EY).
jep j¢p
There are three cases to analyze, depending on type(L). In any case,
dim(T) + type(L) = dim(U)
owing to Formula ZG.Il Furthermore, each e is an embedding. So eg’")Eg )

has the form P(€2) for some locally free sheaf Q of rank 2 on G by Lemma and

Proposition 3.4l Hence eg’")Eg ) is Y-smooth with irreducible geometric fibers of

dimension dim(T) + 1.
Suppose type(L) = 2. Then L is a root. So P is empty, and by convention, the
intersection ﬂjep e(lfl’")Eg) isall of H. So S'is open in H, and maps onto Y. Hence

S is Y-smooth with irreducible geometric fibers of dimension dim(H/Y), and
dim(H/Y) = dim(T) + 2 = dim(U).
Thus the theorem holds in this case.
Suppose type(L) = 1. Then L is a free vertex, but not a root. So L has an
immediate predecessor, M say. Set m := @(M). Then P = {m}. So S is open

in e(Gm’n)Egn), and maps onto Y. Hence S is Y-smooth with irreducible geometric

fibers of dimension dim(e(Gm’n)Egn) /Y), and

(])n)
G

dim (e ES™ /y) = dim(T) + 1 = dim(U).
Thus the theorem holds in this case too.

Finally, suppose type(L) = 0. Then L is a satellite. So L is proximate to two
vertices: an immediate predecessor, M say, and a remote predecessor, R say. Set
m:=6(M) and r := 6(R). Then P = {r, m}. Set Z := eg’")Eg) ﬂe(Gm’")Egn).
Then Z = G and Z meets no eg’n)Egn) with j ¢ P owing to Lemma 3.7 because
(ho, - .., hn—1) is strict with diagram (T, 6|T). Hence S = Z. Therefore, S is
Y-smooth with irreducible geometric fibers of dimension dim(G/Y"), and

dim(G/Y) = dim(T) + 0 = dim(U).

Thus the theorem holds in this case too, and the proof is complete. O

4. Isomorphism and enlargement

Fix a smooth family of geometrically irreducible surfaces 7: FF — Y. In this
section, we study the scheme F'(U, 0) introduced in Theorem B.I0 First, we work
out the effect of replacing the ordering 6 by another one #’. Then we develop, in our
context, much of Roé’s Subsections 2.1-2.3 in [25]; specifically, we study a certain
closed subset E(U, §) C F™ containing F(U, 6) set-theoretically. Notably, we
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prove that, if the sets F(U’, §') and E(U, 0) meet, then E(U’, §') lies in E(U, 0);
furthermore, E(U’, ¢') = E(U, 0) if and only if (U, ) = (U’, ¢").

Proposition below asserts that there is a natural isomorphism ®4 ¢ from
F(U, 0) to F(U, ¢'). On geometric points, ®g ¢/ is given as follows. A geometric
point with field K represents a sequence of arbitrarily near K-points (to, ..., t,) of
F/Y. To give t; is the same as giving the local ring A; of the surface F I(;) at the
K-point T the image of t;. Set o := #’ 0§~'. Then i > aj if t; is proximate to
t;. So there is a unique sequence (fo, . ,fn) whose local rings gj satisfy A; = gm-
in the function field of F. The sequences (to,...,t,) and (fo, .. ,fn) correspond
under Pg g/

To construct ®g ¢/, we must work with a sequence (to,...,t,) of T-points for
an arbitrary T'. To do so, instead of the A;, we use the transforms egﬂ’nﬂ)E(TiH).
The notation becomes more involved, and it is harder to construct (fo, ... ,t~n). We
proceed by induction on n: we omit t,, apply induction, and “reinsert” t,, as tan.
Most of the work is done in Lemma .2} the reinsertion is justified by Lemma ]

Lemma 4.1. Let (to,...,t,_1) be a strict sequence of arbitrarily near T-points of
F/Y, say with blowups ﬁ'}i) and so on. Fiz 1, and let T C ﬁ'}l) be the image
of a section t; of Fv}l)/T. Set t; := t; for 0 < i < I, and assume the sequence
(to,...,t1) is strict. Set T; := TO and T; .= gZE,fH) e QZE,E)TV“) forl <i<mn, and

assume T and the T; are disjoint. Then (to,...,t;) extends uniquely to a strict
sequence (to,...,tn), say with blowups F:(FZ) and so on, such that t; is a leaf and

F:(FH_l) X p{ f':(ri_l) = F:(Fi) for 1l < i <mn. Furthermore, the diagram of (to,...,tn)
induces that of (to, ..., tn_1).

PROOF. Set F;l) = ﬁ:(pl); let F:(FZH) be the blowup of F;l) with center T, and
E¥+1) be its exceptional divisor. For | < i < n, set F:(;H) = F:(FZ'H) X @) ﬁ:(rz) and
T .
TO) .= EMY %oy T, Now, TW and T; are disjoint for | < i < n. So Fy " is
T

the blowup of F}i) with center 7). Also, T is the image of a section t; of F}i)/T.

Moreover, since (to,...,t;) and (fo,...,t,_1) are strict sequences, it follows that
(to,...,tn) is a strict sequence too. Furthermore, ¢; is a leaf, and the diagram of
(to,.-.,tn) induces that of (¢o,...,t,—1). Plainly, (to,...,t,) is unique. O

Lemma 4.2. Let « be a permutation of {0,...,n}. Let (to,...,tn) be a strict
sequence of arbitrarily near T-points of F/Y . Assume that, if t; is proximate to
tj, then i > ay. Then there is a unique strict sequence (to,---,tn), say with
blowups ﬁ%i), exceptional divisors E’(Ti), and so on, such that F%m_l) = ﬁ%m_l) and
e(Ti’"H)E(Ti) = é(Ta/i’"H)E’(Ta/i) with /i = a(i—1)+1 for 1 <1i < n+1; furthermore,
t; is prozimate to t; if and only if tn; is prozimate to t,;.

PROOF. Assume ({,...,1,) exists. Let’s prove, by induction on j, that both
the sequence ({o, .. .,t~j) and the map F}"H) — F}JH) are determined by the

equality F}nﬂ) = ﬁ}"H) and the n + 1 equalities e(Ti’"H)E(Ti) = é(Tali’"H)E(Ta,i)

where 1 <4 < n+ 1. If j = —1, there’s nothing to prove. So suppose j > 0.

Then TUD is determined as the scheme-theoretic image of é(Tj+2’n+l)E(Tj+2) by

Lemma B2 So #;41 is determined. But then }7'}] ™2 ig determined as the blowup
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of TU+D). And F}nﬂ) — ﬁ}j+2) is determined, because the preimage of T7U+D in
F}nﬂ) is a divisor. Thus (fo,...,%,) is unique.

To prove (i, ... ,t~n) exists, let’s proceed by induction on n. Assume n = 0.
Then o = 1. So plainly #y exists; just take £y := to.

So assume n > 1. Set | := an. Define a permutation S8 of {0,...,n — 1} by
Bi:=aiif ai <land fi:=«ai —1if ai > [.

Suppose t; is proximate to t; with ¢ < n, and let us check that i > 5. The
hypothesis yields ai > «j. So if either ai <[ or aj > [, then i > Bj. Now, ai # 1
since ¢ < n and [ := an. Similarly, oj # [ since j < ¢ as ¢; is proximate to t;. But
if at > [, then Bi:=ai—12>1, and if aj <[, then 85 := aj < I. Thus pi > 5j.

Since (to,...,tn—1) is strict, induction applies: there exists a strict sequence
(to,...,tn_1), say with blowups ﬁ:(pz) and so forth, such that F:(F") = ﬁr}") and
egpi’")ErEFi) = égj/i’")ﬁgpﬁli) with 8'i := (i — 1) + 1 for 1 <4 < n; furthermore, t; is
proximate to t; if and only if #g; is proximate to tg;. Set t; :=¢; for 0 <7 <.

Set 1) := gp(Hl) . @(T")tn and TO) = @¥+1) A(n)T(”) Then {; is a section
of F} )/T and T is its image. Note that, if 7(") meets e(J n)E(J) with 1 < j <n,

then T(" is contained in eg,f ")EFEF), because e(J n)E(J) gpm TZ) for i := /71y
and because (to,...,t,) is strict. Furthermore if so, then [ > j, because t, is

proximate to t;, and so an > ai, or [ > (i = j; moreover, then T is contained in

(TJ b (T), because the latter is equal to gp(lH) o Q(Tn)é(Tj’n)E(Tj) since [ > j.

Suppose T meets ¢V EW . Then T meets (5% - ~-$(Tn))’1é¥’l)E(Tk).
So T meets one of the latter’s components, which is a é(Tj ™ EY for some j.
Hence 7! ¢ A(j’l)E(j), as was noted above. Now, the map é A(J’n)E() — ﬁ;l)
factors through E(T ). and its image is A(J’ )E(j) (j’l)E(Tj)
is contained in e(k l)E(k) whence, the two coincide, since they are flat and coincide
on the fibers over 7. Thus T'® is contained in egpk l)Egpk). Hence, since (to, . ,tl_l)
is strict, so is (o, ..., #;). Furthermore, T(™ is contained in égc’")f?gpk). Thus if #; is
proximate to tj, then ¢, is proximate to t; for i := '~ k. Moreover, the converse
follows from what was noted above.

Set T := T® and T, N(Hl) . N(i)f(i) for | < i < n. Then T® meets
no Tl, because, otherwise, T(") would meet (go(lH) --cﬁgﬁ))_lﬁ»ﬂ, and so T

would meet some egp )EFEF') with | < j, contrary to the note above. So Lemma [T]

, as was noted above. So é

implies (Zo,...,%;) extends to a strict sequence (%o, ...,%,) such that #; is a leaf and
F}Hl) O F(l) (l+l) for I < i < n; furthermore, the diagram of (fo, ..., %)

induces that of (to, ... tn_l).

Therefore, t; is proximate to ¢; if and only if to; is proximate to faj for0 <i <n,
because t; is proximate to t; if and only if ¢g; is proximate to tg; for 0 <i < n and
because t,, is proximate to ¢; if and only if t; is proximate to tj for k := 'j.

Recall from above that F(n) F(") and F(Hl) X 0 ﬁ}") = ﬁ}nﬂ). But this
product is equal to the blowup of FT along T(") since T meets no IA“Z And the
blowup of F:(Fn) along T is F:(Fn+1). Thus F:(FnH) = ﬁr}"“).

Recall e(Ti’") 0 A(ﬁ,i’n)ﬁ(ﬁli) for 1 < i < n. Hence, e(Ti’"H)E(Ti) is equal to
the image of a natural embedding of e(ﬁ g n)E(ﬁ R F("H)
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equal to 'é{Ta/i’")EgFa/i) since T meets no 7. Similarly, EPEF"H) = é¥+1’"+1)5¥+1).
Thus e{"" VB — &tV EE for 1 < i <n+1. O

Proposition 4.3. Fix an unweighted Enriques diagram U. Then, given two or-
derings 0 and 0, there exists a natural isomorphism

Dp o : F(U, 6‘) — F(U, 9’).
Furthermore, ®g o =1, and Dy g 0 Py g = Pg g for any third ordering 0" .

PROOF. Say U has n + 1 vertices. Set o := ' 06~'. Then « is a permutation
of {0,...,n}.

Each T-point of F(U, 6) corresponds to a strict sequence (to, ..., t,) owing to
Theorem BI0l For each i, say t; corresponds to the vertex V; of U. Then 0(V;) = i,
and if ¢; is proximate to t;, then V; is proximate to V;. So 6'(V;) > ¢'(V;) since ¢’
is an ordering. Hence ai > «j.

Therefore, by Lemma .2, there is a unique strict sequence (fo, .. .,fn) such
that t; is proximate to ¢; if and only if #,; is proximate to 4. Plainly (o,...,%,)
has (U, #') as its diagram. Hence (o, ...,,) corresponds to a T-point of F(U, ¢')
owing to Theorem

Due to uniqueness, sending (tg, ..., t,) to (fo, . ,En) gives a well-defined map
of functors. It is represented by a map ®g ¢ : F(U, ) — F(U, 0'). Again due to
uniqueness, ®g o = 1 and Py g 0 Py g = Py g for any 0”. So Py go Py g =1 and
Dy g 0 Py g = 1. Thus Py ¢/ is an isomorphism, and the proposition is proved. [

Corollary 4.4. Fiz an ordered unweighted Enriques diagram (U, 0). Then there
is a natural free right action of Aut(U) on F(U, 0); namely, v € Aut(U) acts as
By g where 0’ :=0or.

PROOF. Let V € U be a vertex that precedes another W. Then (V') precedes
~(W) because v € Aut(U). Since 0 is an ordering, 0(y(V)) < 6(v(W)). Hence
0'(V) < ¢ (W). Thus ¢ is an ordering,.

So there is a natural isomorphism ®y ¢ : F(U, §) = F(U, §') by Proposi-
tion Now, v induces an isomorphism of ordered unweighted Enriques diagrams
from (U, #') to (U, 6); hence, F(U, ') and F(U, ) are the same subscheme of
F™) and ®y ¢ is an automorphism of F(U, 6).

Note that, if v = 1, then " = 6; moreover, ®p g = 1.

Given 6 € Aut(U), set 6" := 6 0§ and 0* := 6 0. Then ~ also induces
an isomorphism from (U, 6”) to (U, 6*), and so ®g g and Py g~ coincide. Now,
By g 0 Py g = Pggr. Thus Aut(U) acts on F(U, 6), but it acts on the right
because 0" is equal to 8 o (v4), not to 6 o (§7).

Suppose 7 has a fixed T-point. Then the T-point is fixed under ®4 ¢:. Now, we
defined ®g - by applying Lemma with o := 6 0 §~!. And the lemma asserts
that « is determined by its action on the egﬁ"nH)EgFl). But this action is trivial
because the T-point is fixed. Hence « = 1. But @ = # o yo #~!. Therefore, v = 1.
Thus the action of Aut(U) is free, and the corollary is proved. O

Corollary 4.5. Fiz an ordered unweighted Enriques diagram (U, 0), and let G C
Aut(U) be a subgroup. Then the quotient F(U, ) /G is Y -smooth with irreducible
geometric fibers of dimension dim(U).
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PROOF. The action of G on F(U, 0) is free by Corollary Z4l So G defines
a finite flat equivalence relation on F(U, #). Therefore, the quotient exists, and
the map F(U, §) — F(U, 6)/G is faithfully flat. Now, F(U, ) is Y-smooth with
irreducible geometric fibers of dimension dim(U) by Theorem I so F(U, §)/G
is too. 0

Definition 4.6. For 1 <i < j, set F(9) .= E(@) and
B0 = (D) o)1 B if § < 5.
Given an ordered unweighted Enriques diagram (U, 6) on n + 1 vertices, say

with proximity matrix (p;;), let E(U, 0) C F() be the set of scheme points t such
that, on the fiber Ft("H), for 1 < k < n, the divisors E?Jrkl pl-kE,SZ’nH) are effective.

Proposition 4.7. Let (U, 0) be an ordered unweighted Enriques diagram. Then
E(U, 0) is closed and contains F(U, ) set-theoretically.

PROOF. Say U has n+1 vertices. Fixt € F(™ and 1 <k <n. Ift e F(U, 9),

then, as is easy to see by induction on j for k < j < n, the divisor Zz:,i pikE,Si’jH)

is equal to the strict transform on Ft(j+l) of Et(k), in other words, to eg,fc’jH)Eng)

where T := Spec £(t). Hence E(U, ) contains F (U, 0).

Set E*) = Z?:kl pir B Then h° (Ft("H), (’)(Eék))) < 1 for any t, and
equality holds if and only if t € F(U, ), as the following essentially standard
argument shows. Plainly, it suffices to show that, if E,Sk) is linearly equivalent to

an effective divisor D, then Et(k) =D.

Ft(n—i-l)

Let H be the preimage on of an ample divisor on F;. Then the intersec-

tion number Eék) - H vanishes by the projection formula because each component
of Eék) maps to a point in Fy. So D - H vanishes too. Hence each component of
D must also map to a point in Fy because D is effective and H is ample. Hence D
is some linear combination of the Et(i’"ﬂ) because they form a basis of the group
of divisors whose components each map to a point. Furthermore, the combining
coefficients must be the p;; because these coefficients are given by the intersection
numbers with the Et(i’"H). Thus Et(k) =D.

Thus E(U, 6) is the set of t € F(™ such that h°(F"™, O(EM)) > 1 for all
k. Hence E(U, 0) is closed by semi-continuity [7, Thm. (7.7.5), p. 67]. O

Proposition 4.8. Let (U, ) and (U’, 8") be two ordered unweighted Enriques
diagrams on n+ 1 vertices, and let P and P’ be their prozimity matrices. Then the
following conditions are equivalent:

(1) The sets F(U’, 0') and E(U, 0) meet.

(2) The set E(U’, 0') is contained in the set E(U, 6).

(3) The matriz P'~'P only has nonnegative entries.
Furthermore, E(U’, §') = E(U, 0) if and only if (U, 0) = (U, ¢).

PRrOOF. Fix t € F(") and define two sequences of divisors on Ft(n+l) by these
matrix equations:

~(1 ~(n+1 1,n+1
(B, BTy = (B
(BN BTy = (gt gl ypy
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These two equations imply the following one:
(ED, . BTy = (BX L EMTOPIP, (4.8.1)

in other words, Etm =S qkjEEk)’ where say (qx;) := P'7'P.

Suppose t € F(U’, §'). Then Eék)' is the proper transform on Ft("H) of Et(k)7
as we noted at the beginning of the proof of Proposition 7 So the E,Sk)’ form a
basis of the group of divisors whose components each map to a point in F;. Hence,
by EZI), if Et@) is effective, then gx; > 0 for all k. Thus (1) implies (3).

Suppose t € E(U’, §'). Then Eék)’ is effective. Suppose too gi; > 0 for all k, 5.
Then E,SJ) is effective for all j by (81). So t € E(U, ). Thus (3) implies (2).

By Proposition 7, E(U, 6) contains F(U, 6). By Theorem 310, F (U, 0) is
nonempty. Thus (2) implies (1). So (1), (2), and (3) are equivalent.

Furthermore, suppose E(U’, §’) = E(U, #). Then both P’~'P and P~'P’ have
nonnegative entries since (2) implies (3). But each matrix is the inverse of the other,
and both are lower triangular. Hence both are the identity. So P’ = P; whence,
(U, 0) = (U, §’). The converse is obvious. Thus the proposition is proved. O

5. The Hilbert scheme

Fix a smooth family of geometrically irreducible surfaces 7: FF — Y. In this
section, we prove our main result, Theorem .71 It asserts that, given an En-
riques diagram D and an ordering 6, there exists a natural map ¥ from the quo-
tient (D, #)/Aut(D) into the Hilbert scheme Hilbfp/y with d := degD and with
F(D, 0) .= F(U, 0) where U is the unweighted diagram underlying D.

The quotient F(D, #)/Aut(D) parameterizes the strict sequences of arbitrarily
near points of F/Y with diagram (U, 6), up to automorphism of D. The image
of ¥ parameterizes the (geometrically) complete ideals of F/Y with diagram D.
The map W is universally injective. In fact, ¥ is an embedding in characteristic
0. However, in positive characteristic, ¥ can be purely inseparable; Appendix B
discusses examples found by Tyomkin.

We close this section with Proposition [5.9] which addresses the important spe-
cial case where every vertex of D is a root; here, ¥ is an embedding in any char-
acteristic. Further, other examples in Appendix B show that ¥ can remain an
embedding even after a nonroot is added.

5.1 (Geometrically complete ideals). Let K be a field, (to,...,t,) a sequence of
arbitrarily near K-points of F//Y . Since Spec(K) consists of a single reduced point,
the sequence is strict. Let (U, #) be its diagram in the sense of Definition

Suppose U underlies an Enriques diagram D, say with weights my for V € U.
Using the divisors E%’"H) on FI(("H) of Definition F.6, set

Ey = ZV mVEg)(V)Jrl"nJrl) and Lg = OFI((n+1) (—EK).

Given V € U, set j := 6(V) and Dy := e%“’"H)EgH). Inspired by Lip-
man’s remark [19] p. 306], let’s compute the intersection number —(Fg - Dy ),
that is, deg(£|Dy). Plainly, (EY™ ™™ . Dy) = —1. And, for W # V, plainly
(Eg?(W)H’"H) - Dy) is equal to 1 if W > V, and to 0 if not. Hence —(Ek - Dy)
is equal to my — Yy, mw, which is at least 0 by the Proximity Inequality.
Set v = wg) X ~<p§?+1), and form 7 := gL on Fg. Then 7 is a complete
0185071.tex: January 25, 2011
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ideal, one that is integrally closed; also, ZO m+1» = Lk and Ripg.Lx = 0 for

K
g > 1. These three statements hold since (Ex - Dy) < 0 for all V' and, as is well
known, RO m+1) =0 for ¢ > 1; see Lipman’s discussion [18) §18, p. 238] and

K
his Part (ii) of [18, Thm. (12.1), p. 220]; also see Deligne’s Théoreme 2.13 [3] p. 22].
Furthermore,

dimgx HY(OFp, /T) = d where d := degD.

This formula is a modern version of Enriques’ formula [4] Vol. II, p. 426]; it was
proved in different ways independently by Hoskin [12] 5.2, p. 85], Deligne [3, 2.13,
p. 22], and Casas [1}, 6.1, p. 438]; Hoskin and Deligne worked in greater generality,
Casas worked over C. ‘

The my are determined by Z because the divisors E%’"H) are numerically
independent; their intersection numbers with divisors are defined because they are
complete. The my may be found as follows. Let P be the ideal of the image T(%)
of ty, which is a K-point of Fx. Let m be the largest integer such that P™ O 7.
Then m = my where V := 67(0), since PO (ns1) = OF<n+1>(—E§<1’"+1)). Note in
passing that P is a minimal prime of Z since TIIfLV >1. *

The remaining my can be found by recursion. Indeed, on F I((l ), form the ideal
T’ := IO(my EM). Then T’ is the direct image from FU'™" of O(—E}.) where
B = Y way mWEg(W)H’"H). Hence 7' is the complete ideal associated to
the sequence (t1,...,t,) of arbitrarily near K-points of F)/Y and to the ordered
Enriques diagram (D', 0") where D’ := D —V and §/(W) := (W) — 1.

The ideal Z determines the diagram D. Indeed, for 0 < i < n, let A4;, m;
be the local ring of the surface F' I(;) at the K-point that is the image of ¢;. Then
according to Lipman’s preliminary discussion in [19, p. 294-295], the set {A;}
consists precisely of 2-dimensional regular local K-domains whose fraction field is
that of Fix and whose maximal ideal contains the stalk of Z at some point of Fi.
Furthermore, t; is proximate to ¢; if and only if A; is contained in the ring of
the valuation v; defined by the formula: v;(f) := max{m | f € m}*}. Finally, if
W :=60~1(j), then the weight my is the largest integer m such that m’" contains
the appropriate stalk of Z.

Let J be an arbitrary ideal on F of finite colength. Let L/K be an arbitrary
field extension. If the extended ideal Jr on Fj, is complete, then J is complete,
and the converse holds if L/K is separable; see Nobile and Villamayor’s proof of
23] Prp. (3.2), p. 251]. Let us say that J is geometrically complete if Jr, on
F;, is complete for every L, or equivalently, for some algebraically closed L. In
characteristic 0, if 7 is complete, then it is geometrically complete.

The extended ideal Z; on Fp, is, plainly, the complete ideal associated to the
extension of the sequence (o, ...,t,) and to the same ordered Enriques diagram
(D, 0). Hence T is geometrically complete.

Suppose that K is algebraically closed. Suppose that J is complete and
that dimg H°(Op, /J) is finite and nonzero. Then J arises from some sequence
(s0y.--,8n) and some ordered Enriques diagram. Indeed, choose a minimal prime
P of J. Then K == Op, /P since K is algebraically closed. Hence P defines a
K-point S of Fi, so a section sg of Fx /K. Set mg := max{m | P™ > J }.

Let Fy be the blowup of Fx at S, and E} the exceptional divisor. Set
J" == JOp; (moEY). Then J' is complete by Zariski and Samuel’s [29, Prp. 5,

0185071.tex: January 25, 2011



ENRIQUES DIAGRAMS, ARBITRARILY NEAR POINTS, AND HILBERT SCHEMES 21

p. 381]. If J" = O, , then stop. If not, then repeat the process again and again,
obtaining a sequence (sg,s1,...). Only finitely many repetitions are necessary
because, as Lipman [19] p. 295] points out, the local ring of FI(;) at S is dominated
by a Rees valuation of 7, that is, the valuation associated to an exceptional divisor
of the normalized blowup of J. Then J' arises from the sequence of s; weighted
by the mg-1(;) owing to Lipman’s [18} prp. (6.2), p. 208] and discussion before it.

Lemma 5.2. Let A be a discrete valuation ring, set T := Spec A, and denote by
n € T the generic point and by y € T the closed point. Fiz a map T — Y. Let
D be an Enriques diagram, say with n + 1 vertices, and Z a coherent ideal on Fr
that generates geometrically complete ideals on F; and F,, each with diagram D.
Let 6 be an ordering of D, and t a k(n)-point of F(D, 0) such that T, generates an

invertible sheaf on F,gn+1). Then t extends to a T-point t of F(D, 6).

PROOF. Let ¢’ be a second ordering. By the construction of the isomorphism
®g o in the proof of Proposition 3 a T-point of F(D, ) corresponds to the T-
point of F(D, #') given by Lemma with a := 6’ 0 §~1. Moreover, the lemma
says that F:(Fnﬂ) is unchanged. It follows that, to construct t, we may replace 6
by #’. Thus we may assume that E(D, #) is a minimal element among the various
closed subsets E(D, ') of F("),

Let R € D be a root, and temporarily set i := #(R). Say t corresponds to
the sequence of blowups Frgﬁl) — Féj) with centers n;. The image of n; in Fr
is a k(n)-point; denote its closure by Tx. Since A is a discrete valuation ring, the
structure map is an isomorphism Tr == T.

Let Z C Fr be the subscheme with ideal Z. Its fibers Z,, and Z, are finite,
and both have degree deg(D) since the two ideals are geometrically complete with
diagram D by hypothesis. Since T is reduced, Z is T-flat.

As R varies, the points (Tr), are exactly the components of Z, again because
its ideal Z,, is geometrically complete with diagram D. Hence the several T are
just the components of Z that meet Z,. But every component of Z meets Z,, since
Z is T-flat. Thus the T are the the components of Z.

Since Tr == T for each R, the fiber (Tr), is a single point, so a component of
the discrete set Z,. The number of Tx is the number of roots of D, which is also
the number of points of Z,. Hence the several T are disjoint.

Given R, let mp be its weight, Pr the ideal of Tr in Fr. Then (Pg*), D I,.
Let’s see that P;'* D Z. Indeed, form the image, M say, of Z in Op, /PgR. Then
M, = 0. Let v € A be a uniformizing parameter. Then M is annihilated by a
power of u. Now, Pg is quasi-regular by [9] (17.12.3), p. 83] since T == T and
Fr is T-smooth. Hence P%/P4T is T-flat for all j by [9) (16.9.4), p. 47]. Hence
Op, [PR*® is T-flat. So u is a nonzerodivisor on O, /PR®. Hence M = 0. Thus
Pr" DI

Let ng be the largest integer such that (P3%), D Z,. Then ng > mg. Now,
1, is geometrically complete with diagram D. Hence np is the weight of the root
corresponding to (Pgr),. Hence ) ,ng = > pmgr. But ng > mg. Therefore,
ngr = mpg for every root R.

Let D’ be the diagram obtained from D by omitting the roots. Let 6’ be the
ordering of D’ induced by 6; namely, ¢'(V) := (V) — ry where ry denotes the
number of roots R of D such that 8(R) < 6(V). Let F} be obtained from Fr by
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blowing up |JTr, and for each R, let Ef, be the preimage of Tr. Set
7= I0g, (X rmrER).

Finally, let n’ be the number of vertices of D’.

Then Z' generates geometrically complete ideals on F and Fy, each with di-
agram D’ owing to the theory of geometrically complete ideals over a field; see
Subsection 5.1} (To ensure that the ideals on F) and F, have the same diagram, it
is necessary to omit all the roots of D. Indeed, D might have two roots with the
same multiplicity, but the diagram obtained by omitting one root might differ from
that obtained by eliminating the other. Conceivably, the two roots get interchanged
under the specialization.)

Plainly, t induces a k(n)-point t’ of F(D’, ¢’) such that 7, generates an in-

vertible sheaf on the corresponding F/,(nurl), which is equal to Fénﬂ). Hence, by

induction on n, we may assume that t’ extends to T-point t’ of F(D’, #’) such that,
on the corresponding scheme F:/F("/Jrl), the ideal Z' generates an invertible ideal. Tt
remains to show that t’ and the several isomorphisms T == T yield an extension
t of t.

Proceed by induction on ¢ where 0 < ¢ < n. Squose we have congtructed a
sequence (to, . ..,t;—1) extending the sequence (to,...,t;—1) coming from t; suppose
also that, if we blow up F:(Fi) along the preimage of |, ~; Tk, then we get F:/F(i,) where,
for 0 < j < n, we let j/ denote j diminished by the number of roots R of D such
that (R) < j. Note that the base case i := 0 obtains: the sequence (to,...,ti—1)
is empty; furthermore, F:(Fi) = Fr and F:/F(i/) = F}., which is the blowup of F along
UkZi T.

Note that F:(Fi) — Fr is an isomorphism off (J, _; Tx. Indeed, given j < i, let
R’ € D be the root preceding 6~1(j), and set k := §(R’). Since 6 is an ordering,
k < j. Since (tg,...,t;_1) extends (fo,...,%;_1), the image of T,gj) in Frp is just
(Tk)yn. So TW) maps into T}, and k < i.

Set V := 0~1(i) € D. First suppose V is a root of D. Then (i + 1)’ =4’. Also,
T; is defined, and the isomorphism T; -~ T provides a section t¢; of F}i) owing to
the preceding note. By the same token, the blowup of F}Hl) along the preimage of
Uk2i+1 T}, is equal to the blowup of F:(Fi) along the preimage of UkZi Ty. But the

latter blowup is equal to F}(i/). It follows that ¢; does the trick.
Next suppose V' is not a root, so V€ D’. Also Uy~; Tk = Uys;q1 Tk Now, by

the induction assumption, F}(Z/) is equal to F}Z) off the preimage of |J,~; Tk Take
t; :=t, where (t),...,t,) comes from t’. It is not hard to see that t; does the trick.

It is not immediately obvious that (¢, ..., t,) is strict, even though (tg,...,¢.,)
is strict. However, t is a T-point of F(")(T) and t,, is a k(n)-point of F(D, 6);
furthermore, t, is a k(y)-point of F(D, ¢) for some ordering ¢ of D. Since T'
is irreducible, t, is a point of the closure of F(D, ) in F™) 5o is a point of
E(D, 6). Hence E(D, ) contains E(D, ¢) by Proposition .8 But, by the initial
reduction, F(U, 6) is minimal, so equal to E(D, ¢). Hence (D, 0) = (D, ¢) again
by Proposition So t, is a point of F'(D, §). Since T is reduced, t is therefore
a T-point of F(D, ), as desired. O

Definition 5.3. Given an Enriques diagram D, say with d := degD, let H(D) C
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Hilb% /vy denote the subset parameterizing the geometrically complete ideals with
diagram D on the geometric fibers of F'/Y’; see Subsection 5.1}

Proposition 5.4. Let D be an FEnriques diagram, set d := degD, and choose
an ordering 6. Then there exists a natural map Yo: F(D, ) — Hilb??/y, whose
formation commutes with base extension of Y. Its image is H(D), and it factors
into a finite map F(D, 0) — U and an open embedding U — Hilb??/y. Moreover,
Yo ="To 0Py for any second ordering ¢'.

PROOF. Say D has n + 1 vertices V with weights my. On F("t1  get
E =3, myECV)HLntl) and £ .= O(-E).
Consider the standard short exact sequence:
0—=L— Opmin — Og — 0.

It remains exact on the fibers of 7("*+1): pnt1l) — p()  And 7z(»+D ig flat by
Lemma B2 Hence £ and O are flat over F(") owing to the local criterion.

Fix a T-point of F(D, #) ¢ F(™. Tt corresponds to a strict sequence of arbi-
trarily near T-points of F/Y by Theorem BI0 Set ¢ := <p£[1) e <p§f’+1). LetteT.
Then R'¢p. (L) = 0 and R'@p(Opm+ny) = 0 for @ > 1 by [3, Thm. 2.13, p. 22].
Therefore, by Lemma [A2] the induéed sequence on Fr,

0— (p*ET — <p*(9F<n+1> — QD*OET — 0, (5.4.1)
T

is an exact sequence of T-flat sheaves, and forming it commutes with extending T.
The middle term in (54.1]) is equal to Op,.: the comorphism O, — @, OF;HH)

is an isomorphism, since forming it commutes with passing to the fibers of Frp /T,
and on the fibers, it is an isomorphism as it is the comorphism of a birational map
between smooth varieties. The third term in (B4I]) is a locally free Op-module
of rank d because its fibers are vector spaces of dimension d owing again to [3]
Thm. 2.13, p. 22]. Therefore, (4.1 defines a T-point of Hilbcfp/y.

The construction of this T-point is, plainly, functorial in T, and commutes
with base extension of Y. Hence it yields a map Yy: F(D, 0) — Hilb%/y, whose
formation commutes with extension of Y.

To see that H (D) is the image of Ty, just observe that, in view of Subsection[5.1]
if T is the spectrum of an algebraically closed field, then ¢.L7 is a geometrically
complete ideal on Fpr with diagram D, and every such ideal on Fr is of this form
for some choice of T-point of F'(D, 6).

Let 8" be a second ordering. Then by the construction of ®g ¢ in the proof
of Proposition A3 our T-point of F(D, 6) is carried to that of F(D, ') given by
Lemma @2 with « := 6’ 0#~1. Moreover, the lemma says that F:(F"H) is unchanged
and implies that E@V)+1L 1) — BO(V)+1.n41) for all V. Hence Ty = Tg: 0 By gr.

By Zariski’s Main Theorem in the form of [8, Thm. (8.12.6), p. 45], there exists
a factorization

Yo: F(D, 6) % H 2 HilbE
where €2 is an open embedding and © is a finite map. Let W be the image of €, so
©(W) = H(D). Replace H by the closure of W, and let us prove W = ©~1H(D).

Let v € ©1H(D). Then v is the specialization of a point w € W since H
is the closure of W. And w is the image of a point w € F(D, #). Hence, by [6
Thm. (7.1.9), p. 141], there is a map 7: T — H where T is the spectrum of a
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discrete valuation ring, such that the closed point y € T' maps to v and the generic
point 7 € T maps to w; also there is a k(n)-point t of F(D, @) supported at w.
The map © o 7 corresponds to a coherent ideal Z on Fr. Now, both ©(w) and
©(v) lie in H(D); so 7 generates geometrically complete ideals on F), and Fy, each
with diagram D. And Ty (E) corresponds to Z,, on F}; so Z,, generates an invertible

sheaf on Fénﬂ). Hence, by Lemma 5.2 the k(n)-point t extends to T-point t of
F(D, 6).

Then Yy(t): T — W carries ) to w. But H/Y is separated. Hence Ty(t) =7
by the valuative criterion [6, Prp. (7.2.3), p. 142]. But 7(y) = v. Hence v € W.
Thus W > ©~1H (D). But ©(W) = H(D). Therefore, W = ©~1H(D).

But W is open in H, and © is finite. So ©(H) and ©(H — W) are closed
in Hilb%‘/y. Hence H(D) is open in ©(H). So there is an open subscheme U of

Hilbfp/y such that U(©(H) = H(D). Furthermore, W — U is finite, as it is the
restriction of ©. So F(D, ) — U is finite. The proof is now complete. O

Corollary 5.5. Let D be an Enriques diagram, and set d := degD. Then H (D)
is a locally closed subset of Hilb%/y.

PrOOF. By Proposition 5.4l H (D) is the image of a finite map into an open
subscheme U of Hilb}i,w/y. So H(D) is closed in U, so locally closed in Hilb}i,w/y. O

Remark 5.6. Lossen [21] Prp. 2.19, p. 35] proved a complex analytic version of
Corollary 5.5 Independently, Nobile and Villamayor [23] Thm. 2.6, p. 250] proved
the corollary assuming Hilb‘fp /vy 1s reduced and excellent; in fact, they worked with
an arbitrary flat family of ideals on a reduced excellent scheme, but of course, any
flat family is induced by a map to the Hilbert scheme. All three approaches are
rather different.

Theorem 5.7. Let D be an Enriques diagram, and set d := degD. Choose an
ordering 0, and form the map Ty of Proposition 5.4l Then Yy induces a map

U: F(D, §)/Aut(D) — Hilb, y .

It is universally injective; in fact, it is an embedding in characteristic 0. Further-
more, ¥ is independent of the choice of 8, up to a canonical isomorphism.

PRrOOF. By Corollary 4] Aut(D) acts freely. Hence, the quotient map
I1: F(D, 6) — F(D, ) /Aut(D)

is faithfully flat. By Proposition 5.4l the action of Aut(D) is compatible with Ty,
and is compatible with a second choice of ordering #’, up to the isomorphism @ .
Hence, by descent theory, Yy induces the desired map ¥. Plainly, its formation
commutes with base change.

Plainly, a map is universally injective if it is injective on geometric points.
Furthermore, since I is surjective, Proposition [5.4] also implies that ¥ too factors
into a finite map followed by an open embedding. Now, a finite map is a closed
embedding if its comorphism is surjective. Hence, to prove that ¥ is an embedding,
it suffices to prove that its fibers over Y are embeddings. Now, forming ¥ commutes
with extending Y. Therefore, we may assume Y is the spectrum of an algebraically
closed field K.

To prove V¥ is universally injective, plainly we need only prove W is injective
on K-points. Since II is surjective, every K-point of F(D, ¢)/Aut(D) is the image
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of a K-point of F(D, #). Hence we need only observe that, if two K-points t’
and t” of F(D, ) have the same image in HilbdF/Y(K) under Yy, then the two
differ by an automorphism v of D. But that image corresponds to a geometrically
complete ideal Z on Fx with diagram D. In turn, as explained in Subsection [5.1],
7 determines a set A of 2-dimensional regular local K-domains whose fraction field
is that of F, and A has a proximity structure, under which it is isomorphic to
D. Say t' € F(A, ¢) and t’ € F(A, 0"”). Then 0! 0 §” induces the desired
automorphism v € Aut(D).

By Corollary L3 F(D, ) / Aut(D) is smooth and irreducible. By Corollary[B5.5]
H (D) is a locally closed subset of Hilb% /v so carries an induced reduced structure.
And ¥ induces a bijective finite map 8: F(D, §)/Aut(D) — H(D).

Suppose K is of characteristic 0. Then g is birational. If, perchance, D is
minimal in the sense of [15] Section 2, p. 213], then H(D) is smooth by the direct,
alternative proof of [I5] Prp. (3.6), p. 225]; hence, 8 is an isomorphism. In any
case, it follows from Proposition 3.3.14 on p. 70 of [I0] that § is unramified; hence,
[ is an isomorphism. The proof is now complete. (I

Corollary 5.8. Fiz an Enriques diagram D, and set d := degD. Assume the
characteristic is 0. Then H(D) C Hilb%‘/y supports a natural structure of Y -
smooth subscheme with irreducible geometric fibers of dimension dim(D).

PROOF. By Theorem [5.7] Ty induces an embedding of F(D, #)/Aut(D) into
Hilb%/y. By Proposition 54 the image is H(D). And by Corollary 5] the source
is Y-smooth, and has irreducible geometric fibers of dimension dim(D). O

Proposition 5.9. Given positive integers r1,...,rg, let G(r;) C Hilb;i/y be the
open subscheme over which the universal family is smooth, and let

G(ri,...,m%) CG(r1) xy -+ xy G(ry)

be the open subscheme over which, for i # j, the fibers of the universal families
over G(r;) and G(r;) have empty intersection. Set r := Y r;.

Given distinct integers my, ..., mg > 2, let D be the the weighted Enriques dia-
gram with r vertices, each a root, and an ordering 6 such that the first r1 vertices are
roots of weight my, the next ro are of weight ma, and so on. Set d .= (mjl)ri.

Then F(D, ) is equal to the complement in the relative direct product F*¥"
of the (3) large diagonals, and F(D, 0)/Aut(D) is equal to G(r1,...,ri). Further,
Ty always induces an embedding

U: G(ri,...,m6) < Hilb%/y;

on T-points, ¥ acts by taking a k-tuple (W1, ..., Wy) where W; is a smooth length-r;
subscheme of Fr, say with ideal I;, to the length-d subscheme W with ideal [[Z™".

PROOF. Let (to,...,t-—1) be a strict sequence of arbitrarily near T-points of
F/Y with diagram (D, ). Plainly, the ¢; are just sections of Fr, and their images
are disjoint. So F(D, ) is equal to the asserted complement.

Plainly, Aut(D) is the product of k groups, the ith being the full symmetric
group on the 7; roots in the ith set. So the quotient F(D, §)/Aut(D) is equal to the
open subscheme of Hilb': Jy Xy XYHilb;l“/Y whose geometric points parameterize
the k-tuples whose ith component is an unordered set of r; geometric points of F'
such that all r points are distinct; in other words, the quotient is equal to the
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asserted open subscheme.

Since each vertex is a root of some weight m;, plainly ¥ acts on T-points in
the asserted way, owing to the following standard general result, which is easily
proved by descending induction: let A be a locally Noetherian scheme, Z a regular
ideal, b: B — A the blow-up of Z, and F the exceptional divisor; let m > 0 and set
L := Opg(—mE); then R%,L =0 for ¢ > 1 and b.L =7T™.

Finally, to prove that W is always an embedding, we may assume that Y is the
spectrum of an algebraically closed field K, owing to the proof of Theorem 5.7 By
the same token, ¥ is universally injective, and factors into a finite map followed by
an open embedding. Hence, we need only show that ¥ is unramified.

Let v be a K-point of Hilb}/y; let V' C F be the corresponding subscheme,
and 7 its ideal. Recall the definition of isomorphism from the tangent space at
v to the normal space Hom(Z,Oy); the definition runs as follows. Let Kle] be
the ring of dual numbers, and set T' := Spec(Ke]). An element of the tangent
space corresponds to a T-point of Hilb sy supported at v; so it represents a T-flat
subscheme V. C Fr that deforms V. The natural splitting K[e] = K @ Ke induces
a splitting Oy, = Oy @ Oye. Similarly, the ideal Z, of V, splits: Z, = Z @ Ze. Then
the natural map Op, — Oy, restricts to a map Z — Ovye, which is equal to the
desired map (: Z — Oy.

Assume v € G(r1,...,7r;). Then V is the union of k sets of reduced K-points
of F. The ith set has r; points; let Z; be the ideal of its union. Further, ¥ carries
V and V. to the subschemes W and W, defined by Zy"* - - - Z}"* and Iy} - - - I,F.
So ¥ is unramified at v if the induced map on tangent spaces is injective:

Q/J: TG(’I"l ..... Tk ), — Hom(Iinl e 'I;gnku OW)

Say v = (v1,...,vx) with v; € G(r;), and say v; represents V; C F. Then

TG(Tl ..... TR,V T @ THilb;f/Y,'ui = @HOIH(IZ-, OVZ)

Given any ¢ € Tg(p,,....r).0, its image 1(() is equal to the restriction of the canonical
map Op, — Ow.. So 9 splits into a direct sum of local components
Yy Hom(Z; 5, Ovy) — Hom(Ii’)’;i, Owgy) forzeViandi=1,... k.
It remains to prove that each ¢, is injective. Fix an z.
Set Z := Z; and m := m;. Fix generators pu,v € Z,. Set a := (,pu € K and
b:= (yv € K. Then Z. , is generated by p — ae and v — be; so I7", is generated by

€,x

w™ —map™ tae, p" v — (m— D)™ 2vae — p™ e, ..,

™t —av™ e — (m— 1)bur™ %e, v™ — my™ Lbe.

Hence, modulo I, the generators p™ !

o v and pv™~! of I™ are congruent to

(m—1)pm 2vae+pu™ tbe and av™ te+ (m—1)bur™ 2e. (They’re equal if m = 2.)
Form the latter’s classes in Oy ,. Then, therefore, these classes are the images

of those generators under the map ,(,. Hence, in any characteristic, we can
recover a and b from the images of ™ v and ur™~!. But a and b determine (,.

Thus 1, is injective, and the proof is complete. (Il
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Appendix A. Generalized property of exchange

This appendix proves two lemmas of general interest, which we need. The first
lemma generalizes the property of exchange to a triple (T, f, F') where T is a (locally
Noetherian) scheme, f: P — @ is a proper map of T-schemes of finite type, and F
is a T-flat coherent sheaf on P. The original treatment was made by Grothendieck
and Dieudonné in [7, Sec. 7.7, pp. 65-72], and somewhat surprisingly, deals only
with the case of @ = T'. (Although they replace F' by a complex of flat and coherent
sheaves bounded below, this extension is minor and we do not need it.)

The first lemma is proved by generalizing the treatment in Section II, 5 of
[22] pp.46-55]. Alternatively, as Illusie pointed out in a private conversation, the
lemma can be proved using the methods that he developed in [13].

The first lemma is used to prove the second. The second is used in the proof of
Proposition [5.4] which constructs the map from the scheme of T-points with given
Enriques diagram to the Hilbert scheme.

Lemma A.1 (Generalized property of exchange). Let T be a scheme, f: P — Q
a proper map of T-schemes of finite type, and F a T-flat coherent sheaf on P. Let
q € Q be a point, t € T its image, and i > 0 an integer. Assume that, on the fiber
@1, the base-change map of sheaves

pi (RULF) = R foFy

is surjective at q. Then there exists a neighborhood U of q in Q such that, for any
T-scheme T', the base-change map of sheaves

ppr s (R'f.F)rr — R fro Fr

-1

is bijective on the open subset Up: of Qr:. Furthermore, the map pf; is also

surjective at q if and only if sheaf R f.F is T-flat at q.

PROOF. The question is local on @Q; so we may assume that T" = Spec A and
@ = Spec B where A is a Noetherian ring and B is a finitely generated A-algebra.
Also, we may assume that B is A-flat by expressing B as a quotient of a polynomial
ring over A and then replacing B with that ring. For convenience, when given a
B-module or a map of B-modules, let us say that it has a certain property at ¢ to
mean that it acquires this property on localizing at the prime corresponding to q.

There is a finite complex K*® of A-flat finitely generated B-modules, and on the
category of A-algebras C, there is, for every j > 0, an isomorphism of functors

H(K*®4C) =5 W (P®aC, FouC).

Indeed, this statement results, mutatis mutandis, from the proof of the theorem on
page 46 of [22].
Let k& be the residue field of ¢. Then there is a natural map of exact sequences

Kl'ok - Z(K)®k — H(K*)®k — 0

|1 = I (A1)

Klok — Z(K*®k) — H(K*®k) — 0.

Since p}‘C is surjective at ¢, so is h};. Hence z}c is surjective at q.
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Consider the following map of exact sequences:

Z(K)ok - K'®k — BT (K)®k — 0

S o

Z{K*®k) — K'9k — BT (K*@k) — 0.

Now, z}, is surjective at ¢. Hence bfjl is bijective at q.

Hence B (K*) @ k — K™ @ k is injective at q. Set L := K't1/B"t(K*).
Since K'*! is A-flat, the local criterion of flatness implies that L is A-flat at g.
Hence, by the openness of flatness, there is a g € B outside the prime corresponding
to g such that the localization L, is A-flat. We can replace B by B, and so assume
L is A-flat.

Let C be any A-algebra. Then the following sequence is exact:

05 Z(K)®C K oC—-K"eC s Lal 0. (A.1.2)
It follows that, in the map of exact sequences

K '@C — ZH{K)®C — H(K*)®C — 0

I

K1'®9C = Z(K*®C) - H(K*®C) — 0,

zlc is bijective. Hence hic is bijective. Thus the first assertion holds: pic is bijective.
If H'(K*) is A-flat at g, then plainly the sequence

0-B(K)®k—Z(K)®k—H(K*)®@k—0 (A.1.3)

is exact. The converse holds too by the local criterion for flatness, because Z'(K*®)
is A-flat owing to the exactness of (AI.2) with C' := A and to the flatness of L.

Since 2} is bijective, (AI3) is exact if and only if b} is injective. The latter
holds if and only if z,i_l is surjective, owing to the map of exact sequences

ZEU K@k —» K7 ek — B(K*) @k — 0

o b

0— 7271 (K*®k) — K'"'@k — B(K*®k) — 0.

Finally, z; ! is surjective if and only if A} ! is so, owing to (ALI]) with i — 1 in
place of i. Putting it all together, we’ve proved that h};l is surjective if and only
if H'(K*®) is A-flat at ¢. In other words, the second assertion holds too. O

Lemma A.2. Let T be a scheme, f: P — @ a proper map of T-schemes of finite
type, and

0O—->F—->G—->H—0 (A.2.1)
a short exact sequence of T-flat coherent sheaves on P. For each point t € T, let
ft and F; and G; denote the restrictions to the fiber P;, and assume that

R'f1u(F)) =0 and R f1.(G,) = 0 fori > 1. (A.2.2)
Then the induced sequence on @,
0— fuF = fiG = fuH — 0, (A.2.3)

is a short exact sequence of T-flat coherent sheaves, and forming it commutes with
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base extension.

PROOF. Since H is T-flat, the sequence (A2.T)) remains exact after restriction
to the fiber P; for each t € T', and so the restricted sequence induces a long exact
sequence of cohomology. Hence, (A2.2) yields

R'fi.(H¢) =0 for all i > 1.

By hypothesis, F, G, ‘H are T-flat. Hence, by the generalized property of
exchange, Lemma [A1] the sheaves f.F, f.G, f«H are T-flat, and forming them
commutes with extending 7. By the same token, R!f,(F) = 0; whence, Sequence
(A23) is exact. The assertion follows. O

Appendix B. A few examples BY ILYA TYOMKIN

Let F be the affine plane over the spectrum Y := Spec(K) of an algebraically
closed field K of positive characteristic p. In this appendix, we analyze a few
simple examples of minimal Enriques diagrams D. Some depend on p, and have an
ordering @ for which the universally injective map of Theorem [5.7]

U: F(D, 6)/Aut(D) — Hilb% )y,

is purely inseparable. Others are independent of p; they have several vertices, but
only one root, yet they have an ordering 6 for which ¥ is an embedding. In fact,
in every case, # is unique, and Aut(D) is trivial.

We take F' to be the affine plane just to simplify the presentation. With little
modification, everything works for any smooth irreducible surface F'.

It is unknown what conditions on an arbitrary Enriques diagram D serve to
guarantee here that ¥ is unramified, so an embedding. Nevertheless, in view of the
analysis in this appendix, it is reasonable to make the following guess.

Guess B.1. Ifp> 1>, my, then U is unramified.

This guess is sharp in the sense that, if p < %EVeD my, then ¥ may be

ramified. For example, consider the plane curve C : zf = x’f“. In the notation

of Definition [B.2] the minimal diagram of C' is M,,,,. It has p + 1 vertices with
my =p,1,1,...,1. Sop = %ZVGD my. And ¥ is ramified by Proposition [B.4l

Similarly, consider C' : y(y — 2P) = 0. Its minimal diagram has p vertices V
with my = 2. Sop = %ZVGD my. And VU is ramified by an argument similar to
the proof of Proposition [B.4l

On the other hand, if D has a single vertex of weight 2p, then ¥ is unramified
by Proposition [5.9] and of course, p = % Y vep MV

In general, if a branch has tangency of order divisible by p to an exceptional
divisor F, then the multiplicity of the root must be at least p and there must be
at least p other vertices. So p < %ZVeD my. Instead, if, at a point P € F, all
the branches have a tangency of order divisible by p to the same smooth curve D,
then there must be at least p vertices V' with my > 2. So again, p < % Y vep MV
Thus, if we guess that ¥ can be ramified in only these two ways, then we arrive at
Guess Bl

Further, although ¥ does not sense first-order deformations either along E or
along D, nevertheless after we add a transverse branch at P, then ¥ does sense first-
order deformations of the new branch; thus ¥ becomes unramified. This intuition
is developed into a rigorous proof for the ordinary tacnode in Proposition [B.7, and
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a similar procedure works if the tacnode is replaced by an ordinary cusp.

Definition B.2. Fix m > p. Let M, ,, denote the minimal Enriques diagram
of the plane curve singularity with 1 + m — p branches whose tangent lines are
distinct, whose first branch is { z§ = xﬁ’“ }, and whose remaining m — p branches

are smooth.

Example B.3. For motivation, consider the following special case. Take p := 2
and m := 2. Then M, ,, is the minimal Enriques diagram A, of the cuspidal curve
C : 23 = x3. This diagram has three vertices and a unique ordering 6.

Take F' := A% and T := Spec(K). In F(As,0) C F?), form the locus L of
sequences (tg, t1,t2) of arbitrarily near T-points of F// K such that ¢ is the constant
map from 7T to the origin. Plainly, the second projection induces an isomorphism
L = E% where E’; is the exceptional divisor of the blow up Fj of F at the origin.

The strict transform C” of C' is tangent to E with order 2, and C’ is given by
the equation s2 = z1 where s := 25/x;1. Notice that this equation is preserved by
any first order deformation along E% of the point of contact; indeed,

(5 +be)? = 52
as p = 2 and €2 = 0. This observation suggests that the restriction of ¥,
(¥|L): L — Hilb}

is purely inseparable; and indeed, ¥|L is so, as we check next.
Let D’ be the diagram obtained from Ay by omitting the root, let 8’ be the
unique ordering of D’, and consider the corresponding map

V' F(D', 0') — Hilbjy .

Plainly, the projection (to,%1,t2) — (f1,t2) embeds L into F'(D’, ¢').
So ¥’ induces a map W, : L — Hilb%;(/K. It carries (to, t1,t2) to the subscheme
of F}. with ideal 7’ defined by the formula

T = (w(TQ)sogﬁ))*OF;a) (—EZ) — E$A).

But Y + E®® < B 80

O (LY~ EEY) 2 0,0 (-BI).

r®

Hence 7’ contains the ideal of Ef.. Therefore, ¥/ factors through Hilb%E}( /K> Which
is isomorphic to Sym? (L). The corresponding map L — Sym? (L) is the diagonal
map since U’ (to,t1,t2) has the same support as t;. This diagonal map is purely
inseparable as p = 2.

Finally, ¥/ : L — HileE;{/K is a factor of W|L because U(tg,1t1,t2) is the sub-

scheme of Fr with ideal ((pgpl))*l’(ﬂ?{p). Thus ¥|L is, indeed, purely inseparable.
In fact, ¥ is purely inseparable by Proposition [B.4] below.

Proposition B.4. Fiz m > p. Set D := M, ., and d := (m;—l) + p. Then D
has a unique ordering 0; also Aut(D) = 1 and degD = d. Take F = A%.. Then
dim F(D, 0) = 3, and Yy: F(D, 0) — Hilb}i,w/y is purely inseparable; also, ¥ = Ty.
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Proor. Plainly, D has p + 1 vertices, say Vg,...,V, ordered by succession.
Then proximity is given by Vi = Vix_1 and Vi = V; for k > 0. Further, the weights
are given by my, = m and my, = 1 for k > 0. Set (Vi) := k; plainly, 6 is an
ordering of D, and is the only one. Also, plainly, Aut(D) =1 and degD = d.

Theorem B.I0] says that dim F(D, §) = dim D, but plainly dimD = 3. Now,
U = Ty because Aut(D) = 1. Further, Theorem 5.7 says that ¥ is universally
injective. Hence W is purely inseparable, because it is everywhere ramified owing
to the following lemma. O

Lemma B.5. Under the conditions of Proposition B4, let t € F(D, 0) be a K-
point. Then Ker(d,Yg) is of dimension 1.

PROOF. Say t represents the sequence (%o, ...,t,) of arbitrarily near K-points
of F/Y. Choose coordinates 1, x2 on F such that ¢y : ©1 = z2 = 0 and such
that ¢, is the point of intersection of the exceptional divisor Ey with the proper
transform of the xi-axis. Set sg := xo/x1, set s1 := x1/s0, and set s := sk_1/80
for2<k<p-—1. Thent;:s0 =21 =0,and tg:s9=sr_1 =0for 2 <k <p.

Set z := Ty(t) € Hilb%/Y(K). Let Z denote the corresponding subscheme,
and Z its ideal. Recall from the proof of Proposition 5.4l that 7 = ¢x.O(—FEk)
where Ex = >.7_ my, EG+1PFD Recall from the proof of Proposition [B.4] that
my, = m and my, =1 for £ > 0 and that V; > V; for k > 0. It follows that

P
Brc = meli P ED 43 ko + 1)l pE),
k=1
Set 6(r):==0if 0<r<pandd(r):=1if p<r <m. Set
fr= x;nﬂ_r_(s(r):z:g for 0 <r <m.
Let’s now show that the f, generate Z.

First, note that, for each r and for 1 < k <p—1,
fr _ I11n+1—5(r)56 _ S;Cn-l-l—é(r)slg(m-i-l—é(r))—i-r'

Hence, the pullback of f,. vanishes along e%p +1)E§(1) to order at least m, and along

e(I];H’pH)Eng) to order at least k(m + 1) for k > 1, since r — k§(r) > 0. Thus
fr € T for each r.
Let J be the ideal generated by the f,. Then J C Z. Now, Klz1,22]/J is

spanned as a K-vector space by the monomials ,’ET+1_T_6(T),’EZ2 for0<i<r<m
and by "' 7Pzl for 0 <1 < p. Hence J = T because

dim (K (z1,22]/T) <3t or+p=d=dim K[z, 25]/Z.

Let K[e] be the ring of dual numbers, and set T" := Spec(K|[e]). Let (tp,...,t;,)
be a strict sequence of arbitrarily near T-points of F/Y lifting (to,...,%,). Then
there are aq,aq2,b € K so that, after setting x} := 21 + a1€ and 2}, := 25 + aze and
setting s(, := x5/} + be and s} := 2] /s( and s}, == s} _,/sp for 2 <k <p—1, we
have t: 2f =2 =0and t} :sjp =27 =0and t) :s)=s),_, =0for 2<k <p.

Let t' € F(D, 0)(T) represent (tg,...,t,). Set 2z’ := Ty(t') € Hilb%‘/y(K)(T).
Let Z’ denote the corresponding subscheme, and Z’ its ideal. Let’s show that 7' is
generated by the following elements:

fh= ()™ ()T for 0 < < .
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The f! reduce to the f,, which generate Z. Further, Z’ reduces to Z as Z' is flat
over K[e]. Hence it suffices to prove that Z’ contains the f;.
Note that (s — be)? = (s()P as the characteristic is p. Hence, for each r,

i = ()50 (s — )" = (s (s H DO (5 ey

for 1 < k < p—1. Therefore, the pullback of f/ vanishes along egpl P +1)E§Fl) to order
at least m, and along e(fﬂ’pﬂ)E(TkH) to order at least k(m + 1) for k > 1 since
(p—k)o(r) >0 and r — pd(r) > 0. Thus Z’ contains the f.

Recall that TZHilb%/y(K ) = Hom(Z,Ogz). Furthermore, it follows from the
computations above that

YotV f)=(m+1—7r— 6(7‘))%‘?77076(7«)1,'5@1 + rwin+17r75(r)x£_1ag
for 0 < r < m. Therefore,
ker(d;Yy) = {(al,ag,b) ‘ a; =as = O},
and we are done. O

Definition B.6. Fix m > 3. Let N,,, denote the minimal Enriques diagram of the
following plane curve singularity: an ordinary tacnode { z2(z2 — 2%) = 0} union
with m — 2 smooth branches whose tangent lines are distinct and different from the
common tangent line of the two branches of the tacnode.

Proposition B.7. Fizm > 3. Set D := N,,, and d := (m;rl) + 3. Then D has
a unique ordering 0; also Aut(D) = 1 and degD = d. Take F = A%. Then
dim F(D,0) =3, and Yy: F(D,§) — HilbdF/K is an embedding; also, ¥V = Ty.

Proor. Plainly, D has 2 vertices, say Vi and V; ordered by succession. Then
proximity is given by Vi > V,. Further, the weights are given by my, = m and
my, = 2. Set 8(V}) := k; plainly, 6 is an ordering of D, and is the only one. Also,
plainly, Aut(D) = 1 and deg D = d. Theorem 310 says that dim F'(D, ) = dim D,
but plainly dimD = 3. Now, ¥ = Ty because Aut(D) = 1. Further, Theorem [5.7]
says that W is universally injective. Hence ¥ is an embedding because it is nowhere
ramified owing to the following lemma. O

Lemma B.8. Under the conditions of Proposition B, let t € F(D, 0) be a K-
point. Then Ker(d;Ty) = 0.

PROOF. Say t represents the sequence (tg,t1) of arbitrarily near K-points of
F/Y. Choose coordinates x1, x2 on F such that ¢y : 1 = 22 = 0 and such that ¢;
is the point of intersection of the exceptional divisor Fy with the proper transform
of the z1-axis. Set s := x9/x1. Then t; : s = 21 = 0.

Set z := Ty(t) € Hilb??/y(K). Let Z denote the corresponding subscheme, and
T its ideal. Recall from the proof of Proposition 54 that Z = ¢x.O(—Ek) where
Ex = ZLO my, EGH52) - Recall from the proof of Proposition [B7 that my, = m
and my, = 2 and that V; > V4. It follows that

Ex = meg’z)E(l) + (m+ 2)E§<2).
Set §(0) := 2, set 6(1) := 1, and set §(r) := 0 if r > 2. Set
fr= :zzT_T+5(T)x§ for 0 <r <m.

Let’s now show that the f, generate Z.
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First, note that, for each r,

f x;n+5(r) T
Hence, the pullback of f, vanishes along e(l 2)E(l) to order at least m, and along
Eg?) to order at least m + 2, since m + r + §(r) > m + 2. Thus f, € Z for each r.
Let J be the ideal generated by the f,.. Then J C Z. Now, Klz1,22]/J is
spanned as a K-vector space by the monomials $T7T+6(T)$l2 for 0 <l <r <mand

by "~ L x7' Yy, and xm+1 Hence J = 7 because

dim(K[z1,22]/T) < S0t or+ 3 =d = dim K[z1, 2] /T.

m+1 m—r+48(r

Furthermore, the monomials z}"~' and z" 'zy and #7"*' and z] )x2 for
0 <l <r<mform a basis of the K-vector space K|x1, :Ez]/I

Let K[e] be the ring of dual numbers, and set T' := Spec(K[e]). Let (t,t})
be a strict sequence of arbitrarily near T-points of F/Y lifting (to,t1). Then there
are aj,as,b € K so that, after setting =} := z1 + aje and 2}, := 25 + age and
s’ i=xh /x| + be, we have ¢ : 2]y = x4, =0and ¢] : s’ =2} =0.

Let t' € F(D, 0)(T) represent (t(,t;). Set 2z’ := To(t') € Hlle/Y(T). Let
Z' denote the corresponding subscheme, and Z’ its ideal. Let’s show that Z’ is
generated by the following elements:

fh= (@)™ (@) 4 rbe(a )T (1) for 0 < < m.

T

The f! reduce to the f,., which generate Z. Further, Z’ reduces to Z as Z' is flat
over K[e]. Hence it suffices to prove that Z’ contains the f/.
The equation x4/} = s’ — be yields

fh= (@)™ (T for 0 < < m.

T

Hence, the pullback of f/ vanishes along e(T 2)E(l) to order at least m, and along
E(Q) to order at least m + 2 since m +r + §(r) > m + 2. Thus Z’ contains the f/.

Recall that T, Hilb F/Y(K ) = Hom(Z,Oz). Furthermore, it follows from the
computations above that

A Yo(t')(fL) = o T lyr =t ((m —r+68(r))z2ar + rzias + ratb)
for 0 < r < m. In particular, m;”‘%:gb € T yields

d:To(t)(f)) = ma T aoay + 2T as + 27T
diYo(t)(f)) = (m +2)27 ay, and
t')

diYo(t')(f3) = (m — 3)a *x3ar + 327 >23as.

Recall that, in K[z1,z2]/Z, the monomials

m—1 m—1 m+1 m—r+4(

T, 2 xe, 7', and xy T>lfor0<l<r<m

are linearly independent. But m > 3, so at least one of the coefficients m, m + 2,
and m — 3 is prime to the characteristic. Thus, ker(d;Yy) = 0, and we are done. [
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with Appendix B by Ilya TYOMKIN

ABSTRACT. Given a smooth family F//Y of geometrically irreducible surfaces,
we study sequences of arbitrarily near T-points of F/Y; they generalize the
traditional sequences of infinitely near points of a single smooth surface. We
distinguish a special sort of these new sequences, the strict sequences. To each
strict sequence, we associate an ordered unweighted Enriques diagram. We
prove that the various sequences with a fixed diagram form a functor, and we
represent it by a smooth Y'-scheme.

We equip this Y-scheme with a free action of the automorphism group of
the diagram. We equip the diagram with weights, take the subgroup of those
automorphisms preserving the weights, and form the corresponding quotient
scheme. Our main theorem constructs a canonical universally injective map
from this quotient scheme to the Hilbert scheme of F/Y’; further, this map is
an embedding in characteristic 0. However, in every positive characteristic, we
give an example, in Appendix B, where the map is purely inseparable.

1. Introduction

Recently, there has been much renewed interest in an old and timeless problem:
enumerating the r-nodal curves in a linear system on a smooth projective surface.
Notably, Tzeng [30] and Kool, Shende and Thomas [19], in very different ways,
proved Gottsche’s conjecture [5], which was motivated by the Yau—Zaslow formula
[32] and describes the shape of a corresponding generating series in r. However,
Gottsche’s expression involves two power series, which remain unknown in general.

On the other hand, Vainsencher [31] found enumerating polynomials for » < 7;
they are explicit and general, although he [31] Sec. 7] was unsure of the case r = 7.
In [16] and [I7], the present authors refined and extended Vainsencher’s work, by
settling the case r = 7, handling r = 8, producing more compact formulas, and
establishing validity under more extensive conditions. Further, this enumeration,
unlike Gottsche’s, applies to nonconstant families of surfaces; notably, see [31]
pp. 513-514] and [17], pp. 80-83], it proves 17,601,000 is the number of irreducible
6-nodal quintic plane curves on a general quintic 3-fold in 4-space, contrary to the
predictions of Clemens’ conjecture and of mirror symmetry.

2000 Mathematics Subject Classification. Primary 14N10; Secondary 14C20, 14H40, 14KO05.
Key words and phrases. Enriques diagrams, arbitrarily near points, Hilbert schemes, prop-
erty of exchange.
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To establish a range of validity for these enumerative formulas, it is necessary
to analyze various generalized Severi varieties, namely, the loci of curves of given
equisingularity type in the system. Gottsche [5 Prp.5.2] treated nodes in an ad
hoc fashion; Tzeng relies on his analysis, whereas Kool, Shende and Thomas [19]
Prp. 2.1] improved it, thus extending the range of validity.

On the other hand, Vainsencher’s approach, as pursued by the present authors,
relies on a more extensive and more systematic analysis. It is based on Enriques
diagrams. They are directed graphs, similar to resolution graphs, that represent the
equisingularity types of the curves. Equivalently, see [16], §3] and the references
there, they represent the types of the complete ideals, the ideals formed by the
equations of the curves with singularities of the same type or worse at given points.

Specifically, in the authors’ paper [16], Proposition (3.6) on p. 225 concerns the
locus H (D) that sits in the Hilbert scheme of a smooth irreducible complex surface
and parametrizes the complete ideals Z with a given minimal Enriques diagram D.
The proposition asserts that H (D) is smooth and equidimensional.

The proposition was justified intuitively, then given an ad hoc proof in [16]. The
intuitive justification was not developed into a formal proof, which is surprisingly
long and complicated. However, the proof yields more: it shows H (D) is irreducible;
it works for nonminimal D; and it works for families of surfaces. Further, it works
to a great extent when the characteristic is positive or mixed, but then it only
shows H (D) has a finite and universally injective covering by a smooth cover; this
covering need not be birational, as examples in Appendix B show.

It is naive to form H (D) as a locus with reduced scheme structure. It is more
natural to consider the functor of sequences of arbitrarily near points corresponding
to D. This functor is representable by a smooth irreducible scheme, and it admits a
natural map into the Hilbert scheme, whose image is H(D). This map is finite and
universally injective, so an embedding in characteristic zero, but it may be totally
ramified in positive characteristic as the examples show.

Originally, the authors planned to develop this discussion in a paper that also
dealt with other loose ends, notably, the details of the enumeration of curves with
eight nodes. However, there is so much material involved that it makes more sense
to divide it up. Thus the discussion of H (D) alone is developed in the present paper;
the result itself is asserted in Corollary 5.8 Here, in more detail, is a description
of this paper’s contents.

Fix a smooth family of geometrically irreducible surfaces F/Y and an integer
n > 0. Given a Y-scheme T, by a sequence of arbitrarily near T-points of F/Y,
we mean an (n + 1)-tuple (to,...,t,) where tg is a T-point of F}O) = F xy T and
where ¢;, for i > 1, is a T-point of the blowup F}Z) of F}Zfl) at t;_1. (If each t; is, in
fact, a T-point of the exceptional divisor Egpl ) of F:(FZ), then (to,...,t,) is a sequence
of infinitely near points in the traditional sense.) The sequences of arbitrarily near
T-points form a functor in T', and it is representable by a smooth Y-scheme F(),
according to Proposition [34] below; this result is due, in essence, to Harbourne [12]
Prp. 1.2, p. 104].

We say that the sequence (tg,...,t,) is strict if, for each 4,7 with 1 < j < 4,
the image T(*) C F:(Fi) of t; is either (a) disjoint from, or (b) contained in, the strict
transform of the exceptional divisor E(T] ) of F}J ) It (b) obtains, then we say that
t; is prozimate to t; and we write t; > t;.
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To each strict sequence, we associate, in Section 3, an unweighted Enriques
diagram U and an ordering 6: U = {0,...,n}. Effectively, U is just a graph
whose vertices are the t;. There is a directed edge from t; to t; provided that

j+1 < i and that the map from F}i) to F}j 1 is an isomorphism in a neighborhood

of T and embeds T in E(TJ MRS addition, U inherits the binary relation of
proximity. Finally, 6 is defined by 6(¢;) := ¢. This material is discussed in more
detail in Section 2. In particular, to aid in passing from (o, ...,t,) to (U, ), we
develop a new combinatorial notion, which we call a prozimity structure.

Different strict sequences often give rise to isomorphic pairs (U, 6). If we fix
a pair, then the corresponding sequences form a functor, and it is representable by
a subscheme F (U, ) of F(™) which is Y-smooth with irreducible geometric fibers
of a certain dimension. This statement is asserted by Theorem [B.I0, which was
inspired by Roé’s Proposition 2.6 in [27].

Given another ordering ', in Section 4 we construct a natural isomorphism

Dg o F(U, ) = F(U, 9/)

It is easy to describe ®p g- on geometric points. A geometric point of F(U, ) cor-
responds to a certain sequence of local rings in the function field of the appropriate
geometric fiber of F//Y. Then 6 o §~! yields a suitable permutation of these local
rings, and so a geometric point of F(U, 6'). However, it is harder to work with
arbitrary T-points. Most of the work is carried out in the proofs of Lemmas [£.]]
and 4.2 and the work is completed in the proof of Proposition [£.3l

We easily derive two corollaries. Corollary [.4] asserts that Aut(U) acts freely
on F(U, 6); namely, v € Aut(U) acts as ®g g where ' := 6 o~. Corollary [L5]
asserts that U: F(U, 6)/Aut(U) is Y-smooth with irreducible geometric fibers.

A different treatment of F'(U, ) is given by A.-K. Liu in [22]. In Section 3 on
pp. 400-401, he constructs F(™. In Subsection 4.3.1 on pp.412-414, he discusses
his version of an Enriques diagram, which he calls an “admissible graph.” In Sub-
sections 4.3.2, 4.4.1, and 4.4.2 on pp. 414-427, he constructs F(U, ), and proves it
is smooth. In Subsection 4.5 on pp. 428-433, he constructs the action of Aut(U) on
F(U, ). Of course, he uses different notation; also, he doesn’t represent functors.
But, like the present authors, he was greatly inspired by Vainsencher’s approach in
[31] to enumerating the singular curves in a linear system on a smooth surface.

Our main result is Theorem [5.71 It concerns the Enriques diagram D obtained
by equipping the vertices V' € U with weights my satisfying the Proximity Inequal-
ity, my > Dy mw. We discuss the theory of such D in Section 2. Note that
Aut(D) C Aut(U). Set d := >, (m"2+1). Theorem [5.7] asserts the existence of a
universally injective map from the quotient to the Hilbert scheme

U: F(U, 0)/Aut(D) — Hilbf)y .

Proposition [5.4] implies that ¥ factors into a finite map followed by an open
embedding. So V¥ is an embedding in characteristic 0. However, in any positive
characteristic, ¥ can be ramified everywhere; examples are given in Appendix B,
whose content is due to Tyomkin. Nevertheless, according to Proposition 5.9 in
the important case where every vertex of D is a root, ¥ is an embedding in any
characteristic. Further, adding a nonroot does not necessarily mean there is a
characteristic in which ¥ ramifies, as other examples in Appendix B show.
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We construct ¥ via a relative version of the standard construction of the com-
plete ideals on a smooth surface over a field, which grew out of Zariski’s work in
1938; the standard theory is reviewed in Subsection 5.1. Now, a T-point of F'(U, )
represents a sequence of blowing-ups F:(FZ) — F:(szl) for 1 <i<mn+1. On the final
blowup F:(FnJrl), for each i, we form the preimage of the ith center 7(). This preim-
age is a divisor; we multiply it by mg-1(;), and we sum over i. We get an effective
divisor. We take its ideal, and push down to Fpr. The result is an ideal, and it
defines the desired T-flat subscheme of F;. The flatness holds and the formation
of the subscheme commutes with base change owing to the generalized property of
exchange proved in Appendix A. Appendix A is of independent interest.

It is not hard to see that W is injective on geometric points, and that its image
is the subset H(D) C Hilb% sy parameterizing complete ideals with diagram D on
the fibers of F/Y. To prove that ¥ induces a finite map onto H (D), we use a sort
of valuative criterion; the work appears in Lemma and Proposition 5.4 An
immediate corollary, Corollary 5.5 asserts that H(D) is locally closed. This result
was proved for complex analytic varieties by Lossen [23] Prp. 2.19, p. 35] and for
excellent schemes by Nobile and Villamayor [25, Thm. 2.6, p. 250]. Their proofs
are rather different from each other and from ours.

In [28] and [29], Russell studies sets somewhat similar to the H(D). They
parameterize isomorphism classes of finite subschemes of F' supported at one point.

In short, Section 2 treats weighted and unweighted Enriques diagrams and
proximity structures. Section 3 treats sequences of arbitrarily near T-points. To
certain ones, the strict sequences, we associate an unweighted Enriques diagram U
and an ordering 6. Fixing U and 6, we obtain a functor, which we represent by a
smooth Y-scheme F(U, 6). Section 4 treats the variance in §. We produce a free
action on F(U, 6) of Aut(U). Section 5 treats the Enriques diagram D obtained by
equipping U with suitable weights. We construct a map ¥ from F (U, 6) / Aut(D)
to Hilbp,y, whose image is the locus H(D) of complete ideals. We prove H (D)
is locally closed. Our main theorem asserts that W is universally injective, and in
fact, in characteristic 0, an embedding. Appendix A treats the generalized property
of exchange used in constructing ¥. Finally, Tyomkin’s Appendix B treats a few
examples: in some, V¥ is ramified; in others, there’s a nonroot, yet ¥ is unramified.

2. Enriques diagrams

In 1915, Enriques [4, IV.I, pp. 350-51] explained a way to represent the equi-
singularity type of a plane curve singularity by means of a directed graph: each
vertex represents an arbitrarily near point, and each edge connects a vertex rep-
resenting a point to a vertex representing a point in its first-order neighborhood;
furthermore, the graph is equipped with a binary relation representing the “prox-
imity” of arbitrarily near points. These graphs have, for a long time, been called
Enriques diagrams, and in 2000, they were given a modern treatment by Casas in
[2} Sec. 3.9, pp. 98-102].

Based in part on a preliminary edition of Casas’ monograph, a more axiomatic
treatment was given by the authors in [I7, § 2], and this treatment is elaborated
on here in Subsection Il In this treatment, the vertices are weighted, and the
number of vertices is minimized. When the diagram arises from a curve, the vertices
correspond to the “essential points” as defined by Greuel et al. [6] Sec. 2.2], and
the weights are the multiplicities of the points on the strict transforms. Casas’
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treatment is similar: the Proximity Inequality is always an equality, and the leaves,
or extremal vertices, are of weight 1; so the rest of the weights are determined.

At times, it is convenient to work with unweighted diagrams. For this reason,
Roé [27, §1], inspired by Casas, defined an “Enriques diagram” to be an unweighted
graph, and he imposed five conditions, which are equivalent to our Laws of Proxim-
ity and of Succession. Yet another description of unweighted Enriques diagrams is
developed below in Subsection and Proposition 2.4 under the name of “proxim-
ity structure.” This description facilitates the formal assignment, in Subsection 2.7
of an Enriques diagram to a plane curve singularity. Similarly, the description fa-
cilitates the assignment in Section Bl of the Enriques diagram associated to a strict
sequence of arbitrarily near points.

At times, it is convenient to order the elements of the set underlying an En-
riques diagram or underlying a proximity structure. This subject is developed in
Subsections[Z2 and 23] and in Corollary 2.5l It plays a key role in the later sections.

Finally, in Subsection 2.6, we discuss several useful numerical characters. Three
were introduced in [16l Sct. 2, p. 214], and are recalled here. Proposition 2.8
describes the change in one of the three when a singularity is blown up; this result
is needed in [18]

2.1 (Enriques diagrams). First, recall some general notions. In a directed graph,
a vertex V is considered to be one of its own predecessors and one of its own
successors. Its other predecessors and successors W are said to be proper. If there
are no loops, then W is said to be remote, or distant, if there is a distinct third
vertex lying between V and W; otherwise, then W is said to be immediate.

A tree is a directed graph with no loops; by definition, it has a single initial
vertex, or root, and every other vertex has a unique immediate predecessor. A final
vertex is called a leaf. A disjoint union of trees is called a forest.

Next, from [17] § 2], recall the definition of a minimal Enriques diagram. It
is a finite forest D with additional structure. Namely, each vertex V is assigned a
weight my , which is an integer at least 1. Also, the forest is equipped with a binary
relation; if one vertex V' is related to another U, then we say that V is proximate
to U, and write V = U. If U is a remote predecessor of V', then we call V a satellite
of U; if not, then we say V is free. Thus a root is free, and a leaf can be either free
or a satellite.

Elaborating on [17], call D an Enriques diagram if D obeys these three laws:

(Law of Proximity) A root is proximate to no vertex. If a vertex is not
a root, then it is proximate to its immediate predecessor and to at most
one other vertex; the latter must be a remote predecessor. If one vertex is
prozimate to a second, and if a distinct third lies between the two, then it
too is prorimate to the second.

(Proximity Inequality) For each vertex V,
my = ey mw-

(Law of Succession) A wertex may have any number of free immediate
successors, but at most two immediate successors may be satellites, and
they must be satellites of different vertices.

Notice that, by themselves, the Law of Proximity and the Proximity Inequality
imply that a vertex V' has at most my immediate successors; so, although this
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6 S. KLEIMAN AND R. PIENE

property is included in the statement of the Law of Succession in [I7, § 2], it is
omitted here.

Recovering the notion in [16], call an Enriques diagram D minimal if D obeys
the following fourth law:

(Law of Minimality) There are only finitely many vertices, and every leaf
of weight 1 is a satellite.

In [16], the Law of Minimality did not include the present finiteness restriction;
rather, it was imposed at the outset.

2.2 (Unweighted diagrams). In [27] §1], Roé defines an Enriques diagram to be an
unweighted finite forest that is equipped with a binary relation, called “proximity,”
that is required to satisfy five conditions. It is not hard to see that his conditions are
equivalent to our Laws of Proximity and Succession. Let us call this combinatorial
structure an unweighted Enriques diagram.

Let U be any directed graph on n + 1 vertices. By an ordering of U, let us
mean a bijective mapping

0: U —={0,...,n}
such that, if one vertex V' precedes another W, then 6(V) < 0(W). Let us call the
pair (U, 0) an ordered directed graph.

An ordering 6 need not be unique. Furthermore, if one exists, then plainly U
has no loops. Conversely, if U has no loops—if it is a forest—then U has at least
one ordering. Indeed, then U has a leaf L. Let T be the complement of L in U.
Then T inherits the structure of a forest. So, by induction on n, we may assume
that T has an ordering. Extend it to U by mapping L to n.

Associated to any ordered unweighted Enriques diagram (U, ) is its proximity
matriz (pi;), which is the n + 1 by n + 1 lower triangular matrix defined by

1, ifi=yg;
pij := ¢ —1, if 71 is proximate to 07 15;
0, otherwise.

The transpose was introduced by Du Val in 1936, and he named it the “proximity
matrix” in 1940; Lipman [2T] p. 298] and others have followed suit. The definition
here is the one used by Roé [27] and Casas [2] p. 139].

Note that (U, 6) is determined up to unique isomorphism by (p;;).

2.3 (Proximity structure). Let U be a finite set equipped with a binary relation.
Call U a prozimity structure, its elements vertices, and the relation proximity if the
following three laws are obeyed:

(P1) No vertex is proximate to itself; no two vertices are each proximate to
the other.

(P2) Every vertex is proxzimate to at most two others; if to two, then one of
the two is proximate to the other.

(P3) Given two vertices, at most one other is proximate to them both.

A proximity structure supports a natural structure of directed graph. Indeed,
construct an edge proceeding from one vertex V to another W whenever either W
is proximate only to V or W is proximate both to V and U but V is proximate
to U (rather than U to V). Of course, this graph may have loops; for example,
witness a triangle with each vertex proximate to the one clockwise before it, and
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ENRIQUES DIAGRAMS, ARBITRARILY NEAR POINTS, AND HILBERT SCHEMES 7

witness a pentagon with each vertex proximate to the two clockwise before it.
Let us say that a proximity structure is ordered if its vertices are numbered,
say Vo,..., Vy, such that, if V; is proximate to Vj, then ¢ > j.

Proposition 2.4. The unweighted Enriques diagrams sit in natural bijective cor-
respondence with the proximity structures whose associated graphs have no loops.

Proor. First, take an unweighted Enriques diagram, and let’s check that its
proximity relation obeys Laws (P1) to (P3).

A vertex is proximate only to a proper successor; so no vertex is proximate to
itself. And, if two vertices were proximate to one another, then each would succeed
the other; so there would be a loop. Thus (P1) holds.

A root is proximate to no vertex. Every other vertex W is proximate to its
immediate predecessor V and to at most one other vertex U, which must be a
remote predecessor. Since an immediate predecessor is unique in a forest, V must
lie between W and U; whence, V' must be proximate to U. Thus (P2) holds.

Suppose two vertices W and X are each proximate to two others U and V. Say
V' is the immediate predecessor of W. Then U is a remote predecessor of W so
U precedes V. Hence V is also the immediate predecessor of X, and W is also a
remote predecessor of X. Thus both W and X are immediate successors of V', and
both are satellites of W; so the Law of Succession is violated. Thus (P3) holds.

Conversely, take a proximity structure whose associated graph has no loops.
Plainly, a root is proximate to no vertex. Suppose a vertex W is not a root. Then
W has an immediate predecessor V. Plainly, W is proximate to V. Plainly, W is
proximate to at most one other vertex U, and if so, then V is proximate to U. Since
U cannot also be proximate to V by (P1), it follows that V is the only immediate
predecessor to W.

Every vertex is, therefore, preceded by a unique root. Plainly the connected
component of each root is a tree. Thus the graph is a finite forest.

Returning to U, V, and W, we must show that U precedes W. Now, V is
proximate to U. So V is not a root. Hence V has an immediate predecessor V'.
If V! = U, then stop. If not, then V' is proximate to U owing to the definition
of the associated graph, since V is proximate to U. Hence, similarly, V' has an
immediate predecessor V. If V" = U, then stop. If not, then repeat the process.
Eventually, you must stop since the number of vertices is finite. Thus U precedes
W. Furthermore, every vertex between U and W is proximate to U. Thus the Law
of Proximity holds.

Continuing with U, V', and W, suppose that W' is a second immediate successor
of V and that W’ is also proximate to a vertex U’. Then U’ # U since at most one
vertex can be proximate to both V' and U by (P3).

Finally, suppose that W is a third immediate successor of V' and that W” is
also proximate to a vertex U”. Then U” # U and U” # U’ by what we just proved.
But V is proximate to each of U, U’, and U”. So (P2) is violated. Thus the Law
of Succession holds, and the proof is complete. O

Corollary 2.5. The ordered unweighted Enriques diagrams sit in natural bijective
correspondence with the ordered proximity structures.

ProOOF. Given an unweighted Enriques diagram, its proximity relation obeys
Laws (P1) to (P3) by the proof of Proposition2.4l And, if one vertex V' is proximate
to another W, then W precedes V. So (W) < §(V) for any ordering 6. Hence, if
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8 S. KLEIMAN AND R. PIENE

V' is numbered 6(V') for every V', then the proximity structure is ordered.
Conversely, take an ordered proximity structure. The associated directed graph

is, plainly, ordered too, and so has no loops. And, the Laws of Proximity and

Succession hold by the proof of Proposition 24l Thus the corollary holds. O

2.6 (Numerical characters). In [I6] Sct. 2, p. 214], a number of numerical characters
were introduced, and three of them are useful in the present work.

The first character makes sense for any unweighted Enriques diagram U, al-
though it was not defined in this generality before; namely, the dimension dim(U)
is the number of roots plus the number of free vertices in U, including roots. Of
course, the definition makes sense for a weighted Enriques diagram D; namely, the
dimension dim(D) is simply the dimension of the underlying unweighted diagram.

The second and third characters make sense only for a weighted Enriques dia-
gram D; namely, the degree and codimension are defined by the formulas

deg(D) := Yyep (M%)
cod(D) := deg(D) — dim(D).

It is useful to introduce a new character, the type of a vertex V of U or of V.
It is defined by the formula

0, if V is a satellite;
type(V) := (1, if V is a free vertex, but not a root;
2, if V is a root.

The type appears in the following two formulas:
dim(A) = >y ca type(V); (2.6.1)
cod(A) =, ca (™% — type(V)]. (2.6.2)

Formula [2.6.2] is useful because every summand is nonnegative in general and pos-
itive when A is a minimal Enriques diagram.

2.7 (The diagram of a curve). Let C be a reduced curve lying on a smooth surface
over an algebraically closed ground field; the surface need not be complete. In
[16] Sec. 2, p. 213] and again in [17) Sec. 2, p. 72], we stated that, to C, we can
associate a minimal Enriques diagram D. (It represents the equisingularity type
of C; this aspect of the theory is treated in [2] p. 99] and [6l pp. 543-4].) Here is
more explanation about the construction of D.

First, form the configuration of all arbitrarily near points of the surface lying on
all the branches of the curve through all its singular points. Say that one arbitrarily
near point is proximate to a second if the first lies above the second and on the
strict transform of the exceptional divisor of the blowup centered at the second.
Then Laws (P1) to (P3) hold because three strict transforms never meet and, if two
meet, then they meet once and transversely. Plainly, there are no loops. Hence, by
Proposition 2.4 this configuration is an unweighted Enriques diagram.

Second, weight each arbitrarily near point with its multiplicity as a point on
the strict transform of the curve. By the theorem of strong embedded resolution,
all but finitely many arbitrarily near points are of multiplicity 1, and are proximate
only to their immediate predecessors; prune off all the infinite unbroken successions
of such points, leaving finitely many points. Then the Law of Minimality holds.
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Finally, the Proximity Inequality holds for this well-known reason: the multi-
plicity of a point P’ on a strict transform C’ can be computed as an intersection
number m on the blowup at P’ of the surface containing C’; namely, m is the
intersection number of the exceptional divisor and the strict transform of C’; the
desired inequality results now from Noether’s formula for m in terms of multiplici-
ties of arbitrarily near points. (In [2] p. 83], the inequality is an equality, because
no pruning is done.) Therefore, this weighted configuration is a minimal Enriques
diagram. It is D.

Notice that, if K is any algebraically closed extension field of the ground field,
then the curve C'x also has diagram D.

Proposition 2.8. Let C be a reduced curve lying on a smooth surface over an
algebraically closed field. Let D be the minimal Enriques diagram of C, and P €
C a singular point of multiplicity m. Form the blowup of the surface at P, the
exceptional divisor E, the proper transform C' of C, and the union C"" := C' UE.
Let D’ be the diagram of C’, and D" that of C"'. Then

cod(D) — cod(D’) > (") — 2 and cod(D) — cod(D”) = () — 2;
equality holds in the first relation if and only if P is an ordinary m-fold point.

PROOF. We obtain D’ from D by deleting the root R corresponding to P and
also all the vertices T that are of weight 1, proximate to R, and such that all
successors of T are also (of weight 1 and) proximate to R (and so deleted too).
Note that an immediate successor of R is free; if it is deleted, then it has weight 1,
and if it is not deleted, then it becomes a root of D’. Also, by the Law of Proximity,
an undeleted satellite of R becomes a free vertex of D’.

Let o be the total number of satellites of R, and p the number of undeleted
immediate successors. Then it follows from the Formula (2.6.2)) that

cod(D) — cod(D’) = (m;l) —240+p.

Thus the asserted inequality holds, and it is an equality if and only if 0 = 0 and
p=0. So it is an equality if P is an ordinary m-fold point.

Conversely, suppose 0 = 0 and p = 0. Then R has no immediate successor V'
of weight 1 for the following reason. Otherwise, any immediate successor W of V'
is proximate to V' by the Law of Proximity. So W has weight 1 by the Proximity
Inequality. Hence, by recursion, we conclude that V is succeeded by a leaf L of
weight 1. So, by the Law of Minimality, L is a satellite. But ¢ = 0. Hence V does
not exist. But p = 0. Hence R has no successors whatsoever. So P is an ordinary
m-fold point.

Furthermore, we obtain D” from D by deleting R and by adding 1 to the weight
of each T proximate to R. So a satellite of R becomes a free vertex of D", and
an immediate successor of R becomes a root of D”. In addition, for each smooth
branch of C' that is transverse at P to all the other branches, we adjoin an isolated
vertex (root) of weight 2.

The number of adjoined vertices is m — > . m7. So, by Formula (Z6.2),

cod(D) — cod(D”) = (m;rl) —2+> 1R [(mq;rl) — type(T)]
=~ el (M57) = (type(T) + 1)] = [m =Yg g mr].
The right hand side reduces to (’;‘) — 2. So the asserted equality holds. O
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3. Infinitely near points

Fix a smooth family of geometrically irreducible surfaces 7: F' — Y. In this
section, we study sequences of arbitrarily near T-points of F//Y. They are defined in
Definition Then Proposition [3.4] asserts that they form a representable functor.
In essence, this result is due to Harbourne [12], Prp. 1.2, p. 104], who identified the
functor of points of the iterated blow-up that was introduced in [15] Sct. 4.1, p. 36]
and is recalled in Definition [3.]

In the second half of this section, we study a special kind of sequence of arbi-
trarily near T-points, the strict sequence, which is defined in Definition[3.5l To each
strict sequence is associated a natural ordered unweighted Enriques diagram owing
to Propositions[3.8 and 24l Finally, Theorem [3.10] asserts that the strict sequences
with given diagram (U, ) form a functor, which is representable by a Y-smooth
scheme with irreducible geometric fibers of dimension dim(U). This theorem was
inspired by Roé’s Proposition 2.6 in [27].

Definition 3.1. By induction on ¢ > 0, let us define more families
0. pG) F(ifl)7

which are like 7: F — Y. Set 7(9) := 7. Now, suppose 7(!) has been defined. Form
the fibered product of F(*) with itself over F(—1) and blow up along the diagonal
A®_ Take the composition of the blowup map and the second projection to be
7T(i+1).

In addition, for i > 1, let ¢ : F(O) — F(@=1) he the composition of the blowup
map and the first projection, and let E(* be the exceptional divisor. Finally, set
0 =715 50 (0 = 70,

Lemma 3.2. Both 7 and ¢ are smooth, and have geometrically irreducible
fibers of dimension 2. Moreover, E® is equal, as a polarized scheme, to the bundle
]P’(Q}r(i,l)) over FU=1  where Q}r(i,l) is the sheaf of relative differentials.

PROOF. The first assertion holds for 4 = 0 by hypothesis. Suppose it holds for
1. Consider the fibered product formed in Definition [3.J] Then both projections are
smooth, and have geometrically irreducible fibers of dimension 2; also, the diagonal
A® is smooth over both factors. It follows that the first assertion holds for 7 + 1.
The second assertion holds because Q}r(i,l) is the conormal sheaf of AW, O

Definition 3.3. Let T be a Y-scheme. Given a sequence of blowups
(n+1) (1)
pirth g R I B =F xy T
whose ith center T® F}i) is the image of a section t; of F}i)/T for 0 < i <mn,
call (tg,...,tn) a sequence of arbitrarily near T-points of F/Y .
For 1 <4 <n+ 1, denote the exceptional divisor in F}l) by E(Tl).

The following result is a version of Harbourne’s Proposition 1.2 in [12] p. 104].

Proposition 3.4 (Harbourne). AsT wvaries, the sequences (to, ..., tn) of arbitrarily
near T-points of F/Y form a functor, which is represented by F™ Y.

Given (to,...,t,) and i, say (to,...,t;) is represented by 7;: T — F®). Then
7, = 7,_1 where T7_1 is the structure map. Also, F}H_l) = FU+D) X pay T where
FOHD 5 PO s 76D - correspondingly, t; = (15,1) and E(THl) = E0HD) x ooy T;
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moreover, T is the scheme-theoretic image of E(Tiﬂ) under @(TH_l) : F}H_l) — F%i).
Finally, go(TZH) is induced by Ut and F}Hl) — T is induced by w1,

PROOF. First, observe that, given a section of any smooth map a: A — B,
blowing up A along the section’s image, C say, commutes with changing the base
B. Indeed, let Z be the ideal of C, and for each m > 0, consider the exact sequence

0—ZIMt - Im 1™ /T™ 0.

Since a is smooth, I’”/Zmle is a locally free Oc-module, so B-flat. Hence form-
ing the sequence commutes with changing B. However, the blowup of A is just
Proj@,, Z™. Hence forming it commutes too.

Second, observe in addition that C' is the scheme-theoretic image of the excep-
tional divisor, F say, of this blowup. Indeed, this image is the closed subscheme of
C whose ideal is the kernel of the comorphism of the map F — C. However, this
comorphism is an isomorphism, because E = P(I/I?) since a is smooth.

The first observation implies that the sequences (to,...,t,) form a functor,
because, given any Y-map 7" — T, each induced map

F s T 5 B xp T

is therefore the blowing-up along the image of the induced section of F}i) xpT'[T'.

To prove this functor is representable by F(") /Y, we must set up a functorial
bijection between the sequences (t,...,t,) and the Y-maps 7,: T — F(). Of
course, n is arbitrary. So (to,...,t;) then determines a Y-map 7;: T — F(®), and
correspondingly we want the remaining assertions of the proposition to hold as well.

So given (tg,...,t,), let us construct appropriate Y-maps 7;: T — F® for
—1 <7 < n. We proceed by induction on i. Necessarily, 7—1: T — Y is the
structure map, and correspondingly, F:(FO) = FO x r(—1 T owing to the definitions.

Suppose we've constructed 7,_1. Then F:(Fi) = F® X pa-n T. Set 7 = pit;
where p; : F}i) — F® is the projection. Then 7,1 = 7). Also, t; = (74,1);
so t; is the pullback, under the map (1,7;), of the diagonal map of F®)/F(-1,

Therefore, owing to the first observation, F:(FiH) = pli+1) X (F@) x F()) £

F:(Fi) — F®) X neoy FO is equal to 1 x 7;. Hence F:(Fiﬂ) = FOFY x py T where
FU+) 5 p@) g 70+ Tt follows formally that E¥+1) = EG+H) x ) T, that
F}Hl) — F}i) is induced by (1) and that F}Hl) — T is induced by 7(+1),

By the second observation above, T is the scheme-theoretic image of Eg; ),

Conversely, given a map 7,,: T — F(”), set i =@ ox(Mr for 0 <i < n;
s0 Ti_q1: T — FU=1_ Set F:(Fi) = F® x oy T where the map F — F(-1) ig
7@ for 0 < i < n+1. Then 7; defines a section t; of F}i)/T. Furthermore, blowing
up its image yields the map F:(Fiﬂ) — F:(Fi) induced by ¢+, because, as noted
above, forming the blowup along A commutes with changing the base via 1 x 7;.
Thus (tg,...,t,) is a sequence of arbitrarily near T-points of F/Y.

Plainly, for each T', we have set up the bijection we sought, and it is functorial

in T. Since we have checked all the remaining assertions of the proposition, the
proof is now complete. 0

where

Definition 3.5. Given a sequence (t,...,t,) of arbitrarily near T-points of F/Y,
let us call it strict if, for 0 < ¢ < n, the image T of t; satisfies the following
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conditions, defined by induction on i. There are, of course, no conditions on 7.
Fix i, and suppose, for 0 < j < i, the conditions on T) are defined and satisfied.
The ¢ conditions on 7 involve the natural embeddings

eIV BY 5 FY for1<j <,

which we assume defined by induction; see the next paragraph. (The image e(Tj l)E(TJ )
can be regarded as the “strict transform” of Egpj) on F:(Fl)) The jth condition
requires egf’ )Erfrj) cither (a) to be disjoint from T or (b) to contain T as a
subscheme.

Define eS}H’iH) to be the inclusion. Now, for 1 < j < i, we have assumed
that eg’i) is defined, and required that its image satisfy either (a) or (b). If (a) is
satisfied, then the blowing-up F}Hl) — F}i) is an isomorphism on a neighborhood

of e(j’ i)E(T‘), namely, the complement of T); so then e(Tj’ R

(4, i4+1)

lifts naturally to an
embedding e} . If (b) is satisfied, then T(*) is a relative effective divisor on the

T-scheme el Z)E(TJ), because E(Tj) and T are flat over T, and the latter’s fibers
are effective divisors on the former’s fibers, which are P's; hence, then blowing up
e(Tj 1) E( )
naturally in Fj,

along T yields an isomorphism But the blowup of e(Tj’i)E(Tj ) embeds

@, Thus, again, eT D lifts naturally.

Definition 3.6. Given a strict sequence (tg, ..., t,) of arbitrarily near T-points of

F/Y, say that t; is prozimate to ¢; if j < i and CARE l)E(JH) contains 7).

Lemma 3.7. Let (to,...,tn) be a strict sequence of arbitrarily near T-points of
F/Y. Fian+1>i>j>k>1. Then <p(J+1) . (Z)e(zfg’l):e(f’]), and TU=Y s
the scheme-theoretic image of e(TN)E(T) under cp(J) cpg). Set

70 = &V P 4V EY.

If 5 > k and Zy () # 0, then gp(T) -~<p¥) induces an isomorphism Z(i) TG,

(@)

and tj_1 is proximate to ty_1; moreover, then ZT meets no eT l) forl # 74,k

PROOF. The formula ¥ ... oW el — 9 ig trivial if i = j. It holds by

construction if ¢ = j + 1. Finally, it follows by induction if i > j + 1. With k := j,

(4) (N)E(J)

this formula implies that E is the scheme-theoretic image of e under

<P(Tj+l) . @(Ti) whence, Proposition 3] implies that 7= is the scheme-theoretic

image of e(Tj’i)E(T‘) under ¢ ( ). go(TZ).
Suppose j > k and ZFEFZ # (. Now, for any [ such that i > > j, both egfk’l)Eng)
(jJ)E(j)
T

and e} are relative effective divisors on F}l) /T, because they’re flat and

divisors on the fibers. Hence, on either of egc ’Z)E(Tk) and e(Tj "l)E(Tj ), their intersection

er,f) is a relative effective divisor, since each fiber of er,f) is correspondingly a divisor.

In fact, each nonempty fiber of Zg)

G+1) Spgri)egj-,i) _ egg'-,j)

is a reduced point on a P'.

Since ¢ and since eg’j ) is the inclusion of EFEFJ ), which
is the exceptional divisor of the blowing-up ¢ : FU) — FG=1 along TU—V the
map gpgz) . ~<p¥) induces a proper map e: Z¥) — TU-1D_ Since the fibers of e are
isomorphisms, e is a closed embedding. So since Zg) and TU—1 are T-flat, e is an
isomorphism onto an open and closed subscheme.
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Since <p(Tj) e wg)e(f’i) = e(f’j_l), it follows that e(f’j—l)E(Tk) contains a non-
empty subscheme of U=, So since (to,...,t,) is strict, egc’rl)E(Tk)

of TU=Y ag a subscheme. Thus ;1 is proximate to tj_1.

contains all

It follows that cp(Tj) induces a surjection Z(Tj) — TU=D_ If § = j, then this
surjection is just e, and so e is an isomorphism, as desired.

Suppose ¢ > j. Then ngj)ﬂT(j) = (). Indeed, suppose not. Then both
eg,fg’j)Egpk) and Erfrj) meet TU). So since (t, ..., t,) is strict, erpj) contains T as
a closed subscheme. Both these schemes are T-flat, and their fibers are reduced
points; hence, they coincide. It follows that egc " H)E(Tk) and e(Tj’j H)E(Tj ) are dis-
joint on FUTY | But these subschemes intersect in erpj+l). And erpj—H) = () since

Z(Ti) # () and Zg) maps into Z(Tj+1). We have a contradiction, so Z(Tj) NTY = 0.

Therefore, gpéfJFl) induces an isomorphism erpj +1) - errj ). Similarly, gag,f-H)
induces an isomorphism Z(Tl+l) - Z(Tl) for Il = j,...,7 — 1. Hence ga(T]) --~g0(Tl)

induces an isomorphism Zr}i) 2y 71

Finally, suppose Zg) meets eg’i)E(Tl) for I # j,k, and let’s find a contradic-
tion. If I < j, then interchange I and j. Then, by the above, TU~=1) lies in both
egpk’jfl)Eng) and egpl’jfl)ErEFl). Therefore, TU~1) is equal to their intersection, be-
cause TU—1 is flat and its fibers are equal to those of the intersection. It follows
that egpk’j)Eng) and eg,f’j)Eg) are disjoint on F). But both these subschemes con-

tain the image of Z(Ti), which is nonempty. We have a contradiction, as desired.
The proof is now complete. O

Proposition 3.8. Let (tg,...,t,) be a strict sequence of arbitrarily near T-points
of F/Y . Equip the abstract ordered set of t; with the relation of proximity of Defi-
nition B.6l Then this set becormes an ordered proximity structure.

PRrOOF. Law (P1) holds trivially.

As to (P2), suppose t; is proximate to ¢; and to t; with j > k. Then T®
lies in egﬁl’i)E(TkH) N e(TjH’i)E(TjH). So Lemma [3.7 implies ¢; is proximate to .
Furthermore, the lemma implies the intersection meets no egﬂ’i)E(TlH) for l # j, k.
So t; is proximate to no third vertex ¢;. Thus (P2) holds.

As to (P3), suppose ¢; and t; are each proximate to both t; and ¢; where
i>j>k>1 Givenp >k, set ZP) = e¥+1’p)E(Tl+1)ﬂeg€+l’p)E(Tk+l). Then
TW C ZW . Now, Z® is T-flat with reduced points as fibers by Lemma B2 But
T® is a similar T-scheme. Hence T) = Z®), Similarly, TU) := Z0).

Lemma, 7] yields gpgj"‘l) . .wgf)egrm,i) = egpm’j) for m = k,l. So @gi“) . ~g0§,f)
carries T into TW). Now, this map is proper, and both T and T/ are T-flat
with reduced points as fibers; hence, T4 - TG Tt follows that

SDE/ZJ&) ...spgf)T(i) C 706G+ ~ (¢¥+1))_1T(j) — EI(J+1)_
Hence ZU+1) meets EY ™| contrary to LemmaB7 Thus (P3) holds. O

Definition 3.9. Let’s say that a strict sequence of arbitrarily near T-points of
F/Y has diagram (U, 0) if (U, 0) is isomorphic to the ordered unweighted Enriques
diagram coming from Propositions B8 and 24

The following result was inspired by Roé’s Proposition 2.6 in [27].
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14 S. KLEIMAN AND R. PIENE

Theorem 3.10. Fiz an ordered unweighted Enriques diagram (U, 0) on n + 1
vertices. Then the strict sequences of arbitrarily near T-points of F/Y with diagram
(U, 0) form a functor; it is representable by a subscheme F(U, 0) of F("), which
is Y -smooth with irreducible geometric fibers of dimension dim(U).

PROOF. If a strict sequence of arbitrarily near T-points has diagram (U, 6),
then, for any map 7" — T, the induced sequence of arbitrarily near T’-points plainly
also has diagram (U, ). So the sequences with diagram (U, ) form a subfunctor
of the functor of all sequences, which is representable by F(™ /Y by Proposition B4l

Suppose n = 0. Then U has just one vertex. So the two functors coincide, and
both are representable by F', which is Y-smooth with irreducible geometric fibers
of dimension 2. However, 2 = dim(U). Thus the theorem holds when n = 0.

Suppose n > 1. Set L := 0~ 'n. Then L is a leaf. Set T := U — L. Then T
inherits the structure of an unweighted Enriques diagram, and it is ordered by the
restriction §|T. By induction on n, assume the theorem holds for (T, 6|T).

Set G := F(T, §|T) c F"Y and H := 7, 'G ¢ F"). Then H represents the
functor of sequences (o, . . ., t,) of arbitrarily near T-points such that (g, ..., tn—1)
has diagram (T, |T) since 7¥7; = 7;_; by Proposition B4 Moreover, H is G-
smooth with irreducible geometric fibers of dimension 2 by LemmaB2 And G is Y-
smooth with irreducible geometric fibers of dimension dim(T) as the theorem holds
for (T, 6|T). Thus H is Y-smooth with irreducible geometric fibers of dimension
dim(T) + 2.

Let (hg,...,h,) be the universal sequence of arbitrarily near H-points, and
HY c F ;IZ) the image of h;. We must prove that H has a largest subscheme S
over which (hg, ..., hy) restricts to a sequence with diagram (U, 6); we must also

prove that S is Y-smooth with irreducible geometric fibers of dimension dim(U).
But, (ho, ..., hn_1) has diagram (T, §|T). So H® satisfies the i conditions of
Definition for i =0,...,n— 1. Hence S is defined simply by the n conditions
on H™: the jth requires eg’n)Eg) either (a) to be disjoint from H™ or (b) to
contain it as a subscheme; (b) applies if L is proximate to §71(j — 1), and (a) if
not, according to Definition Let P be the set of j for which (b) applies. Set

5= p! ( M 4mEY - | ;I>E;,>)
jep jgrP
Plainly, S is the desired largest subscheme of H.

It remains to analyze the geometry of S. First of all, Fé") =F™ x puo1y G by
Proposition 3.4} so Fc(;n) = H since H := 7,;'G. Also, FI({") = F) X puo1y H and
hn = (Cn, 1) where (,: H — F, again by Proposition 3.4l Hence

FV = F x¢ H=H xg H and h,, = (1,1).
Plainly, forming e(Tj’") is functorial in T'; whence, eg’")Eg) = (eg’")Eg)) xq H.
Hence, h;leg’")Eg) = eg’n)Eg). Therefore,
S () 4MEY | ) M ED.
jep j¢P
There are three cases to analyze, depending on type(L). In any case,
dim(T) + type(L) = dim(U)
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ENRIQUES DIAGRAMS, ARBITRARILY NEAR POINTS, AND HILBERT SCHEMES 15
owing to Formula .61l Furthermore, each eg’") is an embedding. So eg’n)Eg)
has the form P(Q2) for some locally free sheaf € of rank 2 on G by Lemma and
Proposition B4l Hence eg’")
dimension dim(T) + 1.

Suppose type(L) = 2. Then L is a root. So P is empty, and by convention, the
intersection ﬂjep eg’")Eg) isall of H. So S is open in H, and maps onto Y. Hence
S is Y-smooth with irreducible geometric fibers of dimension dim(H/Y), and

dim(H/Y) = dim(T) + 2 = dim(U).

Thus the theorem holds in this case.
Suppose type(L) = 1. Then L is a free vertex, but not a root. So L has an
immediate predecessor, M say. Set m := §(M). Then P = {m}. So S is open

Eg ) is Y-smooth with irreducible geometric fibers of

in e(Gm’n)Egn), and maps onto Y. Hence S is Y-smooth with irreducible geometric
fibers of dimension dim(e(Gm’n)Eém) /Y), and

dim(e"™ES™ /Y) = dim(T) + 1 = dim(U).

Thus the theorem holds in this case too.

Finally, suppose type(L) = 0. Then L is a satellite. So L is proximate to two
vertices: an immediate predecessor, M say, and a remote predecessor, R say. Set
m = 6(M) and r := 6(R). Then P = {r, m}. Set Z := eg’")Eg) ﬂe(Gm’")Egn).
Then Z = G and Z meets no eg’n)Egn) with j ¢ P owing to LemmaB.7 because
(ho, - .., hp—1) is strict with diagram (T, 6|T). Hence S = Z. Therefore, S is
Y-smooth with irreducible geometric fibers of dimension dim(G/Y’), and

dim(G/Y) = dim(T) + 0 = dim(U).

Thus the theorem holds in this case too, and the proof is complete. O

4. Isomorphism and enlargement

Fix a smooth family of geometrically irreducible surfaces 7: F' — Y. In this
section, we study the scheme F (U, 6) introduced in Theorem BI0 First, we work
out the effect of replacing the ordering 6 by another one #’. Then we develop, in our
context, much of Roé’s Subsections 2.1-2.3 in [27]; specifically, we study a certain
closed subset E(U, §) C F™ containing F(U, 6) set-theoretically. Notably, we
prove that, if the sets F(U’, §') and E(U, 0) meet, then E(U’, §') lies in E(U, 0);
furthermore, E(U’, §') = E(U, 0) if and only if (U, ) = (U’, ¢").

Proposition below asserts that there is a natural isomorphism ®¢ ¢ from
F(U, 0) to F(U, #"). On geometric points, ®g - is given as follows. A geometric
point with field K represents a sequence of arbitrarily near K-points (to,...,t,) of
F/Y. To give t; is the same as giving the local ring A; of the surface F I(;) at the
K-point T the image of t;. Set o := #’ 0§~'. Then i > aj if t; is proximate to
t;. So there is a unique sequence (t~0, . ,t~n) whose local rings gj satisfy A; = gm-
in the function field of Fx. The sequences (to,...,t,) and (o, ...,t,) correspond
under Pg g/

To construct ®g ¢/, we must work with a sequence (to,...,t,) of T-points for
an arbitrary T'. To do so, instead of the A;, we use the transforms e¥+1’n+l)E¥+l).
The notation becomes more involved, and it is harder to construct (fo, ..., %,). We
proceed by induction on n: we omit t,, apply induction, and “reinsert” t, as tan.
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16 S. KLEIMAN AND R. PIENE

Most of the work is done in Lemma L2} the reinsertion is justified by Lemma [T1

Lemma 4.1. Let (to,...,t,_1) be a strict sequence of arbitrarily near T-points of
F/Y, say with blowups ﬁ'}i) and so on. Fiz |, and let T C ﬁ'}l) be the image
of a section t; of Fv}l)/T. Set t; := t; for 0 < i < I, and assume the sequence
(to,...,t1) is strict. Set T; := TO and T; .= QZEFIH) e @gﬁ)f(i) forl <i<mn, and

assume T and the T; are disjoint. Then (to,...,t;) extends uniquely to a strict
sequence (to,...,tn), say with blowups F:(FZ) and so on, such that t; is a leaf and

F:(FH_l) X p( ﬁ':(ri_l) = F:(Fi) for 1l < i <mn. Furthermore, the diagram of (to,...,tn)
induces that of (to, ..., tn_1).

PROOF. Set F}l) = ﬁ}l); let F}Hl) be the blowup of F}l) with center T and
E(TZH) be its exceptional divisor. For [ < ¢ < n, set F}ZH) = F}Hl) X @) Fvg) and
T .
T .= F:(FZH) X ) T0=1 . Now, T® and Tj are disjoint for I < i < n. So F:(;H) is
T

the blowup of F:(Fi) with center T(). Also, T is the image of a section ¢; of F:(Fi)/T.

Moreover, since (tg,...,%;) and (fg,...,t,_1) are strict sequences, it follows that
(to,...,tn) is a strict sequence too. Furthermore, ¢; is a leaf, and the diagram of
(to,.-.,tn) induces that of (¢o,...,t,—1). Plainly, (to,...,t,) is unique. O

Lemma 4.2. Let a be a permutation of {0,...,n}. Let (to,...,ts) be a strict
sequence of arbitrarily near T-points of F/Y. Assume that, if t; is proximate to
tj, then i > ay. Then there is a unique strict sequence (to, .-, tn), say with
blowups ﬁ;i), exceptional divisors E’(Ti), and so on, such that F;nﬂ) = ﬁ;nﬂ) and
e(Ti’nJrl)E(Ti) = é(Tali’nJrl)E’(Ta/i) with o't :== a(i—1)+1 for 1 <i < n+1; furthermore,
t; is prozimate to t; if and only if tni is prozvimate to t,;.

PROOF. Assume (fo,...,t,) exists. Let’s prove, by induction on j, that both
the sequence (fo,...,%;) and the map F}"H) — F}JH) are determined by the
equality F}"’H) = }7‘}’”1) and the n + 1 equalities e(Ti’"H)E(Ti) = é(Ta i’"“)E(TO‘ 2
where 1 < ¢ < n+ 1. If j = —1, there’s nothing to prove. So suppose j > 0.

Then TU+Y is determined as the scheme-theoretic image of é¥+2’n+1)5¥+2) by

Lemma B2 So %41 is determined. But then }7':(# *2) is determined as the blowup

of TU+D). And F}nﬂ) — ﬁ}jﬁ) is determined, because the preimage of T7U+D in
F:(FnH) is a divisor. Thus (fo,...,%,) is unique.

To prove (o, ...,1,) exists, let’s proceed by induction on n. Assume n = 0.
Then a = 1. So plainly #y exists; just take o := tg.

So assume n > 1. Set | := an. Define a permutation S8 of {0,...,n — 1} by
Bi:=aiif ai <l and fi:=ai—1if ai > [.

Suppose t; is proximate to t; with ¢ < n, and let us check that 3i > 5. The
hypothesis yields ai > «j. So if either ai <[ or aj > [, then i > Bj. Now, ai # 1
since ¢ < n and [ := an. Similarly, oj # [ since j < ¢ as ¢; is proximate to t;. But
if at > [, then fi:=ai —1>1, and if aj <[, then 85 := aj < I. Thus pi > (7.

Since (to,...,tn—1) is strict, induction applies: there exists a strict sequence
(to,...,tn_1), say with blowups ﬁ}l) and so forth, such that F}") = ﬁ}") and
e(Ti’")E(Ti) = é(TB/i’")E(T’B/i) with 84 := B(i — 1) + 1 for 1 <4 < n; furthermore, ¢; is
proximate to t; if and only if fgi is proximate to fﬁj. Set #; :=t; for 0 <i < L.
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ENRIQUES DIAGRAMS, ARBITRARILY NEAR POINTS, AND HILBERT SCHEMES 17

Set #; := {’#H) e @gz)tn and TO = @¥+1) A(n)T(”) Then #; is a section
of ﬁ}l)/T, and T is its image. Note that, if 7(") meets e(J n)E(J) with 1 < j <mn,

then T is contained in ég’")Erfpj), because égz’n)Egpj) = g,f" Tl) for i := /1y
and because (to,...,t,) is strict. Furthermore, if so, then [ > j, because t, is

proximate to t;, and so an > ai, or [ > i = j; moreover, then T is contained in

e(TJ Z)E(T), because the latter is equal to go(lH) .- Q(Tn)é(Tj’")E(Tj) since [ > j.
Suppose T meets ¢ (k l)E(k). Then T(") meets (gogﬂ) --Q(Tn))_ A(k'l)E’(k)

So T(™ meets one of the latter’s components, which is a eg,f ™ EY for some 7.

Hence T ¢ A(J’l)E(J), as was noted above. Now, the map e(J’n)E( RN F(l)

factors through E(T ), and its image is e(J )E(J ) G Z)E(T)

ARD) 0,

, as was noted above. So é}

is contained in é}, whence, the two coincide, since they are flat and coincide

on the fibers over T. Thus 7" is contained in e(k l)E(k) Hence, since (fo,...,t_1)

is strict, so is (o, . .., #;). Furthermore, T(™ is contained in égc’")E(Tk). Thus if #; is
proximate to tj, then t,, is proximate to t; for i :== §'~'k. Moreover, the converse
follows from what was noted above.

Set T := T and T; == cﬁgplﬂ) @gﬁ)f ) for | < i < n. Then T® meets
no i—, because, otherwise, T would meet (gpgf'H) ~-@¥l))’1i—+1, and so T(")
would meet some é(Tj’")E(Tj ) with I < Jj, contrary to the note above. So Lemma [A.T]
implies (t~0, ... ,t~l) extends to a strict sequence (t~0, ... ,t~n) such that #; is a leaf and
ﬁ:(plﬂ) X FO ﬁ:(pz) = ﬁ:(piﬂ) for I < i < n; furthermore, the diagram of (o, ...,%,)
induces that of (fo, e ,fn_l).

Therefore, ¢; is proximate to ¢; if and only if tai is proximate to tNQj for0 <i <n,
because ¢; is proximate to ¢; if and only if ¢z, is proximate to ¢g; for 0 < ¢ < n and
because t,, is proximate to ¢; if and only if t; is proximate to t, for k := 3';.

Recall from above that F( - F(") and F(ZH) X O ﬁ:(rn) = ﬁ:(pnﬂ). But this
product is equal to the blowup of F; ) along T(") since T meets no ﬁ And the
blowup of F}n) along T is F}nﬂ). Thus F}nﬂ) = }?}"H).

Recall e(i’") (i) = A(B/i’n)ﬁ(ﬂ/i) for 1 < i < n. Hence, eg,f’"H)ErEFi) is equal to

the image of a natural embedding of e(B ‘ n)E(’B Y in F("+1)

equal to e A{a “n) (Ta ) since T®W meets no T;. Similarly, E
Thus e(Tl "H)E(Ti) = ~(T°‘ ’"H)E(Ta D for 1 <i<mn+1. O

In turn, this image is
(n+1) (A1) f(1+1)
=ér T

Proposition 4.3. Fiz an unweighted Enriques diagram U. Then, given two or-
derings 0 and 0, there exists a natural isomorphism

Dp o : F(U, 6‘) — F(U, 9’).
Furthermore, ®g 9 =1, and Py g 0 Py g = Py g for any third ordering 0" .

PROOF. Say U has n + 1 vertices. Set o := ' 06~'. Then « is a permutation
of {0,...,n}.

Each T-point of F (U, ) corresponds to a strict sequence (to,...,t,) owing to
Theorem [BT01 For each 4, say t; corresponds to the vertex V; of U. Then 6(V;) = 1,
and if ¢; is proximate to t;, then V; is proximate to V;. So 6'(V;) > ¢'(V;) since ¢’
is an ordering. Hence ai > «j.

Therefore, by Lemma B2 there is a unique strict sequence (fo,...,%,) such
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18 S. KLEIMAN AND R. PIENE

that t; is proximate to ¢; if and only if #,; is proximate to 4. Plainly (o, ...,%,)
has (U, #') as its diagram. Hence ({o, ... ,,) corresponds to a T-point of F(U, ')
owing to Theorem

Due to uniqueness, sending (to,...,t,) to (to,...,t,) gives a well-defined map
of functors. It is represented by a map ®g ¢ : F(U, §) — F(U, ¢'). Again due to
uniqueness, ®g o = 1 and Py g 0 Py g = Py g for any 0”. So Py go Py g =1 and
Dp g 0 Py g = 1. Thus Pg ¢/ is an isomorphism, and the proposition is proved. [

Corollary 4.4. Fiz an ordered unweighted Enriques diagram (U, 0). Then there
is a natural free right action of Aut(U) on F(U, 6); namely, v € Aut(U) acts as
By g where 0’ :=0o0r.

PROOF. Let V € U be a vertex that precedes another W. Then (V') precedes
~v(W) because v € Aut(U). Since 6 is an ordering, 6(y(V)) < 6(y(W)). Hence
¢'(V) < @ (W). Thus ¢ is an ordering.

So there is a natural isomorphism ®y ¢ : F(U, §) = F(U, §') by Proposi-
tion 3] Now, v induces an isomorphism of ordered unweighted Enriques diagrams
from (U, #') to (U, 6); hence, F(U, ') and F(U, ) are the same subscheme of
F™) and ®y ¢ is an automorphism of F (U, 6).

Note that, if v = 1, then " = 6; moreover, ®gp g = 1.

Given 6 € Aut(U), set 6" := 6 0§ and 0* := 6 o. Then ~ also induces
an isomorphism from (U, 6”) to (U, 6*), and so ®g g and Py g~ coincide. Now,
By g 0 Pggr = Pggr. Thus Aut(U) acts on F(U, ), but it acts on the right
because 0" is equal to 8 o (v9), not to 6 o (§7).

Suppose 7 has a fixed T-point. Then the T-point is fixed under ®4 ¢:. Now, we
defined ®g - by applying Lemma with o := 6’ 0 §~!. And the lemma asserts
that « is determined by its action on the egﬁ’nH)E}z). But this action is trivial
because the T-point is fixed. Hence « = 1. But @ = # o y o0 #~!. Therefore, v = 1.
Thus the action of Aut(U) is free, and the corollary is proved. O

Corollary 4.5. Fix an ordered unweighted Enriques diagram (U, 0), and let G C
Aut(U) be a subgroup. Then the quotient F(U, 0)/G is Y -smooth with irreducible
geometric fibers of dimension dim(U).

PROOF. The action of G on F(U, 0) is free by Corollary E4l So G defines
a finite flat equivalence relation on F(U, #). Therefore, the quotient exists, and
the map F(U, ) — F(U, 6)/G is faithfully flat. Now, F(U, ) is Y-smooth with
irreducible geometric fibers of dimension dim(U) by Theorem B0 so F(U, 6)/G
is too. (]

Definition 4.6. For 1 <i < j, set E(+9) := E(®) and
B .= (sp(i-"_l) ... (p(j))—lE(i) if i < j.

Given an ordered unweighted Enriques diagram (U, 6) on n + 1 vertices, say
with proximity matrix (p;;), let E(U, 8) C F(™ be the set of scheme points t such

that, on the fiber Ft("H), for 1 < k < n, the divisors Ez:kl pl-kE,Si’nH) are effective.

Proposition 4.7. Let (U, 0) be an ordered unweighted Enriques diagram. Then
E(U, 6) is closed and contains F(U, ) set-theoretically.
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PROOF. Say U has n+ 1 vertices. Fixt € F(™ and 1 <k <n. If t € F(U, 6),
then, as is easy to see by induction on j for k < j < n, the divisor Zgi pikEéi’jH)
is equal to the strict transform on Ft(j+l) of Et(k), in other words, to e(f’jH)E(Tk)
where T := Spec £(t). Hence E(U, ) contains F (U, 6).

Set E®) = E?:Jrkl pi E@ D - Then h° (Ft("H), O(E,Sk))) < 1 for any t, and
equality holds if and only if t € F(U, 6), as the following essentially standard
argument shows. Plainly, it suffices to show that, if Eék) is linearly equivalent to

an effective divisor D, then Eék) =D.

Let H be the preimage on F" "
tion number Eék) - H vanishes by the projection formula because each component

of an ample divisor on F;. Then the intersec-

of Eék) maps to a point in Fy. So D - H vanishes too. Hence each component of
D must also map to a point in Fy because D is effective and H is ample. Hence D
is some linear combination of the Et(i’"ﬂ) because they form a basis of the group
of divisors whose components each map to a point. Furthermore, the combining
coeflicients must be the p;; because these coefficients are given by the intersection
numbers with the Et(i’"ﬂ). Thus Et(k) =D.

Thus E(U, 6) is the set of t € F(™ such that h°(F"™, O(EM)) > 1 for all
k. Hence E(U, 0) is closed by semi-continuity [8, Thm. (7.7.5), p. 67]. O

Proposition 4.8. Let (U, ) and (U’, 0") be two ordered unweighted Enriques
diagrams on n+ 1 vertices, and let P and P’ be their proximity matrices. Then the
following conditions are equivalent:

(1) The sets F(U’, 0') and E(U, 0) meet.

(2) The set E(U’, 0') is contained in the set E(U, 6).

(3) The matriz P'~'P only has nonnegative entries.
Furthermore, E(U’, §') = E(U, 0) if and only if (U, 0) = (U, ¢).

PRrOOF. Fix t € F(") and define two sequences of divisors on Ft(nﬂ) by these
matrix equations:

(ED, BTy = (gt ETr)yp,
(Etu)/’ o Et(nﬂ)/) _ (E,Sl’nﬂ),. Et(nﬂ’nﬂ))P'.
These two equations imply the following one:
(ED, . BTy = (BX L EMTOPIP, (4.8.1)

in other words, Et(j) =y qkjﬁék)’ where say (qx;) := P'7'P.
Suppose t € F(U’, §). Then E,Sk)’ is the proper transform on Ft("H) of Et(k),

as we noted at the beginning of the proof of Proposition 7l So the Eék)’ form a
basis of the group of divisors whose components each map to a point in Fy. Hence,
by @RI), if EY) is effective, then gy; > 0 for all k. Thus (1) implies (3).

Suppose t € E(U’, §'). Then Eék)’ is effective. Suppose too gi; > 0 for all k, 5.
Then E is effective for all j by @XI). So t € E(U, ). Thus (3) implies (2).

By Proposition @17, E(U, ) contains F(U, 6). By Theorem B.I0, F (U, 6) is
nonempty. Thus (2) implies (1). So (1), (2), and (3) are equivalent.

Furthermore, suppose E(U’, §’) = E(U, #). Then both P’~'P and P~'P’ have
nonnegative entries since (2) implies (3). But each matrix is the inverse of the other,
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and both are lower triangular. Hence both are the identity. So P’ = P; whence,
(U, §) = (U, §"). The converse is obvious. Thus the proposition is proved. O

5. The Hilbert scheme

Fix a smooth family of geometrically irreducible surfaces 7: F' — Y. In this
section, we prove our main result, Theorem .71 It asserts that, given an En-
riques diagram D and an ordering 6, there exists a natural map ¥ from the quo-
tient F(D, #)/Aut(D) into the Hilbert scheme Hilbfp/y with d := degD and with
F(D, 0) := F(U, 0) where U is the unweighted diagram underlying D.

The quotient F(D, #)/Aut(D) parameterizes the strict sequences of arbitrarily
near points of F'/Y with diagram (U, ), up to automorphism of D. The image
of ¥ parameterizes the (geometrically) complete ideals of F/Y with diagram D.
The map ¥ is universally injective. In fact, ¥ is an embedding in characteristic
0. However, in positive characteristic, ¥ can be purely inseparable; Appendix B
discusses examples found by Tyomkin.

We close this section with Proposition [5.9] which addresses the important spe-
cial case where every vertex of D is a root; here, ¥ is an embedding in any char-
acteristic. Further, other examples in Appendix B show that ¥ can remain an
embedding even after a nonroot is added.

5.1 (Geometrically complete ideals). Let K be a field, (to,...,t,) a sequence of
arbitrarily near K-points of F'/Y . Since Spec(K) consists of a single reduced point,
the sequence is strict. Let (U, #) be its diagram in the sense of Definition B.91

Suppose U underlies an Enriques diagram D, say with weights my for V € U.
Using the divisors E%’"H) on FI(("H) of Definition .6, set

Ey = ZV mVE%O(V)-i-l,n-i-l) and L = OF}((n+1) (—FEk).

Given V € U, set j := 6(V) and Dy := e%+l’n+1)E§g+l). Inspired by Lip-
man’s remark [2IL p. 306], let’s compute the intersection number —(Ey - Dy),
that is, deg(£|Dy). Plainly, (EY™ "™ . Dy) = —1. And, for W # V, plainly
(Eg(W)H’"H) - Dy) is equal to 1 if W > V, and to 0 if not. Hence —(Ek - Dy)
is equal to my — .y, mw, which is at least 0 by the Proximity Inequality.

Set v = wg) X ~<p§?+1), and form 7 := gL on Fg. Then 7 is a complete

ideal, one that is integrally closed; also, IOF(n+1) = Li and Ripg.Lx = 0 for

q > 1. These three statements hold since (EKK- Dy) <0 for all V and, as is well
known, RO 1) =0 for ¢ > 1; see Lipman’s discussion [20} §18, p. 238] and

his Part (ii) of [20f<Thm. (12.1), p. 220]; also see Deligne’s Théoréme 2.13 [3 p. 22].
Furthermore,

dimx HY(Op, /T) =d where d := degD.
This formula is a modern version of Enriques’ formula [4] Vol. II, p. 426]; it was
proved in different ways independently by Hoskin [13], 5.2, p. 85], Deligne [3] 2.13,
p. 22], and Casas [1] 6.1, p. 438]; Hoskin and Deligne worked in greater generality,
Casas worked over C. _

The my are determined by Z because the divisors E;’"H) are numerically
independent; their intersection numbers with divisors are defined because they are
complete. The my may be found as follows. Let P be the ideal of the image T(°)
of tp, which is a K-point of Fx. Let m be the largest integer such that P™ D 7.

ed110111.tex: January 25, 2011



ENRIQUES DIAGRAMS, ARBITRARILY NEAR POINTS, AND HILBERT SCHEMES 21

Then m = my where V := 67(0), since PO (ns1) = OF<n+1>(—E§(1’"+1)). Note in
passing that P is a minimal prime of Z since nIfLV > 1. “

The remaining my can be found by recursion. Indeed, on F I((l ), form the ideal
T’ := IO(my EM). Then T’ is the direct image from FU'™") of O(—E}.) where
B = Y way mWEg(W)H’"H). Hence 7' is the complete ideal associated to
the sequence (t1,...,t,) of arbitrarily near K-points of F)/Y and to the ordered
Enriques diagram (D', 0") where D’ := D —V and §/(W) := (W) — 1.

The ideal Z determines the diagram D. Indeed, for 0 < i < n, let A;, m;
be the local ring of the surface F I(;) at the K-point that is the image of ¢;. Then
according to Lipman’s preliminary discussion in [21) p. 294-295], the set {A;}
consists precisely of 2-dimensional regular local K-domains whose fraction field is
that of Fix and whose maximal ideal contains the stalk of Z at some point of Fi.
Furthermore, t; is proximate to ¢; if and only if A; is contained in the ring of
the valuation v; defined by the formula: v;(f) := max{m | f € m}'}. Finally, if
W :=60~1(j), then the weight my is the largest integer m such that m’" contains
the appropriate stalk of Z.

Let J be an arbitrary ideal on Fi of finite colength. Let L/K be an arbitrary
field extension. If the extended ideal [J;, on Fj, is complete, then J is complete,
and the converse holds if L/K is separable; see Nobile and Villamayor’s proof of
[25] Prp. (3.2), p. 251]. Let us say that J is geometrically complete if Jr, on
Fr, is complete for every L, or equivalently, for some algebraically closed L. In
characteristic 0, if 7 is complete, then it is geometrically complete.

The extended ideal Z; on Fp, is, plainly, the complete ideal associated to the
extension of the sequence (o, ...,t,) and to the same ordered Enriques diagram
(D, #). Hence 7 is geometrically complete.

Suppose that K is algebraically closed. Suppose that J is complete and
that dimg H°(Op, /J) is finite and nonzero. Then J arises from some sequence
(s0y.--,8n) and some ordered Enriques diagram. Indeed, choose a minimal prime
P of J. Then K == Op, /P since K is algebraically closed. Hence P defines a
K-point S of Fg, so a section sg of Fx/K. Set mg := max{m | P™ > J }.

Let Fy be the blowup of Fx at S, and E} the exceptional divisor. Set
J" == JOp; (moEY%). Then J' is complete by Zariski and Samuel’s [33, Prp. 5,
p-381. If 7' = Op;_, then stop. If not, then repeat the process again and again,
obtaining a sequence (sg, $1,...). Only finitely many repetitions are necessary
because, as Lipman [21], p. 295] points out, the local ring of FI(;) at S is dominated
by a Rees valuation of 7, that is, the valuation associated to an exceptional divisor
of the normalized blowup of 7. Then J’ arises from the sequence of s; weighted
by the mg-1(;) owing to Lipman’s [20} prp. (6.2), p. 208] and discussion before it.

Lemma 5.2. Let A be a discrete valuation ring, set T := Spec A, and denote by
n € T the generic point and by y € T the closed point. Fix a map T — Y. Let
D be an Enriques diagram, say with n + 1 vertices, and Z a coherent ideal on Fr
that generates geometrically complete ideals on F; and F,, each with diagram D.
Let 0 be an ordering of D, and t a k(n)-point of F(D, 0) such that I, generates an

invertible sheaf on F$n+1)' Then t extends to a T-point t of F(D, 6).

PROOF. Let 6 be a second ordering. By the construction of the isomorphism
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®g o in the proof of Proposition 3] a T-point of F(D, ) corresponds to the T-
point of F(D, ¢') given by Lemma with o := 6’ 0 6~1. Moreover, the lemma
says that F}nﬂ) is unchanged. It follows that, to construct t, we may replace 6
by 6. Thus we may assume that E(D, 6) is a minimal element among the various
closed subsets E(D, 0') of F(").

Let R € D be a root, and temporarily set i := #(R). Say t corresponds to
the sequence of blowups F,gj o F,gj ) with centers n;. The image of n; in Fr
is a k(n)-point; denote its closure by Tx. Since A is a discrete valuation ring, the
structure map is an isomorphism Tpr == T.

Let Z C Fr be the subscheme with ideal Z. Its fibers Z,, and Z, are finite,
and both have degree deg(D) since the two ideals are geometrically complete with
diagram D by hypothesis. Since T is reduced, Z is T-flat.

As R varies, the points (Tr),, are exactly the components of Z,, again because
its ideal Z,, is geometrically complete with diagram D. Hence the several T are
just the components of Z that meet Z,,. But every component of Z meets Z,, since
Z is T-flat. Thus the T are the the components of Z.

Since Tr == T for each R, the fiber (T'r), is a single point, so a component of
the discrete set Z,. The number of Tx is the number of roots of D, which is also
the number of points of Z,. Hence the several T are disjoint.

Given R, let mp be its weight, Pr the ideal of Tr in Fr. Then (Pg™), D Z,.
Let’s see that P O 7. Indeed, form the image, M say, of Z in Op, /PE*. Then
M, = 0. Let v € A be a uniformizing parameter. Then M is annihilated by a
power of u. Now, Pg is quasi-regular by [10] (17.12.3), p. 83] since Tr == T and
Fr is T-smooth. Hence P}/PLt" is T-flat for all j by [10} (16.9.4), p. 47]. Hence
Op, [PR® is T-flat. So u is a nonzerodivisor on O, /Pp"*. Hence M = 0. Thus
Pr® DL

Let ng be the largest integer such that (P3%), D Z,. Then ng > mg. Now,
1, is geometrically complete with diagram D. Hence np is the weight of the root
corresponding to (Pgr),. Hence ) ,ng = > pmg. But ng > mg. Therefore,
ngr = mpg for every root R.

Let D’ be the diagram obtained from D by omitting the roots. Let 6’ be the
ordering of D’ induced by 6; namely, 6/(V) := (V) — ry where ry denotes the
number of roots R of D such that (R) < 6(V). Let F} be obtained from Fr by
blowing up |JTr, and for each R, let E; be the preimage of Tx. Set

T = IOp (Y n mrEy).

Finally, let n’ be the number of vertices of D’.

Then T’ generates geometrically complete ideals on Fy and Fy, each with di-
agram D’ owing to the theory of geometrically complete ideals over a field; see
Subsection 5.1} (To ensure that the ideals on Fy and F} have the same diagram, it
is necessary to omit all the roots of D. Indeed, D might have two roots with the
same multiplicity, but the diagram obtained by omitting one root might differ from
that obtained by eliminating the other. Conceivably, the two roots get interchanged
under the specialization.)

Plainly, t induces a k(n)-point t’ of F(D’, #') such that 7;, generates an in-

vertible sheaf on the corresponding F,',(nurl), which is equal to Fénﬂ). Hence, by

induction on n, we may assume that t’ extends to T-point t’ of F(D’, #') such that,
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on the corresponding scheme F:/F("/Jrl), the ideal 7' generates an invertible ideal. Tt
remains to show that t' and the several isomorphisms Tr - T yield an extension
t of t.

Proceed by induction on ¢ where 0 < ¢ < n. Suppose we have constructed a
sequence (o, .. .,t;_1) extending the sequence (fo,...,%;_1) coming from t; suppose
also that, if we blow up F:(Fl) along the preimage of |J,~; Tk, then we get F:/F(Z,) where,
for 0 < j < n, we let j' denote j diminished by the number of roots R of D such
that (R) < j. Note that the base case i := 0 obtains: the sequence (to,...,t—1)

is empty; furthermore, F}i) = Fr and F}(i/) = F}., which is the blowup of F along
UkZi T

Note that F}i) — Fr is an isomorphism off Uk<i T). Indeed, given j < 1, let
R’ € D be the root preceding §71(j), and set k := §(R’). Since 6 is an ordering,
k < j. Since (to,...,t;_1) extends (fo,...,t;_1), the image of T,gj) in Fr is just
(T)y. So TY) maps into Ty, and k < i.

Set V :=671(i) € D. First suppose V is a root of D. Then (i + 1)’ = i’. Also,
T; is defined, and the isomorphism T; -~ T provides a section t¢; of F}i) owing to

the preceding note. By the same token, the blowup of F:(FH_U along the preimage of

Uksis1 T is equal to the blowup of F}i)

latter blowup is equal to F}(i/). It follows that ¢; does the trick.
Next suppose V' is not a root, so V€ D’. Also Uy~; Tk = Uy>i41 Tk Now, by

the induction assumption, F}(Z/) is equal to F}Z) off the preimage of |J,~; Tk Take
t; := t; where (1), ...,t;) comes from t’. Tt is not hard to see that ¢; does the trick.

It is not immediately obvious that (%o, ..., %,) is strict, even though (¢y,...,t.))
is strict. However, t is a T-point of F(")(T) and t,, is a k(n)-point of F(D, 6);
furthermore, t, is a k(y)-point of F(D, ¢) for some ordering ¢ of D. Since T'
is irreducible, t, is a point of the closure of F(D, ) in F™) | 5o is a point of
E(D, 6). Hence E(D, ) contains E(D, ¢) by Proposition .8 But, by the initial
reduction, E(U, ) is minimal, so equal to E(D, ¢). Hence (D, 0) = (D, ¢) again
by Proposition So t, is a point of F'(D, 6). Since T is reduced, t is therefore
a T-point of F(D, 6), as desired. O

Definition 5.3. Given an Enriques diagram D, say with d := degD, let H(D) C
Hilb% /sy denote the subset parameterizing the geometrically complete ideals with
diagram D on the geometric fibers of F'/Y’; see Subsection [B.11

along the preimage of | J,~, Tx. But the

Proposition 5.4. Let D be an Enriques diagram, set d := degD, and choose
an ordering 0. Then there exists a natural map To: F(D, 0) — Hilb’}i,w/y, whose
formation commutes with base extension of Y. Its image is H(D), and it factors
into a finite map F(D, 0) — U and an open embedding U — Hilb’}i,w/y. Moreover,
Yo ="y oDy g for any second ordering 0'.
PROOF. Say D has n + 1 vertices V with weights my. On F("t1)  get
E =3, myECV)HLntl) and £ .= O(-E).
Consider the standard short exact sequence:
0—=L— Opmin — Og — 0.

It remains exact on the fibers of #(»*+1): F(n+1) _ p(™)  And 7+ is flat by
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Lemma 32 Hence £ and O are flat over F(") owing to the local criterion.

Fix a T-point of F(D, §) C F ("), Tt corresponds to a strict sequence of arbi-
trarily near T-points of F/Y by Theorem BI0 Set ¢ := <p£[1) e <p§f’+1). LetteT.
Then R'¢u (L) = 0 and RZ%*(OF,F"“)) =0 for ¢ > 1 by [3 Thm. 2.13, p. 22].
Therefore, by Lemma [A2] the induced sequence on Fr,

0— (p*ET — <p*(9F<n+1> — QD*OET — 0, (5.4.1)
T

is an exact sequence of T-flat sheaves, and forming it commutes with extending T.
The middle term in (5.4.1]) is equal to Op,.: the comorphism O, — @, OF;TLH)

is an isomorphism, since forming it commutes with passing to the fibers of Fr /T,
and on the fibers, it is an isomorphism as it is the comorphism of a birational map
between smooth varieties. The third term in (B.41) is a locally free Op-module
of rank d because its fibers are vector spaces of dimension d owing again to [3]
Thm. 2.13, p. 22]. Therefore, (5.4.1) defines a T-point of Hilb%y .

The construction of this T-point is, plainly, functorial in T, and commutes
with base extension of Y. Hence it yields a map Ty: F(D, ) — Hilbfp/y, whose
formation commutes with extension of Y.

To see that H (D) is the image of Ty, just observe that, in view of Subsection[5.1]
if T is the spectrum of an algebraically closed field, then ¢.L7 is a geometrically
complete ideal on Fr with diagram D, and every such ideal on Fr is of this form
for some choice of T-point of F'(D, 6).

Let 0" be a second ordering. Then by the construction of ®g ¢ in the proof
of Proposition [3] our T-point of F(D, ) is carried to that of F(D, 8") given by
Lemma 2 with « := §’ 0 §~1. Moreover, the lemma says that F}"H) is unchanged
and implies that E@(V)+1nt1) — g’ (V)+1,n+1) for 1] V. Hence Tg = Yo oDy gr.

By Zariski’s Main Theorem in the form of [9, Thm. (8.12.6), p. 45], there exists
a factorization

To: F(D, 6) % H 2 Hilbd .,
where €2 is an open embedding and © is a finite map. Let W be the image of €, so
©(W) = H(D). Replace H by the closure of W, and let us prove W = ©~1H (D).

Let v € ©1H(D). Then v is the specialization of a point w € W since H
is the closure of W. And w is the image of a point w € F(D, #). Hence, by [7,
Thm. (7.1.9), p. 141], there is a map 7: T — H where T is the spectrum of a
discrete valuation ring, such that the closed point y € T' maps to v and the generic
point 7 € T maps to w; also there is a k(n)-point t of F(D, ) supported at w.

The map © o 7 corresponds to a coherent ideal Z on Fr. Now, both ©(w) and
©(v) lie in H(D); so 7 generates geometrically complete ideals on F), and Fy, each
with diagram D. And Yy(t) corresponds to Z,, on F,; so Z, generates an invertible
sheaf on F7§H+l). Hence, by Lemma 52 the k(n)-point t extends to T-point t of
F(D, 6).

Then Yy(t): T — W carries n to w. But H/Y is separated. Hence Ty(t) =1
by the valuative criterion [7, Prp. (7.2.3), p. 142]. But 7(y) = v. Hence v € W.
Thus W > ©~'H(D). But ©(W) = H(D). Therefore, W = ©~1H (D).

But W is open in H, and © is finite. So ©(H) and ©(H — W) are closed
in Hilbfp/y. Hence H(D) is open in ©(H). So there is an open subscheme U of

Hilbfp/y such that U (N O(H) = H(D). Furthermore, W — U is finite, as it is the
restriction of ©. So F(D, 6) — U is finite. The proof is now complete. O
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Corollary 5.5. Let D be an Enriques diagram, and set d := degD. Then H(D)
is a locally closed subset of Hilbl}i?/y.

PrOOF. By Proposition 5.4l H (D) is the image of a finite map into an open
subscheme U of Hilbcfp/y. So H(D) is closed in U, so locally closed in Hilb%/y. O

Remark 5.6. Lossen [23] Prp. 2.19, p. 35] proved a complex analytic version of
Corollary 5.5l Independently, Nobile and Villamayor [25] Thm. 2.6, p. 250] proved
the corollary assuming Hilb‘}i,w sy 1s reduced and excellent; in fact, they worked with
an arbitrary flat family of ideals on a reduced excellent scheme, but of course, any
flat family is induced by a map to the Hilbert scheme. All three approaches are
rather different.

Theorem 5.7. Let D be an Enriques diagram, and set d := degD. Choose an
ordering 0, and form the map Ty of Proposition 5.4l Then Yy induces a map

U: F(D, §)/Aut(D) — Hilb, )y .

It is universally injective; in fact, it is an embedding in characteristic 0. Further-
more, ¥ is independent of the choice of 8, up to a canonical isomorphism.

Proor. By Corollary 4] Aut(D) acts freely. Hence, the quotient map
II: F(D, 6) — F(D, 6)/Aut(D)

is faithfully flat. By Proposition 5.4l the action of Aut(D) is compatible with Ty,
and is compatible with a second choice of ordering #’, up to the isomorphism ®g .
Hence, by descent theory, Yy induces the desired map V. Plainly, its formation
commutes with base change.

Plainly, a map is universally injective if it is injective on geometric points.
Furthermore, since II is surjective, Proposition [5.4] also implies that ¥ too factors
into a finite map followed by an open embedding. Now, a finite map is a closed
embedding if its comorphism is surjective. Hence, to prove that ¥ is an embedding,
it suffices to prove that its fibers over Y are embeddings. Now, forming ¥ commutes
with extending Y. Therefore, we may assume Y is the spectrum of an algebraically
closed field K.

To prove ¥ is universally injective, plainly we need only prove ¥ is injective
on K-points. Since II is surjective, every K-point of F(D, 9)/Aut(D) is the image
of a K-point of F(D, #). Hence we need only observe that, if two K-points t’
and t” of F(D, ) have the same image in Hilbfp/y(K) under Yy, then the two
differ by an automorphism v of D. But that image corresponds to a geometrically
complete ideal Z on Fi with diagram D. In turn, as explained in Subsection [5.1]
7 determines a set A of 2-dimensional regular local K-domains whose fraction field
is that of F, and A has a proximity structure, under which it is isomorphic to
D. Say t' € F(A, ) and t” € F(A, 0"”). Then 0'~! 0 6" induces the desired
automorphism v € Aut(D).

By Corollary LB, F(D, 6)/Aut(D) is smooth and irreducible. By Corollary[5.5
H (D) is alocally closed subset of Hilb% /v S0 carries an induced reduced structure.
And ¥ induces a bijective finite map 8: F(D, 6)/Aut(D) — H(D).

Suppose K is of characteristic 0. Then f is birational. If, perchance, D is
minimal in the sense of [16] Section 2, p. 213], then H (D) is smooth by the direct,
alternative proof of [16] Prp. (3.6), p. 225]; hence, 8 is an isomorphism. In any
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case, it follows from Proposition 3.3.14 on p. 70 of [I1] that § is unramified; hence,
[ is an isomorphism. The proof is now complete. (I

Corollary 5.8. Fiz an Enriques diagram D, and set d := degD. Assume the
characteristic is 0. Then H(D) C Hilb%/y supports a natural structure of Y -
smooth subscheme with irreducible geometric fibers of dimension dim(D).

PROOF. By Theorem [5.7] Ty induces an embedding of F(D, #)/Aut(D) into
Hilbfp/y. By Proposition[5.4] the image is H(D). And by Corollary 5] the source
is Y-smooth, and has irreducible geometric fibers of dimension dim(D). (]

Proposition 5.9. Given positive integers r1,...,rg, let G(r;) C Hilb;i/y be the
open subscheme over which the universal family is smooth, and let

G(r1,...,m) C G(r1) Xy - Xy G(ry)

be the open subscheme over which, for i # j, the fibers of the universal families
over G(r;) and G(r;) have empty intersection. Set r:=> ;.

Given distinct integers my, ..., mg > 2, let D be the the weighted Enriques dia-
gram with v vertices, each a root, and an ordering 6 such that the first r1 vertices are
roots of weight my, the next ro are of weight ma, and so on. Set d .= (mjl)ri.

Then F(D, ) is equal to the complement in the relative direct product F*¥"
of the (3) large diagonals, and F(D, 0)/Aut(D) is equal to G(r1,...,ri). Further,
Ty always induces an embedding

U: G(ri,...,15) — Hilb%/y;

on T-points, U acts by taking a k-tuple (W1, ..., Wy) where W; is a smooth length-r;
subscheme of Frr, say with ideal I;, to the length-d subscheme W with ideal [[Z™".

PRrROOF. Let (tg,...,t,—1) be a strict sequence of arbitrarily near T-points of
F/Y with diagram (D, ). Plainly, the ¢; are just sections of Fpr, and their images
are disjoint. So F(D, 0) is equal to the asserted complement.

Plainly, Aut(D) is the product of k groups, the ith being the full symmetric
group on the 7; roots in the ith set. So the quotient F/(D, §)/Aut(D) is equal to the
open subscheme of Hilb’. Jy Xy xYHilb;’“/Y whose geometric points parameterize
the k-tuples whose ith component is an unordered set of r; geometric points of F'
such that all r points are distinct; in other words, the quotient is equal to the
asserted open subscheme.

Since each vertex is a root of some weight m;, plainly ¥ acts on T-points in
the asserted way, owing to the following standard general result, which is easily
proved by descending induction: let A be a locally Noetherian scheme, Z a regular
ideal, b: B — A the blow-up of Z, and F the exceptional divisor; let m > 0 and set
L := Op(—mE); then R%,L =0 for ¢ > 1 and b.L =7™.

Finally, to prove that W is always an embedding, we may assume that Y is the
spectrum of an algebraically closed field K, owing to the proof of Theorem 5.7 By
the same token, ¥ is universally injective, and factors into a finite map followed by
an open embedding. Hence, we need only show that ¥ is unramified.

Let v be a K-point of Hilb}/y; let V' C F be the corresponding subscheme,
and 7 its ideal. Recall the definition of the isomorphism from the tangent space
at v to the normal space Hom(Z, Oy ); the definition runs as follows. Let K[e] be
the ring of dual numbers, and set T' := Spec(Ke]). An element of the tangent
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space corresponds to a T-point of Hilb% % supported at v; so it represents a T-flat
subscheme V. C Fp that deforms V. The natural splitting K[e] = K @ Ke induces
a splitting Oy, = Oy ® Oye. Similarly, the ideal Z, of V, splits: Z, = T @ Ze. Then
the natural map Op, — Oy, restricts to a map Z — Ovye, which is equal to the
desired map (: Z — Oy.

Assume v € G(r1,...,7r;). Then V is the union of k sets of reduced K-points
of F. The ith set has r; points; let Z; be the ideal of its union. Further, ¥ carries
V and V. to the subschemes W and W, defined by Zy"* - -- I} and Iy} - - - I;"F.
So ¥ is unramified at v if the induced map on tangent spaces is injectivé:

E TG(T1;~~~77‘k),U — Hom(Z7™ "'I,Tk, Ow).

Say v = (v1,...,vx) with v; € G(r;), and say v; represents V; C F. Then

Tagr,..m)w = @THilbg’/Y,m = @Hom(L, Ov,).

Given any ¢ € Tg(p,,....r).0, its image 1(() is equal to the restriction of the canonical
map Op, — Ow.. So ¢ splits into a direct sum of local components

Yz Hom(Z; 5, Ove) = Hom(Z , Ow,) forzeViandi=1,... k.

1,2 )

It remains to prove that each v, is injective. Fix an x.
Set Z :=Z; and m := m;. Fix generators p,v € Z,. Set a := (yp and b := (v

in Oy, » = K. Then Z , is generated by u — ae and v — be; so I, is generated by

™ —mu™ tae, p™ty — (mo— )™ 2vae — ™ be, ...,

m—1 1

17% —av™ e — (m — Dbur™ e, v™

— mr™ Lbe.

Hence, modulo Z!",, the generators u™ 'v and pv™~! of I/ are congruent to
(m—1)u™ 2vae+ ™ tbe and av™ te+ (m—1)bur™2e. (They’re equal if m = 2.)

Form the latter’s classes in Oy ,. Then, therefore, these classes are the images
of those generators under the map ,(,. Hence, in any characteristic, we can
recover a and b from the images of ™ 'v and pr™~!. But a and b determine (,.

Thus 1, is injective, and the proof is complete. ([

Appendix A. Generalized property of exchange

This appendix proves two lemmas of general interest, which we need. The first
lemma generalizes the property of exchange to a triple (T, f, F') where T is a (locally
Noetherian) scheme, f: P — @ is a proper map of T-schemes of finite type, and F
is a T-flat coherent sheaf on P. The original treatment was made by Grothendieck
and Dieudonné in [8, Sec. 7.7, pp. 65-72], and somewhat surprisingly, deals only
with the case of @ = T'. (Although they replace F' by a complex of flat and coherent
sheaves bounded below, this extension is minor and we do not need it.)

The first lemma is proved by generalizing the treatment in Section II, 5 of
[24] pp.46-55]. Alternatively, as Illusie pointed out in a private conversation, the
lemma can be proved using the methods that he developed in [14].

The first lemma is used to prove the second. The second is used in the proof of
Proposition [5.4] which constructs the map from the scheme of T-points with given
Enriques diagram to the Hilbert scheme.
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Lemma A.1 (Generalized property of exchange). Let T be a scheme, f: P — Q
a proper map of T-schemes of finite type, and F a T-flat coherent sheaf on P. Let
q € Q be a point, t € T its image, and i > 0 an integer. Assume that, on the fiber
Q:, the base-change map of sheaves

pi: (R'fuF)e = R funFi

is surjective at q. Then there exists a neighborhood U of q in @Q such that, for any
T-scheme T', the base-change map of sheaves

P (R f.F)pr — R fro Fr

-1

is bijective on the open subset Up: of Qr:. Furthermore, the map p;‘; is also

surjective at q if and only if sheaf R'f.F is T-flat at q.

PrOOF. The question is local on @; so we may assume that 7' = Spec A and
@ = Spec B where A is a Noetherian ring and B is a finitely generated A-algebra.
Also, we may assume that B is A-flat by expressing B as a quotient of a polynomial
ring over A and then replacing B with that ring. For convenience, when given a
B-module or a map of B-modules, let us say that it has a certain property at ¢ to
mean that it acquires this property on localizing at the prime corresponding to gq.

There is a finite complex K*® of A-flat finitely generated B-modules, and on the
category of A-algebras C, there is, for every j > 0, an isomorphism of functors

H(K*®,C) =5 H (P®sC, FR,0).
Indeed, this statement results, mutatis mutandis, from the proof of the theorem on

page 46 of [24].
Let k£ be the residue field of £. Then there is a natural map of exact sequences

Kilek = Z(K)®k — H(K*)®k — 0

ll l’“ Jh}g (A1.1)

K 'k — Z/(K*®k) — H(K*®k) — 0.

Since p}‘C is surjective at ¢, so is h};. Hence z}c is surjective at q.
Consider the following map of exact sequences:

Z{K*)®k — Kok — BT (K*) @k — 0

S S

Z'(K*®k) - K'®@k — BT (K*®k) — 0.

Now, z}, is surjective at ¢. Hence bfjl is bijective at q.

Hence B (K*) ® k — K*t! @ k is injective at q. Set L := K'*t1/B"*!(K*).

Since K'*! is A-flat, the local criterion of flatness implies that L is A-flat at q.

Hence, by the openness of flatness, there is a g € B outside the prime corresponding

to ¢ such that the localization L, is A-flat. We can replace B by B, and so assume
L is A-flat.

Let C be any A-algebra. Then the following sequence is exact:

05 Z(K)@C K @C—K"®C Lol 0. (A.1.2)
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It follows that, in the map of exact sequences
K'®@C = Z{(K*)®C — H(K*)®C — 0

I

K~'®C - Z(K*®C) - H(K*®C) — 0,

2% is bijective. Hence hl, is bijective. Thus the first assertion holds: p is bijective.
If Hi(K *) is A-flat at g, then plainly the sequence

0-B(K)ok—Z(K*)®k—H(K*)®k—=0 (A.1.3)

is exact. The converse holds too by the local criterion for flatness, because Z'(K*®)
is A-flat owing to the exactness of (A.1.2) with C := A and to the flatness of L.

Since z} is bijective, (A.L3) is exact if and only if bi is injective. The latter
holds if and only if z}c_l is surjective, owing to the map of exact sequences

ZEU K@k —» K7 @k — B(K*) @k — 0

o b

0— ZY(K*®k) = K '@k — B(K*®Fk) — 0.

Finally, 2! is surjective if and only if hi ' is so, owing to (ALI) with i —1 in
place of 7. Putting it all together, we’ve proved that h};l is surjective if and only
if H'(K*®) is A-flat at ¢. In other words, the second assertion holds too. O

Lemma A.2. Let T be a scheme, f: P — Q a proper map of T-schemes of finite
type, and

0O->F—->G—->H—0 (A.2.1)

a short exact sequence of T-flat coherent sheaves on P. For each pointt € T, let
ft and Fy and Gy denote the restrictions to the fiber Py, and assume that

R fu(Fi) =0 and R f1.(Gr) = 0 fori > 1. (A.2.2)
Then the induced sequence on @,
0— fuF = fiG — fuH — 0, (A.2.3)

is a short exact sequence of T-flat coherent sheaves, and forming it commutes with
base extension.

PROOF. Since H is T-flat, the sequence (A2:1]) remains exact after restriction
to the fiber P; for each t € T', and so the restricted sequence induces a long exact
sequence of cohomology. Hence, (A2.2) yields

R fu(Hy) =0 for all 4 > 1.

By hypothesis, F, G, H are T-flat. Hence, by the generalized property of
exchange, Lemma [A1] the sheaves f.F, f.G, f«H are T-flat, and forming them
commutes with extending 7. By the same token, R!f.(F) = 0; whence, Sequence
(A2.3)) is exact. The assertion follows. O
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Appendix B. A few examples by Ilya TYOMKIN

Let F be the affine plane over the spectrum Y := Spec(K) of an algebraically
closed field K of positive characteristic p. In this appendix, we analyze a few
simple examples of minimal Enriques diagrams D. Some depend on p, and have an
ordering @ for which the universally injective map of Theorem [5.7]

U: F(D, 6)/Aut(D) — Hilb%

is purely inseparable. Others are independent of p; they have several vertices, but
only one root, yet they have an ordering 6 for which ¥ is an embedding. In fact,
in every case, # is unique, and Aut(D) is trivial.

We take F' to be the affine plane just to simplify the presentation. With little
modification, everything works for any smooth irreducible surface F'.

It is unknown what conditions on an arbitrary Enriques diagram D serve to
guarantee here that W is unramified, so an embedding. Nevertheless, in view of the
analysis in this appendix, it is reasonable to make the following guess.

Guess B.1. Ifp > %ZVEB my, then ¥ is unramified.

This guess is sharp in the sense that, if p < %EVEB my, then ¥ may be
ramified. For example, consider the plane curve C : 5 = 2P, In the notation
of Definition [B:2] the minimal diagram of C' is M,,,,. It has p + 1 vertices with
my =p,1,1,...,1. Sop = %ZVGD my. And ¥ is ramified by Proposition [B.4l

Similarly, consider C' : y(y — 2P) = 0. Its minimal diagram has p vertices V
with my = 2. Sop = %ZVGD my. And VU is ramified by an argument similar to
the proof of Proposition [B.4l

On the other hand, if D has a single vertex of weight 2p, then ¥ is unramified
by Proposition [5.9] and of course, p = % Y vep MV

In general, if a branch has tangency of order divisible by p to an exceptional
divisor F, then the multiplicity of the root must be at least p and there must be
at least p other vertices. So p < %ZVGD my . Instead, if, at a point P € F, all
the branches have a tangency of order divisible by p to the same smooth curve D,
then there must be at least p vertices V' with my > 2. So again, p < % > vep MV-
Thus, if we guess that ¥ can be ramified in only these two ways, then we arrive at
Guess Bl

Further, although ¥ does not sense first-order deformations either along E or
along D, nevertheless after we add a transverse branch at P, then ¥ does sense first-
order deformations of the new branch; thus ¥ becomes unramified. This intuition
is developed into a rigorous proof for the ordinary tacnode in Proposition [B.7, and
a similar procedure works if the tacnode is replaced by an ordinary cusp.

Definition B.2. Fix m > p. Let M, ,, denote the minimal Enriques diagram
of the plane curve singularity with 1 + m — p branches whose tangent lines are
distinct, whose first branch is { 25 = 2%™' }, and whose remaining m — p branches

are smooth.

Example B.3. For motivation, consider the following special case. Take p := 2
and m := 2. Then M, ,, is the minimal Enriques diagram A, of the cuspidal curve
C : 3 = x3. This diagram has three vertices and a unique ordering 6.
Take F' := A% and T := Spec(K). In F(Az,0) C F?), form the locus L of
sequences (tg,t1,t2) of arbitrarily near T-points of F// K such that ¢y is the constant
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FIGURE 1. The Enriques diagram M,, ,, with m > p = 5, of
Definition B.2.

map from 7T to the origin. Plainly, the second projection induces an isomorphism
L = E% where E’; is the exceptional divisor of the blow up Fj of F at the origin.

The strict transform C’ of C' is tangent to E with order 2, and C’ is given by
the equation s> = x; where s := x5/x;. Notice that this equation is preserved by
any first order deformation along E% of the point of contact; indeed,

(5 +be)? = s*
as p =2 and €2 = 0. This observation suggests that the restriction of ¥,
(¥|L): L — Hilbg) k.,

is purely inseparable; and indeed, ¥|L is so, as we check next.
Let D’ be the diagram obtained from Ay by omitting the root, let 8’ be the
unique ordering of D’, and consider the corresponding map

U': F'(D', 0') — Hilbgy -
Plainly, the projection (to,¢1,t2) — (f1,t2) embeds L into F'(D’, ¢").
So ¥’ induces a map ¥} : L — Hilbiﬂ[/(/K. It carries (g, t1,t2) to the subscheme
of F}. with ideal Z’ defined by the formula

(3) (—Eé?’s) — E(TSB))'

= (7 01) O

But EZ? + B < EY. so

O (~EZY ~ ) 2 0,0 (~E).

r®

Hence 7’ contains the ideal of Ef.. Therefore, ¥/ factors through HileE% /K » Which
is isomorphic to Sym?*(L). The corresponding map L — Sym?(L) is the diagonal
map since U’ (to,t1,t2) has the same support as t;. This diagonal map is purely
inseparable as p = 2.

Finally, ¥/ : L — Hilb%k/K is a factor of W|L because U(tg,1t1,t2) is the sub-
scheme of Fr with ideal (@(Tl))*l’(ﬂ?{p). Thus ¥|L is, indeed, purely inseparable.
In fact, ¥ is purely inseparable by Proposition [B:4] below.
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Proposition B.4. Fiz m > p. Set D := M,,,, and d := ("}') + p. Then D
has a unique ordering 6; also Aut(D) = 1 and degD = d. Take F = A3%.. Then
dim F(D, 0) = 3, and Yy: F(D, 0) — Hilb}i;/y is purely inseparable; also, ¥ = Ty.

Proor. Plainly, D has p + 1 vertices, say Vg,...,V, ordered by succession.
Then proximity is given by Vi = Vi_1 and Vi = V| for k > 0. Further, the weights
are given by my, = m and my, = 1 for k > 0. Set (Vi) := k; plainly, 6 is an
ordering of D, and is the only one. Also, plainly, Aut(D) =1 and degD = d.

Theorem says that dim F(D, §) = dim D, but plainly dimD = 3. Now,
¥ = Ty because Aut(D) = 1. Further, Theorem [5.7] says that ¥ is universally
injective. Hence W is purely inseparable, because it is everywhere ramified owing
to the following lemma. O

Lemma B.5. Under the conditions of Proposition B4, let t € F(D, 0) be a K-
point. Then Ker(diYg) is of dimension 1.

PROOF. Say t represents the sequence (%o, ...,t,) of arbitrarily near K-points
of F/Y. Choose coordinates x1, x2 on F such that ¢ty : 1 = 2 = 0 and such
that t; is the point of intersection of the exceptional divisor Ey with the proper
transform of the z1-axis. Set so := xa/x1, set $1 := x1/s0, and set si := sp_1/50
for2<k<p—1. Thent;:s9=21=0,and tg:s9=sx_1 =0for 2 <k <p.

Set z := Ty(t) € Hilb%/Y(K). Let Z denote the corresponding subscheme,
and Z its ideal. Recall from the proof of Proposition B4l that Z = ¢x.O(—Fk)
where Ex = Y7 my, EG+1PFD Recall from the proof of Proposition [B4] that
my, = m and my, =1 for £ > 0 and that Vj > V; for k > 0. It follows that

P
Ex = me%,pﬂ)E(l) + Z ke(m + 1)e%+1,p+1)E§?+1)'
k=1
Set 6(r) :==0if0<r<pandd(r):=1if p <r <m. Set
fr= x;nﬂ_r_(s(r):z:g for 0 <r <m.
Let’s now show that the f, generate Z.

First, note that, for each r and for 1 < k <p—1,
fr _ xfanrlfé(r)S(r) _ SzlJrl*(;(T)Slg(erl*(;(T))JrT'

Hence, the pullback of f, vanishes along e%p +1)E§(1) to order at least m, and along

e(I?H"pH)E%H) to order at least k(m + 1) for k > 1, since r — k§(r) > 0. Thus
fr € T for each r.
Let J be the ideal generated by the f,.. Then J C Z. Now, K[x1,x2]|/J is

spanned as a K-vector space by the monomials x’lnﬂ_r_é(r)xé for0<l<r<m
and by x;nﬂfpxé for 0 <1 < p. Hence J = Z because

dim (K [z1,22]/T) < 3o +p=d=dim K[z, 25]/Z.

Let K[e] be the ring of dual numbers, and set T" := Spec(K|[e]). Let (ty,...,t;,)
be a strict sequence of arbitrarily near T-points of F/Y lifting (to,...,%,). Then
there are aq,aq2,b € K so that, after setting 2 := 21 + a1€ and a}, := 25 + aze and
setting s, := x5/} + be and s} := ] /s( and s}, == s}, _,/sp for 2 <k <p-—1, we
have t(:zf =5 =0and ¢] : sp =27 =0and ¢} : s; =5, =0for 2 <k <p.

Let t' € F(D, 0)(T) represent (tg,...,t,). Set 2z’ := Ty(t') € Hilb‘}/y(K)(T).
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Let Z’ denote the corresponding subscheme, and Z’ its ideal. Let’s show that 7' is
generated by the following elements:

fhi= ()™ ()T for 0 < < .

T
The f! reduce to the f,, which generate Z. Further, 7’ reduces to Z as Z' is flat
over K[e]. Hence it suffices to prove that Z’ contains the f/.
Note that (s — be)? = (s()P as the characteristic is p. Hence, for each r,

1= (@)™ 1700 (s be)” = (s} 1000 (s MDD (o ey rlr)

for 1 < k < p—1. Therefore, the pullback of f/ vanishes along egpl P +1)E§Fl) to order
at least m, and along e(fﬂ’pﬂ)E(TkH) to order at least k(m + 1) for k > 1 since
(p—k)d(r) > 0 and r — pd(r) > 0. Thus Z’ contains the f/.

Recall that TzHilb%/y(K ) = Hom(Z,Oz). Furthermore, it follows from the
computations above that

YotV f)=(m+1—7r— 6(7‘))%‘?77076(7«)1,'5@1 + rx;n+17T75(T)x§71ag
for 0 < r < m. Therefore,
ker(dtTg) = {(al,ag,b) ‘ a1 = ag = 0},

and we are done. O

Definition B.6. Fix m > 3. Let N,,, denote the minimal Enriques diagram of the
following plane curve singularity: an ordinary tacnode {z2(z2 — 2%) = 0} union
with m — 2 smooth branches whose tangent lines are distinct and different from the
common tangent line of the two branches of the tacnode.

Proposition B.7. Fiz m > 3. Set D := N, and d := ("]") +3. Then D has
a unique ordering 0; also Aut(D) = 1 and degD = d. Take F = A%. Then

dim F(D,0) =3, and Yy: F(D,0) — HilbdF/K is an embedding; also, ¥ = Y.

Proor. Plainly, D has 2 vertices, say Vj and V; ordered by succession. Then
proximity is given by Vi = Vj. Further, the weights are given by my, = m and
my, = 2. Set 0(V}) := k; plainly, 6 is an ordering of D, and is the only one. Also,
plainly, Aut(D) = 1 and deg D = d. Theorem [BI0says that dim F(D, §) = dim D,
but plainly dimD = 3. Now, ¥ = Ty because Aut(D) = 1. Further, Theorem [£.1]
says that W is universally injective. Hence ¥ is an embedding because it is nowhere
ramified owing to the following lemma. O

Lemma B.8. Under the conditions of Proposition B, let t € F(D, 0) be a K-
point. Then Ker(d;Ty) = 0.

PROOF. Say ¢ represents the sequence (to,¢1) of arbitrarily near K-points of
F/Y. Choose coordinates 1, x2 on F such that o : 1 = 29 = 0 and such that t;
is the point of intersection of the exceptional divisor Fy with the proper transform
of the z1-axis. Set s := x9/x1. Then t; : s = 21 = 0.

Set z := Ty(t) € Hilbl}i;*/y(K). Let Z denote the corresponding subscheme, and
T its ideal. Recall from the proof of Proposition 54 that Z = ¢k .O(—Ek) where
Ex = Y_omy, Ei+1 2. Recall from the proof of Proposition [B7 that my, = m
and my, = 2 and that Vi > V4. It follows that

Ex = me%Q)E(l) + (m+ 2)E§<2).
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Set §(0) := 2, set (1) := 1, and set §(r) := 0 if r > 2. Set
fri= xTﬁTH(T}xQ for 0 <r <m.

Let’s now show that the f, generate Z.
First, note that, for each r,

é
fr= ‘T71n+ (T)ST'

Hence, the pullback of f, vanishes along e(K 2)E(l) to order at least m, and along

Eg) to order at least m + 2, since m 4+ r 4+ 6(r) > m + 2. Thus f, € Z for each r.
Let J be the ideal generated by the f,.. Then J C Z. Now, K[x1,x2]|/J is

spanned as a K vector space by the monomials x]"~ T+5(T):1:2 for 0 <1 <r <m and
by 7"~ L :v’ln Zo, and me Hence J = T because

dim(K[z1,22]/T) < S0 or+ 3 =d = dim K[z1, 2] /Z.
Furthermore, the monomials 27"~ ! and 7" 'zy and 7!, and 2]~ r+é(r) 7, for

0 <l <r <m form a basis of the K-vector space K|[z1,x2]/ZT.
Let K[e] be the ring of dual numbers, and set T' := Spec(Ke]). Let (t,t})
be a strict sequence of arbitrarily near T-points of F/Y lifting (¢, ¢1). Then there

are aj,as,b € K so that, after setting =} := z1 + aje and 2}, := 25 + age and
s’ =xh /x| + be, we have t( : 2]y = x4, =0and ¢} : s’ =2} =0.

Let ¢ € F(D, 0)(T) represent (t,t}). Set 2z’ := To(t') € H1le/Y( ). Let
7' denote the corresponding subscheme, and Z’ its ideal. Let’s show that Z’ is
generated by the following elements:

fh= (@)™ ()T 4 rbe(a )T (1) for 0 < < m.

T

The f! reduce to the f,., which generate Z. Further, 7’ reduces to Z as Z' is flat
over K[e]. Hence it suffices to prove that Z’ contains the f..

The equation x4 /x} = s’ — be yields
fl= (x’l)m”(r)(s’)r for 0 < r <m.
Hence, the pullback of f/ vanishes along egp 2)E(l) to order at least m, and along
E(2) to order at least m + 2 since m + r + 6(r) > m + 2. Thus Z’ contains the f].

Recall that T, Hilb F/Y(K ) = Hom(Z,Ogz). Furthermore, it follows from the
computations above that

dTo(t)(f) = a1 ((m —r+6(r))z2a1 + reiag + ratb)
for 0 <r < m. In particular, rz{"~ 2 2b € 7 yields
diYo(t)(f]) = ma txgay + 2Tag + T
diYo(t')(f}) = (m +2)27" a;, and
diTo(t')(f) = (m — 3)z " *x3a; + 327 23as.
Recall that, in K[z, z2]/Z, the monomials
e e ey, 2 and 2] oty Lfor0<l<r<m

are linearly independent. But m > 3, so at least one of the coefficients m, m + 2,
and m — 3 is prime to the characteristic. Thus, ker(d;Yy) = 0, and we are done. [
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