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Abstract

This thesis presents a statistical framework for object recognition. The
framework is motivated by the pictorial structure models introduced
by Fischler and Elschlager nearly 30 years ago. The basic idea is to
model an object by a collection of parts arranged in a deformable con-
�guration. The appearance of each part is modeled separately, and
the deformable con�guration is represented by spring-like connections
between pairs of parts. These models allow for qualitative descriptions
of visual appearance, and are suitable for generic recognition problems.
The problem of detecting an object in an image and the problem of
learning an object model using training examples are naturally formu-
lated under a statistical approach. We present eÆcient algorithms to
solve these problems in our framework. We demonstrate our techniques
by training models to represent faces and human bodies. The models
are then used to locate the corresponding objects in novel images.
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Chapter 1

Introduction

The problem of object detection and recognition is central to the �eld
of computer vision. Classical computer vision methods concentrate on
objects with �xed or parameterized shapes or with known photometric
information (see [17, 23, 30, 19, 25]). This was a good starting point
for the �eld, since it made the recognition problem well de�ned, and
allowed for the development of important mathematical and algorith-
mic tools. On the other hand, no arti�cial system can recognize generic
objects like a dog, a house or a tree. These objects don't have �xed
shape or photometric information.

We believe that many object classes can be characterized solely by
their visual appearance, even though the objects in each class have
large variations in shape and detailed photometric information. This
thesis presents a statistical framework that allows for qualitative de-
scriptions of appearance, making it suitable for many generic recogni-
tion problems. Our framework is motivated by the pictorial structure
representation introduced in [13]. The problem of detecting an object
in an image and the problem of learning an object model using train-
ing examples are naturally formulated under a statistical approach. We

present eÆcient algorithms to solve these problems in our framework.
We demonstrate our techniques by training models to represent faces
and human bodies. The models are then used to locate the correspond-

ing objects in novel images, as shown in Figure 1.1.

1.1 Pictorial Structures

Pictorial structures were introduced by Fischler and Elschlager [13]
nearly 30 years ago. The basic idea is to model an object by a col-
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Figure 1.1: Detection results for a face (left) and a human body (right).
Each image shows the globally best location for the corresponding ob-
ject, as computed by our algorithms. The object models were con-
structed from training examples.

lection of parts arranged in a deformable con�guration. We model the
appearance of each part is separately, and the deformable con�gura-
tion is represented by spring-like connections between pairs of parts.
The appearance of a part is encoded by a function which measures how
much a location in an image looks like the corresponding part. In [13],
the problem of matching a pictorial structure to an image is de�ned
in terms of an energy function to be minimized. The quality of a par-
ticular con�guration for the parts depends both on how well each part
matches the image data at its location, and how well the con�guration
agrees with the deformable model.

The appearance model for each part can be fairly generic. This is
because parts are not recognized on their own, but together with the
other parts in the object description. This is di�erent than most meth-
ods that use part based representations. In those methods, parts are
recognized individually in an initial phase, and a second phase groups
them together to form objects. While separate recognition of each part

seems attractive from a computational point of view, it forces one to
use more complex part models. In the pictorial structure framework,
parts can be generic to the point that trying to locate them individually
would fail (one would get too many false positives or too many false
negatives).

As mentioned, the deformable con�guration of parts is represented

by connections between them. A connection between two parts indi-
cates relationships between their locations. For example, a connection
can enforce precise geometrical constraints, such as a revolute or pris-
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matic joint between two parts. Connections can also represent more
generic relationships such as \close to", \to the left of", or even some-
thing in between these generic relationships and precise geometrical
constraints.

Since both the part models and the relationships between parts can
be fairly generic, pictorial structures provide a powerful framework for
recognition problems. For example, suppose we want to model the
appearance of the human body. It makes sense to represent the body
as an articulated object, with joints connecting di�erent body parts.
With pictorial structures we can use a fairly coarse model, with a small
number of parts connected by 
exible revolute joints. In this case it
is important that the joints between parts don't behave exactly like
rigid joints, since a small number of parts can only approximate the
geometrical structure of the human body. The 
exible revolute joints
should try to enforce that connected parts be aligned at their joint,
but allow for small misalignment, penalizing it in the energy function.
Moreover, the angle between certain pairs of parts should be arbitrary,
while the angle between other pairs should be fairly constrained. Note
that it would be impossible to detect generic parts such as \lower-leg"
or \upper-arm" on their own. On the other hand, the structure between
parts provide suÆcient context to detect the human body as a whole.

The pictorial structure framework is general, in the sense that it
is independent of the speci�c scheme used to model the appearance of
individual parts, and the exact type of relationships between parts. Ar-
ticulated objects can be modeled by the appearance of each rigid part
and connections that behave like joints. We describe such models in
Chapter 5. In [13], faces and terrain maps were modeled by the appear-
ance of local features and spatial relationships between those features.
This is the nature of the models presented in Chapter 4. In [22], pic-
torial structures were used to represent generic scene concepts such as
waterfalls, snowy mountains and sunsets. For example, a waterfall was
modeled as a bright white region (water) in the middle of darker regions
(rocks). There are many other modeling schemes which can be seen as

particular implementations of the pictorial structure framework, such
as [3] and [9].

1.2 Statistical Formulation

In their original work, Fischler and Elschlager only addressed the prob-
lem of �nding the best alignment of a pictorial structure model to an
image. As mentioned before, they characterized this problem by de�n-

9



ing an energy function to be minimized. While the energy function
intuitively makes sense, it has many free parameters. For each di�er-
ent object, one has to construct a model, which includes picking an
appearance model for each part, the characteristics of the connections
between parts, and weighting parameters for the energy function.

We present a statistical formulation of the pictorial structure frame-
work. The original matching problem studied by Fischler and Elschlager
is equivalent to �nding the maximum a posteriori (MAP) estimate of
the object location given an observed image in our formulation. The
new formulation helps to characterize the di�erent model parameters.
In fact, all parameters can be determined empirically using statistical
estimation. This way we can construct models automatically, using
only a few training examples. The idea is to use the training examples
to estimate a model under the maximum likelihood (ML) formalism.
This is a big advantage over picking model parameters manually. Learn-
ing from examples is an important capability for an intelligent system.
Moreover, a user can't usually �nd the best parameters for a model by
trial and error.

Another approach to the object detection problem arises naturally
from the statistical formulation (besides MAP estimation). The idea is
to sample object locations from their posterior probability distribution.
When there is a lot of uncertainty in the object location, sampling is
useful to produce multiple hypotheses. Also, sometimes our statistical
model only approximates the \true" posterior probability of the object
location. Sampling allow us to �nd many locations for which our poste-
rior is high, and select one of those as the correct one using some other
measure. This is similar to the idea behind importance sampling (see
[15]). It can also be seen as a mechanism for visual selection (see [2]).

1.3 EÆcient Algorithms

Our main motivation is to construct a framework that is rich enough to
capture the appearance of many generic objects and for which we can
solve the object detection and model learning problems eÆciently. We
present algorithms to solve these problems for a natural class of pictorial
structure models. Our methods require that the set of connections
between parts form a tree structure, and that the relationships between
connected parts be of a particular (but quite general) form.

Restricting the relationships between parts to a tree structure is
natural. For example, the connections between parts of many animate
objects form a tree corresponding to the skeletal structure. Many other
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kinds of objects can be represented using a tree structure such as a
star-graph, where there is one central part to which all the other parts
are connected. The restriction that we impose on the form of the
relationships between parts similarly allows a broad range of objects to
be modeled.

We present examples illustrating that our algorithms enable eÆcient
search for the globally best match of relatively generic objects to an
image. Figure 1.1 shows matching results for a face model, and for
a model of the human body. Both these models were automatically
constructed using training examples.

The asymptotic running time of our matching algorithms is optimal,
in the sense that they run as quickly as it takes to match each part
separately, without accounting for the relationships between parts. In
practice, the algorithms are also fast, �nding the globally best match
of a pictorial structure to an image in a few seconds.
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Chapter 2

General Framework

In this chapter we present the statistical framework for pictorial struc-
tures. As described in Section 1.3, our main motivation is to construct
a rich class of models for which we can develop eÆcient algorithms to
solve the object detection and model learning problems.

2.1 Statistical Approach

A typical way to approach object detection from a statistical perspec-
tive is to model two di�erent distributions. One distribution corre-
sponds to the imaging process, and measures the likelihood of seeing a
particular image, given that an object is at some location. The other
distribution measures the prior probability that an object would be at
a particular location.

Let � be a set of parameters that de�ne an object model. The
likelihood of seeing image I given that the object is at location L is
given by p(I jL; �). The prior probability of the object being at location
L is given by p(Lj�). Using Bayes' rule we can compute p(LjI; �), the
probability that the object is at location L, given an observed image I
(this will be called the posterior distribution from now on). A number of
interesting problems can be characterized in terms of these probability
distributions:

� MAP estimation - this is the problem of �nding the location L
with highest posterior probability. In some sense, the MAP es-
timate is our best guess for the location of the object. If the
posterior is low everywhere we might decide that the object is
not visible in the image.
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� Sampling - this is the problem of sampling from the posterior
distribution. In general, the posterior distribution we de�ne is
only an approximation of the \true" one. Sampling allows us to
�nd many locations for which our posterior is high, and evaluate
them using some other method. In this way, our framework can
be used to generate a number of promising hypothesis for the
location of the object. Each hypothesis must be veri�ed, but
there are only a small number of them.

� Model estimation - this is the problem of �nding � which speci�es
a good model for a particular object. We would like to build
models using some sort of training examples.

The next section describes how we model p(I jL; �) and p(Lj�).
Later, we show how to estimate model parameters using training exam-
ples, and in Chapter 3 we present eÆcient algorithms to compute the
MAP estimate of the object location and to sample from its posterior
distribution.

2.2 Pictorial Structures

In the pictorial structure framework, an object is represented by a
collection of parts, or features, with connections between certain pairs
of parts. A natural way to express such a model is in terms of an
undirected graph G = (V;E), where the vertices V = fv1; : : : ; vng
correspond to the parts, and there is an edge (vi; vj) 2 E for each pair
of connected parts vi and vj .

An instance of the object is given by a con�gurationL = (l1; : : : ; ln),
where li is a random variable specifying the location of part vi. Some-
times we refer to L simply as the object location, but \con�guration"
emphasizes the part-based representation. The location of a part, li,
can simply be the position of the part in the image, but more complex
parameterizations are also possible. For example, a location can spec-
ify the position, angle, and scale parameters for two dimensional parts.
Each connection (vi; vj) 2 E indicates that the locations li for vi and lj
for vj are dependent. To be precise, the prior distribution over object
con�gurations, p(Lj�), is a Markov Random Field, with structure spec-
i�ed by the graph G. Using Bayes' rule, the posterior distribution over
object con�gurations given an observed image can be characterized by
the prior model and a likelihood function,

p(LjI; �) / p(I jL; �)p(Lj�); (2.1)
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Figure 2.1: Graphical representation of the dependencies between the
location of object parts (black nodes) and the image. In the case of a
car, each black node would correspond to a part such as a wheel, the
body, etc.

where the likelihood, p(I jL; �), measures the probability of seeing image
I given a particular con�guration for the object. Figure 2.1 shows a
graphical representation of this statistical model. The random variable
corresponding to the location of each object part is represented by a
black node. Thick edges correspond to dependencies coming from the
prior model, and the thin directed edges correspond to the dependency
of the image with respect to the object con�guration.

This posterior distribution is too complex to deal with in its most
general form. In fact, �nding the MAP estimate or sampling from
this distribution is an NP-hard problem. Our framework is based on

restricting the form of the prior model and the likelihood function so
that the posterior distribution is more tractable. First of all, the graph-
ical representation of the posterior should have no loops. In that case,
we can �nd the MAP estimate and sample from the distribution in
polynomial time. This is done using a generalization of the Viterbi
and Forward-Backward algorithms (see [27]). Similar algorithms are
known in the Bayesian Network community as belief propagation and
belief revision (see [26]). These algorithms can be implemented to take
O(h2n) time, where n is the number of object parts, and h is a discrete
number of possible locations for each part. Unfortunately, this is not
good enough. The number of possible locations for each part can be
huge, and a quadratic algorithm takes too long. We identify a restric-
tion on the type of dependencies between parts for which we can obtain

14



algorithms that run in O(hn) time. These algorithms are quite fast in
practice.

We assume that there is an appearance model for each part, and
that the appearances are characterized by some parameters u = fui j
vi 2 V g. The exact method used to model the appearance of parts
is not important. In Section 4, a part is modeled as a local image
feature, based on image derivatives around a point, while in Section 5
parts are modeled as fairly large shapes. In practice, the appearance
modeling scheme just needs to provide a distribution p(I jli; ui) (up
to a normalizing constant), which measures the likelihood of seeing a
particular image, given that a part with appearance parameters ui is
at location li. Note that this distribution doesn't have to be a precise
generative model, an approximate measure is enough in practice. We
model the likelihood of seeing an image given that the object is at some
con�guration as the product of the individual likelihoods,

p(I jL; u) /

nY
i=1

p(I jli; ui): (2.2)

This approximation is good if the parts don't overlap, as they would
generate di�erent portions of the image. But the approximation can be
bad if one part occludes another. The articulated models in Section 5
provide examples where the approximation can be problematic. For
those models, the MAP estimate of an object location can be a poor
estimate of its position. On the other hand, we show that we can �nd
the true location by sampling from the posterior. We sample to �nd
many locations with high posterior, and select one of those using a
di�erent measure.

In our models, the set of connections between parts forms a tree
structure. The dependencies between parts are characterized by some
parameters c = fcij j (vi; vj) 2 Eg. For example, one connection might
indicate that a given part tends to be at a certain distance to the
left of another one. We don't model any preference over the absolute
location of object parts, only over their relative con�guration. Let
p(li) = 1 for simplicity. Our eÆcient algorithms require that the joint
distribution for the locations of two connected parts be expressed in a
speci�c form. There are a few di�erent possibilities, here we concentrate
on the following form. Suppose we have a Normal distribution in a
transformed space,

p(li; lj jcij) = N (Tij(li)� Tji(lj); 0;�ij); (2.3)

where Tij , Tji, and �ij are the connection parameters encoded by cij .
The covariance matrix �ij should be diagonal, and for simplicity we
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will assume that Tij , and Tji are invertible. We further require that
it be possible to discretize Tji(lj) in a grid (which in turn speci�es a
number of discrete locations lj). The functions Tij and Tji together
capture the ideal relative locations for parts vi and vj . The distance
between the transformed locations, weighted by �ij , measures the de-
formation of a \spring" connecting vi and vj . This special form for
the joint distribution of two parts arises naturally from our algorithmic
techniques. Moreover, it allows for a broad class of interesting mod-
els. In Section 4 we describe simple feature based models where the
connections between parts behave like springs. More complex models
are described in Section 5, where the connections between parts behave
like 
exible joints.

The prior distribution over object locations can be de�ned in terms
of the joint distributions for pairs of connected parts,

p(LjE; c) =
Y

(vi;vj)2E

p(li; lj jcij): (2.4)

Note that this is not a real probability distribution over locations. It
actually integrates to in�nity! The joint distributions described above
have the same problem. What is happening is that we have an uninfor-
mative prior over absolute locations (see [4]). We can interpret these
functions as distributions over equivalence classes. Each equivalence
class corresponds to object con�gurations which have di�erent abso-
lute locations, but the relative locations between parts are the same.

So our models depend on parameters � = (u;E; c), where u =
fu1; : : : ; ung are the appearance parameters for each part, E indicates
which parts are connected, and c = fcij j (vi; vj) 2 Eg are the con-
nection parameters. We have de�ned both p(I jL; �), the likelihood of
seeing an image given that the object is at a some con�guration, and
p(Lj�), the prior probability that the object would assume a particular
con�guration. This is suÆcient to characterize p(LjI; �), the probabil-
ity that the object is at some con�guration in an image. A graphical
representation of our restricted models is shown in Figure 2.2.

2.3 Estimating Model Parameters

Suppose we are given a set of example images I1; : : : ; Im and corre-
sponding object con�gurations L1; : : : ; Lm for each image. The prob-
lem is to use the training examples to obtain estimates for the model
parameters � = (u;E; c), where u = fu1; : : : ; ung are the appearance
parameters for each part, E is the set of connections between parts,
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Figure 2.2: Graphical representation of the dependencies between the
location of object parts (black nodes) and the image in the restricted
models (see text).

and c = fcij j (vi; vj) 2 Eg are the connection parameters. The maxi-
mum likelihood (ML) estimate of � is, by de�nition, the value �� that
maximizes

p(I1; : : : ; Im; L1; : : : ; Lmj�) =

mY
k=1

p(Ik; Lkj�);

where the right hand side is obtained by assuming that each example
was generated independently. Since p(I; Lj�) = p(I jL; �)p(Lj�), the
ML estimate is

�� = argmax
�

mY
k=1

p(IkjLk; �)

mY
k=1

p(Lkj�): (2.5)

The �rst term in this equation depends only on the appearance of the
parts, while the second term depends only on the set of connections
and connection parameters. Thus, we can independently solve for u�

and the pair E�; c�.

2.3.1 Estimating the Appearance Parameters

From equation (2.5) we get

u� = argmax
u

mY
k=1

p(IkjLk; u):
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The likelihood of seeing image Ik, given the con�guration Lk for the
object is given by equation (2.2). Thus,

u� = argmax
u

mY
k=1

nY
i=1

p(Ikjlki ; ui) = argmax
u

nY
i=1

mY
k=1

p(Ikjlki ; ui):

Looking at the right hand side we see that to �nd u� we can indepen-
dently solve for the u�

i
,

u�i = argmax
ui

mY
k=1

p(Ikjlki ; ui):

This is exactly the ML estimate of the appearance parameters for part
vi, given independent examples (I1; l1

i
); : : : ; (Im; lm

i
). Solving for u�

i

depends on picking a speci�c modeling scheme for the parts.

2.3.2 Estimating the Dependencies

From equation (2.5) we get

E�; c� = argmax
E;c

mY
k=1

p(LkjE; c): (2.6)

We need to pick a set of edges that form a tree and the properties
for each edge. This can be done in a similar way to the Chow and
Liu algorithm in [10], which estimates a tree distribution for discrete
random variables. Equation (2.4) de�nes the prior probability of the
object assuming con�guration Lk as,

p(LkjE; c) =
Y

(vi;vj)2E

p(lk
i
; lk
j
jcij):

Plugging this into equation (2.6) and re-ordering the factors we get,

E�; c� = argmax
E;c

Y
(vi;vj)2E

mY
k=1

p(lki ; l
k

j jcij): (2.7)

We can estimate the parameters for each possible connection indepen-
dently, even before we know which connections will actually be in E

as

c�
ij
= argmax

cij

mY
k=1

p(lk
i
; lk
j
jcij):

18



This is the ML estimate for the joint distribution of li and lj , given
independent examples (l1

i
; l1
j
); : : : ; (lm

i
; lm
j
). Solving for c�

ij
depends on

picking a speci�c representation for the joint distributions. Indepen-
dent of the exact form of p(li; lj jcij), and how to compute c�

ij
(since

it may vary with di�erent modeling schemes), we can characterize the
\quality" of a connection between two parts as the probability of the
examples under the ML estimate for their joint distribution,

q(vi; vj) =

mY
k=1

p(lk
i
; lk
j
jc�
ij
):

These quantities can be used to estimate the connection set E� as
follows. We know that E� should form a tree, and according to equation
(2.7) we let,

E� = argmax
E

Y
(vi;vj)2E

q(vi; vj) = argmin
E

X
(vi;vj)2E

� log q(vi; vj):

(2.8)
The right hand side is obtained by taking the negative logarithm of the
function being maximized (and thus �nding the argument minimizing
the value, instead of maximizing it). Solving this equation reduces
to the problem of computing the minimum spanning tree (MST) of a
graph. We build a complete graph on the vertices V , and associate a
weight � log q(vi; vj) with each edge (vi; vj). By de�nition, the MST
of this graph is the tree with minimum total weight, which is exactly
the set of edges E� de�ned by equation (2.8). The MST problem is
well known (see [11]) and can be solved eÆciently. Kruskal's algorithm
can be used to compute the MST in O(n2 log(n)) time, since we have
a complete graph with n nodes.
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Chapter 3

Matching Algorithms

Now we describe eÆcient algorithms to match pictorial structure mod-
els to images. The �rst one �nds the MAP estimate of the object
location given an observed image. That algorithm was �rst presented
in [12]. The second method samples con�gurations from the posterior
distribution. Both algorithms work in a discretized space of locations
for each part. They basically run in O(hn) time, where h is a number
of discrete locations for each part and n is the number of parts. To be
precise, h is a number of discrete locations for Tji(lj), which usually
matches the number of locations for lj . Sometimes, however, it can be
a little larger, as shown in Section 5.

3.1 MAP Estimate

Remember that the MAP estimate of the object location is a con�gura-
tion with highest probability given an observed image. In some sense,
this is our best guess for the object location (see [4] for a theoretical jus-
ti�cation for using the MAP estimate). Now we show how to eÆciently
compute this \best" con�guration.

The MAP estimate is given by

L� = argmax
L

p(LjI; �) = argmax
L

p(I jL; �)p(Lj�):

Equation (2.2) characterizes the likelihood p(I jL; �) in terms of an ap-
pearance model for each part, and equation (2.4) characterizes the prior
p(Lj�) in terms of the connections between parts. Thus, in our frame-
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work we have,

L� = argmax
L

0
@ nY

i=1

p(I jli; ui)
Y

(vi;vj)2E

p(li; lj jcij)

1
A :

By taking the negative logarithm of this equation, a typical energy
minimization problem arises,

L� = argmin
L

0
@ nX

i=1

mi(li) +
X

(vi;vj)2E

dij(li; lj)

1
A ; (3.1)

where mi(li) = � log p(I jli; ui) is a match cost, which measures how
well part vi matches the image data at location li, and dij(li; lj) =
� log p(li; lj jcij) is a deformation cost, which measures how well the
relative locations for vi and vj agree with the prior model.

The form of this minimization is quite general, and it appears in
a number of problems in computer vision, such as MAP estimation of
Markov Random Fields and optimization of dynamic contour models
(snakes). While the form of the minimization is shared with these other
problems, the structure of the graph and space of possible con�gura-
tions di�er substantially. This changes the computational nature of the
problem.

Solving equation (3.1) for arbitrary graphs and arbitrary functions
mi, dij is an NP-hard problem (see [7]). However, when the graph
G = (V;E) has a restricted form, the problem can be solved more
eÆciently. For instance, with �rst-order snakes the graph is simply
a chain, which enables a dynamic programming solution that takes
O(h2n) time, where h is a number of discrete locations for each part,
and n is the number of parts in the model. (see [1]). Moreover, with
snakes the minimization is done over a small number of locations for
each vertex (e.g., the current location plus the 8 neighbors on the image
grid). This minimization is then iterated until the change in energy is
small. The key to an eÆcient solution is that the number of locations,
h, be small, as the dynamic programming solution is quadratic in this
value. Another source of eÆcient algorithms has been in restricting
dij to a particular form. This approach has been particularly fruitful
in some recent work on MRFs for low-level vision ([8, 20]). In our
algorithm, we use constraints on both the structure of the graph and

the form of dij .
By restricting the graphs to trees, a similar kind of dynamic pro-

gramming can be applied as is done for chains, making the minimization
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problem polynomial rather than exponential time. The precise tech-
nique is described in Section 3.1.1. However, this O(h2n) algorithm is
not practical, because the number of possible locations for each part,
h, is usually huge. When searching for the best possible match of a
pictorial structure to an image, there is no natural way to limit the
space of locations. For example, the number of locations for a part is
usually at least as large as the number of pixels in the image, making
h on the order of 105 possible values.

The restricted form of the joint distribution for the locations of two
connected parts in equation (2.3) is,

p(li; lj jcij) = N (Tij(li)� Tji(lj); 0;�ij):

This makes dij(li; lj) a Mahalanobis distance between transformed lo-
cations,

dij(li; lj) = (Tij(li)� Tji(lj))
T �0

ij
(Tij(li)� Tji(lj)); (3.2)

where �0

ij
= �ij=2, and we ignored an additive constant since it doesn't

change the solution of our problem. This form for dij yields a mini-
mization algorithm which runs in O(hn) rather than O(h2n) time. This
makes it quite practical to �nd the globally optimal match of a pictorial
structure to an image, up to the discretization of the possible locations.

3.1.1 EÆcient Minimization

In this section, we show how to use dynamic programming to �nd the
con�guration L� = (l�1 ; : : : ; l

�
n), minimizing equation (3.1) when the

graph G is a tree. This is an instance of a known class of dynamic
programming techniques and is a generalization of the technique for
chains that is used in solving snakes problems (e.g., [1]). The computa-
tion involves (n�1) functions, each of which speci�es the best location
of one part with respect to the possible locations of another part.

Given a tree G = (V;E), let vr 2 V be an arbitrarily chosen root
vertex. From this root, each vertex vi 2 V has a depth di which is
the number of edges between it and vr (and the depth of vr is 0). The
children, Ci, of vertex vi are those neighboring vertices, if any, of depth
(di+1). Every vertex vi other than the root has a unique parent, which
is the neighboring vertex of depth (di � 1).

First we note that for any vertex vj with no children (i.e., any leaf
of the tree), the best location l�

j
of that vertex can be computed as a

function of the location of just its parent, vi. The only edge incident
on vj is (vi; vj), thus the only contribution of lj to the energy in (3.1)
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is mj(lj)+dij(li; lj). Hence, the quality of the best location of vj given
location li of vi is

Bj(li) = min
lj

(mj(lj) + dij(li; lj)) ; (3.3)

and the best location of vj as a function of li can be obtained by
replacing the min in the equation above with argmin.

For any vertex vj other than the root, assume that the function
Bc(lj) is known for each child vc 2 Cj . That is, the quality of the best
location of each child is known with respect to the location of vj . Then
the quality of the best location of vj given the location of its parent vi
is

Bj(li) = min
lj

0
@mj(lj) + dij(li; lj) +

X
vc2Cj

Bc(lj)

1
A : (3.4)

Again, the best location of vj as a function of li can be obtained by
replacing the min in the equation above with argmin. This equation
subsumes (3.3) because for a leaf node the sum over its children is
simply empty. Finally, for the root vr, if Bc(lr) is known for each child
vc 2 Cr then the best location of the root is

l�
r
= argmin

lr

 
mr(lr) +

X
vc2Cr

Bc(lj)

!
:

That is, the minimization in (3.1) can be expressed recursively in terms
of the (n � 1) functions Bj(li) for each vertex vj 2 V (other than the
root). These recursive equations, in turn, specify an algorithm. Let d
be the maximum depth node in the tree. For each node vj with depth
d, compute Bj(li), where vi is the parent of vj . These are all leaf nodes,
so clearly Bj(li) can be computed as in (3.3). Next, for each node vj
with depth (d � 1) compute Bj(li), where again vi is the parent of vj .
Clearly, Bc(lj) has been computed for every child vc of vj , because
the children have depth d. Thus Bj(li) can be computed as in (3.4).
Continue in this manner, decreasing the depth until reaching the root
at depth zero. Besides computing each Bj we also compute B

0
j
, which

indicates the best location of vj as a function of its parent location

(obtained by replacing the min in Bj with argmin). At this point,
we compute the optimal location l�r of the root. The optimal location
L� of all the parts can now be computed by tracing from the root to
each leaf. We know the optimal location of vj given the location of its
parent, and the optimal location of each parent is now known starting
from the root.

23



The overall running time of this algorithm is O(Hn), whereH is the
time required to compute each Bj(li) and B0

j
(li). The typical way to

compute these functions takes O(h2) time. This is done by considering
every location of a child node for each possible location of the parent.
In the next section, we show how to compute each Bj(li) and B0

j
(li)

more eÆciently when dij is restricted to be in the form of equation
equation (3.2). The method will compute each pair Bj(li) and B0

j
(li)

in O(h), yielding an O(hn) algorithm overall.

3.1.2 Generalized Distance Transforms

Traditional distance transforms are de�ned for sets of points on a grid.
Suppose we have a grid G. Given a point set B � G, the distance
transform of B speci�es for each location in the grid, the distance to
the closest point in the set,

DB(x) = min
y2B

d(x; y):

In particular, DB is zero at any point in B, and is small at nearby
locations. The distance transform is commonly used for matching edge
based models (see [6, 19]). The trivial way to compute this function
takes O(hjBj) time, where h is the number of locations in the grid.
On the other hand, eÆcient algorithms exist to compute the distance
transform in O(h) time, independent of the number of points in B (see
[5, 21]). These algorithms have small constants and are very fast in
practice. In order to compute the distance transform, it is commonly
expressed as

DB(x) = min
y2G

(d(x; y) + 1B(y)) ;

where 1B(y) is an indicator function for membership in the set B, that
has value 0 when y 2 B and 1 otherwise. This suggests a general-
ization of distance transforms to functions as follows. Let the distance
transform of a function f de�ned over a grid G be

Df (x) = min
y2G

(d(x; y) + f(y)) :

Intuitively, for each grid location x, this function �nds a location y that
is close to x and for which f(y) is small. Note that di�erence between
the value of Df at two locations is bounded by the distance between

the locations, regardless of how quickly the function f changes. In
particular, if there is a location where f(x) has a small value, Df will
have small value at x and nearby locations.
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Given the restricted form of dij in equation (3.2), the functions
Bj(li) that must be computed by the dynamic programming algorithm
can be rewritten as generalized distance transforms under the Maha-
lanobis distance dij ,

Bj(li) = Df (Tij(li));

where
f(y) = mj(T

�1
ji

(y)) +
X
vc2Cj

Bc(T
�1
ji

(y));

and the grid G speci�es a discrete set of values for Tji(lj) that are
considered during the minimization (this in turn speci�es a discrete set
of locations lj). There is an approximation being made, since the set of
discrete values for Tji(lj) (the locations in the grid) might not match
the set of discrete values for Tij(li) (where we need the value of Df ).
We can simply de�ne the value of the distance transform at a non-grid
position to be the value of the closest grid point. The error introduced
by this approximation is small (as the transform changes slowly).

It turns out that some of the eÆcient algorithms used to compute
the classical distance transform can be modi�ed to compute the gen-
eralized distance transform under di�erent distances. The method of
Karzanov (originally in [21], but see [29] for a better description) can
be changed to compute the transform of a function under a Maha-
lanobis distance with diagonal covariance matrix. The algorithm can
also compute B0

j
(li) as it computes Bj(li).

3.2 Sampling from the Posterior

We now turn to the problem of sampling from the posterior distribution
of object con�gurations. When there is a lot of uncertainty in the object
location, sampling is useful to produce multiple hypotheses. Sometimes
our statistical model only approximates the \true" posterior probability
of an object location in an image. In that case, simply computing the
MAP estimate might give poor results. By sampling we can �nd many
locations for which our posterior is high, and select one of those as the
correct one using some other measure.

The sampling problem can be solved with an algorithm similar to
the one used to compute the MAP estimate. The posterior distribution
is

p(LjI; �) / p(I jL; �)p(Lj�) /

0
@ nY

i=1

p(I jli; ui)
Y

(vi;vj)2E

p(li; lj jcij)

1
A :
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Like before, let vr 2 V be an arbitrarily chosen root vertex, and the
children of vi be Ci. The algorithm works by �rst computing p(lrjI; �).
We then sample a location for the root from that distribution. Next
we sample a location for each child, vc, of the root from p(lcjlr; I; �).
We can continue in this manner until we have sampled a location for
each part. The marginal distribution for the root location is,

p(lrjI; �) /
X
l1

� � �
X
lr�1

X
lr+1

� � �
X
ln

0
@ nY

i=1

p(I jli; ui)
Y

(vi;vj)2E

p(li; lj jcij)

1
A :

Computing the distribution in this form would take exponential time.
But since the set of dependencies between parts form a tree, we can
rewrite the distribution as,

p(lrjI; �) / p(I jlr; ur)
Y

vc2Cr

Sc(lr):

The functions Sj(li) are similar to the Bj(li) we used for the MAP
estimation algorithm,

Sj(li) =
X
lj

0
@p(I jlj ; uj)p(li; lj jcij) Y

vc2Cj

Sc(lj)

1
A : (3.5)

These recursive functions already give a polynomial algorithm to com-
pute p(lrjI; �). As in the MAP estimation algorithm we can compute
them starting from the leaf vertices. The trivial way to compute each
Sj(li) takes O(h

2) time. For each location of li we evaluate the function
by explicitly summing over all possible locations of lj . We will show
how to compute each Sj(li) in O(h) time for the case where p(li; lj jcij)
is in the special form given by equation (2.3). But �rst let's see what
we need to do after we sample a location for the root from its marginal
distribution. If we have a location for the parent vi of vj we can write,

p(lj jli; I; �) / p(I jlj ; uj)p(li; lj jcij)
Y

vc2Cj

Sc(lj): (3.6)

If we have already computed the S functions we can compute this
distribution in O(h) time. So once we have sampled a location for
the root, we can sample a location for each of its children. Next we
sample a location for the nodes at the third level of the tree, and so
on until we sample a location for every part. In the next section we
show how to compute the S functions in O(h) time, yielding a O(hn)
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algorithm for sampling a con�guration from the posterior distribution.
Note that if we want to sample multiple times we only need to compute
the S functions once. And when the location of a parent node is �xed,
we only need to compute the distribution in (3.6) for locations of the
children where p(li; lj jcij) is not too small. So sampling multiple times
isn't much more costly than sampling once.

3.2.1 Computing the S functions

We want to eÆciently compute the function in equation (3.5). We
will do this by writing the function as a Gaussian convolution in the
transformed space (given by Tij and Tji). Using the special form of
p(li; lj jcij) we can write,

Sj(li) =
X
lj

0
@N (Tij(li)� Tji(lj); 0;�ij) p(I jlj ; uj)

Y
vc2Cj

Sc(lj)

1
A :

This can be seen as a Gaussian convolution in the transformed space:

Sj(li) = (G 
 f) (Tij(li));

where
f(y) = p(I jT�1

ji
(y); uj)

Y
vc2Cj

Sc(T
�1
ji

(y)):

Just like when computing the generalized distance transform, the con-
volution is done over a discrete grid which speci�es possible values for
Tji(lj) (which in turn specify a set of locations lj). The Gaussian �l-
ter G is separable since the covariance matrix �ij is diagonal. We can
compute a good approximation for the convolution in linear time using
the techniques from [31].

3.3 Summary

In this chapter, we have presented two di�erent algorithms that can
be used to locate pictorial structure models in images. Together with

the model learning method from Section 2.3, these algorithms form the
base of a complete recognition system. The next two chapters describe
two modeling schemes that represent objects in very di�erent ways.
The two schemes use the same computational mechanisms, which are
exactly the algorithms presented so far.
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Chapter 4

Iconic Models

The framework presented so far is general in the sense that it doesn't
fully specify how objects are represented. A particular modeling scheme
must de�ne the pose space for the object parts, the form of the appear-
ance model for each part, and the type of connections between parts.
Here we present models that represent objects by the appearance of
local features and spatial relationships between those features. This
type of model has been popular in the context of face detection (see
[13, 9, 32]). We �rst describe how we model the appearance of a fea-
ture, and later describe how we model spatial relationships between
features. In Section 4.3 we show experiments of face detection.

4.1 Features

The location of a feature is speci�ed by its (x; y) position in the image,
so we have a two-dimensional pose space for each part. To model the
appearance of features we use the iconic representation developed in
[28]. The iconic representation is based on Gaussian derivative �lters
of di�erent orders, orientations and scales. To describe an image patch
centered at some position we collect the response of all �lters at that
point in a high-dimensional vector. This vector is normalized and called
the iconic index at that position. Figure 4.1 shows the nine �lters used
to build the iconic representation at a �xed scale. In practice, we use
three scales, given by �1 = 1, �2 = 2, and �3 = 4, the standard devia-
tions of the Gaussian �lters. So we get a 27 dimensional vector. The
iconic index is fairly insensitive to changes in lighting conditions. For
example, it is invariant to gain and bias. We get invariance to bias as
a consequence of using image derivative �lters, and the normalization
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Figure 4.1: Gaussian derivative basis functions used in the iconic rep-
resentation.

gives us the invariance to gain. Iconic indices are also relatively insen-
sitive to small changes in scale and other image deformations. They
can also be made invariant to image rotation (see [28]).

The appearance of a feature is modeled by a distribution over iconic
indices. Speci�cally, we model the distribution of iconic indices at the
location of a feature as a Gaussian with diagonal covariance matrix.
Using a diagonal covariance matrix makes it possible to estimate the
distribution parameters with a small number of examples. If many
examples are available, a full Gaussian distribution or even more com-
plex distributions such as a mixture of Gaussians, or a non-parametric

estimate could be used. Under the Gaussian model, the appearance pa-
rameters for each part are ui = (�i;�i), a mean vector and a covariance

matrix. We have,

p(I jli; ui) / N (�(li); �i;�i);

where �(li) is the iconic index at location li in the image. So each
dimension of �(li) is the response of a di�erent Gaussian derivative
�lter at location li. If we have some training examples, we can easily
estimate the maximum likelihood parameters of this distribution as the
sample mean and covariance.

Note that we can use other methods to represent the appearance of
features. In particular, we experimented with the eigenspace techniques
from [24]. With a small number of training examples the eigenspace
methods are no better than the iconic representation, and the iconic
representation can be computed more eÆciently. In fact, the iconic
representation can be computed very eÆciently by convolving each level
of a Gaussian pyramid with small x-y separable �lters (see [14]).

4.2 Spatial Distribution

The spatial con�guration of features is modeled by a collection of
springs connecting pairs of them. Each connection (vi; vj) is character-
ized by the ideal relative location of the two connected parts sij , and a
covariance matrix �ij which in some sense corresponds to the sti�ness
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of the spring connecting the two parts. So the connection parameters
are cij = (sij ;�ij). We model the distribution of the relative location
of part vj with respect to the location of part vi as a Gaussian with
mean sij and covariance �ij ,

p(li; lj jcij) = N (lj � li; sij ;�ij): (4.1)

So, ideally the location of part vj is the location of part vi shifted
by sij . Since the models are deformable, the location of vj can vary
(which corresponds to stretching the spring), by paying a cost that
depends on the covariance matrix. Because we have a full covariance
matrix, stretching in di�erent directions can have di�erent costs. For
example, two parts can be highly constrained to be at the same vertical
position, while their relative horizontal position may be uncertain. As
in the appearance model, the maximum likelihood parameters of this
distribution can easily be estimated using training examples.

In practice, we need to write the joint distribution of li and lj in
the speci�c form required by our algorithms. It must be a Gaussian
distribution with zero mean and diagonal covariance in a transformed
space, as described by equation (2.3). To do this, we �rst compute the
singular value decomposition of the covariance matrix �ij = UijDijU

T
ij
.

Now let
Tij(li) = UT

ij
(li + sij); and Tji(lj) = UT

ij
(lj);

which allow us to write equation (4.1) in the right form,

p(li; lj jcij) = N (Tji(lj)� Tij(li); 0; Dij):

4.3 Experiments

In this section, we present experiments of using the iconic models we
just described to detect faces. The basic idea is to use ML estimation
to train a model of frontal faces, and MAP estimation to detect faces
in novel images. Our �rst model has �ve features, corresponding to the
eyes, nose, and corners of the mouth. To generate training examples we
labeled the location of each feature in twenty di�erent images (from the
Yale face database). More training examples were automatically gen-

erated by scaling and rotating each training image by a small amount.
This makes our model handle some variation in orientation and scale.
Some training examples and the structure of the learned model are
shown in Figure 4.2. Remember that we never told the system which
features should be connected together. Picking a structure is part of
the ML parameter estimation procedure.
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Figure 4.2: Two examples from the �rst training set and the structure
of the learned model.

We tested the model by matching it to novel images using MAP es-
timation. Note that all model parameters are automatically estimated
under the maximum likelihood formalism. Thus, there are no \knobs"
to tune in the matching algorithm. Some matching results are shown in
Figure 4.3. Both the learning and matching algorithms are extremely
fast. Using a desktop computer it took a few seconds to learn the model
and about a second to compute the MAP estimate in each image.

The �rst experiment demonstrates that we can learn a useful model
from training examples. The structure of this model is not particularly
interesting. All parts are connected through a central part, and the
properties of each connection are similar. So we tried learning a larger
model, this one with nine parts. We now have three features for each
eye, one for the left corner, one for the right corner and one for the
pupil. This is a useful model to detect gaze direction. Figure 4.4 shows
one of the training examples and the learned model. Also, in Figure 4.4,
there is a detailed illustration of the connections to the left corner of
the right eye. The ellipses illustrate the location uncertainty for the
other parts, when this part is at some �xed location. They are level
sets of the probability distribution for the location of parts 2, 3, and
4, given that part 1 is �xed. The location of the pupil is much more
constrained with respect to the location of the eye corner than any other
part. Also note that the distributions are not centrally symmetric. We
see that the algorithm learned an interesting structure for the model,

and automatically determined the constraints between the locations of
di�erent pairs of parts.
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Figure 4.3: Matching results.
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Figure 4.4: One example from the second training set, the structure
of the learned model, and a pictorial illustration of the connections to
one of the parts, showing the location uncertainty for parts 2, 3, and
4, when part 1 is at a �xed position.
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Chapter 5

Articulated Models

Now we present a scheme to model articulated objects. Our main
motivation is to construct a system that can estimate the pose of hu-
man bodies. We concentrate on detecting objects in silhouette images.
These images can be generated by subtracting a background model
from the original input image. Figure 5.1 shows an example input
and matching result. Silhouette images characterize well the prob-
lem of pose estimation for an articulated object. We want to �nd an
object con�guration that covers the foreground pixels and leaves the
background pixels uncovered. Note that we won't assume \perfect"
silhouette images. In fact, our method works with very noisy input.

5.1 Parts

For simplicity, assume that the image of an object is generated by a
scaled orthographic projection, and that the scale factor of the projec-
tion is known. We can easily add an extra parameter in our search
space to relax this later.

Suppose that objects are composed of a number of rigid parts, con-
nected by 
exible joints. If a rigid part is more or less cylindrical, its
projection can be approximated by a rectangle. The width of the rect-
angle comes from the diameter of the cylinder and is �xed, while the
length of the rectangle comes from the length of the cylinder and can
vary due to foreshortening. In practice, we model the projection of a
part as a rectangle parameterized by (x; y; s; �). The center of the rect-
angle is given in image coordinates (x; y), the length of the rectangle is
de�ned by the amount of foreshortening s 2 [0; 1], and the orientation
is given by �. So we have a four-dimensional pose space for each part.
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Figure 5.1: Input image, silhouette obtained by background subtrac-
tion, and matching result.
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Area 1

Area 2

Figure 5.2: A rectangular part. area1 is the area inside the part, and
area2 is the border area around it.

We model p(I jli; ui) in the following way. First, each pixel in the
image is generated independently. Pixels inside the rectangle speci�ed
by li are foreground pixels with probability q1. Intuitively, q1 should
be close to one, expressing the idea that parts occlude the background.
We also model a border area around each part (see Figure 5.2). In this
area, pixels belong to the foreground with probability q2. In practice,
when we estimate q2 from data we see that pixels around a part tend to
be background. We assume that pixels outside both areas are equally
likely to be background or foreground pixels. Thus,

p(I jli; ui) = qcount11 (1� q1)
(area1�count1)

qcount22 (1� q2)
(area2�count2)

0:5(t�area1�area2);

where count1 is the number of foreground pixels inside the rectangle,
and area1 is the area of the rectangle. count2 and area2 are similar
measures corresponding to the border area, and t is the total number
of pixels in the image. So the appearance parameters are ui = (q1; q2),
and it is straightforward to estimate these parameters from training
examples. To make the probability measure robust, when computing
count1, we consider a slightly dilated version of the silhouette, and to
compute count2 we erode the silhouette. Computing the likelihood for
every possible location of a part can be done eÆciently by convolving
the image with uniform �lters. Each convolution counts the number
of pixels inside a rectangle (speci�ed by the �lter) at every possible
translation.

Intuitively, our model of p(I jli; ui) is good. The likelihood favors
large parts, as they explain a larger area of the image. But remember
that we model p(I jL; u) as a product of the individual likelihoods for
each part. For a con�guration with overlapping parts, the measure
\overcounts" evidence. Suppose we have an object with two parts.
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The likelihood of an image is the same if the two parts are arranged to
explain di�erent areas of the image, or if the two parts are on top of each
other and explain the same area twice. Therefore, with this measure
the MAP estimate of an object con�guration can be a bad guess for
its true position. This is not because the posterior probability of the
true con�guration is low, but because there are con�gurations which
have high posterior and are wrong. In our experiments, we obtain
a number of con�gurations which have high posterior probability by
sampling from that distribution. We then select one of the samples by
computing a quality measure that doesn't overcount evidence. This is
similar to the idea behind importance sampling.

There is one more thing we have to take into account for sampling
to work. When p(I jL; u) overcounts evidence, it tends to create high
peaks. This in turn creates high peaks in the posterior. The problem
is that when a distribution has a very strong peak, sampling from the
distribution will almost always obtain the location of the peak. To
ensure that we get a number of di�erent hypothesis from sampling we
use a smoothed version of p(I jL; u), de�ned as

p0(I jL; u) / p(I jL; u)1=T /

nY
i=1

p(I jli; ui)
1=T ;

where T controls the degree of smoothing. This is a standard trick,
borrowed from the principle of annealing (see [16]). Note that p0(I jL; u)
is just the product of the smoothed likelihoods for each part. In all our
experiments we used T = 10.

5.2 Geometry

For the articulated objects, pairs of parts are connected by 
exible
joints. A pair of connected parts is illustrated in Figure 5.3. The loca-
tion of the joint is speci�ed by two points (xij ; yij) and (xji; yji), one
in the coordinate frame of each part, as indicated by circles in Fig-
ure 5.3a. In an ideal con�guration these points coincide, as illustrated
in Figure 5.3b. The ideal relative orientation is given by �ij , the dif-
ference between the orientation of the two parts, and the ideal relative
length is given by sij .

Suppose li = (xi; yi; si; �i) and lj = (xj ; yj ; sj ; �j) are the locations
of two connected parts. The joint probability for the two locations
is based on the deviation between their ideal values and the observed
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Figure 5.3: Two parts of an articulated object, (a) in their own coor-
dinate system and (b) the ideal con�guration of the pair.

values,
p(li; lj jcij) = N (x0

j
� x0

i
; 0; �2x)

N (y0
j
� y0

i
; 0; �2

y
)

N (sj � si; sij ; �
2
s )

M(�j � �i; �ij ; k);

(5.1)

where (x0
i
; y0

i
) and (x0

j
; y0

j
) are the positions of the joints in image co-

ordinates. Let R� be the matrix that performs a rotation of � radians
about the origin. Then,�

x0
i

y0
i

�
=

�
xi
yi

�
+ siR�i

�
xij
yij

�
;

�
x0
j

y0
j

�
=

�
xj
yj

�
+ sjR�j

�
xji
yji

�
:

The distribution over angles, M, is the von Mises distribution (see
[18]),

M(�; �; k) / ek cos(���):

The �rst two terms in the joint distribution measure the horizontal and
vertical distances between the observed joint positions in the image.
The third term measures the di�erence between the relative sizes of
the two parts and the ideal relative size. The last term measures the
di�erence between the relative angle of the two parts and the ideal
relative angle. Usually �x and �y will be small so parts tend to be
aligned at their joint. And if k is small, the angle between the two
parts is fairly unconstrained, modeling a revolute joint.

The connection parameters under this model are,

cij = (xij ; yij ; xji; yji; �
2
x
; �2

y
; sij ; �

2
s
; �ij ; k):
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Finding the maximum likelihood estimate of (sij ; �
2
s
) is easy since we

just have a Gaussian distribution over the size di�erences. sij is just the
mean size di�erence over the examples and �2

s
is the sample variance.

Similarly, there are known methods to �nd the ML parameters (�ij ; k)
of a von Mises distribution (see [18]). The ML estimate of the joint
location in each part is the values (xij ; yij ; xji; yji) which minimize the
sum of square distances between (x0

i
; y0

i
) and (x0

j
; y0

j
) over the examples.

We can compute this as a linear least squares problem. The variances
(�2

x
; �2

y
) are just the sample variances.

We need to write the joint distribution of li and lj in the speci�c
form required by our algorithms. It must be a Gaussian distribution
with zero mean and diagonal covariance in a transformed space, as
described by equation (2.3). First note that a von Mises distribution
over angular parameters can be speci�ed in terms of a Gaussian over the
unit vector representation of the angles. Let ~� and ~� be the unit vectors
corresponding to two angles � and �. That is, ~� = [cos(�); sin(�)]T ,

and similarly for ~�. Then,

cos(�� �) = ~� � ~� = �
k~�� ~�k2 � 2

2
:

Now let

Tij(li) = (x0
i
; y0

i
; si + sij ; cos(�i + �ij); sin(�i + �ij));

Tji(lj) = (x0
j
; y0

j
; sj ; cos(�j); sin(�j));

�ij = diag(1=�2x; 1=�
2
y; 1=�

2
s ; k; k);

which allow us to write equation (5.1) in the right form,

p(li; lj jcij) = N (Tji(lj)� Tij(li); 0;�ij):

For these models, the number of discrete locations in the transformed
space is a little bit larger than the number of locations for each part.
This is because we represent the orientation of a part as a unit vector.
In practice, we use 32 possible angles for each part, and represent them
as points in a 11� 11 grid.

5.3 Experiments

In this section, we present experiments of using the articulated mod-
els just described to represent the human body. Our model has ten
parts, corresponding to the torso, head, two parts per arm and two
parts per leg. To generate training examples we labeled the location
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of each part in ten di�erent images (without too much precision). The
learned model is shown in Figure 5.4. The crosses indicate joints be-
tween parts. We never told the system which parts should be connected
together, this is automatically learned during the ML parameter esti-
mation. Note that the correct structure was learned, and the joint
locations agree with the human body anatomy (the joint in the middle
of the torso connects to the head).

We tested the model by matching it to novel images. As described
in Section 5.1, the MAP estimate can be a bad guess for the object
location. Therefore we sample con�gurations from the posterior distri-
bution and rate each sample using a separate measure. For each sample
we computed a Chamfer distance between the shape of the object under
that con�guration and the silhouette obtained from the input image.
The Chamfer distance is a robust measure of binary correlation (see
[6]). The matching process is illustrated in Figure 5.5. First, a silhou-
ette is obtained from the original image using background subtraction.
We use the silhouette as input to the sampling algorithm and obtain
a number of di�erent pose hypothesis. The best pose is then selected
using the Chamfer measure.

More matching results are shown in Figure 5.6. For each image,
we sampled two-hundred object con�gurations from the posterior dis-
tribution and picked the best one under the Chamfer distance. Using
a desktop computer it took about one minute to process each exam-
ple. The space of possible locations for each part was discretized into
a 70� 70� 10� 32 grid, corresponding to (x; y; s; �) parameters.

Figure 5.7 shows that our method works well with noisy input.
There is no way to detect body parts individually on inputs like that.
But the dependencies between parts provide suÆcient context to detect
the human body as a whole. Of course, sometimes the estimated pose is
not perfect. The most common source of error comes from ambiguities
in the silhouette. Figure 5.8 shows an example where the silhouette
doesn't provide enough information to estimate the position of one
arm. Even in that case we get a fairly good estimate. We can detect

when ambiguities happen because we obtain many di�erent samples
with equally good Chamfer distance.
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Figure 5.4: Model of human body.
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Figure 5.5: Input image, silhouette, random samples, and best result
selected using the Chamfer distance.
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Figure 5.6: Matching results (sampling 100 times).
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Figure 5.7: Even with noisy silhouettes we get good results.
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Figure 5.8: In this case, the silhouette doesn't provide enough infor-
mation to estimate the position of one arm.
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Chapter 6

Summary

This thesis described a statistical framework to represent the visual
appearance of objects. With a statistical approach we can de�ne the
object detection and model learning problems in a principled way. Our
major contribution is a rich class of models for which we can solve these
problems eÆciently. The models are based on the pictorial structure
representation developed in [13], which allows for qualitative descrip-
tions of appearance and is suitable for generic recognition problems.

One of the diÆculties in representing generic objects is the large
variation in shape and photometric information in each object class.
Using a representation by parts, we can model the appearance vari-
ation in each part separately. We also explicitly model the geometric
con�guration of the parts, independent of their individual appearances.
We demonstrated that our methods can be used to learn models for
generic objects, such as faces and human bodies. Using these models
we can detect the corresponding objects and estimate their pose.

Our framework is general, in the sense that it is independent of
the speci�c method used to represent the appearance of parts, and the
type of the geometric relationships between the parts. We presented

two concrete modeling schemes, but there are many other possibilities.
By using a general framework we provided a set of computational mech-
anisms that can be shared among many di�erent modeling schemes.

6.1 Extensions

1. We can deal with occluded parts by making p(I jli; ui) robust. Ba-
sically the likelihood should never be too small, even when there is
no evidence for the part at some location. The context provided by
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the unoccluded parts can be rich enough to constrain the location of
occluded parts.

2. We can detect multiple instances of an object using the MAP es-
timation algorithm. The algorithm can output the con�guration with
maximum posterior probability conditioned on each location for the
root part. This doesn't take any more time than computing the MAP
estimate itself. So we could just pick all locations for the root that
yield a high posterior. We could also look at the con�guration we get
for each possible location of the root and classify them using a sepa-
rate method. This would select h con�gurations to be tested, out of
the possible hn. Another option is to sample multiple times from the
posterior.

3. If we have an image sequence, we can detect an object in the �rst
frame and use that location as prior information for the detection in
the next frame. All our algorithms can be modi�ed to take into account
prior information over absolute locations. This would yield a tracking
system.
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