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Abstract

The PZT cellular actuator developed in the MIT d'Arbeloff Laboratory utilizes small-
strain, high-force PZT stack actuators in a mechanical flexure system to produce a
larger-strain, lower-force actuator useful in robotic systems. Many functionalities
for these cellular actuators are developed which can have great impact on robotic
systems and actuation itself. After initial exploration into other possible circuitry, a
circuit is designed to recovery unused energy for the PZT cells. The circuit design
is formed around a proposed method of distributed actuation using PZT cells which
imposes that different PZT cells will be activated during different periods such that
the charge from some cells can be transferred to others. If the application allows
actuation which can conform to this criteria, the developed circuit can be used which,
without optimization, can save ~41% of the energy used to drive the actuators with
a theoretical upper limit on energy efficiency of 100%. A dynamic system consisting
of multiple PZT actuators driving a linear gear is analyzed and simulated which
can achieve a no load speed 2.4 [7] with minimal actuators. Then, the two-way
transforming properties of PZT stack actuators are utilized to allow dual sensing and
actuation. This method uses an inactive PZT cell as a sensor. With no additional
sensors, a pendulum system driven by antagonistic groups of PZT cells is shown to
find its own resonance with no system model. These functionalities of charge recovery,
distributed actuation, and dual sensing and actuation set the PZT cellular actuator
as an important contribution to robotic actuation and begin to illuminate the possible
impacts of the concept. The design and analysis described reveals many possibilities
for future applications and developments using the PZT cellular actuator in the fields
of actuation and robotics.

Thesis Supervisor: H. Harry Asada
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Chapter 1

Introduction

1.1 Original Intention

Research has sought to develop novel actuators for robotic applications. Electric

motors, solenoids, and hydraulics have been used extensively in robotics but may be

mismatched for certain applications. Many types of smart materials including shape

memory alloy, piezoelectric materials, and others have been used in this research goal

[1, 2].

Lead zirconate titanate (PZT) is a type of piezoelectric material which converts

energy both ways between the electrical and mechanical domains. Electrical charge

can be driven onto the PZT to create small mechanical deformations. Conversely,

mechanical force can be applied to the PZT to produce an electrical voltage. Because

only a fraction of the electrical energy driven to a PZT is converted to mechanical

work and PZT is electrically capacitive in nature, an opportunity exists to use the

energy remaining on the PZT after actuation [3]. This work aims to explore possible

circuitry to take advantage of this unused energy and increase the electrical efficiency

of driving PZT actuators.

Additionally, past and concurrent research has sought to amplify the output dis-

placement of PZT to a level usable for standard robotic applications at the cost

of reducing the PZT's very substantial output force. The mechanical amplification

techniques utilize multiple PZT stack actuators, which consist of many layers of PZT



material, in flexure systems or special configurations creating PZT cells [2].

Initially, the desired functionality of the circuit was to charge the PZT cells to a

necessary voltage, recover charge back to a battery when the cells must be deactivated,

and harvest energy from external mechanical stimulus. This functionality could be

created by three separate circuits to achieve each part. However, complexity, weight,

and power consumption made a single circuit with all functionality desirable if such

a circuit could outperform the separated circuits in these metrics.

A bidirectional flyback converter could achieve all three functionalities. This con-

verter was designed, implemented, and tested. The results suggested that this type

of active circuit may be somewhat mismatched with the low power necessary for the

PZT cells. The low power that could be harvested from mechanical stimulus also

made the harvesting goal impractical for systems on the scale tested and thus was

abandoned.

1.2 Shifted Goals

Instead, a new option to create an efficient power circuit for the PZT cells was chosen.

Because of the extremely low power of driving a single PZT cell, care had to be

taken to reduce energy transfer steps and resistance in the transfer path. Driving

energy back to a storage medium or battery first and then back to the PZT cells

became undesirable assuming some inefficiency in each transfer. Instead, a circuit was

developed to transfer energy between sets of PZT cells directly. Without optimization,

the designed circuit could save ~41% of the energy used to drive the actuators with

a theoretical limit of 100%. A distributed actuation scheme was then developed to

take advantage of this type of PZT cell to PZT cell transfer while properly actuating

a load. An example is considered in detail to demonstrate the possibilities of this

scheme.



1.3 New Opportunities

Because of the actuation drive scheme, sets of PZT cells are left uncharged after

transferring their energy to newly actuating sets. Allowing the discharged PZTs to

float electrically allows these PZT cells to be utilized as sensors. In this manner,

the same PZT cell can be used interchangeably as an actuator and a sensor. These

dual functionalities were utilized for resonance determination in which the same sets of

PZTs oscillate a load and concurrently determine the system resonance using an initial

frequency sweep. An example system demonstrates this functionality. Resonance

determination is only one of the possible applications of the cells' dual sensing and

actuation capability.

The PZT drive system developed considers efficiency when creating a practical

actuation scheme. Because of the cell to cell transfer architecture chosen, significant

energy can be saved, and additional functionalities such as the dual sensing and

actuation scheme above can be applied.
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Chapter 2

Charging, Recovery, and Actuation

Scheme

2.1 Overall Approach

The original intention of the drive circuitry for the PZT cells hoped to achieve the

three functionalities of charging, recovery, and actuation. First, the circuit should be

able to drive the PZT cell to at least 150 [V] from a battery. Second, the circuit should

be able to pull the energy back (recover) from the PZT cell to the battery or other

storage medium. Third, the circuit should be able to pull (harvest)energy generated

by external mechanical stimulus back to a battery or other storage medium from the

PZT cell. After exploring these functionalities using an active circuit described below,

low PZT cell power concerns and problems caused a shift in the desired functionality

of the circuit. The new aim is described in 3. Below, the development, tests, and

drawn conclusions are discussed for the original functionality.



2.2 Bi-directional Flyback Converter Topology

2.2.1 Transformer Model

An ideal transformer is modeled as shown in 2-1. The transformer is modeled as two

coupled inductors. The two parallel lines in between represent the inductors' coupled

nature. The left inductor with index 1 is referred to as the primary side and has an

inductance L1 in Henries. The right inductor with the index 2 is the secondary side

and has an inductance L2 in Henries. The transformer turns ratio is shown as N1 :N2

indicating that the ratio of turns on the primary side to the turns on the secondary

side is N1/N 2 .

1 N,:N 2  2

+ E+

V V LV 2

Figure 2-1: Ideal transformer model.

The voltages and currents in the transformer are also related by the turns ratio.

The relationships are as follows:

N1  N 2

i1N1 = i2 N 2

Thus, the ratio of the voltages is directly proportional to the turns ratio while the

ratio of the currents is inversely proportional to the turns ratio.

The dot convention for transformers is important to understanding the direction

of the currents in the transformer and the polarity of the voltages on the primary and

secondary sides. The placement of the dots will indicate these parameters in a circuit

diagram. This discussion assumes power flows from left to right in the diagram.

However, the same reasoning applies for power flowing from right to left. Consistent

with 2-1, the dots next to each inductor in the transformer will be placed where the



positive voltage will be induced on that side of the transformer. A positive V1 will

induce a positive V2 where the positive polarity is on the side of the inductor indicated

by the dot. Additionally, an ideal transformer is 100% efficient. Power in will be equal

to power out. Thus, with a positive voltage on the primary side inductance, positive

current will flow into the dot on the primary side. With a positive voltage on the

secondary side (which will be induced by the positive voltage on the primary side),

current will flow out of the dot on the secondary side. Again, by the same arguments,

if power flows from right to left in the diagram, only the direction of the both currents

il and i2 will flip.

Real transformers have many parasitics which are not captured in the ideal model.

One important parasitic is the magnetizing inductance. The magnetizing inductance

models the magnetization of the core material of the transformer as current flows

through the windings. The magnetizing inductor is modeled as a separate inductor

from the primary and secondary winding inductors. This inductance, often designated

as Lp, is placed in parallel with the primary or secondary side inductor in the model.

With the standard placement, 2-2 shows the model of the transformer including the

magnetizing inductance in parallel with the primary side inductor. If L,' was reflected

to appear on the secondary side, L,, would be in parallel with L 2 and have a value

L,1 (N 2 /N1 )2.

1 N1 :N 2

4 2

Figure 2-2: Transformer model with the parasitic magnetizing inductance on the
primary side.

The difference in definition of i1 is important to note. The current Zi is not defined

as the current into the input terminal of the transformer but rather the current into

the primary side inductor L 1. This difference means that some amount of the current

flowing into the input terminal of the transformer will flow through the magnetizing



inductance with the remainder as ii. Transformers involve many other parasitics

which are important for various applications. The application and its parameters will

indicate which parasitics must be accounted for and which can be ignored.

2.2.2 Flyback Converter

The flyback converter is a DC to DC power converter topology. This particular topol-

ogy utilizes the magnetizing inductance parasitic of its transformer for its function.

Without the magnetizing inductance, the converter would not work. In general, the

transformer for this converter is designed with an air gap in its core in order to in-

crease the magnetizing inductance as much as possible for its size. In this way, the

magnetizing inductor can store the most energy for its size.

2-3 shows the flyback converter topology. Power flows from left to right in this

converter. A power source Vi, provides the energy which will eventually be transmit-

ted to load impedance ZL to generate the output voltage V. Ci and C, act as the

input and output filter capacitors respectively which smooth out variations in their

corresponding input and output voltages. A switch Si is an active element in the cir-

cuit driven externally. This switch generally operates on a repeating switching cycle

with some fraction of the cycle with the switch closed and some fraction of the cycle

with the switch open. The ratio of time with a closed switch to time with an open

switch is referred to as the duty ratio of the cycle. Both the period of the switching

cycle and the duty ratio of the switch may be fixed or variable.

0Ni : N2

LU 4
+ - I __ +

VIN C. C ZL VOUT
IN1 F o L OUT

Figure 2-3: Flyback converter topology.



In the first part of each cycle, Si closes. When the switch is closed, the voltage

Vi, is across the primary side of the transformer. A positive voltage Vji would cause

current to flow through the L, and L 1. However, because current could flow into the

dot on L1 and thus have to flow out of the dot on L 2, no current flows through L1

because diode D 2 prevents this flow. Thus, LP is charged. When S1 opens during

the second part of the cycle, the magnetizing inductance attempts to keep current

flowing through it in the same direction. The only outlet for this flow is to drive

current through the loop made by L, and L 1. Current flows out of the dot on L1

and thus into the dot on L 2. Diode D2 now allows this current to pass. The current

then flows and splits in some proportion between the output capacitor and ZL. In

this manner, Vi transfers a packet of energy to the output impedance every cycle.

Using periodic steady state (PSS) analysis, an input voltage to output voltage

relationship can be found. PSS assumes that the converter has reached a steady

ripple oscillation with all voltages and currents. In PSS, the average current through

capacitors and average voltage across inductors must be equal to zero over a cycle.

These constraints come directly from the definition of PSS. Let D be the duty ratio

of S1. D can vary between 0 and 1. Then, the average voltage across the magnetizing

inductance is given by:

N1< V >= DVIN + (1- D) N2( VOuT) = 0

Rearranging this equation for a voltage in to voltage out relationship yields:

N 2 D
VOUT-N D VI NVor=N1 1 - DVI

V0,t depends on the turns ratio of the transformer, the duty ratio, and the input

voltage. As D varies from 0 to 1, the gain, (N 2 /N 1)(D/(1 - D)), in front of Vj7 in the

above equation goes from 0 to infinity. Therefore, the flyback converter can produce

output voltages higher and lower than the input voltage.



2.2.3 Bidirectional Flyback Converter

The bidirectional flyback converter is extremely similar to the flyback converter except

the bidirectional topology allows power to flow from left to right and from right to

left. Shown in 2-4, this functionality is achieved by adding a primary side diode in

parallel with S1 and a secondary side switch in parallel with D 2.

- , NI : N2

L 4

IN Co L VOUT

-S, S2

D D2

Figure 2-4: Bidirectional flyback converter topology.

The forward direction of operation (power flowing from left to right) works exactly

the same as discussed above for the flyback converter. The diode D1 does not affect the

operation of this mode because in this mode, current is never drawn in the direction

D1 can allow. Also, S2 is always left open in forward operation. Therefore, when

operating in the forward direction, the converter works in the same manner as it

would with D1 and S2 removed.

The backward direction of operation (power flowing from right to left) operates

as a mirror of the forward direction. Because L, can be reflected to the secondary

side, the circuit diagram can be flipped and redrawn to look essentially identical to

2-4. 2-5 shows this mirrored converter:

As discussed above, the value L, 2 of the magnetizing inductance reflected to the

secondary side would be L,,(N 2/N1 )2. The flipped dots on the transformer may appear

at first to indicate some difference in operation. However, that the dots are opposite

each other in both 2-4 and 2-5 indicates that the operation of the transformer in the

circuit has not changed.



+ JU I+

V Z C C. VNOUT L o IN

-F- S2 k1 -

D2 D1

Figure 2-5: Mirrored version of the bidirectional flyback converter topology.

Comparing 2-4 and 2-5 clearly indicates the essentially identical operation. In the

backward direction, the converter uses S2 and D1 to transfer packets of energy from

the output Vet to the input Vi. Because of the same arguments as above for the

forward direction, the backward direction of operation functions in the same manner

as it would with D2 and S1 removed. Thus, the backward direction of operation also

works off of the same principles of operation as discussed for the flyback converter.

The bidirectional flyback converter can transfer packets of energy from input to output

and back.

2.3 Charge Recovery and Energy Harvesting

2.3.1 PZT Stack Model

The ideas of charge recovery and energy harvesting using PZT stack actuators are

closely related. PZT stack actuators are two-way electromechanical transformers.

This ability allows the stacks to convert electrical power into mechanical power and

the reverse. The simplest electrical model of a PZT stack actuator is a capacitor.

When the actuator is activated (the actuator extends), the voltage applied across the

actuator must charge this capacitor. Conversely, when the actuator is deactivated

(the actuator contracts), the charge on this capacitor must be removed. On the

mechanical side, when the actuator is mechanically compressed, charge is built up on



this capacitor. When the actuator is allowed to return to its resting configuration,

the charge must dissipate.

These ideas can be clearly expressed in a bond graph model of the PZT stack

actuator. A bond graph is a diagram which shows energy flow between different

components of a dynamic system. 2-6 shows the most basic bond graph model of the

PZT stack actuator.

T

0 e' TF e2 1
f, f2

CPZT 1/KPZT
Figure 2-6: Basic, idealized bond graph model of the PZT stack actuator.

Each line shows a path on which energy can flow. Associated with each line are

a flow variable and an effort variable with power as the product of the two. The 0

and 1 in the diagram represent two different types of junctions where multiple energy

flows meet. The value of each effort variable meeting at a 0 junction is the same.

The flow variables sum at a 0 junction. The 1 junction is the opposite with the effort

variables summing and the value of the flow variables being equal. At each junction,

power must be conserved. Therefore, the power going into the junction is equal to

power leaving such that no power is stored at the junction.

Three additional elements appear in this bond graph model. The stack's electrical

capacitance is represented as CPZT and is connected to the 0 junction. The stack's

mechanical stiffness is represented as KPZT. By using the inverse of this stiffness

1/KpzT, also known as the compliance, the element becomes dimensionally equivalent

to the electrical capacitance and appropriate for use in the energy flow model. The

mechanical compliance is connected to the 1 junction. The final additional element is

the two-way transformer represented as TF with a scaling ratio T. The transformer

in the bond graph converts energy between the electrical and mechanical domains. In



the bond graph, the transformer is perfectly efficient. No power is lost in conversion

between domains. The power on each side of the transformer is the product of the

values of the flow and effort variables. Thus, the T scaling factor refers to amplifying

one of these variables while attenuating the other in the new domain. 2-6 shows the

effort and flow variables associated with the two bonds connected to the transformer.

For a transformer represented in this way, the variables are scaled as follows:

ei = Te2

f2 - Tfi

Multiplying the appropriate variables together verifies that power is conserved through

the transformer:

1
Pi = eifi = Te 2 -f 2 = e2f 2 = P2T

The transformer relates one effort variable to the other and one flow variable to the

other. Although the variables do not need to take the same value in the different

domains, they must be scaled such that power is conserved as shown above. The

placement of the capacitances in the bond graph suggests that the electrical domain

is on the left of the transformer in 2-6 while the mechanical domain is on the right.

Other important elements of bond graphs are sources and sinks. Sources and sinks

are known as active elements because the supply (or remove) energy from the system

indefinitely. Therefore, sources and sinks change the system energy in the same way

regardless of system parameters. These two elements can be of the effort or flow

type. For example, an ideal voltage source could be considered an effort source in

the electrical domain. In this domain, voltage is an effort variable indicating that an

ideal voltage source is considered an effort source.

An ideal voltage source used to drive the PZT stack actuator would be represented

as a source of effort, Se, as shown in 2-7 below.

The source of effort adds power to the system through the bond between itself

and the 0 junction. Some portion of this power goes to charging the PZT capacitance
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Figure 2-7: Simple bond graph model of the PZT stack actuator with an electrical
effort source.

CPZT. The remainder travels through the transformer into the mechanical domain.

Some portion of this power in the mechanical domain goes to displace the stack's

compliance 1/KpzT. Where the remaining power goes is currently undetermined.

The right most bond in 2-7 does not have a specified element attached to one side.

This currently empty node may be another junction to a bond graph representing the

system that the PZT interacts with or may be a single element such as a mass that

the PZT drives in the mechanical domain.

This system setup is only one of many possible setups for the PZT. For example,

instead of being electrically driven, the stack actuator could be mechanically stimu-

lated. An effort source could be placed on the right side of the bond graph in 2-6.

The force source would provide power to system. As in the previous reasoning, some

portion of the provided power would be transmitted to the leftmost bond. This bond

could be connected to a single element, another bond graph model of an interacting

system, or nothing. The system which interacts electrically with the PZT stack would

determine the exact power flows in the bond graph model.

2.3.2 Basic Architecture

The ideas of charge recovery and energy harvesting are related to this removal or

dissipation of charge on the actuator when the actuator returns from a charged state

to a discharged state. The basic scheme for charge recovery is illustrated in 2-8 below.

The PZT stack actuator is charged with a battery causing the actuator to expand.



When the actuator should contract, the energy built up on the actuator capacitance

is driven back to the battery instead of merely dissipated through some resistance.

By recovering some portion of the charge from the actuator every activation and

deactivation cycle, the battery source will have an extended lifetime.

Power In,
Charging

Power Out

I Recovery

Figure 2-8: Basic charge recovery scheme.

Similarly, energy harvesting removes charge built up on the PZT stack actuator

and drives it to the battery. The basic scheme of energy harvesting is illustrated in

2-9 below. A mechanical stimulus causes compression of the actuator. This com-

pression builds up charge on the stack capacitance. This energy is driven from the

actuator to the battery. If this mechanical stimulus is oscillatory in nature, harvested

energy from each cycle of the stimulus can be used to recharge the battery. A newly

recharged battery could then be used to power the actuator for subsequent activation

and deactivation cycles.

Oscillatory

F: Compressive
Force

Power Out
Harvesting Power In

Figure 2-9: Basic energy harvesting scheme.

While one recovers unused energy and one transforms mechanical power into elec-



trical power, both schemes aim to increase the system's battery life. With increased

battery life, a robotic system utilizing the PZT stack actuator could carry out a given

task longer. With charge recovery, regular activation and deactivation cycles for the

actuator require less energy allowing the actuator to run for longer on a given battery.

With energy harvesting, a discharged or slightly discharged battery can be recharged

to allow the actuator to carry out additional cycles not available with only the bat-

tery's initial power. Also, energy harvesting could provide the robotic system with a

means of carrying out certain tasks (such as low power wireless communication) with

no initial charge in the battery. In this way, certain tasks could still be available to

the system (such as a distress call, etc.) even after the system has no internal power

available.

Another closely related purpose for this functionality is to decrease the needed

battery size for a given task. This function follows exactly from the previous desire to

increase the battery life of the battery in a PZT actuator system. Increasing battery

life is essentially equivalent to increasing efficiency for a given cycle or task. With the

assumption that battery energy scales proportionally with battery weight, increasing

this efficiency leads to less required battery energy for some given set of tasks and

therefore, less battery and overall system weight for these actuator systems. This

reduction of weight for the same usage time or amount proves crucial for mobile

robotic applications. For example, a robotic fish utilizing PZT stack actuators for

propulsion would have to propel its own weight through the water. With reduced

weight, this task would be easier for the actuators. Therefore, harvesting energy and

recovering charge to reduce the necessary battery size reduces the system weight which

allows the system to save even more energy by not having to move the additional mass

of more batteries.



2.4 Use of Bi-directional Flyback Converter for

Charge Recovery and Energy Harvesting

The bi-directional flyback converter is one possible topology that would allow charge

recovery and energy harvesting from a PZT stack actuator. 2-10 below shows the

converter with the PZT placed as the load impedance.

.N, : N2

+ C +
PZT

IN OUT

-S1 S2

D, D2

Figure 2-10: Bidirectional flyback converter driving a PZT stack actuator as the load.

The PZT stack's capacitive electrical model is a simplification which ignores the

stack's coupling to the mechanical domain. For charging, charge recovery, and energy

harvesting to occur, the input energy source must have the ability to source, sink,

and store energy.

The bi-directional nature of the converter allows for both charge recovery and

energy harvesting. As described previously, the converter works in the forward direc-

tion (power flowing from left to right) in order to charge the PZT stack. The packets

of energy sent to the output by the converter each cycle charges the PZT's capaci-

tance which causes the PZT stack to elongate. In order to deactivate or shorten the

stack, the charge must be removed from this capacitance. As discussed previously,

the charge could be dissipated through some resistance by grounding the PZT. How-

ever, to avoid wasting the built up energy on the PZT, the converter running in the

backward direction drives the charge away from the output back to the input shown

as V, in 2-10. In this way, the charge is recovered to the input energy source and

the PZT stack is deactivated. Saving this charge allows a finite input energy source



to power the PZT stack for more activation-deactivation cycles.

Energy harvesting also occurs with backward operation of the converter. For the

converter to harvest energy, the PZT stack must be mechanically stimulated. Upon

compression, the PZT stack will have charge built up on its capacitance. While

the PZT has built up charge, the converter operating in the backward direction can

drive the PZT's charge to the input energy source. With sufficient compression and

harvesting cycles, the input energy source could be recharged. If this energy source

also sources energy for other circuits, the harvested energy could be used to drive

those circuits as well as reactive the PZT stack when necessary. In this way, even if

at some point insufficient power is generated from harvesting to drive the PZT stacks,

other lower power circuits such as wireless communicators or low-power displays could

be powered only by the energy harvested from the mechanical environment.

Because only a finite amount of energy can be harvested from compression of a

PZT stack, constant power flow from harvesting would require a cyclic mechanical

stimulus. The frequency and amplitude of the mechanical stimulus would dictate the

maximum possible power to be harvested. Some possible mechanical stimuli include

ambient vibrations, compression due to footfall, and unsteady fluid flows.

2.5 Converter Implementation

2.5.1 Choosing Parameters

Magnetizing Inductance

The value of the magnetizing inductance L, is important for the proper function of

the converter. The purpose of this inductance is to deliver packets of energy from one

side of the converter to the other. During the first part of each switch cycle current

ramps up in the inductor to same value Ip and then ramps down during the second

part.

Choosing this inductance value requires a desired amount of energy to be trans-

ferred in the converter per cycle. With perfect efficiency, the converter will transfer



a packet of energy per cycle as follows:

Ecyc = I LpI 2Cy 2 Ppk

This equation comes directly from the current signal curve with respect to time. Thus,

increasing Ipk has the greatest effect on the energy per cycle. Driving the PZT stack

through a change of voltage AV requires a transfer of energy equal to:

1
EAv = -CPZT( AV) 2

2

Therefore, from these equations, the number of cycles n required for causing this

voltage change becomes:

CPZT(A V ) 2

n =2

Minimizing the number of cycles required for a voltage change on the stack would

minimize the time for charging and thus increase the speed of response of the system.

The above equation shows that increasing Ipk has the greatest effect on decreasing

n for a given AV. However, the magnetizing inductance is physically linked to the

transformer used. The physical transformer suffers from two realities that limit the

value of Ipk. First, magnetic flux B circulates through the core of the transformer.

This flux is linked to the current flowing through the coils through physical parameters

of the core material. As the current in the coils increases, the magnetic flux through

the core increases. However, at some value Bsat, the core saturates. Thus, Ipk cannot

be increased indefinitely without causing saturation of the core. Second, the coils of

the transformer are constructed from wire wound around the core. As with any wire,

increasing the current through the wire causes the wire to heat up due to resistive

losses. At some point, this heat destroys the wire. Ipk cannot be increased indefinitely

without causing heating problems in the transformer. In general, increasing the size

of the transformer can increase the Bat value for the core and can increase the

wire diameter of the coils allowing the transformer to support a larger peak current.

However, the transformer tends to dominate the mass of the circuit in these converters.



Increasing the size of the transformer also increases the weight. This increase in weight

is very apparent in the total weight of the circuit. Because the circuitry is meant

for mobile robotic applications, the total weight must be considered carefully. The

purpose of the circuitry is to not only drive the PZT stacks but also save or harvest

energy and thus save battery weight with an end goal to decrease overall system

weight. If the required circuitry adds more mass to the system than it decreases

with saved battery weight, the purpose of the circuit is lost. Therefore, the overall

circuit weight, which is dominated by the mass of the transformer, is an essential

consideration in the design of the system. In essence, the design must trade off speed

of system response with circuit weight.

Switch Implementation

The converter utilizes two active switches, Si and S2, and two passive switches, D1

and D2, in its operation. The pairs of switches Si and D1 and S2 and D2 can be

implemented using only two physical MOS field effect transistor (MOSFET) switches.

As shown in 2-11, a MOSFET can implement the functionality of both the switch

and the diode.

MOSFET Switch and Diode
D

G S D

S

Figure 2-11: The use of a MOSFET implements both the ideal switch and diode
functionalities.

Because of the placement of particular sections of doped silicon, the MOSFET

achieves both functionalities. This MOSFET diode is referred to as its body diode.

In the original converter diagram, no path for control of the circuits was shown.

Replacing the switch and diode with the MOSFETs is shown in 2-12.

The circuit functionality is controlled through the gates of the two MOSFETs,

labeled G, by an outside control source.
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Figure 2-12: Bidirectional flyback converter with MOSFET switch implementation.

Transformer

Choosing the transformer requires not only consideration of the magnetizing induc-

tance discussed above but also the turns ratio N1 :N2 of the coils. The turns ratio

of the coil determines the voltage load imposed on the low side MOSFET M1 and

the high side MOSFET M2. Because of the turns ratio, the maximum voltage which

must be supported by the switches is as follows:

VM, VIN + NVOUT

V 2 -~ VOUT + NVIN

The switch voltage stresses cannot exceed the maximum voltage rating of the MOS-

FET switches. The size of the switches can be increased to increase this voltage

rating. However, as discussed before, the switches increased size will add mass the

circuit, and the circuit mass must be carefully considered in the design. The trans-

former turns ratio also scales the currents flowing through each coil. Again, the

maximum allowable current, which increases with increased MOSFET size, for the

switches must be considered when choosing this turn ratio.



2.5.2 Closed-Loop Control Schemes

Need

The MOSFETs control the operation of the circuit and time the transfers of energy

from one side of the circuit to the other. Thus, these MOSFETs must be properly

controlled to allow proper functionality of the converter. The switches could poten-

tially be controlled open loop. To charge the output, the low side MOSFET M1 would

be modulated driving energy to the output. To recover charge or harvest energy, the

high side MOSFET M2 would be modulated to drive energy back to the input. Then,

only simple logic would be necessary to decide which mode the converter is in, and

only simple hardware would be needed to actual supply the proper signals to the

MOSFETs. This approach may be possible with certain output loads. For example,

a proper switching frequency and duty ratio could be found to drive a stable, desired

output voltage across a purely resistive load. However, finding this frequency and

duty ratio is not possible when driving a purely capacitive load. Because a constant

switching frequency and duty ratio delivers a constant amount of energy each cycle,

driving this energy into a capacitance indefinitely would cause the capacitance to

charge forever. For a real capacitor, the voltage across the capacitor would continue

to increase until the capacitor's breakdown voltage was reached at which point the

capacitor's dielectric would become conductive. This failure would cause a short and

could destroy the capacitor. Because a PZT stack actuator essentially behaves as a

capacitor electrically, this possible failure scenario is a very important consideration.

Additionally, the PZT stacks have a maximum safe operating voltage. Continuous

charging of the PZT capacitance could bring the stack voltage above this maximum

which could lead to breakdown of the PZT material or other failure in the stack.

Therefore, a closed-loop control scheme proves necessary to properly drive the PZT

stacks. The output voltage must be fed back to a controller in some manner to alter

the operation of the controller such that the output voltage can stabilize around a

desired value. In the following, a possible closed-loop controller for this purpose is

discussed.



Variable Frequency Control

Proposed by Karpelson et. al., one particular control scheme utilizes variable fre-

quency and duty ratio cycles to achieve the desired output [4]. The details and

required equations are describe in the above paper and its cited papers. In summary,

the controller, as shown in 2-13, uses a comparator to determine when the high side

switch voltage and the output voltage are equal. This condition means that there is

no voltage across the secondary side of the transformer, and thus the current through

this winding is constant. At this point, the output voltage is compared to the desired

output voltage. These voltages determine a desired peak current which in turn de-

termines an on-time for the necessary switch. Instead of calculating these numbers,

a look-up table is used for speed. The high-side switch is used to discharge the load

while the load side-switch is used to charge it. Because the on-time for the desired

switch changes for each cycle, the control system natural adjusts the duty cycle and

switching frequency to stabilize the load.

.N,:N2

L LrL -
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Is:

D, D2

I I I

Comparator
1Ready?

I I I
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Figure 2-13: Bidirectional flyback converter with variable frequency control scheme.



2.5.3 Preliminary Results

As shown in 2-14, the bidirectional flyback converter was implemented on a solder

board after designing the circuit to drive the PZT stack actuators:

Figure 2-14: Solder board implementation of the bidirectional flyback converter with

variable frequency control.

As described previously, the gate drivers (left of 2-14) drive the MOSFET switches

(middle of 2-14) which control the energy transfer through the transformer (top middle

of 2-14) which charges the PZT stack (bottom of 2-14). The instrumentation amplifier

and comparator (right of 2-14) are used as components of the variable frequency con-

trol scheme described above. Not pictured in 2-14 is the National Instruments C-RIO

9074. This module interfaces with Labview software which allows the programming of

an embedded field programmable gate array (FPGA) on the C-RIO. This hardware

accepts inputs from the circuit, processes the control logic, and outputs command

signals back to the circuit. Using the above circuit and variable frequency control

scheme, the voltage output shown in 2-15 was produced. The top trace in the figure

corresponds the output voltage VOUT driving the output connected to a PZT to 100

[V]. The bottom trace corresponds to the voltage command sent to the low side gate

driver to command the low side MOSFET's operation.

Although the trace shows an average output of approximately the desired output

voltage, this signal has obvious high frequency oscillations when the voltage command

given to the low side MOSFET goes low. This oscillation is due to parasitic effects
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Figure 2-15: Preliminary output voltage results (top trace) with the low side gate
drive signal (bottom trace).

in the MOSFET. These oscillations occur on time scales smaller than a single cycle.

On much larger time scales, the controller properly drives the voltage output on the

PZT. For example, 2-16 shows the circuit driving the PZT back and forth between 0

and 100 [V] at 1 [Hz].

The rising and falling edges of the square wave are not perfectly vertical because

the converter cannot charge the PZT infinitely fast. The voltage rises over approx-

imately 35 [ims] while the voltage falls over approximately 10 [ms]. This required

charging time limits the maximum frequency at which the converter can be driven to

14.12 [Hz]. The charging time is controlled mainly by the peak current Ipk allowed

through the transformer windings.

2.5.4 Shifting Desired Functionality

Although this converter topology seemed promising, the complexity of the design and

control created problems. The topology seems more appropriate for higher power

applications which would warrant active control. A design could be made for this

application, but after some iterations, the difficulty of this approach made this topol-

ogy undesirable. Furthermore, a very small amount of energy was available to harvest

even with substantial loads applied to the PZT cell. Without a practical desire to har-
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PZT stack driven by bidirectional flyback converter from 0 to 100 [V] at

vest energy, the remaining functionalities of drive and charge recovery could also be

addressed with different, simpler topologies which do not require precise active con-

trol and high-frequency switching. Thus, the bidirectional flyback converter topology

was abandoned. 3 describes a new direction and a different approach to the original

goal of this work.
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Chapter 3

Distributed Actuation

3.1 Background

A novel method to coordinate groups of PZT-based actuators for large scale actuation

is discussed in the following. Lead Zirconate Titanate (PZT) is a material which

changes shape based on an applied voltage. The strain of PZT material is relatively

small while the output force is relatively large. PZT stacks which will be utilized

in this design are comprised of many layers of this material in series to increase the

overall strain. Each stack has a maximum displacement of ~40 [pm] with a force of

850 [N] at 150 [V].

The stack strain is still insufficient for purposes of large scale actuation. Re-

searchers at the D'Arbeloff Laboratory at the Massachusetts Institute of Technology

have developed multiple ways using mechanical flexures to increase the strain ~100

fold while attenuating the output force by a factor of -100. The PZT stack setup

with this mechanical amplification will be referred to as a PZT cell.

An unloaded PZT stack approximately behaves electrically as a capacitor. Initial

charge is needed to cause the stack to elongate, and this charge must be removed

to relax the stack. The stack does not need continuous input current to hold its

elongation. To remove the charge from the stack, the inputs of the stack can be

shorted together to dissipate the energy. However, the energy on the stack could also

be transferred to another medium for later use. The latter option can allow for a



much more efficient system if the stack energy can be efficiently reused.

3.2 Actuator Design

Many PZT cells with coordinated activation will be distributed on a mechanical load

to produce a desired motion. A linear actuator will be used to illustrate the concept

although the concept can be directly applied to a rotary actuator in the same manner.

As shown in 3-1 below, n PZT cells are mechanically coupled to a gear tooth such

that their elongation can apply force to the sloped surface of the gear tooth causing

gear motion horizontally. Depending on the spacing of the cells compared to the pitch

of the gear, the desired motion direction, and the desired gear speed, the activation

of the different cells will generally occur at different times. That is the activation

of one cell, while following the same voltage profile as all of the cells, will be phase

shifted in time from the activation of other cells.
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Figure 3-1: PZT cells mechanically coupled to gear tooth to drive a desired motion.

Depending on the desired actuation profile, the n PZT cells will be separated into

m groups. In general, the PZT cells in each group need not be physically adjacent.

Each of the m groups will be paired with another group that's desired activation is

1800 out of phase. Therefore, only one group in these m/2 group pairs will be activated

at one time. However, one group of the pair is always activated. Therefore, at any

time, m/2 groups of cells in the actuator are activated while the others are deactivated.

To charge the cells in a group together, the individual cells will be connected in



parallel electrically. Parallel electrical connection avoids requiring extremely high

voltages from the power source to drive a large number of serially connected PZT

cells which each require a input voltage near 150 [V].

For simplicity in the following discussion, each group in each pair will be considered

to be comprised of only one PZT cell. However, in general a pair could contain

multiple PZT cells in each group.

Because only one cell in each pair is activated at a time, the properties of PZT

can be exploited to increase the efficiency of the actuator. To achieve this, the charge

from one cell is transferred through appropriate circuitry to the other to deactivate

the first cell in the pair and activate the second. This process can be repeated in

reverse to deactivate the second cell and reactivate the first cell.

Then, depending on the desired actuator direction and speed and the mechanical

design including the actuator placement and gear design, the m groups are properly

coordinated to produce the desired motion. The coordination entails properly choos-

ing the phase difference between the activations of the various groups to cause the

proper aggregate output motion of the gear. The coordination of the various transfers

of energy can be coordinated by a controller which governs the entire system. This

controller would determine the time to transfer charge from one cell to another and

also control the phase shifts between the transfers of various groups.

In this way, charge used to activate one PZT cell can be reused to activate another.

If the transfer process were perfectly efficient and no output work was performed, once

m/2 cells were activated, the current charge in the actuator could remain indefinitely

activating different cells as it was transferred from one to another. However, because

the system inherently does mechanical work on the gear and the load it drives and

because perfect efficiency and a perfectly efficient charge transfer are impossible in

reality, additional energy must be added to the system over time to keep the actuator

operating at any desired level.



3.3 System Overview Diagram

3-2 shows an overview of the system in block diagram form. The m groups of PZT

cells interact with the mechanical domain through the particular mechanical design of

the actuator. These PZT cells receive their power from the energy stored in a battery.

The battery power is brought to the cells through some power transfer circuitry which

is also designed to allow power to be transferred from one PZT cell in the m/2 pairs of

cells to the other. Therefore, this circuitry must meet three functional requirements:

1) initially charge the required PZT cells, 2) allow charge to transfer between each

cell in a pair, 3) impose full activated and deactivated voltages if full energy transfer

does not occur. The final component of the system is the controller which coordinates

the movement of charge. The coordinator controls the type of energy (battery to cell,

cell to cell, or cell to cell with battery compensation) that must occur and controls

the timing of the charge transfers to produce the desired mechanical output of the

system. The coordinator commands the proper phase differences in the charging and

discharging waveforms for the m cells in the actuator.

Controle

Group 1

Group 2
Battry -TranferMechanical

Circuitry eLoad

Group mD-

Figure 3-2: Block diagram of the overall system architecture for the PZT driven
actuator.

3.4 Possible Transfer Circuitry

Campolo, Sitti, and Fearing have proposed a possible circuit to accomplish the power

transfer requirements listed above [3]. 3-3 shows the schematic of the proposed circuit.



The power transfer from one cell to another in one of the m/2 pairs is accomplished

by connecting the charged cell's capacitance through and inductor and a diode to the

other cell's capacitance. The inductor allows a full charge transfer to occur between

the capacitances that would not be possible by simply connecting the capacitors

together. Using the inductor also avoids a loss of have of the energy inherent in

directly charging a capacitor. The diode prevents the LC tank created from allowing

any charge to transfer back to the originally charged PZT capacitance. With no

losses, this scheme can have a 100% efficient charge transfer from one cell to the

other.

VO

\ SlH S 12 D12 \ S2H

C1 SIL S21 D21 S2L C2

Figure 3-3: Possible circuitry for PZT charging, charge transfer, and loss compensa-
tion.

With losses and the diode forward voltage, the transfer will not fully charge the

second PZT cell. The extra switches in the system connect to the power and ground

rails which can finish charging the PZT to compensate for lost energy and an incom-

plete charge transfer. Each cell can be charged individually. Also, if either capacitance

is completely discharge as it would be initially, the PZT cell's capacitance can be con-

nected to the power rail to initially fully charge one of the cells in the pair. Therefore,

this circuit can fulfill all the required criteria for the power transfer block. Each of

the m/2 pairs of PZT cells would require one such circuit between them for this func-

tionality. The controller block would need to properly coordinate the switches in the



above circuit and between the various circuits in the system to achieve the desired

mechanical output.

3-4 shows the switch timing diagram for cell-to-cell energy transfers and the cor-

responding voltages on the two PZT cells. In each cycle, SlH closes to fill the charge

on C1 while S2L closes to discharge C2. After both switches open, the voltages re-

main on the cells until the transfer occurs. S12 closes to transfer the charge from C1

to C2. Then, S2H closes to fill the charge on C2 while S1L closes to discharge C1.

At this point, C1 and C2 have simple switched roles and the symmetric sequence of

switch states occurs until the system returns to its original state. The length of the

hold depends on the necessary mechanical actuation frequency to create the desired

actuator motion.

Additionally, the circuit operation eliminates chances of large voltages spikes due

to disconnecting the inductor from the circuit which sometimes causes complication in

similar circuits. The diodes in the circuit cause the cell voltages to remain constant

after the transfer with current no longer flowing in the circuit. At this point, the

inductor is disconnected requiring that inductor current is zero. Because the inductor

current was already zero before it was disconnected, no change in current occurs, and

thus no spikes occur in the inductor voltage.

3.5 Shared Inductor Option

Although the above discussion has concentrated on each of the m/2 pairs being com-

prised of only two PZT cells, the general case for the actuator could have multiple

PZT cells in each of the m groups and two such groups in each of the m/2 group

pairs. Again, to charge the cells in a group together and avoid requiring an extremely

large input voltage, the individual cells will be connected in parallel electrically. De-

pending on the number of cells per group, the total capacitance of a group charged

in parallel can become large on the order of 100 [pF]. With all other parameters con-

stant, increasing the size of the inductance L without increasing the inductors series

resistance can significantly improve the cell group to cell group transfer efficiency. To



V

SIHI H II I I

II I I
II I I
* * . I,

I I I I I I
V I I I II I IV

I I I I II

SI I hI

1LI I I II I ;
V I I I I I II

2 H t1

.F-1

II I I X t

I I I II I I I

S *I I I I I

2L I I: . I
I I I I I Is82L 

F
I I I II I I I
* I L............I I I I
I I li i i I IS I I I I I I

S1 2

VI // I II

I I I II I
I I I I I II I
I I I I I I
I I I I IS2 1

hold hold Ne vCcle -
I II I I I

I Ii i

.. .. .......... i

| |C1 V| |C2vot iile f I I I
I Ii* I

i i II * i

i i i j i i i I "

Figure 3-4: Switch timing diagram and corresponding cell voltages for charge transfer
cycle.

I i -F - 6- Y



achieve these requirements, the inductor must become physically larger in general.

For certain actuator designs, the size and weight of the multiple inductors needed

may become prohibitive. However, by sharing a smaller subset of inductors, the

actuator can achieve the same functionality with less size and weight. Adding more

switches which link separate group pairs, one inductor could be used for multiple pairs.

Sharing an inductor would not allow charge transfers in the separate pairs to occur

simultaneously. However, because the speed of the charge transfer is significantly

faster the mechanical frequencies of actuation, more advanced coordination between

the cells can still achieve the same functionality outlined above. If two pairs must

transfer charge at nearly the same time, the circuit could perform one charged transfer

followed by the next. Then, because the characteristic time of the transfers is so much

shorter than the characteristic time of the mechanical motion, the ordered rather than

simultaneous transfers would be inconsequential.

In some cases, the choices of parameters may cause the electrical transfer fre-

quency to not be sufficiently higher than the desired mechanical frequency. Without

a large frequency difference, multiple cell pairs could not undergo a transfer one after

another with the total time of all transfers remaining sufficiently small compared to

the mechanical time constants. In this way, the cascading of the transfers would be

noticed which would violate the nearly simultaneous assumption needed to generate

the appropriate actuator behavior. In these cases, additional inductors can be used

with certain pairs assigned to each inductor. Weight and size savings can still be

achieved as long as the number of inductors is less than one for each pair. For ex-

ample, four inductors could be used. The m/2 pairs would then be separated into 4

groups each assigned to its own inductor.

3-5 shows the same circuit as 3-3 with two extra selection switches Sseei and

S, 12 added. The figure is only shown with two cells to avoid clutter. However, the

selection switches of each pair of cells would connect the cells to the same left and

right terminals of the transfer unit. The transfer unit in the center of the diagram

would be shared by all cells. The selection switches would choose which pair was

connected to the transfer unit at any point. Therefore, only a single inductor and set



of diodes would be used for all of the cell-to-cell energy transfers.
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Figure 3-5: Drive circuitry with extra selection switches.

In 3-3, each circuit for a pair of cells required 6 switches. Adding the selection

switches still requires 6 switches per pair only adding the two extra switches in the

transfer unit to the total switch count. Therefore, the use of selection switches only

causes a constant increase of 2 switches and not an increase of switches in proportion

to the number of cells.

Additionally, the use of selection switches also allows the circuitry to change which

cells are paired at any given time. Although some situations may not require a change

in the cell pairings, the selection switches allow this functionality which may useful

for certain applications.

3.6 Circuit Implementation

The implementation of the circuit in 3-3 requires special care to properly implement

the switches controllable by a microcontroller or similar device. The circuit switches

consist of two half-bridges and two switches connecting those half-bridges. However,

only switches S1L and S2L have a ground referenced node. A simple gate-driver

chip can control NMOSFETs for these switches. However, special care is needed to

properly implement and drive the other four switches.



As shown in 3-6, the Fairchild FAN7390 gate driver was chosen to drive each half

bridge. However, because the load connected at the center of the half bridge, the

PZT actuators, is capacitive, using a NMOS for the top switches S1H and S2H is not

possible. With both switches off, the configuration of the circuit for two NMOSs in

the half-bridge would cause the capacitive load to charge to the chip supply voltage

because the load creates a path to ground from that voltage supply. Thus, the load

could never float at a given voltage which is a necessary requirement of the circuit.

Instead to take advantage of the switches connection to the high-voltage rail, PMOSs

was used for S1H and S2H with the addition of 15 [V] Zener diodes and current-limiting

resistors.

150 [V]

rC

S

FAN7390

Hin VB

Lin HO
-COM VS D

-LO VDD 15 [V] D

load

S

Figure 3-6: Half-bridge switch circuit implementation using both NMOS and PMOS.

The floating switches S12 and S21 which connect both half bridges have no con-

nection to either rail in the circuit. A circuit using two NMOSs and a gate-driver chip

can be used for each switch. However, similar to the two NMOS half-bridge, the con-

nection of a capacitive load causes a problem. In this instance, driving these switches

in this manner necessarily drains energy from load, again, not allowing the voltage to

float. The simplest method to solve this problem is utilizing opto-couplers for these



switches. This method is undesirable because opto-couplers require significantly more

power than MOSFETs. However, because these switches only need to be active for

short periods of time, the power consumed compared to the power transferred for

the desired application space is small. 3-7 shows the implementation of the floating

switches S12 and S21.

Figure 3-7: Floating switch implementation using opto-coupler.

3-8 shows a full schematic for the circuit in 3-3 using the above mentioned switch

implementations. One half-bridge and PZT capacitance is connected through the

opto-couplers and the inductor to the other half-bridge and PZT capacitance. A

controller is used to control and synchronize the switches according to the switching

diagram in 3-4. The high-voltage rail can be supplied using a standard DC-DC boost

converter with a battery as an energy source. Similarly, the battery can be directly

connected to the chip supply voltage or another appropriate DC-DC converter can

be used to supply this voltage.

3.7 Preliminary Experimental Results for Circuit

3-9 shows voltage signals for two PZT cell banks utilized as the capacitive loads in the

circuit above. For this experiment, 40 [V] was used as the high rail to avoid fatiguing

the PZT cells unnecessarily. However, this circuit implementation and fabrication

is capable of supporting high-rail voltages of 200 [V]. Each cell bank has the same

capacitance of C = 5.6 [pF], and the circuit uses an inductor with L = 100 [mH]. The

cell banks initially start at each voltage rail approximately. The circuit moves the

charge from one cell bank to the other during the transition period. For the sake of

clarity, the voltages float momentarily and then are pulled to the opposite rails from



150[V]

Figure 3-8: Full circuit implementation of 3-3.



which they started. Thus, the circuit exhibits the behavior desired and discussed

above.
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Figure 3-9: Preliminary experimental result for circuit with no optimization.

Comparing the energy usage of this circuit versus standard drive circuitry reveals

the effectiveness of the circuit. A standard way to drive the actuators would be to

charge one bank and discharge it and then to charge the other cell bank and then

discharge it. With or without transferring charge between the cell banks, the cells

must be able to connect to both voltage rails. Therefore, the half-bridge circuitry used

in the experiment would be necessary even if driving the actuators in the standard

way. In the following energy calculations, the energy required to drive the half-bridges

is ignored as this energy would be used in both situations. Then, the energy per cycle

with no transfer would be

ENT CV



while the energy with transfer would be

ET = C(VO2 -VH2) + PONT

where VH is the voltage recovered to the recipient cell bank after a transfer, PON is

the opto-coupler power and equals 0.024 [W], and T is the period of the LC circuit

created during a transfer and equals 27/2LC. The percentage of energy saved would

be the ratio of the energy used in the circuit described above to the energy used in

the standard drive circuit.

ET
%Esave = 100

ENT

In this implementation, Esave is 40.7 %. This percentage will be the same per-

centage of power saved at a given frequency between the two drive strategies. Besides

the constant offset of the opto-coupler power, this percentage will be the same even

when higher voltages are used for the top rail. Although this implementation shows

significant energy savings, the circuit has not been optimized in any way. With opti-

mization, this percentage could be increased significantly. Because the energy scales

as voltage squared, a percentage increase in the recovered voltage will lead to a larger

percentage increase in the energy saved. As cell bank capacitance increases, because

of more PZT cells or larger PZTs, the energy used by the opto-coupler will become

more negligible. Using the above relationships,

CV 2 - (C(Vo2 - VH) + PONT) ONT%Esave 100 CV2  100 CV

Rewriting T in terms of C,

CVH - PON2W1 2LC
%Esave = 100 V

CV0

As C increases, the fraction PONT/C 0
2 goes to zero. Quickly, this term becomes

negligible compared to the first term in the equation. For example, with a gear driven

by 10 cells in each bank, 20 cells total, PONT = 0.00036 [J) while CVH2= 0.01893, the



later of being approximately two orders of magnitude larger. Therefore, with systems

even on this scale, the percentage of the energy recovered will scale with the square

of the percentage of the voltage recovered. Letting Rvrec denote the fraction of the

voltage recovered,

%Esave = 100 o 100 )RV cVo )= 1R

This equation suggests that optimizing the circuit should simply be an attempt to

drive the recovered voltage VH as high as possible compared to the high voltage V.

An optimized circuit must also use an inductive element when charging the PZT cells

from the high-voltage rail. Many standard designs and DC-DC converters exist with

inductive elements to supply the high-voltage rail. Although ignored in the circuit

diagram and analysis, care must be taken to ensure that the circuit sourcing power

to the high rail does so through and inductive element to avoid the immediate loss of

energy equal to the energy sourced to the PZT capacitance. This phenomena occurs

with direct capacitor charging from a voltage source and is well documented.

3.8 Generalized PZT Driven Linear Actuator Model

The development of this model aims to explore the characteristics of a distributed

interaction between PZT cells and a linear gear. The PZT cell model is developed

first to show the two-way transforming nature of the PZT. As shown in 3-10, the

model has a electrical and mechanical domain. The two domains are coupled by the

piezoelectric effect. The mechanical domain is represented by a lumped mass with a

spring and damper tied from the mass to ground. Through the piezoelectric effect, a

force is exerted on the mass proportional to the voltage on the PZT. The net motion

of the mass is coupled to the load through a lever arm which represents the flexure

system. The displacement of the mass is amplified by Gf while the transmitted force

is attenuated by the same constant. The electrical domain has a PZT capacitance

in parallel with a dependent current source. Again, through the piezoelectric effect,

the displacement of the mass causes a current from the dependent current source. A



voltage source is in parallel with both of these elements. This voltage source drives

the PZT and, with the other PZT cells, the entire system.

Electrical Mechanical
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Figure 3-10: Lumped-parameter model of the PZT cell.

This model can be represented as a single differential equation relating PZT volt-

age and cell's output force to the cell's output motion. Then, using experimental

data as well as parameter measurements and estimations, the following equation can

correctly predict the behavior of a single PZT cell.

G5VPZT G 1 (bMi + BM i + KMxi) = F

3-11 shows the model of the gear system with the PZT cells pushing against the

teeth of a linear gear. The gear is modeled as a lumped mass Mg and damping b

with a particular shape z = f(y) as defined in the figure. The initial positions of the

PZT cells are donated yi,. For evaluation purposes, the model also defines yj as the

relative position of the cells once the gear has moved some distance yg. The cells do

not actually move in the system, but this definition allows easy evaluation of the gear

shape and its derivatives at the position of the PZT cells after some motion. Just as

in 3-10, the force and displacement of each PZT cell is denoted F and xi respectively.

Finally, a general external force Fext is included to model a constant external load on

the linear actuator.

With the PZT cell forces and external force as inputs, the gear model can be

written in a differential equation relating the PZT cell forces to the motion of the

gear. To do this, the PZT cell interaction with the gear teeth must be carefully
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Figure 3-11: Lumped-parameter model of the PZT cells' interaction with a gear.

considered. 3-12 shows a close view of a small section of the gear tooth where the

PZT cell may be interacting.

- I*

F

Figure 3-12: Close up view of section of a gear tooth.

Considering small displacements in this region,

Ax_ dz

Ayg dy Y,

This equation directly leads to

dz
dy 

i



Then, with the assumption that power is conserved

Fj., = Fgj g

which leads to

dz
Fo= -- F

dy ,

With these two interaction relationships, the gear model, and then the full model,

can be developed with the parameters of the equation dependent on the shape of the

gear and its spatial derivatives. For the gear,

dz
Mju g dy Fi - bpg + Fext

Combining the two model equations and appropriately relating the displacement of

each cell to the gear displacement yields

ug E(Ap2 -Bpg+C-D+Fet)

where

A = M z'fz"

B = b + 2Bm (z)2
Gf

C = Km z'z

D = )7, Z'VPZTi

1
E=

Mg + -M (Z)2

where



z = z(yj)

, dz(yi)
dyi

,, d2 z(y)
z dyi2

and

yi yio - yg

3.9 Simulation Results

The full generalized model was implemented in MATLAB to simulate the system. Nu-

merical integration was necessary to simulate the response of the time-varying, non-

linear system. The nature of the equations leads to large variations in the derivatives.

The numerical results show some oscillations in velocity around an average value, and

thus, averages of this signal was considered.

Certain system components were set arbitrarily to allow initial observation of the

system characteristics. First, the gear shape was set as a sinusoid with amplitude A9

= 0.8 [mm] and gear period, or pitch, Tg = 27rAg [s]. The gear amplitude must be

less than the dynamic stroke of the actuator. Second, four PZT cells spaced by half

of the gear pitch Tg between each were used in the initial simulations although the

simulation can be scaled to an arbitrary number of cells. Third, some desired voltage

signal must be fed to each cell to cause gear motion. For simplicity, a controller was

implemented which activates all PZT cells which will aid the gears motion in the

desired direction and deactivates any cells which will impede. In some sense, this

scheme will simply try to drive the gear as fast as possible. Thus, the controller does

not give useful control for many circumstances but simply provides a useful basis

to be exploration of the model. In a physical implementation, this scheme would

only require a position sensor and knowledge of the gear shape and thus is entirely



practical.

3-13 shows the displacement and velocity signals over a 4 [s] period with gear

damping b = 0 [-] , gear mass Mg = 0.5 [kg], and external force Fet = 0 [N]. The

simulation shows an average no-load speed y 2.4 [7].
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Figure 3-13: Position and speed of the
PZT cells driven 1800 out of phase.
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For verification purposes, an animation was created to visually inspect the motion

to ensure a reasonable solution from the numerical integration. A frame from this

animation is shown in 3-14.

The stall force of an actuator is another important metric. However, the stall

force must be carefully considered in the arbitrary setup of the simulation. Normally,

finding the stall force requires applying sufficient external force until the gear does

not move when starting from rest. For four PZT cells with only two acting at any

one time, this stall force Fsext = 14.4 [N] and scales linearly with the number of cells



Figure 3-14: Frame of the animation of the gear motion.

used. However, spacing the cells a half pitch length apart relies on the motors inertia

to pass the gear through the singularity where the slope of the tooth is zero. After

passing through this point, the next set of cells can activate and continue moving the

gear. Thus, with external forces much smaller than the stall forces, the gear does

not maintain enough inertia to pass through the singularity and thus no steady state

speed is every reached although the gear does move initially. This phenomenon is

entirely dependent on the cell spacing. For example, spacing the cells closer together

would allow more cells to aid the gear motion without relying solely on the gears

inertia and thus avoid this problem to some degree. Another similar solution would

be space the PZT cells farther apart such that the same result occurs. Therefore, a

meaningful measurement of the stall force would highly depend on the desired cell

configuration and is not well represented with the arbitrary choices in this initial

simulation.



3.10 Future Physical Implementation

A physical prototype of PZT cell driven gear will be designed and constructed. A

physical version will illuminate important aspects of the system that may or may

not be included in the modeling and allow further research on the topic. The initial

prototype will use less PZT cells than a final actuator and may change gear tooth

shape and PZT cell design from the model.



Chapter 4

Dual Sensing and Actuation

4.1 Two-way Electromechanical Transformer

4.1.1 Self-Sensing Actuation

PZT is an electromechanical transformer [5]. Applying a voltage to PZT material

will cause the material to strain. Conversely, straining PZT material will induce a

voltage across the material. PZT stack actuators are constructed such that a voltage

will cause the stack to expand axially. Mechanical compression in the axial direction

will induce a voltage across the stack's leads. The two-way transformer nature of

PZT allows the stack actuator to act as both an actuator and a sensor. PZT stacks

have been used extensively in both applications.

Others have also utilized the PZT actuators simultaneously in both roles [5, 6,

7, 8, 9, 10]. Termed self-sensing actuation, the method monitors the voltage varia-

tions superposed on the desired voltage driving signal. The mechanical stimulus on

the piezo element causes these voltage variations through the piezoelectric effect. In

this way, the PZT stack can provide information about its mechanical loading while

simultaneously in use as an actuator. A few general approaches to self-sensing actu-

ation are utilized. One approach first chooses a resistance and capacitance to match

the lumped parameters of the piezo. These components and the piezo are used in a

number of different bridge circuits to extract the difference between the response of



piezo and the response of the matched components [5, 9, 10]. In other words, the

bridge circuits aim to monitor only the voltage variations due to the piezoelectric

effect.

However, errors in the choice of capacitance and resistance values or changes in

the piezo lumped parameters due to temperature variations or other outside stimu-

lus can cause errors in this technique and lead to instability with feedback. Many

of the variations in self-sensing actuation approaches are designed to mitigate these

problems. In one case, capacitors are added in series and parallel to decrease the

variations in the piezo's capacitance due to temperature variations and thus improve

stability of the bridge [7]. Another approach uses a dummy piezo as the matched

components in the bridge circuit [10]. In this way, any stimulus which effects the

main piezo also effects the dummy piezo in the bridge except the piezoelectric effect

experienced by loading the main piezo. Another approach is to use system identifi-

cation and state estimation to emulate the bridge in software [8]. In software, the

parameters or the bridge can be modified to deal with error and changes in the piezo's

lumped parameters. Self-sensing actuation has also been used to monitor structure

health [6]. This application does not utilize a bridge circuit, but instead monitors

the piezo's admittance as the piezo excites the structure. Over time, the change in

the piezo's admittance gives information about the health of the structure. All of

these approaches use simultaneous actuation and sensing in different fashions. The

approach utilized in this work differs greatly and is significantly simpler.

4.1.2 Applicability of Self-Sensing Actuation to Distributed

Actuation

Shown in the following sections, self-sensing actuation is overly complicated for the

distributed actuation problem as stated in 3.2. However, even if using self-sensing

actuation were desirable, the method has many drawbacks when viewed in the con-

text of the problem. The intended design of the actuation and drive system is for

high power efficiency, minimization of sensors, and avoidance of complex modeling.



However, different approaches to the self-sensing actuation seem to compromise these

desires. Furthermore, the careful design of the flexure system for each cell prevents

the use of some classic methods of self-sensing actuation.

First, a bridge circuit utilizing physical inductors and resistors to match the piezo's

impedance would require the power source to power the entire bridge circuit. Even

without consideration of the additional power for required chips, this method would

immediately consume approximately twice the power of simply driving the piezos.

This problem is the same when a dummy piezo is used instead of physical components.

However, in this problem, this scheme would also require an additional piezo for each

one actually used for actuation. The increase in weight, cost, and number of piezo

elements is extremely undesirable.

Second, the method of using system identification, modeling, and state estimation

to avoid using physical components in the bridge scheme requires a complex model of

the system and then often utilizes system identification to populate the parameters

of the model. Then, a control scheme is implemented using this model for state esti-

mation with changing parameters to ensure stability. All of these steps are required

to monitor the sensing component of the piezo's voltage. With a system objective in

this application to minimize or eliminate the need for complex modeling, this method

would be highly undesirable.

Finally, the design of the flexure system itself prevents these piezo stack actuators

from being used for self-sensing actuation as in [5]. However, the flexure design also

prevents the piezo stacks from being misused. Piezo stacks are not meant to be loaded

in tension. Tension can cause delamination of the layers and damage to the piezo.

The piezo stack in [5] is directly connected to the mass in the system. For certain

applications, this method may prove acceptable, but in many situations this direct

connection with no antagonistic actuator or spring force could allow the stack to be

brought into tension.

The flexures are designed in two layers. The piezo's have an interference fit in

the first layer. As the piezo stack expands, the output of the first layer contracts. In

response to this contraction, the second layer also contracts. The design was imple-



mented to avoid compression of the flexures which may lead to buckling. All flexure

components are in tension. However, this design also prevents the piezo stacks from

being loaded incorrectly. If at any time the first layers connection with the piezo

stacks themselves expanded, the stacks would simply fall out of the flexures. This de-

sign prevents the incorrect loading of the stacks. However, the design also guarantees

that the PZT cell can only pull on an external load. Thus, some antagonistic force,

whether from gravity, a spring, or another actuator, must exist if the load hopes to

guarantee a full return stroke or oscillation. The design prevents the cells from being

used in the above mentioned self-sensing actuation scheme because the cells cannot

sense forces exerted in both directions. The only way to avoid this problem is to

sufficiently pre-load the flexures such that the required negative voltages will arise

without the stacks falling out of the flexures. Care would be necessary to ensure this

pre-load was properly designed and implemented, and the pre-load may decrease the

performance of some aspects of the actuator.

However, regardless of the drawbacks associated with self-sensing and actuation

for this application, the method is simply too complicated for the desired application.

The system can be designed such that inactive cells can be used as sensors. The

following sections discuss this method and its validity.

4.2 System Utilizing Dual Sensing and Actuation

A simple pendulum system was built to demonstrate the use of the proposed driving

circuitry and dual sensing and actuation on a system actuated by a distributed set

of the developed PZT cells. 4-1 shows a graphical representation of the pendulum

system. Lever arms rigidly connect the PZT cells to a mass hung at the bottom. The

pendulum rotates at the pivot shown. The PZT cells provide the force to the upper

lever arms to cause the pendulum to swing.



Figure 4-1: Pendulum system actuated by two banks of PZT cells.

4.3 Charge Recovery Circuit

Discussed in 3.4, the charge recovery circuit utilizes two banks of PZT cells which

require actuation 180' out of phase to increase the power efficiency of the system.

Instead of driving the cells to full voltage and back to ground individually, the circuit

utilizes an inductor to move the charge from one set of cells to the other thus supplying

much of the energy needed to charge the discharged set while simultaneously sinking

much of the energy that must be removed from the charged set. This scheme has

many applications when these sets are antagonistic pairs on a load as well as other

applications.

4.4 Dual Sensing and Actuation

Because of this charging scheme, one set of PZT cells in each of these pairs is unused

while the other is active. In this way, these inactive cells can be used as a sensor in

the system. While many applications can utilize this inactive cell as a sensor, perhaps

the clearest use is once again when the PZT cell sets are used in antagonistic pairs



on the load as in the test system shown in 4-1.

As stated above, each set of cells can only contract to provide force to the system.

While the active set contracts, the systems motion causes extension of the passive set.

This cell expansion compresses the PZT stacks inducing a voltage across their leads.

This voltage will relate to the magnitude of the expansion. Unlike self-sensing and

actuation, this simpler scheme utilizes both the sensing and actuation capability of

PZT interchangeably rather than simultaneously. No carefully tuned bridge circuitry

or careful separation of signals is necessary to sense in these applications.

One important parasitic which arises in the system is similar to the capacitor self-

recharging phenomena. During a very short period of time, the cell is driven from

full voltage to zero and then allowed to float. Because insufficient time elapses while

the PZT cell is shorted, some amount of charge builds up again on the PZT stacks.

Although only a few volts, this voltage make sensing with the cell very difficult. To

solve the problem, a resistor is placed in parallel with the stack. An appropriate value

is chosen such that the PZT capacitance drains any remaining energy sufficiently fast

such that the stacks can reliably sense the mechanically-induced voltage. To avoid

energy losses during charging, this parallel resistor is only connected across the PZT

cell during the periods of sensing by utilizing an additional MOSFET.

4.5 System Identification

In this sensing and actuation scheme, the inactive PZT cells provide information

of the size of the oscillation during the half period of inactivity. Thus, utilizing the

information from both sets during their inactive periods, information about the entire

oscillation can be recovered. The amplitude of the two halves of the sensor signal for

one period gives a direct indication of the amplitude of the oscillation for that period.

Although classic frequency sweeps utilize sine waves, this system can only be driven

with square waves. However, in the same way, the system can be driven with different

frequency square waves while the amplitude of the sensor signal at each frequency

is monitored. The magnitude of the input to sensor signal relationship can then be



determined. A type of bode plot can be generated from the square wave input signal

to the PZT cell sensor signal.

4.6 Resonance

One important use of this type of system identification is to find the resonance of the

system. Many applications can utilize a mechanical resonance in the displacement

amplitude. For example, locomotion may use resonance to achieve maximum speed

or another desirable outcome. Additionally, applications utilizing PZT often suffer

from limited stroke. Therefore, in these applications, a mechanical resonance may be

very useful.

Utilizing the system identification method above, the resonance of the input sig-

nal to sensor signal relationship can be found. This can be done online very simply

by monitoring the sensor signal at each frequency and determining the frequency

in which the signal oscillation has the largest amplitude. However, the relationship

between the sensor signal amplitude and the mechanical amplitude of the system is

not intuitively obvious for a PZT cell attached to a load. Unless the resonance of

the desired amplitude coincides with the resonance of the sensor signal or can be

deterministically related, the sensor signal cannot be used to determine the systems

resonance. Fortunately, the poles of the input signal to sensor signal system are iden-

tical to the poles of the input signal to load amplitude system. This results makes

intuitive sense because with multi-input-multi-output systems, the loop transfer re-

mains the same for any choice of input and output which would lead to the same

poles for both transfer functions.

4.7 System Model

A simple example can show this result. Again, consider the swinging pendulum

system shown in 4-1. This system can be modeled as shown in 4-2. Similar to the

model of the PZT cell and gear discussed in 3.8, simplifications are made for ease of



modeling. Again, the model will only involve lumped parameters. Second, although

each side of the pendulum is actuated by two PZT cells, the model considers a pair

of single PZT cells actuating the pendulum. The use of two PZT cells in the real

system only increases the maximum amplitude of the pendulum swing and changes

certain parameter values, but as an approximation, does not affect the model form

itself. Third, the system moves through multiple states. At one point in time, one set

of cells is an actuator while the other is a sensor. At another point in time, both sets

are coupled electrically through the drive circuitry. Then, the cells switch roles as

sensor and actuator. This model simply analyzes the moment when one cell is used

to actuate the system while the other cell is used as a sensor.

As shown in 4-2, the model breaks the system into three parts: the rotational

system, the actuating PZT cell, and the sensing PZT cell. The rotational system

consists of a lumped mass m rotating at a distance b from the pivot. The PZT cells

are attached to the system through lever arms of length a. The chosen values for the

physical implementation of the system lead to a final assumption of small angles used

in the modeling and analysis. a is 25.4 [mm] while the displacement of each PZT cell

is on the order of 1 [mm]. Assuming a total stroke of 2 [mm] for the stacked cells, the

angle change would be

2
tan-1 ( ) 0.07857 [rad]

25.4

Comparing the sine of this angle to the angle itself will indicate the validity of the

small angle approximation. The sine of this angle is 0.07852 which is extremely close

to the angle itself. Thus, the small angle approximation is appropriate for this system

implementation.

The actuating PZT cell and sensing PZT cell models are nearly identical and very

similar to the model described in 3.8. The two models only differ in the electrical

domain by one component. The actuating PZT then has a voltage source in parallel

with both the PZT capacitance and dependent current source. The voltage source

drives the system. The sensing PZT instead has an additional impedance in parallel
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with these elements. The parallel impedance represents the sensing impedance and

also the draining resistor discussed in 4.4. Shown in 4-3, in this implementation the

sensing impedance is dominated by a voltage divider circuit utilizing two resistors to

scale the PZT drive voltages that are between 100 and 150 [V] to a level which can

be read by standard data acquisition hardware.

Rj+
z V + tA+ RVPZTs PZT2 VDA R e 2

Figure 4-3: The parallel impedance is dominated by the draining resistor and the
sense impedance which is dominated by the voltage divider circuit.

With this model, the governing equations of the system were developed. The goal

of this analysis is to show that for the same frequency of input voltage, the resonance

in the sensed voltage occurs at the same frequency as the resonance in the pendulum

displacement. Two transfer functions must be compared. One transfer function is

between the input voltage VIN and the output pendulum displacement 0. The other

is between the input voltage VIN and the output sensed voltage VPZT2. The following

derivation shows that both of these transfer functions share the same poles and thus

have the same resonant frequency.

The governing equations for each part of the system can be derived first and later

combined to find the transfer functions. For the rotational system the equation of

motion is

-mgbO + a(F2 - F1 ) = mb25

After using the proper reflected quantities, the governing equations for the two PZT

cells are

3VPzT1 - BMiPZT1 - KMXPZT1 - G F1 = M-%PZT1

/VPZT2 - BMiPZT2 - KMXPZT2 - Gf F 2 = MPZT2



Combining the equations is easiest in the frequency domain. After substitution and

rearrangement, the laplace representations of the above equations are

a(F2 (s) - F1(s)) = (mb2s2 + mgb)O(s)

BIN(s) - Gf F1(s) = (Ms 2 + BMs + KM)XPzT1(s)

3VPzT2(s) - GfF2 (s) = (Ms 2 + BMs + KM)XPzT2(s)

After rearranging these equations and adding other relations that follow from the

model, the following equation emerges giving insight to the applicability of this anal-

ysis:

(Mis2 + Bis + Ki)O(s) = . a (VPzT2(s) -VIN(S))
G5

where

M + Mm + mb2

f

2a2

2a2

Ki = 2 Km + mgb
f

This equation suggests that this analysis is applicable to a general load with an

equivalent inertia, damping, and stiffness. The forcing term applied to the load is

proportional to the difference between the sense voltage and the drive voltage. This

generality is important to this analysis's applicability to more general systems and in

turn the applicability of the entire dual sensing and actuation method.

The electrical domain of the sensing PZT cell yields the following relationship

between VPZT2 and 0:

VPZT2(S) a Z(s)s

0(s) Gf (1+ CpzT2Z(s)s)
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Using this relationship along with the previous equations, both required transfer

functions can be derived. The two transfer functions are

E(s) a (1+CzT 2 Zs(s)s)

VIN(S) Gf As 3 + Bs 2 +Cs + D

VPzT2(s) _ .2 2 Z (s)s

VIN(S) G 2 As 3+ Bs 2 +Cs+ D

where

A= CPZT2Zs(S)Mi

B =M + CPZT2Zs(S)Bi

G2C =Bi + CPzT2 ZS(s)Ki + 2aZ,(s)
f

D = Ki

where Mi, Bi, and Ki are defined above.

The denominators and thus the poles of the two transfer functions are identical.

Therefore, the resonance frequency of both transfer functions are identical. This

result shows that finding the driving frequency which causes a resonance in the sensed

voltage will also indicate the resonance in the mechanical amplitude of the pendulum

swing.

4.8 Test Setup

A physical version of the modeled system was developed. 4-4 shows a front view

of the system. The mass, pivot, and PZT cells are shown. The two PZT cells on

each side of the pendulum are connected mechanically in series but driven in parallel

electrically. Thus, each set of cells on one side of the pendulum should be considered

a cell bank.

A potentiometer was added to the pivot in the system to measure the angular

displacement of the pendulum for verification purposes. 4-5 shows a view of the



Figure 4-4: Front view of the PZT driven pendulum setup.
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system from above to indicate the position of the potentiometer in the system.

Figure 4-5: Top view of the PZT driven pendulum setup.

The cell banks are connected to the charge recovery circuit described above. A

controller drives the this circuit appropriately to produce a square-wave frequency

sweep of forces on the pendulum. The controller also monitors and records the sensing

voltages from the PZT cells as well as the signal from the potentiometer.

4.9 Simple Algorithm

Using dual actuation and sensing, a system can search for its own resonance frequency

online without a model. This online system identification could avoid the use of po-



tentially complex system models or allow for updated resonance frequencies if system

parameters change in real time.

One simple method of obtaining the resonance frequency of the system is driving

the system with the actuators at different frequencies and monitoring the PZT sensor

voltages until finding a frequency which causes the highest amplitude in the sense

signals. Then, the system could return to this resonance frequency for operation.

Other more complex methods may utilize a controller to continually drive the system

to its resonance frequency while the frequency potentially varies in time. However,

the experiments examined here use the simple frequency sweep method.

4.10 Results

4-6 shows the normalized voltages from the PZT cell banks and the potentiometer

during an impulsive finger flick. This quick experiment shows that the the PZT

voltages utilized together accurately trace the potentiometer especially in terms of

frequency. The voltage from cell bank 2 is inverted as it corresponds to the negative

side of the pendulum motion. The amplitude of the signals can vary based upon

many factors in the mechanical system and electrical circuit. Thus, some calibration

would be necessary to ensure the PZT sense voltages had physical meaning if that

functionality was necessary. The normalized voltages in 4-6 show that with this type

of calibration the PZT sense voltages could also accurately represent the magnitude

of the physical oscillation.

The input actuation frequency was swept between 0.5 [Hz and 9.5 [Hz] (3.14 [d]

and 59.69 [rad]) while the PZT sense voltages and potentiometer voltage were recorded

over time. 4-7 shows the results of this experiment and indicates that the PZT sense

voltages closely trace the potentiometer voltage during the frequency sweep. Vi-

sual inspection suggests that the resonance peak occurs at approximately the same

frequency for all of the signals. This match was expected from the model analysis

outlined above. Some jittering occurs in the signals during the sweep. All of the

signals seem to experience the same problem which appears to come from some in-
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consistency in the controller driving the system. This jitter does not substantially

affect the conclusion of the experiment that indeed the PZT sense voltages correctly

trace the potentiometer voltage over this range of frequencies.
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Figure 4-7: Pendulum displacement to a swept
by potentiometer and inactive PZT bank.

frequency input over time measured

The potentiometer voltage measures the entire range of 0 while each of the PZT

cell banks only measures one direction of the swing. For comparison, the potentiome-

ter voltage was then split into a positive signal and negative signal. These two signals

and the PZT sense voltages were used to generate bode magnitude plots to compare

the resonant frequency predicted by the different signals. 4-8 shows the normalized

magnitudes versus frequency of the four signals. Each signal individually predicts that

the natural frequency occurs at 7.5 [Hz] (47.1 [ The resolution of the frequency

sweep is relatively low at using 0.5 [Hz] (3.14 [9]) steps, and thus this result does

not confirm that each signal will always predict the exact same resonant frequency.

-Normalized Pot V
Normalized V1
Normalized V2



However, the data suggests that the signals will show close agreement and that with

only the PZT cell banks as sensors, the system can still accurately find its resonance

frequency within at least approximately ± 7%.
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Figure 4-8: Normalized magnitudes versus frequency for PZT sense voltages and
potentiometer voltage.



Chapter 5

Conclusion

The PZT cellular actuator provides many possibilities through the use of charge

recovery, distributed actuation, and dual sensing and actuation. Initial exploration

into active drive circuitry revealed the impracticality of energy harvesting at the scale

used, unwanted design and control complexity, and other problems. The functional

requirements of the circuit were reevaluated with careful consideration of the desire

to distribute many actuators on the same load.

With PZT cells distributed on a mechanical load, many functionalities can be

achieved. First, a method of efficient distributed actuation on a mechanical system

with PZT cells was proposed. PZT cells would be grouped in banks which would

transfer energy between different banks in a controlled fashion to produce the desired

system motion. Second, a charge recovery circuit was designed and implemented to

achieve this charge transfer. Without optimization, the circuit successfully transfers

65% of the voltage from the activated to deactivated PZT cell which equates to -41%

energy savings compared to not using charge recovery. This energy savings makes the

proposed distributed activation method very energy efficient compared to standard

drive methods. Next, distributed actuation was applied in simulation to a linear

gear where multiple PZTs drive the gear in parallel. The model incorporated the

dynamics of both the gear system and the PZT cell. With the conditions chosen for

this simulation, the idealized no-load, steady-state velocity of the gear was 2.4 [].

Finally, the electromechanical transformation properties of PZT were used to de-



velop a dual sensing and actuation method using distributed PZT cells. With this

functionality, the active cell still actuates the system. However, now the inactive cell

is used to sense the amplitude of the motion. In this way, using no external sensors,

the system can identify its own resonance. These functionalities and their possible

extensions and uses show the importance and impact that charge recovery, distributed

actuation, and dual sensing and actuation with the PZT cellular actuator can have

on robotic systems.
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