
DRAGON Code Sample and

Tutorial

Here we present a sample of the DRAGON code used in the reactor simulations

carried out for this thesis. The code shown below is applicable for DRAGON ver-

sion 3.06H and can be obtained from the following site: http://www.polymtl.ca/

nucleaire/DRAGON/en/download/index.php. Several of the modules listed below

have been deprecated for DRAGON version 4, the experimental version of the code

[?]. DRAGON is freely available and can be obtained from [?]. It can run on any

platform that supports a Fortran compiler. The code below was successfully run with

gfortran [?]. This code is the first stage of the Takahama-3 assembly simulation. A

DRAGON input file, henceforth referred to as an input deck, is a collection of CLE-

2000 commands[?]. CLE-2000 is a system of Fortran-like procedures and commands

that support the modular nature of DRAGON by providing it with a unified and

uniform interface. Here, we see an example of variable declaration and assignment:

REAL Power := 5 .00 ;

The := operator represents assignment, and all CLE-2000 statements must terminate

with a semicolon. White space is insignificant in DRAGON; however, input in column

72 or greater will not be parsed correctly as it can represent a comment, and tab char-

acters will always parse incorrectly and lead to an error. Variables in DRAGON can

be of the typical variety found in most programming languages (integers, characters,

double precision, etc.).

1

0.1 Linked List Directives

An input deck typically begins with a declaration of user-defined names to be intro-

duced into the program. The LINKED LIST directive begins a line that contains

the user-defined variables. CLE-2000 can support output into a variety of formats,

including ASCII and binary among others. In the following code segment, NewBurn-

File, a user-defined variable, will contain plain text about the fuel evolution, and

Track will be in a binary format which is more efficient for use by other DRAGON

modules:

LINKED LIST

ASSMB DISCR LIBRARY CP CALC OUT BURNUP

EDITION ;

SEQ ASCII NewBurnFile ;

SEQ BINARY Track ;

0.2 Importing Modules

The MODULE keyword informs DRAGON which elements of the code are required

for the simulation. The modules here are CLE-2000 keywords; thus LIB: represents

the activation of the cross section library interpolation module. The meaning of the

following modules will be elaborated upon below. Failure to include the module name

in this list will cause an error.

MODULE

LIB : GEO: EXCELT: SHI : ASM: FLU: EVO: EDI :

DELETE: END: ;

0.3 The LIB: module

The following segment imports the cross section libraries into the input deck.

2

LIBRARY := LIB : : :

NMIX 6 CTRA WIMS

DEPL LIB : WIMSD4 FIL : j end l3gx

MIXS LIB : WIMSD4 FIL : j end l3gx

Now we enter the LIB: module. In the first line, we are assigning the linked list

variable LIBRARY to the output of the LIB: module. The . . . indicate that what

follows will be a list of keyword-parameter sublists. For example, the NMIX keyword

represents the number of material mixtures, such as fuel or moderator, to be treated

in the simulation. In this case, there are 6 mixtures. The CTRA keyword refers to the

transport correction to be applied to the cross sections, and in this case, a WIMS-

style correction will be applied since the libraries are WIMS-D4 format[?]. DEPL

here expects the cross section library format, which here is WIMS-D4. DRAGON

can interpret several different library formats, including its own native DRAGLIB

format[?]. The user is required to obtain or generate these libraries elsewhere. The

name of the library is user-defined. In this simulation, the 172-group JENDL 3.2

library was used[?]. Note that none of the above code ends in a semicolon. This is

because the entire LIB: module specification is a statement.

0.4 Mixtures

∗ Water / moderator

MIX 1 600 .0 0.7200768

H1H2O = ’3001 ’ 11 .188

O16H2O = ’6016 ’ 88 .749

BNat = ’1011 ’ 0 .0630

Any line that begins with a * is a comment in CLE-2000, and thus DRAGON. The

input deck will crash if the asterisk is not in the first column. The comment informs

us that we are about to define the moderator for the Takahama fuel assembly. The

MIX keyword labels the mixture with an arbitrary integer which must be less than 6,

3

since NMIX was defined to be 6. The next value is the mixture temperature; thus the

temperature of the water will be 600 K. The final value is the density of the mixture

in g/cc. We would expect the density of water at 600 K to be less than its room

temperature value, and so the value for sample SF97-4 here is about 0.72 g/cc.

The next line shows the elements and submixtures that comprise the full mixture.

The mixtures contained in the LIB: module specify the initial state of the reactor.

The first term in this chain of expressions (e.g., H1H2O) is a user-defined synonym

for an ENDF/6-formatted[?] integer that represents the properties of the element in

question. The last value represents the weight fraction in percent of the element in

the mixture. Thus, we can see that oxygen-16 has a label O16H2O, is represented

in ENDF/6 by the string ’6016’, and has a weight fraction of 11.188% in water. It

is worth noting here that code ’1011’ represents non-soluble natural boron, which

means that its value is constant throughout the course of the fuel evolution. In this

case, the value is set to 630 ppm.

The user can omit the density of the material, but if this is done, instead of

inputting the weight fraction of the element, the user inputs the number density of

the mixture. This gives added flexibility in cases where the reactor description is

incomplete and the mixture densities are unknown.

∗ Fuel c ladd ing

MIX 2 600 .0 5 .821341

CrNat = ’52 ’ 0 .0010033

FeNat = ’2056 ’ 0 .0021067

ZrNat = ’91 ’ 99 .689

In the above, we can see the mixture specification for the Zircaloy fuel cladding, and

that it is almost all natural zirconium by weight.

If the sum of all of the weight percentage do not equal 100%, DRAGON will

simply renormalize the inputs by the sum.

∗ UO2 f u e l mixture

MIX 3 900 .0 10 .0701

4

O16 = ’6016 ’ 11 .852

U234 = ’234 ’ 0 .03526 1

U235 = ’2235 ’ 3 .622944 1

U238 = ’8238 ’ 84 .49 1

Pu238 = ’948 ’ 0 . 0 1

Pu239 = ’6239 ’ 0 . 0 1

Pu240 = ’1240 ’ 0 . 0 1

Pu241 = ’1241 ’ 0 . 0 1

Pu242 = ’242 ’ 0 . 0 1

Pu242h = ’1242 ’ 0 . 0 1

U232 = ’232 ’ 0 . 0 1

U232ps = ’4232 ’ 0 . 0 1

U233 = ’9233 ’ 0 . 0 1

U236 = ’236 ’ 0 . 0 1

U237 = ’927 ’ 0 . 0 1

U237ps = ’4927 ’ 0 . 0 1

Np237 = ’937 ’ 0 . 0 1

Np239 = ’1939 ’ 0 . 0 1

Am241 = ’951 ’ 0 . 0 1

Am242 = ’1952 ’ 0 . 0 1

Am242m = ’952 ’ 0 . 0 1

Am243 = ’953 ’ 0 . 0 1

Cm242 = ’962 ’ 0 . 0 1

Cm243 = ’963 ’ 0 . 0 1

Above, we see the specification for the uranium dioxide fuel mixture at 900 K and

with a density of 10.07 g/cc. Of course, during the evolution of a reactor or assembly,

fuel is consumed and other actinides, such as americium and curium, are produced.

DRAGON will evolve these elements in time, regardless of whether they are specified

as above. We explicitly list them above for 2 reasons. Firstly, notice that for all

the elements save for oxygen, the last value is a “1”. This is a self-shielding index,

5

and it informs DRAGON that the elements sharing the same index must undergo

the self-shielding process together. Since the plutonium isotopes and other higher

actinides are potentially useful for important cross-checks of proper evolution, their

self-shielding must be labeled in the initial state. Oxygen, not being fissile, does not

undergo self-shielding and thus does not require an index (indeed, adding one will

cause an error). The second reason is that it facilitates parsing of the output by the

author’s processing programs.

∗ UO2−Gd2O3 f u e l mixture

MIX 4 900 .0 10 .0701

U234G = ’234 ’ 0 .016572 2

U235G = ’2235 ’ 2 .1793 2

U238G = ’8238 ’ 80 .665 2

Pu238G = ’948 ’ 0 . 0 2

Pu239G = ’6239 ’ 0 . 0 2

Pu240G = ’1240 ’ 0 . 0 2

Pu241G = ’1241 ’ 0 . 0 2

Pu242G = ’242 ’ 0 . 0 2

Pu242hG = ’1242 ’ 0 . 0 2

U232G = ’232 ’ 0 . 0 2

U232psG = ’4232 ’ 0 . 0 2

U233G = ’9233 ’ 0 . 0 2

U236G = ’236 ’ 0 . 0 2

U237G = ’927 ’ 0 . 0 2

U237psG = ’4927 ’ 0 . 0 2

Np237G = ’937 ’ 0 . 0 2

Np239G = ’1939 ’ 0 . 0 2

Am241G = ’951 ’ 0 . 0 2

Am242G = ’1952 ’ 0 . 0 2

Am242mG = ’952 ’ 0 . 0 2

Am243G = ’953 ’ 0 . 0 2

6

Cm242G = ’962 ’ 0 . 0 2

Cm243G = ’963 ’ 0 . 0 2

Gd154G = ’2154 ’ 0 .11720 2

Gd155G = ’2155 ’ 0 .759 2

Gd156G = ’2156 ’ 1 .0633 2

Gd157G = ’2157 ’ 0 .81559 2

Gd158G = ’2158 ’ 2 .4507 2

O16G = ’6016 ’ 11 .933

Of the 289 (= 17 × 17) fuel rods in the assembly, 25 of them contain borated water,

16 contain a UO2-Gd2 O3 mixture, and the rest are UO2 rods. The above mixture

represents the gadolinium-fuel mixture. It has a lower enrichment (2.63%), which

translates to a weight percentage of about 2.18% as shown above. This illustrates

that the user must compute the weight percentages of each element separately in a

mixture and not merely inputting the fuel enrichment directly. The Gd rods also have

a separate self-shielding index. This has been applied due to the large neutron capture

cross section of Gd, and so the self-shielding procedure employed here requires its own

correction which will be more detailed than that of the regular fuel rods. Again, the

other element are listed despite their null values for ease in future parsing. The

suffix “G” refers to “gadolinium” so that the uranium-235 in the regular fuel rods

(“U235” above) can be extracted separately from that in the gadolinium-fuel mixture

(“U235G”).

∗ Guide tube mate r i a l

MIX 5 COMB 2 1 .0

∗ SF97−4

MIX 6 900 .0 10 .0701

O16T = ’6016 ’ 11 .852

U234T = ’234 ’ 0 .03526 1

U235T = ’2235 ’ 3 .622944 1

U238T = ’8238 ’ 84 .49 1

7

Pu238T = ’948 ’ 0 . 0 1

Pu239T = ’6239 ’ 0 . 0 1

Pu240T = ’1240 ’ 0 . 0 1

Pu241T = ’1241 ’ 0 . 0 1

Pu242T = ’242 ’ 0 . 0 1

Pu242hT = ’1242 ’ 0 . 0 1

U232T = ’232 ’ 0 . 0 1

U232psT = ’4232 ’ 0 . 0 1

U233T = ’9233 ’ 0 . 0 1

U236T = ’236 ’ 0 . 0 1

U237T = ’927 ’ 0 . 0 1

U237psT = ’4927 ’ 0 . 0 1

Np237T = ’937 ’ 0 . 0 1

Np239T = ’1939 ’ 0 . 0 1

Am241T = ’951 ’ 0 . 0 1

Am242T = ’1952 ’ 0 . 0 1

Am242mT = ’952 ’ 0 . 0 1

Am243T = ’953 ’ 0 . 0 1

Cm242T = ’962 ’ 0 . 0 1

Cm243T = ’963 ’ 0 . 0 1

;

Mixture 5 is, like mixture 2, composed of Zircaloy. Because it is not interesting

to study the behavior of the components of this material, we can merely copy the

composition from mixture 2 with the COMB (for combine) keyword. The value of

1.0 means that mixture 5 is made 100% of mixture 2.

Mixture 6 represents the fuel rod of interest; in this case, it is rod SF97-4. The

suffix here is “T” for “target rod”. It is simple for DRAGON to simulate a fuel rod, or

to simulate a full assembly. However, to extract details about a particular rod within a

fuel assembly required the specification of a mixture representing the rod of interest.

Then, as will be shown below, this target mixture will be assigned the required

8

location in the reactor geometry. Since this mixture is otherwise indistinguishable

from mixture 3, it is unnecessary to use a new self-shielding index. Thus to extract

details for rod SF97-4, in the DRAGON output, we can search for inventory records

labeled with “T”.

In a real fuel evolution/depletion calculation, it may be necessary to change the

values of various mixtures as a function of time or burnup. For example, the thermal

power and boron will fluctuate over the course of a fuel cycle. The LIB: module

contains a special mode to enable this behavior. See the DRAGON User Manual,

section 3.2.7[?].

Finally, note that the semicolon is only written at the very end of the LIB: module.

0.5 Assembly Geometry

We now illustrate the specification of the assembly geometry in DRAGON.

∗−−−−

∗ C1 : Fuel Ce l l (UO2)

∗ C2 : Guide Tube (Z i r c a l o y)

∗ C3 : Water bath (0 .0538 cm th i ck)

∗ C4 : Corner water bath

∗ C5 : Fuel Ce l l (UO2−Gd2O3)

∗ C6 : Water bath (0 .0538 cm th i ck)

∗ CX: SF−97 (Target f o r benchmark)

∗ CY: SF−97 (Target f o r benchmark)

∗ CZ: SF−97 (Target f o r benchmark)

∗−−−−

ASSMB := GEO: : :

CAR2D 10 10

X− DIAG X+ REFL Y− SYME Y+ DIAG

CELL C2 C1 C1 C2 C1 C5 C2 C1 CX C3

C1 C1 C1 C1 C1 C1 C1 C1 C3

C5 C1 C1 C1 C1 C1 C1 C3

9

C2 C1 C1 C2 C1 C1 C3

C1 C1 C5 C1 C1 C3

C2 C1 C1 C1 C3

C1 C1 C1 C3

C1 C1 C3

C1 C3

C4

Now that we’ve specified the fuel mixtures, we can set the physical location of these

mixtures in our assembly. For this, we use the GEO: module, which we assign to

the variable ASSMB. We begin by labeling the shape of our assembly; in this case, it

is a CAR2D, for 2-dimensional Cartesian shape (i.e., rectangular grid of rods). The

directive above means that we are defining a 10× 10 arrangement of rods. The items

labeled CN are the individual fuel rods, which will themselves be specified next.

The next line is the all-important declaration of boundary conditions (BCs). To

understand them, first note that in fact we have only shown an eighth of the assembly

above. We must describe to DRAGON how we would like to “unfold” this assembly

until we reach its full size. It is obvious that we would like to exploit the symmetry

along the diagonal. To do this, we use the expression “X- DIAG Y+ DIAG”. Here,

“X-” means “incoming from the negative-X surface”, which in this case is the left

side of the above arrangement. Likewise, “Y+” means “incoming from the positive-

Y surface”. The combination of these two commands then instructs DRAGON to

reflect the arrangement about a line passing through the upper left. It also means

that DRAGON should reflect the assembly through the positive-Y and negative-X

surfaces. Thus the assembly begins to unfold “upwards” and “towards the left”. A

natural question then is: do we copy the diagonal itself in this reflection, or do we

merely copy around the diagonal? If we want the former, we would use the SSYM

keyword, but we do not wish to duplicate the diagonal, so we use the SYME keyword.

The “Y-” here means to reflect though a surface coming from the negative-Y direction

(i.e., the bottom of the arrangement).

10

How do we get a 17 × 17 assembly from these BCs? To see, for a moment let

us ignore the C3 and C4 cells above and pretend that we had instead specified a

9× 9 Cartesian shape (CAR2D 9 9). Upon reflection through the diagonal using the

SYME keyword would give us an assembly of dimensions 2 · 9 − 1 × 2 · 9 − 1 (we

subtracted since the diagonal was not duplicated), or a 17 × 17 assembly. Finally,

“X+” means “place a reflecting surface on the positive-X surface”. So the assembly

begins to unfold upwards, downwards, and to the left, and on each surface, there is

a reflecting BC. Cells C3 and C4 are very small cells meant to represent the very

thin water bath surrounding the assembly, and so the assembly maintains its 17× 17

shape even though technically it is 18 × 18.

: : : C1 := GEO: CARCEL 2

MESHX 0.0 1 .265 MESHY 0.0 1 .265

RADIUS 0 .0 0 .4025 0 .475 MIX 3 2 1 SPLITR 2 1 ;

We now enumerate the properties of the individual cells making up our assembly.

The “:::” operator tells DRAGON that this object is within the scope of the overall

GEO: declaration. C1 is defined to be a CARCEL, meaning Cartesian cell. This is

a square cell containing a series of cylindrical pins. MESHX/Y give the dimensions

of the surrounding square cell in centimeters. RADIUS expects an array of numbers

delineating the annular boundaries between regions in the cell. Thus we can see that

this cell will be split into 3 regions, with the radius varying from [0..0.4025], [0.4025,

0.475], and [0.475, edge of cell]. Now we must assign a mixture to each region, and

we do this in the same order that the regions were defined. Recall that mixture 3

was the UO2 fuel, mixture 2 was the cladding, and mixture 1 was the moderator. We

can see that the cell now consists of an inner fuel region surrounded with cladding,

which is in turn surrounded by water. Finally, SPLITR will split the cell radially in

the the specified number of subregions. This is done to increase discretization which

is important in mixtures that require extensive self-shielding. SPLITR 2 1 means to

split the innermost (fuel) region into 2 regions, and to split the cladding into 1 region

(i.e., not to split it at all). The default value for splitting is 1, which is why the

11

outermost region did not have to be specified. We can see that C1 is our fuel cell in

the configuration above.

: : : C2 := GEO: CARCEL 2

MESHX 0.0 1 .265 MESHY 0.0 1 .265

RADIUS 0 .0 0 .573 0 .613

MIX 1 5 1 SPLITR 2 1 ;

: : : C3 := GEO: CAR2D 1 1

MESHX 1.265 1 .3188 MESHY 0.0 1 .265

MIX 1 ;

: : : C4 := GEO: CAR2D 1 1

MESHX 1.265 1 .3188 MESHY 1.265 1 .3188

MIX 1 ;

As mentioned previously, C3 and C4 are the “water bath” cells with a thickness of

0.0538 cm. We can see in the specification of MESHX/Y that only the δx of the

mesh (size) of the cell is important to specify. Also, we can see that geometries can

be defined recursively; C3 and C4 are of type CAR2D, which are both themselves

embedded in a larger CAR2D structure. This allows for a variety of complicated

reactor geometries.

: : : C5 := GEO: CARCEL 2

MESHX 0.0 1 .265 MESHY 0.0 1 .265

RADIUS 0 .0 0 .4025 0 .475 MIX 4 2 1 SPLITR 2 1 ;

: : : CX := GEO: CARCEL 2

MESHX 0.0 1 .265 MESHY 0.0 1 .265 SPLITR 8 1

RADIUS 0 .0 0 .4025 0 .475 MIX 6 2 1 ;

;

Cell CX is the fuel rod we wish to model, SF97-4. Recall that we have to define

a unique mixture (here, 6) as well as a unique cell to extract useful data from a

particular rod. We have chosen a high radial splitting to ensure that self-shielding

effects are taken into account.

12

Notice that each cell definition as well as the overall GEO: declaration must end

with a semicolon.

0.6 Tracking

We now specify the tracking parameters.

DISCR Track := EXCELT: ASSMB : :

TRAK TISO 10 12 .0 ;

The variable DISCR will contain the output of the EXCELT: module, and the file

Track will contain a record of Tracking parameters for later debugging. It can be

omitted if desired. The tracking module requires at the very minimum one argu-

ment, which is a GEO: object. The TRAK TISO command tells DRAGON to use

isotropic reflection at any boundaries in the assembly. The first value after TISO is

the angular quadrature parameter, and the final value is the integration line density.

To understand these, we can imagine that the tracking module replaces our reactor

geometry with sets of lines. These lines are all parallel with one another, and have a

density specified in inverse centimeters. These lines represent the paths of neutrons

through the assembly, and using the mixture information from the geometry defini-

tion, DRAGON can determine which materials a given neutron on a certain path will

interact with. We can also take our set of lines and rotate through some fixed angle

and repeat this process. In this way, we can cover the entire assembly with neutron

paths which will later be used in calculating collision probabilities and neutron fluxes.

The fixed angle is the angular quadrature parameter, and means that in this case, the

tracking module must generate 10 sets of lines (each undergoing successive rotations

of 360 / 10 = 36◦), and their density is 12 lines per cm. Increasing either of these

parameters will enable a more detailed and accurate simulation, at the cost of longer

running times.

We can see here an instance of DRAGON’s modularity in action. Had we decided

to use one of the many other tracking modules in DRAGON, only the above code

would have to change.

13

0.7 Self-shielding, Collision Probabilities, and Flux

SHI: is the self-shielding module used in DRAGON version 3.

LIBRARY := SHI : LIBRARY DISCR Track : : LEVE 1 ;

DRAGON version 4 has a more sophisticated module for self-shielding, USS: (for

universal self-shielding), however, for the Takahama-3 simulation of SF97, the SHI:

module was found to be sufficient. It modifies the cross section library; this is rep-

resented in DRAGON by assigning the results of applying SHI: to LIBRARY and

storing the result back into LIBRARY. The LEVE 1 option allows the different self-

shielding indices from the LIB: module.

CP := ASM: LIBRARY DISCR Track ;

The ASM: module calculates collision probabilities, and takes a cross section library

and tracking parameters as arguments.

CALC := FLU: CP LIBRARY DISCR : : TYPE K ;

The FLU: module takes the collision probabilities from the previous step and uses

them, along with the tracking and libraries, to compute the neutron flux. The TYPE

keyword here takes the value of K, implying that Keff is the eigenvalue to be solved

for in the multigroup neutron transport equation. The evolution of Keff is a useful

cross-check in cases where this information is available.

0.8 Fuel Depletion

The EVO: module evolves the fuel concentrations in time.

BURNUP LIBRARY := EVO: LIBRARY CALC DISCR : :

EDIT −2 DEPL 7.17118E−07 DAY

POWR <<Power>> ;

The last module that we will consider is the EVO: module, which evolves the fuel

inventories in time. It requires the current value of the neutron flux (CALC), the

tracking (DISCR) and the current values of the component inventories (LIBRARY).

14

The LIBRARY variable, and all of the mixtures that it contains, is evolved for a

certain length of time. The POWR keyword indicates that the fuel evolution will

be done at a constant power. The brackets are CLE-2000 syntax for interpolating

a variable’s value. The value of the POWR keyword must be the specific power,

which is given in units of power per initial mass of heavy metal. The DEPL keyword

requires the length of time required for evolution, in this case specified in days. The

EDIT -2 directive is unique to the author’s code; it informs DRAGON that fission

rate calculations are to be performed and output.

NewBurnFile := BURNUP ;

END: ;

QUIT ”LIST” .

After the fuel evolution, the details of the evolution can be output in a file labeled

NewBurnFile, a user-declared variable. This can then be passed onto subsequent

calculations, and illustrates how to control output from DRAGON.

15

