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Abstract

The problem of “approximating the crowd” is that of estimating the crowd’s majority
opinion by querying only a subset of it. Algorithms that approximate the crowd can
intelligently stretch a limited budget for a crowdsourcing task. We present an algorithm,
“CrowdSense,” that works in an online fashion where examples come one at a time. Crowd-
Sense dynamically samples subsets of labelers based on an exploration/exploitation crite-
rion. The algorithm produces a weighted combination of a subset of the labelers’ votes
that approximates the crowd’s opinion. We then introduce two variations of CrowdSense
that make various distributional assumptions to handle distinct crowd characteristics. In
particular, the first algorithm makes a statistical independence assumption of the probabil-
ities for large crowds, whereas the second algorithm finds a lower bound on how often the
current sub-crowd agrees with the crowd majority vote. Our experiments on CrowdSense
and several baselines demonstrate that we can reliably approximate the entire crowd’s vote
by collecting opinions from a representative subset of the crowd.

Keywords: Crowdsourcing, Wisdom of crowds, Labeler quality estimation, Approximat-
ing the crowd, Aggregating the opinions

1. Introduction

Our goal is to determine the majority opinion of a crowd, on a series of questions (“exam-
ples”), with a limited budget. For example, let us consider a sneaker company, wanting to
do a customer survey, where they provide free variants of a new sneaker to the members
of a large crowd of product testers, who each give a “yay” or “nay” to each product, one
at a time. The company wants to know whether the majority of testers likes each new
sneaker variant. Some product testers are more useful than others; some align closely with
the majority vote, and some do not. If the company can identify who are the most useful
product testers, they can send new trial sneakers mostly to them, at a large cost savings.
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This problem of estimating the majority vote on a budget goes well beyond product
testing – the problem occurs for many tasks falling under the umbrella of crowdsourcing,
where the collective intelligence of large crowds is leveraged by combining their input on
a set of examples. One of the most commonly known crowdsourced databases was used
in the Netflix Contest1. This database contains 100 million anonymous movie ratings, and
could definitely be used to predict the crowd’s opinion on movies, even though it was not
explicitly designed for that purpose.

In product design and manufacturing, companies have taken steps to interact with their
customers and having them suggest, discuss and vote on new product ideas (Ogawa and
Piller, 2006; Sullivan, 2010). They also commonly rely on focus groups and usability studies
to collect the opinions of crowds on existing or new products. In the absence of sophisticated
sampling techniques, collecting more votes per item increases the likelihood that the crowd’s
opinion reflects the majority opinion of the entire population.

In cases where each vote is provided at a cost, collecting a vote from every member of
the crowd in order to determine the majority opinion can be expensive and may not even
be attainable under fixed budget constraints. Because of the open nature of crowdsourcing
systems, it is not necessarily easy to approximate the majority vote of a crowd on a budget by
sampling a representative subset of the voters. For example, the crowd may be comprised of
labelers with a range of capabilities, motives, knowledge, views, personalities, etc. Without
any prior information about the characteristics of the labelers, a small sample of votes is
not guaranteed to align with the true majority opinion. In order to effectively approximate
the crowd, we need to determine who are the most representative members of the crowd,
in that they can best represent the interests of the crowd majority. This is even more
difficult to accomplish when items arrive over time, and it requires our budget to be used
both for 1) estimating the majority vote, even before we understand the various qualities of
each labeler, and 2) exploring the various labelers until we can estimate their qualities well.
Estimating the majority vote in particular can be expensive before the labelers’ qualities
are known, and we do not want to pay for additional votes that are not likely to impact the
decision.

In order to make economical use of our budget, we could determine when just enough
votes have been gathered to confidently align our decision with the crowd majority. The
budget limitation necessitates a compromise: if we pay for a lot of votes per decision,
our estimates will closely align with the crowd majority, but we will only make a smaller
number of decisions, whereas if we pay for less votes per decision, the accuracy may suffer,
but more decisions are made. There is clearly an exploration/exploitation tradeoff: before
we can exploit by using mainly the best labelers, we need to explore to determine who these
labelers are, based on their agreement with the crowd.

The main contributions of this work can be broken down into two main parts: In the
first part, we propose a modular algorithm, CrowdSense, that approximates the wisdom
of the crowd. In an online fashion, CrowdSense dynamically samples a subset of labelers,
determines whether it has enough votes to make a decision, and requests more if the decision
is sufficiently uncertain. CrowdSense keeps a balance between exploration and exploitation
in its online iterations – exploitation in terms of seeking labels from the highest-rated

1. http://www.netflixprize.com
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labelers, and exploration so that enough data are obtained about each labeler to ensure
that we learn each labeler’s accuracy sufficiently well.

The second part presents probabilistic variations of CrowdSense. One of the main chal-
lenges to approximating the crowd has to do with the fact that the majority vote is taken as
the ground truth (the truth we aim to predict). This means that there is a complicated re-
lationship (a joint probability distribution) between the labelers’ accuracies and the ground
truth. In Sections 7.1 and 7.2 of the paper, we introduce two variations of CrowdSense,
called CrowdSense.Ind and CrowdSense.Bin, that make various distributional assumptions
to handle distinct crowd characteristics. In particular, the first algorithm makes a statis-
tical independence assumption of the probabilities for large crowds, whereas the second
algorithm finds a lower bound on how often the current sub-crowd agrees with the crowd
majority vote, using binomial distribution. For both CrowdSense.Ind and CrowdSense.Bin,
even though probabilistic assumptions were made, the accuracy is comparable to (or lower
than) CrowdSense itself. It is difficult to characterize the joint distribution for the prob-
lem of approximating the crowd, due to the constraint that the majority vote is the true
label. CrowdSense, with its easy-to-understand weighted majority voting scheme, seems to
capture the essence of the problem, and yet has the best performance within the pool of
algorithms we tried, so our experiments mainly focus on CrowdSense.

Throughout the paper, a “majority vote” refers to the simple, every day sense of voting
wherein every vote is equal, with no differential weighting of the votes. This is in contrast to
a weighted majority vote, as we use in CrowdSense, wherein each labeler’s vote is multiplied
by the labeler’s quality estimate. This weighting scheme ensures that the algorithm places
a higher emphasis on the votes of higher quality labelers.

The rest of the paper is organized as follows: The next section presents related work. In
Section 3, we present details on CrowdSense within the general context of a modular frame-
work for approximating the wisdom of the crowd. An outline of the datasets that we used
and the baselines we considered are presented in Section 4. In Section 5, we demonstrate
the performance of CrowdSense against the baselines, and present the impact of specific
choices within the general framework. Section 6 outlines the impact of various initializa-
tion and estimation criteria on CrowdSense’s performance. Section 7 presents details on
CrowdSense.Ind and CrowdSense.Bin and presents empirical evaluation of these algorithms.
The paper concludes with final remarks and directions for future work. In Appendix A,
we present a proposition for CrowdSense.Bin that states that the computed scores are non-
negative. Appendix B presents the pseudocode of a “flipping” technique – a heuristic for
taking the opposite vote of labelers that have quality estimates less than 0.5 – for Crowd-
Sense.Ind, and shows the comparison of the prediction accuracy of CrowdSense.Ind with
and without labeler flipping in Figure 10.

2. Related Work

The low cost of crowdsourcing labor has increasingly led to the use of resources such as Ama-
zon Mechanical Turk2 (AMT) to label data for machine learning purposes, where collecting
multiple labels from non-expert annotators can yield results that rival those of experts. This
cost-effective way of generating labeled collections using AMT has also been used in several

2. http://www.mturk.com
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studies (Nakov, 2008; Snow et al., 2008; Sorokin and Forsyth, 2008; Kaisser and Lowe, 2008;
Dakka and Ipeirotis, 2008; Nowak and Rüger, 2010; Bernstein et al., 2010, 2011). While
crowdsourcing clearly is highly effective for easy tasks that require little to no training of
the labelers, the rate of disagreement among labelers has been shown to increase with task
difficulty (Sorokin and Forsyth, 2008; Gillick and Liu, 2010), labeler expertise (Hsueh et al.,
2009) and demographics (Downs et al., 2010). Regardless of the difficulty of the task or
their level of expertise, offering better financial incentives does not improve the reliability of
the labelers (Mason and Watts, 2009; Marge et al., 2010), so there is a need to identify the
level of expertise of the labelers, to determine how much we should trust their judgment.

Dawid and Skene (1979) presented a methodology to estimate the error rates based
on the results from multiple diagnostic tests without a gold standard using latent variable
models. Smyth et al. (1994a,b) used a similar approach to investigate the benefits of repeat-
edly labeling same data points via a probabilistic framework that models a learning scheme
from uncertain labels. Although a range of approaches are being developed to manage the
varying reliability of crowdsourced labor (see, for example Law and von Ahn, 2011; Quinn
and Bederson, 2011; Callison-Burch and Dredze, 2010; Wallace et al., 2011), the most com-
mon method for labeling data via the crowd is to obtain multiple labels for each item from
different labelers and treat the majority label as an item’s true label. Sheng et al. (2008),
for example, demonstrated that repeated labeling can be preferable to single labeling in
the presence of label noise, especially when the cost of data preprocessing is non-negligible.
Dekel and Shamir (2009a) proposed a methodology to identify low quality annotators for
the purpose of limiting their impact on the final attribution of labels to examples. To
that effect, their model identifies each labeler as being either good or bad, where good
annotators assign labels based on the marginal distribution of the true label conditioned
on the instance and bad annotators provide malicious answers. Dekel and Shamir (2009b)
proposed an algorithm for pruning the labels of less reliable labelers in order to improve
the accuracy of the majority vote of labelers. First collecting labels from labelers and then
discarding the lower quality ones presents a different viewpoint than our work, where we
achieve the same “pruning effect” by estimating the qualities of the labelers and not ask-
ing the low quality ones to vote in the first place. A number of researchers have explored
approaches for learning how much to trust different labelers, typically by comparing each
labeler’s predictions to the majority-vote prediction of the full set. These approaches often
use methods to learn both labeler quality characteristics and latent variables representing
the ground-truth labels of items that are available (e.g. Kasneci et al., 2011; Warfield et al.,
2004; Dekel et al., 2010), sometimes in tandem with learning values for other latent variables
such as task difficulty (Whitehill et al. (2009); Welinder et al. (2010)), classifier parameters
(Yan et al., 2010a,b; Raykar et al., 2010), or domain-specific information about the labeling
task (Welinder et al., 2010).

Our work appears similar to the preceding efforts in that we similarly seek predictions
from multiple labelers on a collection of items, and seek to understand how to assign weights
to them based on their prediction quality. However, previous work on this topic viewed
labelers mainly as a resource to use in order to lower uncertainty about the true labels of
the data. In our work, we could always obtain the true labels by collecting all labelers’
votes and determining their majority vote. We seek to approximate the correct prediction
at lower cost by decreasing the number of labelers used, as opposed to increasing accuracy
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by turning to additional labelers at additional cost. In other words, usually we do not
know the classifier and try to learn it, whereas here we know the classifier and are trying
to approximate it. This work further differs from most of the preceding efforts in that
they presume that learning takes place after obtaining a collection of data, whereas our
method also works in online settings, where it simultaneously processes a stream of arriving
data while learning the different quality estimates for the labelers. Sheng et al. (2008) is
one exception, performing active learning by reasoning about the value of seeking additional
labels on data given the data obtained thus far. Donmez et al. (2009) propose an algorithm,
IEThresh, to simultaneously estimate labeler accuracies and train a classifier using labelers’
votes to actively select the next example for labeling. Zheng et al. (2010) present a two-
phase approach where the first phase is labeler quality estimation and identification of high
quality labelers, and the second phase is the selection of a subset of labelers that yields
the best cost/accuracy tradeoff. The final prediction of the subset of labelers is determined
based on their simple majority vote. We discuss the approach taken by Donmez et al. (2009)
further in Section 4 as one of the baselines to which we compare our results, because this is
the only algorithm we know of aside from ours that can be directly applied to approximating
the crowd in the online setting. IEThresh uses a technique from reinforcement learning and
bandit problems, where exploration is done via an upper confidence bound on the quality
of each labeler. CrowdSense’s quality estimates are instead Bayesian shrinkage estimates of
the labelers’ qualities.

3. CrowdSense

Let us first model the labelers’ quality estimates as a measure of their agreement with the
crowd majority. These quality estimates indicate whether a labeler is “representative” of
the crowd.

Let L = {l1, l2, . . . , lM}, lk : X → {−1, 1} denote the set of labelers and {x1, x2, . . . , xt, . . . , xN},
xt ∈ X denote the sequence of examples, which could arrive one at a time. We define
Vit := li(xt) as li’s vote on xt and St ⊂ {1, . . . ,M} as the set of labelers selected to label
xt. For each labeler li, we then define cit as the number of times we have observed a label
from li so far:

cit :=

t∑
t̃=1

1[i∈St̃] (1)

and define ait as how many of those labels were consistent with the other labelers:

ait :=

t∑
t̃=1

1[
i∈St̃,Vit̃=VS

t̃
t̃

] (2)

where VStt = sign
(∑

i∈St VitQit

)
is the weighted majority vote of the labelers in St. Labeler

li’s quality estimate is then defined as

Qit :=
ait +K

cit + 2K
(3)

where t is the number of examples that we have collected labels for and K is a smoothing
parameter. Qit is a Bayesian shrinkage estimate of the probability that labeler i will agree
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with the crowd, pulling values down toward 1/2 when there are not enough data to get a
more accurate estimate. This ensures that labelers who have seen fewer examples are not
considered more valuable than labelers who have seen more examples and whose perfor-
mance is more certain. CrowdSense uses a pessimistic estimate of the mean rather than
an upper (e.g. 95%) confidence interval that IEThresh (Donmez et al., 2009) (and UCB
algorithms) use.

At the beginning of an online iteration to label a new example, the labeler pool is
initialized with three labelers; we select two “exploitation” labelers that have the highest
quality estimates Qit and select another one uniformly at random for “exploration”. This
initial pool of seed labelers enables the algorithm to maintain a balance between exploitation
of quality estimates and exploration of the quality of the entire set of labelers. We ask each
of these 3 labelers to vote on the example. The votes obtained from these labelers for this
example are then used to generate a confidence score, given as

Score(St) =
∑
i∈St

VitQit

which represents the weighted majority vote of the labelers. Next, we determine whether
we are certain that the sign of Score(St) reflects the crowd’s majority vote, and if we are
not sure, we repeatedly ask another labeler to vote on this example until we are sufficiently
certain about the label. To measure how certain we are, we greedily see whether adding
an additional labeler might make us uncertain about the decision. Specifically, we select
the labeler with the highest quality estimate Qit, who is not already in St, as a candidate
to label this example. We then check whether this labeler could potentially either change
the weighted majority vote if his vote were included, or if his vote could bring us into the
regime of uncertainty where the Score(St) is close to zero, and the vote is approximately a
tie. We check this before we pay for this labeler’s vote, by temporarily assigning him a vote
that is opposite to the current subcrowd’s majority. The criteria for adding the candidate
labeler to St is defined as:

|Score(St)| −Qlcandidate,t

|St|+ 1
< ε (4)

where ε controls the level of uncertainty we are willing to permit, 0 < ε ≤ 1. If (4) is true,
the candidate labeler is added to St and we get (pay for) this labeler’s vote for xt. We then
recompute Score(St) and follow the same steps for the next-highest-quality candidate from
the pool of unselected labelers. If the candidate labeler is not added to St, we are done
adding labelers for example t, and assign the weighted majority vote as the predicted label
of this example. We then proceed to label the next example in the collection. Pseudocode
for the CrowdSense algorithm is given in Algorithm 1.

4. Datasets and Baselines

We conducted experiments on various synthetic and real-world datasets that model a crowd
from two separate perspectives; the first perspective models the crowd in the traditional
sense where the crowd comprises of human labelers, whereas the second perspective models
the crowd in terms of competing predictive models and the goal is to approximate the
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Algorithm 1 Pseudocode for CrowdSense.

1. Input: Examples {x1, x2, . . . , xN}, Labelers {l1, l2, . . . , lM}, confidence threshold ε,
smoothing parameter K.

2. Define: LQ = {l(1), . . . , l(M)}, labeler id’s in descending order of their quality esti-
mates.

3. Initialize: ai1 ← 0, ci1 ← 0 for i = 1, . . . ,M . Initialize Qit ← 0 for i = 1 . . .M, t =
1 . . . N

4. For t = 1, ..., N

(a) Compute quality estimates Qit = ait+K
cit+2K , i = 1, . . . ,M . Update LQ.

(b) St = {l(1), l(2), l(k)}, where k is chosen uniformly at random from the set
{3, . . .M}.

(c) For j = 3 . . .M, j 6= k

i. Score(St) =
∑

i∈St VitQit, lcandidate = l(j).

ii. If
|Score(St)|−Qlcandidate,t

|St|+1 < ε, then St ← St ∪ lcandidate. Otherwise exit loop to
stop adding new labelers to St.

(d) Get the weighted majority vote of the labelers VStt = sign
(∑

i∈St VitQit

)
(e) ∀i ∈ St where Vit = VStt, ait ← ait + 1

(f) ∀i ∈ St, cit ← cit + 1

5. End

common prediction of these models. Computational model results can be expensive, both
in the sense of cost and time (e.g. large-scale simulations).

MovieLens is a movie recommendation dataset of user ratings on a collection of movies,
and the goal is to find the majority vote of these reviewers. The dataset is originally very
sparse, meaning that only a small subset of users have rated each movie. We compiled
a smaller subset of this dataset where each movie is rated by each user in the subset, to
enable comparative experiments, where labels can be “requested” on demand. We mapped
the original rating scale of [0-5] to votes of {-1,1} by using 2.5 as the threshold. ChemIR
is a dataset of chemical patent documents from the 2009 TREC Chemistry Track. This
track defines a “Prior Art Search” task, where the competition is to develop algorithms
that, for a given set of patents, retrieve other patents that they consider relevant to those
patents. The evaluation criteria is based on whether there is an overlap of the original
citations of patents and the patents retrieved by the algorithm. The ChemIR dataset that
we compiled is the complete list of citations of several chemistry patents, and the {+1,-1}
votes indicate whether or not an algorithm has successfully retrieved a true citation of a
patent. In our dataset, we do not consider false positives; that is, the predicted citations that
are not in the original citations are not counted as -1 votes. Both MovieLens and ChemIR
datasets have 11 labelers in total. Reuters is a popular dataset of articles that appeared on
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MovieLens ChemIR Reuters Adult

48.17(L1) 54.01(L8) 50.72(L1) 78.62(L8) 80.76(L1) 80.21(L8) 81.22(L1) 85.51(L8)
89.78(L2) 47.44(L9) 46.78(L2) 82.06(L9) 83.00(L2) 78.68(L9) 80.59(L2) 81.32(L9)
93.43(L3) 94.16(L10) 84.46(L3) 50.12(L10) 89.70(L3) 95.06(L10) 86.22(L3) 85.54(L10)
48.90(L4) 95.62(L11) 88.41(L4) 50.98(L11) 82.98(L4) 82.88(L11) 87.63(L4) 79.74(L11)
59.12(L5) 86.69(L5) 88.12(L5) 71.57(L12) 91.12(L5) 84.86(L12)
96.35(L6) 87.46(L6) 87.04(L6) 87.54(L13) 94.11(L6) 96.71(L13)
87.59(L7) 49.52(L7) 95.42(L7) 56.68(L7)

Table 1: The number of examples in each dataset and the true accuracies of the labelers.

the Reuters newswire in 1987. We selected documents from the money-fx category. The
Reuters data is divided into a “training set” and a “test set,” which is not the format we
need to test our algorithms. We used the first half of the training set (3,885 examples) to
develop our labelers. Specifically, we trained several machine learning algorithms on these
data: AdaBoost, Näıve Bayes, SVM, Decision Trees, and Logistic Regression, where we
used several different parameter settings for SVM and Decision Trees. Each algorithm with
its specific parameter setting is used to generate one labeler and there were 10 labelers
generated this way. Additionally, we selected 3 features of the dataset as labelers, for a
total of 13 labelers. We combined the other half of the training set (omitting the labels)
with the test set, which provided 6,904 total examples over which we used to measure
the performance of CrowdSense and the baselines. The same simulation of a crowd that
we conducted for the Reuters dataset was also used for the Adult dataset from the UCI
Machine Learning Repository, which is collected from the 1994 Census database, where we
aim to predict whether a person’s annual income exceeds $50K.

For MovieLens, we added 50% noise and for ChemIR we added 60% noise to 5 of the
labelers to introduce a greater diversity of judgments. This is because all the original
labelers had comparable qualities and did not strongly reflect the diversity of labelers and
other issues that we aim to address. For the Reuters and Adult datasets, we varied the
parameters of the algorithms’ labelers, which are formed from classification algorithms, to
yield predictions with varying peformance. All reported results are averages of 100 runs,
each with a random ordering of examples to prevent bias due to the order in which examples
are presented.

We compared CrowdSense with several baselines: (a) the accuracy of the average labeler,
represented as the mean accuracy of the individual labelers, (b) the accuracy of the overall
best labeler in hindsight, and (c) the algorithm that selects just over half the labelers (i.e.
d11/2e = 6 for ChemIR and MovieLens, d13/2e = 7 for Reuters and Adult) uniformly at
random, which combines the votes of labelers with no quality assessment using a majority
vote. We also compare CrowdSense against IEThresh (Donmez et al., 2009). IEThresh
builds upon Interval Estimation (IE) learning, and estimates an upper confidence interval
UI for the mean reward for an action, which is a technique used in reinforcement learning.
In IEThresh, an action refers to asking a labeler to vote on an item, and a reward represents
the labeler’s agreement with the majority vote. The UI metric for IEThresh is defined for
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a sample “a” as:

UI(a) = m(a) + t
(n−1)
α
2

s(a)√
n

(5)

where m(a) and s(a) are the sample mean and standard deviation for a, n is the sample

size observed from a and t
(n−1)
α
2

is the critical value for the Student’s t-distribution. The

sample “a” for a labeler is the vector of ±1’s indicating agreement of that labeler with
the majority. IEThresh updates the UI scores of the labelers after observing new votes,
and given {UI1, UI2, . . . , UIk} for the labelers, IEThresh selects all labelers with UIj̃ >
ε × maxj̃(UIj̃). The ε parameter in both CrowdSense and IEThresh algorithms tunes
the size of the subset of labelers selected for voting, so we report results for a range of
ε values. Note that tuning ε exhibits opposite behavior in CrowdSense and IEThresh;
increasing ε relaxes CrowdSense’s selection criteria to ask for votes from more labelers,
whereas larger ε causes IEThresh to have a more strict selection policy. So a given value
of ε for CrowdSense does not directly correspond to a particular value of ε for IEThresh.
On the other hand, since ε controls the number of labelers used for each example in both
algorithms, it also controls the total number of labelers used for the entire collection of
examples. (This is proportional to the cost of the full experiment.) When we adjust the ε
values for CrowdSense and IEThresh so that the total number of labelers is similar, we can
directly see which algorithm is more accurate, given that comparable total cost is spent on
each.

It is worth noting that we do not assess the performance of the algorithms on separate
test splits of the datasets. Rather, we make a single pass over the entire dataset and select
labelers for each example based on the quality estimates available at that particular time.
This is different than how IEThresh was evaluated in (Donmez et al., 2009), where the
labelers’ qualities were first learned on a training set, and then the single best labeler with
the highest accuracy was selected to label all the examples in a separate test set. In order
to have a valid comparative assessment of the iterative nature of quality estimation, the
majority vote for each example in IEThresh is computed based on the majority vote of the
selected sub-crowd, similar to CrowdSense.

4.1 A Type of Baseline that Does Not Work Well – “Learning the Weights”

We experimented with algorithms where the weights λj are learned, or determined implicitly,
using machine learning algorithms. To do this, we used the data and labels collected so far
in order to fit the λj ’s and produce predictions. We describe one algorithm, which learns
weights via AdaBoost (Freund and Schapire, 1997), and uses CrowdSense’s mechanism
for adding labelers. AdaBoost constructs a classifier as a linear combination of “weak”
classifiers. In the context of approximating the majority vote, each weak classifier (also
known as a feature) corresponds to a labeler and their classifications are the observed labels
from that labeler. In formal terms, let F denote the hypothesis space that is the class of
convex combinations of features {hj}j=1...n, where hj : X → {−1, 1}. The function f ∈ F
is then defined as a linear combination of the features:

f := fλ :=
∑
j

λjhj ,

9



where λ ∈ Rn are the minimizers of the objective function. Consider we have already
collected votes on t examples, and are selecting labelers for the next example. Following
the initialization scheme of CrowdSense, we initialize with three labelers that follow the
exploration/exploitation tradeoff and add new labelers on-demand based on exploitation
qualities. We minimize AdaBoost’s objective considering all the votes we have seen so far
from the selected labelers and the next candidate labeler. Let λS denote the weights of the
labelers already selected, and λc denote the candidate labeler’s weight. We decide whether
to add the candidate labeler to the set based on

|Vt+1,SλS| − |λc|(∑
i∈S |λi|

)
+ |λc|

< ε

where Vt+1,S are the votes of the selected labelers. The normalization needs to depend on
the λ’s, since the scaling of λ’s produced by AdaBoost can be extremely large. The criteria
of adding the new labeler follows the same intuition as CrowdSense and determines whether
the vote of the new labeler would bring us into the regime of uncertainty. Our experiments
with this approach yielded poor results compared to CrowdSense.

The reason why this approach fails is because of overfitting in the early iterations. The
amount of available data in early iterations is, by definition, small. This leads to problems
with overfitting, which leads to poor predictions. This, in turn, leads to problems with the
labels used in later iterations, which again leads to poor predictions in later iterations. The
predictions become worse and worse, and the overall results were worse than many, if not
all, of the baselines.

On the other hand, one could use a better method (like CrowdSense) to more accurately
calculate the weights in early iterations, and then switch over to machine learning of the
weights after a sufficiently large amount of data has been established.

5. Overall Performance

We compare CrowdSense with the baselines to demonstrate its ability to accurately approx-
imate the crowd’s vote. Accuracy is calculated as the proportion of examples where the
algorithm agreed with the majority vote of the entire crowd.

Figure 1 indicates that uniformly across different values of ε, CrowdSense consistently
achieved the highest accuracy against the baselines, indicating that CrowdSense uses any
fixed budget more effectively than the baselines, including IEThresh. Generally, the quality
estimates of CrowdSense better reflect the true accuracy of the members of the crowd and
therefore, it can identify and pick a more representative subset of the crowd. The other
baselines that we considered did not achieve the same level of performance as CrowdSense
and IEThresh. On the subplots in Figure 1, the accuracy of the best labeler in hindsight
(baseline (b)) is indicated as a straight line. Note that the accuracy of the best labeler is
computed separately as a constant. Baselines (a) and (c), which are the average labeler
and the unweighted random labelers, achieved performance beneath that of the best la-
beler. For the MovieLens dataset, the values for these baselines are 74.05% and 83.69%
respectively; for ChemIR these values are 68.71% and 73.13%, for Reuters, the values are
84.84% and 95.25%, and for Adult they are 83.94% and 95.03%. The results demonstrate
that asking for labels from labelers at random may yield poor performance for representing
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Figure 1: Tradeoff curves, averaged over 100 runs. The x-axis is the total number of votes
(the total cost) used by the algorithm to label the entire dataset. The y-axis
indicates the accuracy on the full dataset.

the majority vote, highlighting the importance of making informed decisions for selecting
the representative members of the crowd. Asking the best and average labeler were also
not effective approximators of the majority vote.

6. Specific Choices for Exploration and Exploitation in CrowdSense

The algorithm template underlying CrowdSense has three components that can be instan-
tiated in different ways: (i) the composition of the initial seed set of labelers (step 4(b) in
the pseudocode), (ii) how subsequent labelers are added to the set (step 4(c)), and (iii) the
weighting scheme, that is, the quality estimates. This weighting scheme affects the selection
of the initial labeler set, the way the additional labelers are incorporated, as well as the
strategy for combining the votes of the labelers (steps 4(b)(c)(d)).

Our overall results of this section are the algorithm is fairly robust to components (i)
and (ii), but not to component (iii): the weighting scheme is essential, but changing the
composition of the seed set and the way subsequent labelers are added does not heavily
affect accuracy. There is a good reason why CrowdSense is robust to changes in (i) and
(ii). CrowdSense already has an implicit mechanism for exploration, namely the Bayesian
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Figure 2: Performance of CrowdSense and several of its variants, averaged over 100 runs.
The x-axis is the total number of votes (the total cost), and the y-axis is the run-
ning accuracy on those examples. For the plots, we used ε = 0.005 for MovieLens,
ε = 0.01 for ChemIR, ε = 0.2 for Reuters, and ε = 0.1 for Adult dataset.

shrinkage estimates of quality, discussed in Section 6.3, so the exploration provided in (i)
is not the only exploration mechanism. When adding new labelers in (ii), this is already
after forming the initial set, including good labelers for exploitation. So exploitation in
adding new labelers does not always make an additional impact. In other words, even
if we reduce exploration or exploitation somewhere within CrowdSense, other means of
exploration/exploitation can compensate, which makes CrowdSense’s result fairly robust.
We tested the effect of the first component (i) by running separate experiments that initialize
the labeler set with three (3Q), one (1Q), and no (0Q) labelers that have the highest quality
estimates, where for the latter two, additional labelers are selected at random to complete
the set of three initial labelers. 3Q removes the exploration capability of the initial set
whereas the latter two make limited use of the quality estimates.

Figure 2 shows the time course, averaged over 100 runs for a specific choice of ε for all
three variants. The most important points in this figure are the final accuracy of final total
number of labels (i.e. the budget). Note that each variant implements a separate labeler
selection and/or label weighting scheme which, in turn, affects the total number of labels
collected by each variant. Some of the datasets (Reuters, ChemIR) did not show much
change. The MovieLens dataset, the smallest dataset in our experiments, shows the largest
gain in the predictive performance of CrowdSense compared to the other three variants.
This is also the dataset where the difference in the number of labels collected for each curve
is reasonably comparable across the variants – so for the same total budget, the performance
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Figure 3: Comparison of CrowdSense and IEThresh on MovieLens and Reuters datasets,
averaged over 100 runs. The first two columns represent the accuracy as a function
of the number of examples seen and labels collected, respectively. The third
column presents the number of votes collected from each labeler, and the last
column shows the breakdown of the number of labelers selected to vote on each
example.

of CrowdSense was better. For the Adult dataset, 1Q achieves the highest final accuracy,
but it also collects close to 10K more labels than CrowdSense, so the accuracies are not
directly comparable because the budget is different. This agrees with the compromise that
we discussed in the Introduction, regarding the decisions on how to spend the budget on
collecting labels.

We experimented with the second component (ii) by adding labelers randomly rather
than in order of their qualities. In this case, exploitation is limited, and the algorithm again
tends not to perform as well on most datasets (as shown in Figure 2 for the curve marked
“Component 2”) either in terms of accuracy or budget. To test the effect of the weighting
scheme in the third component (iii), we removed the use of weights from the algorithm.
This corresponds to selecting the initial seed of labelers and the additional labelers at
random without using their quality estimates. In addition, when combining the votes of
the individual labelers, we use majority voting, rather than a weighted majority vote. This
approach performs the worst among all the variants in all four datasets, demonstrating
the significance of using quality estimates for labeler selection and the calculation of the
weighted vote.

In Figure 3, we compare CrowdSense and IEThresh on MovieLens and Reuters datasets
from several perspectives to compare their runtime performance and the breakdown of
their labeler choices. For both datasets, we used ε = 0.1 for CrowdSense and ε = 0.9
for IEThresh, which allows IEThresh to use approximately twice the budget of Crowd-
Sense. The average running accuracy (over 100 runs) in plots (Figures 3(a)(e)) indicate
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Figure 4: Comparison of running accuracy with and without gold standard, averaged over
100 runs. For CrowdSense, we used ε = 0.1 and for IEThresh, we used ε = 0.97
to have comparable number of labelers.

that CrowdSense achieves higher accuracy and collects fewer number of labels (Figures
3(b)(f)) than IEThresh, even with a much lower budget. Figures 3(c) and 3(g) present
a bar plot of how many times each labeler was selected and Figures 3(d) and 3(h) show
a bar plot of how many labelers were selected to vote on each round. For instance, for
the MovieLens dataset, Figure 3(d) shows that CrowdSense most often chooses 3 labelers
per examples whereas IEThresh rarely chooses labelers per example and prefers 4,5,6, or 7
labelers per example. This also indicates that CrowdSense makes better use of the fewer
number of votes it collects. Both algorithms collect labels mostly from the highest accuracy
labelers (see Table 4 for labeler accuracies), but IEThresh is less effective in combing these
labels. IEThresh and CrowdSense both select the highest quality labelers, where IEThresh
combines them by using a simple majority vote, while CrowdSense uses a weighted major-
ity vote; an interesting observation is that CrowdSense’s weighted majority vote (of fewer
labelers) is more effective for approximating the crowd’s true simple majority vote than
IEThresh’s simple majority vote (of a larger number of labelers) – this is, in some sense,
ironic.

6.1 Initialization with Gold Standard

Gold standard examples are the “actual” opinion of the crowd gathered by taking the
majority vote of all members. Even though collecting votes from the entire crowd for some
of the examples initially increases the overall cost, it might help us make better estimate
the true characteristics of the labelers earlier, and thus, achieve higher overall accuracy. In
CrowdSense, initialization with gold standard refers to updating step 3 in the pseudocode
by initializing ci1 with the number of gold standard examples and ai1 with the number of
times labeler li agrees with the entire crowd for those gold standard examples.

In Figure 4, we present the effect of initializing with gold standard for CrowdSense and
IEThresh. For the MovieLens dataset, the gold standard set contains four examples, where
two of them were voted as +1 by the majority of the crowd, and the other two voted as -1.
Since ChemIR is a larger dataset, we increase the gold standard set to 10 examples with an
equal number of positives and negatives. The curves in Figure 4 start after observing the
gold data.
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Figure 5: Comparison of the running accuracy of CrowdSense at various ε values, averaged
over 100 runs. In the plots, we show how many total votes were requested at each
ε value.

As expected, gold standard data clearly improves CrowdSense’s performance because
the estimates are now initialized with perfect information for the first few examples. An
interesting observation is that providing gold standard data to IEThresh can actually make
its performance substantially worse. Consider a labeler who agrees with the crowd’s vote
on every gold standard example. In this case, the labeler will get a reward for every single
vote, yielding UI = 1 (since s(a) = 0 and m(a) = 1). On the other hand, the labelers
that disagree with the crowd on some examples will have standard error s(a) > 0 due to
missing rewards, so these labelers will receive UI > 1 and therefore they will be preferred
over the labelers that were in total agreement with the entire crowd’s vote for each gold
standard example. Examples of this phenomenon are shown in Figure 4, where IEThresh
performs worse with gold standard than without. This illustrates why we believe that
upper confidence intervals may not be the right way to handle this particular problem. In
any case, we note that it may be possible to achieve better performance for IEThresh by
using the upper confidence interval for a multivariate binomial distribution rather than the
t-distribution, since the number of correct votes is approximately binomially distributed
rather than normally distributed.

6.2 Effect of the ε parameter

As discussed throughout Sections 4 and 5, the ε parameter is a trade-off between the total
cost that we are willing to spend and the accuracy that we would like to achieve. Figure 5
illustrates the average running performance over 100 runs of CrowdSense for various values
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Figure 6: Comparison of running accuracy with varying K. All curves use ε = 0.005, and
are averaged over 100 runs.

of epsilon. Each final point on each of the Figure 5 curves corresponds to a single point in
Figure 1. Figure 5 shows that over the full time course, increasing epsilon leads to increased
accuracy, at a higher cost.

6.3 Effect of the K parameter

The K parameter helps with both exploration at early stages and exploitation at later
stages. In terms of exploration, K ensures that labelers who have seen fewer examples
(smaller cit) are not considered more valuable than labelers who have seen many examples.
The quality estimate in (3) is a shrinkage estimator, lowering probabilities when there is
uncertainty. Consider a labeler who was asked to vote on just one example and correctly
voted. His vote should not be counted as highly as a voter who has seen 100 examples and
correctly labeled 99 of them. This can be achieved using K sufficiently large.

Increasing K also makes the quality estimates more stable, which helps to permit explo-
ration. Since the quality estimates are all approximately equal in early stages, the weighted
majority vote becomes almost a simple majority vote. This prevents CrowdSense from
trusting any labeler too much early on. Having the Qit’s be almost equal also increases the
chance to put CrowdSense into the “regime of uncertainty” where it requests more votes
per example, allowing it to explore the labelers more.

We demonstrate the impact of K by comparing separate runs of CrowdSense with dif-
ferent K in Figure 6. Considering the MovieLens dataset, at K = 100, the quality estimates
tilt the selection criteria towards an exploratory scheme in most of the iterations. At the
other extreme, K = 0 causes the quality estimates to be highly sensitive to the accuracy
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of the labels right from the start. Furthermore, it is also interesting to note that removing
K achieves worse performance than K = 10 despite collecting slightly more votes. This
indicates that the results are better when more conservative quality estimates are used in
early iterations.

7. Probabilistic Algorithms for Approximating the Crowd

CrowdSense has four important properties: 1) It takes labelers’ votes into account even if
they are right only half of the time. This property is especially beneficial for approximating
small crowds, 2) It trusts “better” labelers more, and places higher emphasis on their votes,
3) Its decision rule is derived to be similar to boosting, and 4) Bayesian shrinkage of the
quality estimates. These estimates provide the means for exploration of labelers in the
earlier stages, and exploitation in later stages.

The fact that the majority vote determines the ground truth indicates a complicated
relationship, a joint probability distribution, between the labelers’ accuracies and the ma-
jority vote. CrowdSense makes an implicit assumption on the joint probability distribution
through its boosting-style update. We believe it is possible to further improve its accuracy
by making an explicit assumption on the joint probability distribution. To that effect, we
propose two variations of CrowdSense that directly incorporate the joint probability distri-
butions of the labelers under different assumptions. The first variation (CrowdSense.Ind)
makes a statistical independence assumption of the labelers. That is, we will assume that
the majority vote is independent of the votes that we have seen so far. This assumption is
approximately true for large crowds, but does not hold for smaller crowds. This variation
has a nice probabilistic interpretation, replacing the boosting-style update, to improve upon
property 3. However, it sacrifices property 1. Therefore, its benefits are geared towards large
crowds. The second variation (CrowdSense.Bin) makes a different probabilistic assumption,
which is a lower bound on how often the current subcrowd agrees with the majority vote.
This leads to a different voting scheme which is based on the binomial distribution of the
votes. This also replaces the boosting-style decision rule in property 3. CrowdSense.Bin
does not include the current subcrowd’s weights in the vote, but the labeler selection crite-
ria still favors labelers with high accuracy. Consequently, this approach covers the second
property to some extent, but not as strong as the original CrowdSense.

7.1 CrowdSense.Ind

CrowdSense.Ind makes an assumption, namely that the quality of the individual labelers
gives much more information than the count of votes received so far. In other words, that
a labeler who is right 90% of the time and votes +1 should be counted more than a handful
of mediocre labelers who vote -1. This assumption is approximately true when there a large
number of labelers, but is not true for a small number of labelers. For instance, consider
a case where we have received three votes so far: [+1,-1,-1], from labelers with qualities
.8, .5, and .5 respectively. Let’s say that there are a total of 500 labelers. The evidence
suggests that the majority vote will be +1, in accordance with the high quality voter, and
discounting the low-quality labelers. This is the type of assumption CrowdSense.Ind makes.
Instead, if there were only 5 labelers total, evidence suggests that the majority vote might
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be -1, since the low quality labelers still contribute to the majority vote, and only one more
-1 vote is now needed to get a majority.

Let Vi denote the vote of labeler i on a particular example, and Pi denote the probability
that the labeler will agree with the crowd’s majority vote. Consider that two labelers have
voted 1 and -1, and we want to evaluate the probability that the majority vote is 1. Then,
from Bayes Rule, we have

P (y = 1|V1 = 1, V2 = −1) =
P (V1 = 1, V2 = −1, y = 1)

P (V1 = 1, V2 = −1)

P (V1 = 1, V2 = −1, y = 1) = P (y = 1)P (V1 = 1, V2 = −1|y = 1)

= P (y = 1)P (V1 = Vmaj , V2 6= Vmaj)

= P (y = 1)P1(1− P2)

P (V1 = 1, V2 = −1) = P (y = 1)P (V1 = 1, V2 = −1|y = 1)

+ P (y = −1)P (V1 = 1, V2 = −1|y = −1)

P (y = 1|V1 = 1, V2 = −1) =
P1(1− P2)P (y = 1)

P (y = 1)P1(1− P2) + P (y = −1)(1− P1)P2

where P (y = 1) and P (y = −1) are the ratios of the crowd’s approximated votes of 1 and
-1 on the examples voted so far, respectively.

To expand this more generally to arbitrary size subsets of crowds, we define the follow-
ing notation: Let V bin

i denote the mapping of labeler i’s vote from {−1, 1} to {0, 1}, i.e.
V bin
i = (Vi + 1)/2. Using the following notation for the joint probabilities of agreement and

disagreement with the crowd:

ψi = P
V bin
i

i (1− Pi)
1−V bin

i (probability of agreement given vote V bin)

θi = (1− Pi)
V bin
i P

1−V bin
i

i (probability of disagreement given vote V bin)

the likelihood of the majority vote y being 1 is estimated by the following conditional
probability:

f(xt|votes) = P (y = 1| V1, V2, . . . , Vi︸ ︷︷ ︸
votes of labelers in S

) =

(∏
l∈S ψl

)
P+(∏

l∈S ψl

)
P+ +

(∏
l∈S θl

)
(1− P+)

=
1

1 +

(∏
l∈S θl

)
(1− P+)(∏

l∈S ψl

)
P+

(6)

where probabilities higher than 0.5 indicate a majority vote estimate of 1, and −1 otherwise.
Further, the more the probability in (6) diverges from 0.5, the more we are confident of the
current approximation of the crowd based on the votes seen so far.

Note that labelers who are accurate less than half the time can be “flipped” so the
opposite of their votes are used. That is, observing a vote Vi with Pi < 0.5 is equivalent to
observing −Vi with probability 1−Pi. In Section 9, we discuss about this flipping heuristics
and present graphs that demonstrate the effect of this approach.

As in CrowdSense, the decision of whether or not to get a vote from an additional labeler
depends on whether his vote could bring us to the regime of uncertainty. As in CrowdSense,
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Algorithm 2 Pseudocode for CrowdSense.Ind.

1. Input: Examples {x1, x2, . . . , xN}, Labelers {l1, l2, . . . , lM}, confidence threshold ε,
smoothing parameter K.

2. Define: LQ = {l(1), . . . , l(M)}, labeler id’s in descending order of their quality esti-
mates. P+ is the probability of a +1 majority vote.

3. Initialize: ai ← 0, ci ← 0 for i = 1, . . . ,M . Initialize Qit ← 0 for i = 1 . . .M, t =
1 . . . N

4. Loop for t = 1, ..., N

(a) Qit = ai+K
ci+2K , ∀i

(b) Update LQ with the new quality estimates.

(c) Select 3 labelers and get their votes. St = {l(1), l(2), l(k)}, where k is chosen
uniformly at random from the set {3, . . . ,M}.

(d) V bin
it = (Vit+1)

2 , ∀i ∈ St
(e) ψit = Q

V bin
it

it (1−Qit)
1−V bin

it , ∀i ∈ St
(f) θit = (1−Qit)

V bin
it Q

1−V bin
it

it , ∀i ∈ St
(g) Loop for candidate = 3 . . .M, candidate 6= k

i. f(xt|votes) =
1

1 +
(
∏

i∈St θit)(1− P+)

(
∏

i∈St ψit)P+

ii. ψcandidate = 1−Qcandidate,t

iii. θcandidate = Qcandidate,t

iv. f(xt|votes, Vcandidate,t) =
1

1 +
(
∏

i∈St θit)θcandidate(1− P+)

(
∏

i∈St ψit)ψcandidateP+

v. If f(xt|votes) ≥ 0.5 and f(xt|votes, Vcandidate,t) < 0.5 + ε then Should-
Branch = 1

vi. If f(xt|votes) < 0.5 and f(xt|votes, Vcandidate,t) > 0.5 − ε then Should-
Branch = 1

vii. If ShouldBranch = 1 then St = {St ∪ candidate}, get the candidate’s vote.
else Don’t need more labelers, break out of loop.

(h) ŷt = 2× 1[f(xt|votes)>0.5] − 1

(i) ai = ai + 1, ∀i ∈ St where Vit = ŷt

(j) ci = ci + 1, ∀i ∈ St

5. End
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Figure 7: The confidence intervals of the probabilistic approach with the independence as-
sumption of the labelers. The ε neighborhood of the decision boundary is the
region of uncertainty.

this corresponds to hypothetically getting a vote from the candidate labeler that disagrees
with the current majority vote. This corresponds to hypothetically getting a -1 vote when
P (y = 1|votes) > 0.5, and getting a 1 vote otherwise. Defining

ψcandidate =

{
1− Pcandidate f(xt|votes) > 0.5
Pcandidate otherwise

θcandidate =

{
Pcandidate f(xt|votes) > 0.5
1− Pcandidate otherwise

and expanding (6) to include the new hypothetical vote from the candidate labeler, we get

f(xt|votes, Vcandidate) =
1

1 +

(∏
l∈S θl

)
θcandidate (1− P+)(∏

l∈S ψl

)
ψcandidateP+

. (7)

The decision as to whether get a new vote depends on the values of Eq (6) and (7). If
we are sufficiently confident of the current majority vote to the point where the next best
labeler we have could not change our view, or is not in the regime of uncertainty (shown in
Figure 7), then we simply make a decision and do not call any more votes. Pseudocode of
CrowdSense.Ind is in Algorithm 2.

7.2 CrowdSense.Bin

The statistical independence assumption that we made in Section 7.1 is almost valid for
sufficiently large crowds, but it does not hold when the crowd is small. In this subsection,
we modify our treatment of the joint probability distribution. Specifically, we estimate a
lower bound on how often the sub-crowd St agrees with the crowd’s majority vote.

Consider again the scenario where there are 5 labelers in the crowd, and we already
have observed [+1, -1, -1] votes from three labelers. The simple majority of the crowd
would be determined by 3 votes in agreement, and we already have two votes of -1. So
the problem becomes estimating the likelihood of getting one more vote of -1 from the two
labelers that have not voted yet, which is sufficient to determine the simple majority vote.
If the voters are independent, this can be determined from a computation on the binomial
distribution. Let Nneeded denote the number of votes needed for a simple majority and let
Nunvoted denote the number of labelers that have not yet voted. (In the example above with
5 labelers, Nneeded = 1 and Nunvoted = 2). In order to find a lower bound, we consider what
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Algorithm 3 Pseudocode for CrowdSense.Bin

1. Input: Examples {x1, x2, . . . , xN}, Labelers {l1, l2, . . . , lM}, confidence threshold ε,
smoothing parameter K.

2. Define: LQ = {l(1), . . . , l(M)}, labeler id’s in descending order of their quality esti-
mates.

3. Initialize: ai1 ← 0, ci1 ← 0 for i = 1, . . . ,M .

4. For t = 1, ..., N

(a) Compute quality estimates Qit = ait+K
cit+2K , i = 1, . . . ,M . Update LQ.

(b) St = {l(1), l(2), l(k)}, where k is randomly sampled from the set {3, . . . ,M}.
(c) For candidate = 3 . . .M, j 6= k

i. l+ :=
∑

St
1[Vlt=1]

ii. l− :=
∑

St
1[Vlt=−1]

iii. lcurrent maj = max(l+, l−)

iv. Majority Is =
⌈
M
2

⌉
v. Num Needed For Majority = Majority Is - lcurrent maj

vi. Score =
[∑Nunvoted

X=Nneeded
B(X,Nunvoted, 0.5)

]
− 0.5

vii. If Score < ε then St = St∪ l(candidate) Else Don’t need more labelers, break
out of loop

(d) End

(e) ŷ = 1− 21[|l−|>|l+|]

(f) ∀i ∈ St where Vit = ŷ, ait ← ait + 1

(g) ∀i ∈ St, cit ← cit + 1

5. End

happens if the remaining labelers have the worst possible accuracy, P=0.5. We then define
the score using the probability of getting enough votes from the remaining crowd that agree
with the current majority vote:

Score = PX∼Bin(·,Nunvoted,0.5)(X ≥ Nneeded)− 0.5

=

 Nunvoted∑
X=Nneeded

Bin(X,Nunvoted, 0.5)

− 0.5, (8)

where Bin(X,Nunvoted, 0.5) is the Xth entry in the Binomial distribution with parameters
Nunvoted and probability of success of 0.5. In other words, this score represents a lower
bound on how confident we are that the breakdown of votes that we have observed so far
is consistent with the majority vote. The score (8) is always nonnegative; this is shown in
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Proposition 1 in appendix A. Therefore, the decision to ask for a new vote can then be tied
to our level of confidence, and if it drops below a certain threshold ε, we can ask for the
vote of the highest quality labeler that has not voted yet. The algorithm stops asking for
additional votes once we are sufficiently confident that the subset of labels that we have
observed is a good approximation of the crowd’s vote. The pseudocode of this approach is
given in Algorithm 3.

8. Experiments

We generated two new datasets that simulate large crowds. The first dataset contains
2000 examples and 101 synthetically generated labelers; a precedent for using synthetically
generated “radiologist” labelers is provided in Raykar et al. (2010). The majority votes
of the examples are +1 for 1122 examples, and -1 for the remaining 878 examples. The
accuracies of the labelers are distributed over the 43-90% range. The second dataset extends
the original MovieLens dataset that we described earlier. Due to the sparsity of the dataset,
we randomly grouped labelers in sets of five and aggregated the votes of the labelers in each
group. That is, for each movie that was rated by at least one labeler in a group, we took
the average of the ratings for that movie to represent the vote of that group. This way, we
were able to extend the dataset to 51 groups and 175 examples. The positive to negative
ratio of the examples is 100/75, and after adding 75% noise to the votes of the worst 11
groups, the qualities ranged from 37% to 81%. For uniformity, we will refer to each labeler
group in the expanded MovieLens dataset simply as labelers of the dataset. The breakdown
of the labelers’ accuracies are presented in Figure 8.

Figure 9 shows the tradeoff curves for CrowdSense, CrowdSense.Ind, and CrowdSense.Bin.
On most datasets, CrowdSense achieves better performance than CrowdSense.Ind and
CrowdSense.Bin, though CrowdSense.Bin was the best performer on the Large MovieLens
dataset, and CrowdSense.Ind was marginally better than CrowdSense on the large Synthetic
dataset.
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Figure 8: The breakdown of labeler accuracies over 10% intervals for the datasets, used in
our experiments. N and M denote the number of examples and the labelers in
each dataset, respectively.

22



0 2000 4000 6000 8000

0.8

0.85

0.9

0.95

1

Large MovieLens Dataset

Number of Labels

A
c

c
u

ra
c

y

 

 

CrowdSense

CrowdSense.Ind

CrowdSense.Bin

IE Thresh

2000 4000 6000 8000 10000 12000

0.75

0.8

0.85

0.9

0.95

1

Synthetic Dataset

Number of Labels

A
c

c
u

ra
c

y

 

 

CrowdSense

CrowdSense.Ind

CrowdSense.Bin

IE Thresh

2 4 6 8 10

x 10
4

0.92

0.94

0.96

0.98

1

Reuters Dataset

Number of Labels

A
c

c
u

ra
c

y

 

 

CrowdSense

CrowdSense.Ind

CrowdSense.Bin

IE Thresh

0 1 2 3 4 5

x 10
5

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

Adult Dataset

Number of Labels

A
c

c
u

ra
c

y

 

 

CrowdSense

CrowdSense.Ind

CrowdSense.Bin

IE Thresh

2000 3000 4000 5000 6000 7000

0.86

0.88

0.9

0.92

0.94

0.96

ChemIR Dataset

Number of Labels

A
c

c
u

ra
c

y

 

 

CrowdSense

CrowdSense.Ind

CrowdSense.Bin

IE Thresh

500 1000 1500 2000

0.96

0.97

0.98

0.99

1

MovieLens Dataset

Number of Labels

A
c

c
u

ra
c

y

 

 

CrowdSense

CrowdSense.Ind

CrowdSense.Bin

IE Thresh

Figure 9: Tradeoff curves for all datasets at comparable ε values. We used K = 10 for
CrowdSense and variants, and initialized all algorithms with 4 examples as the
gold standard data.

9. Flipping Labelers

Labelers who have a negative correlation with the majority vote can be “flipped” to consider
the opposite of their votes. We will demonstrate how to do this using CrowdSense.Ind.
When a labeler is flipped, observing a vote Vi with Pi < 0.5 is equivalent to observing −Vi
with probability 1− Pi. In the online iterations, if a labeler’s quality estimate drops below
0.5, we flip the labeler’s original vote and use this vote as the labeler’s non-adversarial
vote. For these labelers’ quality estimates, their a coefficients are incremented when they
disagree with the majority vote. In Algorithm 4 of Appendix B, we present the pseudocode
of CrowdSense.Ind with flipping, and compare the prediction accuracy of CrowdSense.Ind
with and without labeler flipping in Figure 10.

10. Conclusions

Our goal is to “approximate the crowd,” that is, to estimate the crowd’s majority vote by
asking only certain members of it to vote. We discussed exploration/exploitation in this
context, specifically, exploration for estimating the qualities of the labelers, and exploitation
(that is, repeatedly using the best labelers) for obtaining a good estimate of the crowd’s
majority vote. We presented a modular outline that CrowdSense follows, which is that a
small pool of labelers vote initially, then labelers are added incrementally until the estimate
of the majority is sufficiently certain, then a weighted majority vote is taken as the overall
prediction. We discussed specific choices within this modular outline, the most important
one being the choice of ε, which determines the overall budget for labeling the entire dataset.
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We compared our results to several baselines, indicating that CrowdSense, and the overall
exploration/exploitation ideas behind it, can be useful for approximating the crowd.

We then presented two variations of CrowdSense, namely CrowdSense.Ind, which is
based on an independence assumption, and CrowdSense.Bin, where calculations are based
on the binomial distribution. These two algorithms make probabilistic assumptions or
bounds on the joint distribution of the votes and the labels, but in our experiments, perform
equally as well or slightly worse than CrowdSense.

Our work appears superficially similar to what is accomplished by polling processes.
However, polling presumes knowledge of individuals’ demographic characteristics, whereas
our work does not consider the demographics of the labelers. Incorporating knowledge of
labeler demographics, in order to predict the qualities of labelers, is our next direction
for future work. Specifically, we plan to model the quality estimates of the labelers at a
more fine-grained level, by considering a “context” for each labeler, as in contextual bandit
problems. This will help in problems where certain labelers’ expertise varies over topics or
contexts. We hope to build models that better capture the correlations between the context
and the votes, and quantify the uncertainty in our estimates of voting accuracy.
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11. Appendix A

Proposition 1: The score in (8) is always nonnegative.

NT = Total number of voters, which is an odd number so a majority always exists.
Nvoted = number of voters that have voted already.
Ncurrent majority = number of voters that constitute the current majority vote. That is,

Ncurrent majority >
Nvoted

2
(9)

Nunvoted = NT - Nvoted = number of labelers that have not yet voted.

To establish that the current majority vote is the true majority vote, we need

Nneeded =

⌈
NT

2

⌉
−Ncurrent majority.

Using (9), Nneeded <
NT + 1

2
− Nvoted

2
=
Nunvoted + 1

2

PBin(Nunvoted,0.5)(X ≥ Nneeded) ≥

P

(
X ≥ Nunvoted + 1

2

)
≥ 1

2
.

To get the last inequality:

• If Nunvoted is odd, this probability is 1/2 with equality from the symmetry of the
binomial distribution Bin(Nunvoted,

1
2).

• If Nunvoted is even, this probability is greater than 1/2, since there is probability mass

at X =
Nunvoted + 1

2
.

12. Appendix B

In Section 9, we described a flipping heuristic for CrowdSense.Ind where we flip the votes
of labelers with quality estimates below 0.5. In Algorithm 4, we present the pseudocode
of CrowdSense.Ind with this heuristic. Figure 10 presents the tradeoff curves for Crowd-
Sense.Ind with and without flipping the votes of the labelers with quality estimates less
than 0.5, averaged over 100 runs. A remarkable difference between these two curves are
observed only in experiments with ChemIR dataset. In experiments with all other datasets,
both methods give similar results.
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Algorithm 4 Pseudocode for CrowdSense.Ind with flipping.

1. Input: Examples {x1, x2, . . . , xN}, Labelers {l1, l2, . . . , lM}, confidence threshold ε,
smoothing parameter K.

2. Define: LQ = {l(1), . . . , l(M)}, labeler id’s in descending order of their quality esti-
mates. P+ is the prior probability of a +1 majority vote.

3. Initialize: ai ← 0, ci ← 0 for i = 1, . . . ,M .

4. Loop for t = 1, ..., N

(a) Qit = ai+K
ci+2K , ∀i

(b) ∀i , If Qit <
1
2 then Qit ← 1−Qit, Fi = 1 else Fi = 0

(c) Update LQ with the new quality estimates.

(d) Select 3 labelers and get their votes. St = {l(1), l(2), l(k)}, where k is chosen
uniformly at random from the set {3, . . . ,M}.

(e) if Fi = 1, Vit ← −Vit (flip labeler’s vote)

(f) V bin
it = (Vit+1)

2 , ∀i ∈ St
(g) ψit = Q

V bin
it

it (1−Qit)
1−V bin

it , ∀i ∈ St
(h) θit = (1−Qit)

V bin
it Q

1−V bin
it

it , ∀i ∈ St
(i) Loop for candidate = 3 . . .M, candidate 6= k

i. f(xt|votes) =
1

1 +
(
∏

i∈St θit)(1− P+)

(
∏

i∈St ψit)P+

ii. ψcandidate = 1−Qcandidate,t

iii. θcandidate = Qcandidate,t

iv. f(xt|votes, Vcandidate,t) =
1

1 +
(
∏

i∈St θit)θcandidate(1− P+)

(
∏

i∈St ψit)ψcandidateP+

v. If f(xt|votes) ≥ 0.5 and f(xt|votes, Vcandidate,t) < 0.5 + ε
ShouldBranch = 1

vi. If f(xt|votes) < 0.5 and f(xt|votes, Vcandidate,t) > 0.5− ε
ShouldBranch = 1

vii. If ShouldBranch = 1 then St = {St ∪ candidate}, get the candidate’s vote
else Don’t need more labelers, break out of loop.

(j) ŷt = 2× 1[f(xt|votes)>0.5] − 1

(k) ∀i ∈ St where Vit = ŷt, ai = ai + (1− Fi)

(l) ∀i ∈ St where Vit 6= ŷt, ai = ai + Fi

(m) ci = ci + 1, ∀i ∈ St
5. End
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Figure 10: Tradeoff curves for CrowdSense.Ind with and without the flipping heuristic.
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