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Monkeys
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Abstract

Previous studies support the notion that sensorimotor learning involves multiple processes. We investigated the neuronal
basis of these processes by recording single-unit activity in motor cortex of non-human primates (Macaca fascicularis),
during adaptation to force-field perturbations. Perturbed trials (reaching to one direction) were practiced along with
unperturbed trials (to other directions). The number of perturbed trials relative to the unperturbed ones was either low or
high, in two separate practice schedules. Unsurprisingly, practice under high-rate resulted in faster learning with more
pronounced generalization, as compared to the low-rate practice. However, generalization and retention of behavioral and
neuronal effects following practice in high-rate were less stable; namely, the faster learning was forgotten faster. We
examined two subgroups of cells and showed that, during learning, the changes in firing-rate in one subgroup depended
on the number of practiced trials, but not on time. In contrast, changes in the second subgroup depended on time and
practice; the changes in firing-rate, following the same number of perturbed trials, were larger under high-rate than low-rate
learning. After learning, the neuronal changes gradually decayed. In the first subgroup, the decay pace did not depend on
the practice rate, whereas in the second subgroup, the decay pace was greater following high-rate practice. This group
shows neuronal representation that mirrors the behavioral performance, evolving faster but also decaying faster at learning
under high-rate, as compared to low-rate. The results suggest that the stability of a new learned skill and its neuronal
representation are affected by the acquisition schedule.
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Introduction

In sensorimotor learning, the brain remaps a sensory instruction to

a motor command when interactions with the environment require it.

For example, in a commonly used adaptation paradigm, a force-field

is used to perturb arm reaching movements by pushing the hand away

from the target, causing the hand to deviate from its planned

trajectory. Many studies have shown that humans and monkeys adapt

easily to force-field perturbations, and that their trajectories straighten

with practice [1–5]. To re-optimize the movement [6] and minimize

kinematic error and effort [7], the brain needs to correctly anticipate

the force-field and modify the motor command accordingly [8,9].

Motor learning has been shown to progress at different

adaptation rates as a function of the experimental paradigm.

However, the learning curves during both fast short-term learning

[10,11] and slow long-term learning [12,13] are mostly charac-

terized by a fast stage of improvement in performance, followed by

a slower and more subtle stage of improvement [14]. These two

stages are hypothesized to reflect dynamical neuronal subsystems

with multiple timescales [15,16].

Studies have pointed to the potential advantages of learning at

multiple processes, suggesting it may allow flexibility [17] and act

as a mechanism for the functional hierarchy of neuronal systems

[18]. Smith et al. 2006 [19] explained several phenomena

observed during short-term force-field adaptation by a multi-

processes model in which fast processes respond quickly to new

environments but have poor capabilities for retention, while slower

processes respond more slowly to new environments but have

stronger retention capabilities.

There is an extensive body of literature on the patterns of motor

learning generalization, including the effect of adaptation to

perturbed movements in one direction on subsequent movements

that differed with regard to direction [4,20–24], speed and

amplitude [25,26], workspace location [27,28], and even move-

ments of the other arm [29]. In particular, adaptation to force-field

perturbation showed only limited and narrow generalization to

other directions, mostly affecting movements in nearby directions

[21,30] . Interestingly, this range of generalization may be affected

by environmental complexity [31] and time [32].

In this study we tested the hypothesis that the acquisition,

retention and generalization of sensorimotor skills are mediated by

multiple neuronal processes, which differ in their dynamics,

following Smith et al. 2006 [19]. We manipulated the number of

perturbed arm movements to a selected direction, which were
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interleaved with unperturbed movements to other directions,

inducing a fast or slow learning. We found support to our

hypothesis by the different dynamics of learning and its neuronal

representations that evolved by the different practice schedules.

Results

Local adaptation to force-field, in two different practice

schedules, induced differences in dynamics of behavioral and

neuronal changes. In the first practice schedule, the rate in which

the learned target appeared was relatively low ( ‘‘L-rate’’), whereas

in the second, the learned target appeared four times more ( ‘‘H-

rate’’), as depicted in figure 1. To reach a plateau of best

performance, the same learned target and the same force-field

direction were learned for several consecutive days (‘‘learning

set’’). The high rate practice resulted in a faster acquisition.

Data includes 7 learning sets for the L-rate (5 from monkey R

and 2 from monkey O) and 4 learning sets for the H-rate (3 from

monkey R and 1 from monkey O).

Behavioral findings
During adaptation, monkeys gradually learned to compensate

for a perturbing force-field and achieved straighter movements. To

quantify learning we compared directional deviations of trajecto-

ries at the initial stage of the movement (150 ms after movement

onset, before sensorimotor feedback may result in correction of

movement) during trials to the learned target under force-field.

Deviations were normalized to the force-field direction such that

positive errors were in the force-field direction, and negative errors

counter to the force-field. Figure 2A depicts the initial directional

deviations as a function of trial number under both H-rate and L-

rate along their learning sets: five days under L-rate (red, reported

previously in Mandelblat-Cerf et al 2011 [33]) and two days under

H-rate (blue). Note that (i) trials presented here are a concatena-

tion of learning trials from LRN and LRN2 epochs, in which the

monkeys initiated a movement (either successful or not) and were

not aborted prior to the go-signal; (ii) green brackets denote

approximately the point where the concatenation occurred.

Namely, the point where STD2 epoch interfered with the learning

in the different sets, and (iii) the number of trials for each day (1-5

for L-rate and 1-2 for H-rate) was truncated to the number that

was actually performed on that day across sets.

Previous studies in our lab [3] showed that when the learned

target was the only target used during learning, adaptation to the

force-field took only tens of trials. In this study, learning was

significantly slower. Under the H-rate condition, learning reached

a plateau within 100 force-field trials (Figure 2A, blue, day1).

Under the L-rate condition, learning was much slower and a

plateau performance, with an average angular deviation of

approximately 10u, was reached only after five days and over

200 trials (Figure 2A, red, day5).

At the end of day one, after a similar learning duration

(,2500sec, Figure 2B), performance under the H-rate was

significantly better than under the L-rate (t-test, p,0.01). This

was expected since there were more trials to the learned target

under the H-rate than under the L-rate during this time interval.

When comparing performance as a function of the number of

force-field trials (figure 2A), the difference between errors in the

last trials of the L-rate (47–56) and the same trials of H-rate was

smaller, but errors under the L-rate were nevertheless significantly

larger (t-test, p,0.05). Therefore, the H-rate schedule facilitated

learning as compared to the L-rate, even for the same number of

trials. Figure 2B (right panel) also illustrates movements toward the

learned target (from bottom to top) with a clockwise force-field (left

to right). The plots depict the last 10 force-field trials of the first

day under the L-rate (red) and the H-rate (blue) and the

trajectories during STD2 (no force-field, green). Note that under

H-rate practice schedule, but not under L-rate, movements in

STD2 were curved counter to the force-field direction (‘‘afteref-

fects’’), reflecting the advanced stage of learning under H-rate as

compared to L-rate.

Next, we examined different periods that interfered with the

learning process in which force-field trials were not executed and

compared the effect on performance under either the L-rate or the

H-rate. In order to properly compare the two conditions we

primarily focused on the late stages of learning, when performance

had reached similar and relatively stable levels. Specifically, we

compared day four and day five of the L-rate learning set to the

later trials of day one and day two of the H-rate.

The longest pause between the two learning epochs was the

overnight time between two consecutive learning days, followed by

the STD1 epoch in the subsequent days. Figure 3 shows that

although learning was faster under the H-rate schedule, the

improvement was less stable. Figure 3A depicts the average initial

deviations over the first and last 5 force-field trials in each day

along the learning set, for the L-rate (black) and the H-rate (grey).

The figure shows that under the H-rate, performance dropped

overnight, and the first few movements under force-field of day

two were again curved (the deviations late in day one of the H-rate

were small (,10u), and the trajectories in early trials of the

following day were significantly more curved (,20u)). Then, as

learning continued in day two, the movements gradually improved

to return to the plateau level of day one, after about 500 s or 20

trials (see figure 2A). In contrast, under the L-rate, performance

continued to slowly and gradually improve in the following days

(Figure 3A) with almost no overnight drops in performance,

reaching a plateau on day five. Note that deviations in the last 5

trials of day four in the L-rate were almost as small as those at the

end of day one under the H-rate, but performance the next day

(day5, last day) did not drop.

We then compared the strength of adaptations in the L-rate and

the H-rate by looking at overnight aftereffects. To do so, we

examined the aftereffects in STD1 trials, selecting the learning

days that reached a plateau of 10–15u initial error. Accordingly,

we compared aftereffects during STD1 on day five of the L-rate

and day two of the H-rate. The aftereffects (deviations counter to

force-field direction, data not shown) did not change significantly

along the STD1 epoch in either case (comparing aftereffects in the

first and last 3 trials of STD1, t-test, p.0.1), but were higher in the

L-rate as compared to the H-rate (two-sample t-test, p,0.05) with

average aftereffects of 221u under L-rate and 215u under H-rate.

The reduced aftereffects after the overnight pause under the H-

rate suggest that the drop in performance of the force-field trials

resulted from the overnight decay of the learned task and not

washout during STD1.

The second pause in learning we examined was introduced by the

short epoch of standard trials (STD2), again by comparing epochs of

similar performance in the H-rate vs. the L-rate. We compared day

one of the H-rate and day four of the L-rate, which was the first L-

rate day in which performance in the last 5 force-field trials prior to

STD2 was similar to the performance of these trials under H-rate

(ANOVA, p.0.5). Figure 3B (left plot) shows that aftereffects during

the STD2 epoch were apparent and gradually decreased (less

negative) in both the L-rate (black) and the H-rate (grey).

Surprisingly, the influence of this decrease on learning differed

between the practice schedules. We computed the ‘‘Drop Index’’ by

comparing performance immediately following the return to

learning (first 3 trials of LRN2 epoch) to the last 5 force-field trials
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prior to STD2 (see Methods). Note that in order to capture the

relearning effect we reduced the number of sampled trials after

STD2 to 3. Apparently, as depicted in Figure 3B (right plot), the

drop under the H-rate was significantly larger than under the L-rate

(t-test, p,0.01). Therefore, the slower learning under L-rate

practice schedule was less susceptible to this short washout.

Last, the third period we examined was the long standard epoch

(washout), which was employed at the end of the L-rate and the H-

rate learning sets (Figure 3C). Under both practice schedules,

performance under force-field prior to washout was similar (t-test,

p.0.5), with about 10u deviations in the initial movement

direction. When the force-field was removed, the aftereffects in

Figure 1. Experimental design. (A) example of a trial flow (left to right) during a learning epoch under ‘‘L-rate’’ and ‘‘H-rate’’ practice schedules.
During the first delay period the monkey held the robotic arm in the center without moving it. The monkey kept holding at the central circle after
target onset for an additional delay and moved after the go signal. In the figure the learned target is at 0u and the force field (FF) is clockwise (parallel
arrows). If the lit target was the selected learned target (lower row), then the force-field was applied when movement was initiated, otherwise (upper
row) movement was executed under standard conditions. Under the L-rate schedule the learned target appeared as often as the other targets (N),
and under the H-rate schedule, four times more frequently (4*N). (B) Recording day flow: all days started with standard trials (center-out reaching
movements to eight directions) followed by a learning epoch. From the first day until the day before last (fourth day under the L-rate, first day under
the H-rate) the learning epoch was followed by a second standard epoch and then ended with a second learning epoch. The last day of the learning
set (fifth day under the L-rate, second day under the H-rate) consisted of only three epochs in which learning was followed by a long standard epoch
(‘‘washout’’).
doi:10.1371/journal.pone.0021626.g001
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movement to the previously learned target were also similar

(,225u, t-test, p.0.5) and gradually decreased as washout

progressed. However, from trial 15 there was a growing

divergence in the progression of the washout between the H-rate

(grey) and the L-rate (black). Aftereffects following the H-rate

practice were eventually completely washed out and reached zero

deviations (t-test, p.0.5). In contrast, the aftereffects following the

L-rate remained significantly larger than H-rate (t-test, p,0.01)

with ,29u deviations in the last 10 trials of washout. Note that

during washout, in both cases, the learned target was presented at

the same rate as other targets (like the L-rate schedule), regardless

of whether learning was under the L-rate or H-rate practice

schedules. These experimental data support the notion that a

practice schedule which induces a slower process, also generates

more robust savings than a faster process, which renders it less

vulnerable to interference. However, in both cases, aftereffects

were diminished the following day (aftereffects were statistically

not different from zero, t-test, p.0.1, not shown), suggesting the

washout of L-rate learning continued offline during the night.

Neuronal Data
The sample totaled 851 isolated single-cell activity records (645

from monkey R, 206 from monkey O) from an indeterminate

number of actual different neurons during 43 daily training

sessions (765 = 35 L-rate sessions and 462 = 8 H-rate sessions).

Criteria for selecting these cells are described in the Methods

section (2346 other recorded cells did not pass these criteria and

were not used in analyses). Note that we did not attempt to record

the same cells on different days, or determine how the composition

of the sample of isolatable neurons may have changed from day to

day. Therefore, comparisons over days were done by daily

averaging the changes in cell activity over the population data.

For each cell, we characterized the relationship among the

preferred movement direction (PD), the direction of the learned

target, and the force-field direction. To do this we calculated each

cell’s ‘‘nPD,’’ which defines the angular distance of the cell’s PD

from the learned target, signed by the force-field direction. A

positive value denotes nPD in the direction of the force-field, and

negative in the opposite direction (counter to force-field). Cells

with nPD in the range of 450 to 1350 were defined as "co-FF" and

cells with nPD in the range of {1350 to {450 were defined as

"counter-FF."

To study the neuronal basis of the behavioral differences

between the high and low practice schedules that we reported

above, we examined changes in firing rates of these subgroups of

cells along the learning sets. More specifically, we computed the

firing rate of each cell in a 500 ms interval around movement

onset, from 200 ms before to 300 ms after. We then examined the

firing rate in standard trials to the learned target (STD1) as

compared to the firing rate during learning under force-field

perturbations.

In line with previous reports from our lab [3,33], no significant

consistent changes were found in the subgroups of cells with PDs

near the learned target or PDs in the opposite direction (not

shown) whereas counter-FF cells increased their activity during

force-field learning and co-FF decreased.

Figure 4 demonstrates activity of four different single cells that

were recorded either under L-rate (black) and H-rate (grey), with

nPDs either in the counter-FF range (upper traces) or the co-FF

range (lower traces). Each trace depicts the average firing rate in

the standard epoch of the first learning day (day1, STD1, circle)

and firing rates along the subsequent learning trials of this day.

Note that learning in day1, both under H-rate and L-rate, started

from a naive state. However, under H-rate, behavioral perfor-

Figure 2. Movement kinematics show slow or fast improvement during L-rate and H-rate learning sets, respectively. (A) Initial
directional deviation of movements to the learned target (LT), as a function of the number of trials to the learned target along the learning days of L-
rate (red) and H-rate (blue). (B) Initial directional deviation as a function of time during the first day of the L-rate (red) and H-rate (blue) learning sets.
Right: examples of trajectories to the learned target on the last 10 force-field trials (red, blue) and during the STD2 (green) on the first learning day.
Note that performance under the H-rate showed complete adaptation on the first day with minimal deviation under the perturbation and large
aftereffects in the standard trials that followed adaptation. In contrast, under the L-rate condition it took 4-5 days to reach similar performance. Green
brackets denote the range in which the STD2 epoch interfered with learning at different learning sets (standard trials are not shown). Shaded areas
denote SEM.
doi:10.1371/journal.pone.0021626.g002
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mance improved in day1 until it reached a plateau, while under L-

rate it did not. The figure shows increased activity in both counter-

FF cells, whereas only the co-FF cells under H-rate, but not under

L-rate, showed decreased activity.

We then assessed the changes in activity during learning,

relative to the standard epoch, across all counter-FF and co-FF

cells recorded in day1 of L-rate and H-rate learning sets. Figure 5A

shows the activity during the same time interval (2500 s) under H-

rate (grey, over 180 trials) and L-rate (black, 56 trials). The

counter-FF cells (upper plot) increased their activity substantially

relative to standard, both under the L-rate and the H-rate practice

schedule. The changes, as a function of number of trials, reached

the same degree of increased activity in trials 47–56 (the last trials

under L-rate, ANOVA p.0.5) and followed the same two-

exponential curve (grey dashed line, see Methods). Namely, after

experiencing the same number of trials, whether under the L-rate

or the H-rate, neural activity exhibited similar changes. However,

under H-rate, much more trials were executed, as compared to L-

rate, for the same time interval. In those subsequent trials the

activity of counter-FF cells slightly further increased, reaching a

significantly higher level of activity in the last 20 trials (160–180) as

compared to trials 47–56 (ANOVA, p,0.05). Thus, for the same

time interval, the firing rates of counter-FF cells increased faster

and to a higher level under the H-rate than the L-rate (as a

function of time and not trial number).

When examining modulations of co-FF cells (lower plot) we

found a significant decrease in activity only during the H-rate. The

fitted curve for the H-rate (dashed grey line) showed a transient

Figure 3. Learning under high rate practice schedule (H-rate) is more labile to interference than learning under the low rate (L-rate).
Performance in all plots is measured by the initial directional deviations of the hand. (A) Effect of the overnight pause: Performance on the first
and the last 5 force-field trials in each learning day (L-rate: days 1-5 in black, H-rate: days 1–2 in grey). In the L-rate performance gradually improves
over the days with almost no overnight drops between consecutive learning days, whereas under the H-rate it shows a significant overnight drop (t-
test, p,0.01) between the first (10u) and second day (20u). (B) Effect of the standard epoch (STD2): The plots show the aftereffects of learning on
standard trials in STD2 (left) and the effect of these trials on the subsequent continuation of learning (right plot). The left plot shows that the
aftereffects gradually decreased in both the L-rate (black) and the H-rate (grey). However, the right plot shows that the drop in performance between
force-field trials before and after STD2 (right) was significantly larger under the H-rate than the L-rate (t-test, p,0.01). (C) Effect of washout:
Performance without force-field (aftereffects) after learning under L-rate practice schedule (black) was washed out less than performance after
learning under H-rate (grey), which was washed out completely. The figure shows that performance on the last 10 force-field trials of the L-rate and
H-rate learning sets were similar (,10u, ANOVA p.0.5) and resulted in similar aftereffects when switching to standard trials (,225u, ANOVA p.0.5).
The aftereffects gradually decreased (less negative values in the plot), but from trial 15 until the end of washout the aftereffects in the L-rate were
larger than in the H-rate. The aftereffects in the last 10 trials of the washout were significantly different from zero in the L-rate (t-test, p,0.01) but not
in the H-rate (t-test, p.0.5).
doi:10.1371/journal.pone.0021626.g003
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fast decrease followed by a slower one, whereas the changes in

activity under the L-rate were non-significant and slowly decreased

with values above this curve. The slow dynamics of changes in co-

FF cells under L-rate is in line with our previous reports, showing

that these changes accumulated to a significant decrease in activity

only in 4th day of learning (Figure 4 in Mandelblat-Cerf et al, 2011

[33]). This difference in timescales between H-rate and L-rate was

obviously even more pronounced when observing changes as a

function of time rather than number of trials (not shown).

Altogether, changes in counter-FF cells were trial dependent,

and changes in co-FF cells were both trial and time dependent.

Most of the increases in counter-FF cells along learning occurred

approximately in the first 50 trials, independent of time, while the

decreases in activity of co-FF cells seemed to depend on the

practice schedule and to follow the rate at which trials appeared.

Next, we examined the extent to which the changes in activity

were reversed during washout when the aftereffects gradually

decreased (as shown in figure 3C). Figure 5B shows the activity

along washout (trials without force-field) to the learned target

relative to the average firing rate late in learning, in the last 10 force-

field trials. Note that during the washout epoch, the learned target

appeared as often as other targets, regardless of the previous

practice schedule. Clearly, the counter-FF cells (top traces), which

increased during learning, decreased similarly during washout after

both the L-rate and the H-rate practice schedules and reached a

20% decrease late in the washout (t-test p,0.01). Note that the

similar dynamics of counter-FF cells during washout, after H-rate

practice as compared to L-rate practice, are consistent with their

similar increase in activity as a function of number of trials during

learning. In co-FF cells, the reverse process was expected to show

increased firing rate during washout. This is indeed what we

observed (Figure 2B, lower traces). However, here the reversals were

different between the L-rate and the H-rate conditions. The

washout effect was significant only after learning under H-rate

practice schedule (t-test, p,0.01), whereas after L-rate, the increase

was much smaller (ANOVA p,0.01) and did not reach

significance. The results may therefore suggest that the timescale

of increase in the activity of co-FF cells during washout followed its

timescale during learning, which was dependent on the practice

schedule (in our experiment, H-rate or L-rate). More specifically, its

resistance to washout was negatively correlated with the frequency

of trials during practice and the resultant pace of learning.

We then examined learning effects across days of the learning set.

As shown in Figure 3A, learning under L-rate practice schedule

gradually improved along five days with very little overnight drops

in performance. However, under the H-rate, where the behavioral

improvement was much faster and reached a plateau at the end of

the first day, a significant overnight drop in performance was

observed on the second day, which then improved to converge

again to the same plateau level. We examined the neuronal

correlates of the behavioral changes under the H-rate on these two

days, and found that counter-FF cells did not show any additional

increase in activity (Figure 6A, top trace) on the second day whereas

co-FF showed a decrease (Figure 6A, lower trace). It is therefore

possible that the overnight drop was mainly caused by a gradual

fading of changes in co-FF cells, which were re-acquired on the

second day. This notion was strengthened by extraction of the

cumulative effect of learning. We compared the averaged

population activity during learning in the second day to the

averaged population activity that was recorded prior to learning (i.e.

STD1 of day1). As depicted in figure 6B, the activity of counter-FF

cells shows a relatively steady activity (as expected from figure 6A) of

an increased activity in a similar magnitude that was observed in the

first day (compare to figure 5A), suggesting that the activity of

Counter-FF cells did not drop overnight. However, the activity of

co-FF cells was initially similar to pre-learning STD1 (20 trials not

significantly different from zero, t-test, p.0.3) and only later

significantly decreased (last 20 trials, t-test, p,0.01).

The substantial overnight drop occurred only under the H-rate,

but not the L-rate, suggesting that overnight reversed changes in

co-FF cells occurred when the practice schedule provoked fast

learning and therefore induced fast and pronounced changes

during the learning epoch.

Last, we inspected how the second short standard epoch

(STD2), which appeared between the learning epochs, influenced

cell activity. We compared the activity of counter-FF and co-FF

cells before (last 5 trials) and after (first 3 trials) STD2. The

changes were statistically non-significant, but their trend was in

line with the behavioral results (Figure 3B, right): counter-FF cells

showed similar decreases under the L-rate and the H-rate whereas

co-FF cells only increased under the H-rate (not shown). This

trend supports the notion that the larger drop in performance after

STD2 under the H-rate relates to the different dynamics of co-FF

cells.

Altogether, the results indicate that changes in the activity of

counter-FF cells occurred mostly early in learning and were

‘‘practice-dependent’’ since they increased (during learning) and

decreased (during washout) as a function of number of trials,

independent of time. Learning-related changes in co-FF cells and

their stability appear to depend on the practice schedule; the faster

the activity changed during learning, the more labile it was.

Generalization – behavioral and neuronal data
To test the effect of the practice schedule on generalization we

studied the trajectories to the other seven non-learned targets,

Figure 4. The activity of four different single cells in the L-rate
condition (black) and H-rate condition (grey) on the first
learning day as a function of trial number. The figure depicts
(from top to bottom): a counter-FF cell recorded under the L-rate
(nPD = 284u), a counter-FF cells recorded under the H-rate
(nPD = 274u), a co-FF cell recorded under the L-rate (nPD = 103u) and
a co-FF cell recorded under the H-rate (nPD = 115u). For each cell (trace)
the figure shows average firing rate across standard trials to the learned
target (circle) and firing rates along the learning trials to the learned
target.
doi:10.1371/journal.pone.0021626.g004
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which were executed (without force-field) throughout the learning

epochs. Of particular interest were movements to target at 245u,
where generalization was the strongest. These analyses are

described below.

In order to compare the L-rate and the H-rate, we examined, as

in previous analyses, advanced stages of learning after reaching

plateau levels where initial directional deviations of the hand

under force-field were similar (ANOVA, p.0.5; i.e., day four and

day five for the L-rate, and late trials of days one and two for the

H-rate).

The first analysis (Figure 7) compared movements in unper-

turbed trials (that immediately followed force-field trials) to each

target under L-rate and H-rate, as a function of the angular

distance of that target from the learned target (L-rate analysis was

previously reported in Mandelblat-Cerf et al., 2011 [33]). The

figure depicts the averaged initial directional deviations of

trajectories (‘‘TRJ-aftereffects,’’ upper plot) for each target under

the two practice schedules and the corresponding population

vectors deviations (lower plot, PV-deviations, using optimal linear

estimator of Salinas and Abbott 1994 [34]). Note that for each

target, population vectors were generated for each movement to

this target by the neural sample in that daily recording session.

Then, data was pooled across recording sessions.

Since we only analyzed trials from the advanced stages of

learning where performance under the L-rate and the H-rate was

similar (Figure 3A), as expected, there were no significant

differences between H-rate and L-rate aftereffects on the

trajectories (36u and 37u, respectively) and the population vectors

(27u and 30u, respectively) to the learned target. However, there

was a significant effect of the practice schedule on generalization.

This effect was mostly expressed in movements to the target at

245u (the target adjacent to the learned target in a direction

counter to force-field) where generalization was significantly larger

under H-rate than under L-rate practice, with aftereffects on the

trajectories of 17u vs. 9u, respectively (t-test, p,0.01, denoted by

asterisk). Similarly, the corresponding PVs deviated from the

target at 245u, with significantly larger directional errors of about

16u under the H-rate vs. 7u under the L-rate (t-test, p,0.01,

denoted by asterisk). Significant, but considerably smaller,

aftereffects on trajectories emerged both in the L-rate and the

H-rate in movements to +45u target (,5u, t-test, p,0.01) and only

in the H-rate to the target at +180u (,24u). Movements to other

targets did not show any systematic aftereffects on trajectories or

PV-deviations, and on average did not differ from zero.

Since generalization and the differences between the L-rate and

the H-rate were primarily expressed in movements to the target at

245u, we performed further analyses to study the dynamics of the

development and decay of generalization to this direction under

the two practice conditions. To do so, we studied the trajectory

aftereffects and population vector deviations throughout learning,

Figure 5. Different dynamics in counter-FF and co-FF cells under L-rate and H-rate as a function of trial number. Figure depicts
analyses of cells with PDs in the range 2135u,nPD,245u (counter-FF, top) and range 45u,nPD,135u (co-FF, bottom) (A)Dynamics of changes in
activity during adaptation trials to the learned target (LT) relative to standard trials in the first learning day. Counter-FF cells showed increased activity
(p,0.01) under L-rate (number of cells = 29) and H-rate (number of cells = 17), with similar magnitudes (p.0.5) in the two conditions, for the same
number of trials. In contrast, co-FF cells showed a significant decrease in activity only under H-rate (number of cells = 21, p,0.01), whereas changes
under L-rate (number of cells = 36) were not significant (p.0.1). (B)Changes in activity in movements to the learned target along washout (standard
trials) relative to activity on the last 10 force-field trials. Counter-FF cells decreased their activity significantly (p,0.01) and similarly under H-rate as
compared to L-rate (number of cells = 18 and 33, respectively. p.0.5). Co-FF cells showed a significant increase only under H-rate (number of
cells = 13, p,0.01) but not under L-rate (number of cells = 23, p.0.1). Shaded areas denote SEM.
doi:10.1371/journal.pone.0021626.g005
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and not only in its late stages. Figure 8 displays the aftereffects

(upper plot) and population vectors (lower plot) as a function of the

learning day. Note that as in Figure 7, we only included trials to

target at 245u that immediately followed force-field trials.

Aftereffects under the L-rate (black line) gradually changed to

deviate from the target at 245u in a counter-FF direction, and

became significant on days 3–5 (t-test, p,0.01). This generaliza-

tion effect was highly correlated in time with improvement in

performance of the learned movements to the learned target

(dashed red line, red y-axis on the right). Under the H-rate,

aftereffects reached a maximal and much higher deviation on the

first day (grey line). Analyses of the population vectors to the target

at 245u and the learned target (Figure 8, lower plot) showed

similar dynamics, with a gradual deviation counter to the force-

field direction along the L-rate (reaching significance on days 4–5,

t-test, p,0.01) and much higher deviations on the first day of the

H-rate. Finally, population vectors in movements to the learned

target also reflected similar temporal dynamics, showing a gradual

increased deviation counter to the force-field direction.

To study the temporal stability of generalization we directly

examined aftereffects on a trial-by-trial basis in all incidences in

which a non-perturbed movement to the target at 245u
immediately followed a learning trial to the learned target (‘‘1st-

trials’’) as compared to incidences where these unperturbed

movements appeared only later, at trials 5 or 6 after a learning

trial (‘‘5,6th-trials’’). Note that in the case of 5,6th-trials there were

only unperturbed trials between the learning trial and the examined

unperturbed trial to target at 245u. Therefore, we chose to look at

trials 5 and 6 rather than later trials, since under H-rate schedule the

chances of not having a learning trial for more than 6 subsequent

trials are extremely small. Figure 9 shows the relation between

trajectory deviations to the learned target under the force-field (x-

axis, in bins of 10 degrees) and average aftereffects to the target at

245u (y-axis) for the 1st-trials (L-rate in black, H-rate in grey) and

5,6th trials (L-rate in blue, H-rate in cyan). Data included trials from

all learning epochs throughout the learning set. Note that along the

x-axis the early stages of learning were mostly represented by large

trajectory deviations from the learned target, while deviations late in

learning were mostly smaller (as expected from the learning curves,

Figure 2). A statistically significant effect of learning trials on the

following movements (1st-trials) was observed: smaller deviations

from the learned target were correlated with larger aftereffects in the

following movements to the target at 245u (p,0.01). Furthermore,

these aftereffects were significantly higher under the H-rate than the

L-rate (t-test, p,0.01 for each of the bins with TRJ-deviation,40u).
However, the large aftereffects under the H-rate, that were observed

immediately following a trajectory deviation to the learned target

smaller than 20u, decreased significantly within 5 trials after the

perturbation (denoted by asterisk). In contrast, under the L-rate

such a decrease was not evident and the aftereffects were similar

regardless of their lag from a learning trial (t-test, p.0.5).

In sum, the generalization analyses indicate that at all stages of

adaptation the immediate generalization to the target at 245u
under the H-rate was larger than under the L-rate and

Figure 6. Neuronal activity during the second day of H-rate practice schedule. Figure depicts analyses of cells with PDs in the range
2135u,nPD,245u (counter-FF, top) and range 45u,nPD,135u (co-FF, bottom). (A) Percent of change in single cells firing rate along force-field
trials from standard trials to the learned target (LT) show non-significant changes in activity of counter-FF cells (upper trace) but a significant decrease
of activity in co-FF cells (bottom trace). Number of cells = 31; shaded areas denote SEM. (B) Percent of change in the averaged firing rates across
counter-FF and co-FF cells as compared to the averaged firing rate of cells with PDs in the same range during pre-learning standard trials of day1. The
plot shows that counter-FF cells maintain their increased activity, while activity co-FF cells is initially similar to standard and only later decreases. Data
includes 4 learning sets. Shaded areas denote SEM.
doi:10.1371/journal.pone.0021626.g006
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consequently resulted in a larger asymmetry of the generalization

counter to the force-field direction. Interestingly, the higher level

of generalization, which evolved during the high rate practice (H-

rate), decayed faster than the L-rate.

Discussion

We present a study of local adaptation to force-field (FF)

perturbation in which the perturbed movements to the selected

target (‘‘learned target’’) were interleaved with unperturbed

movements to other target locations at a high or low rate (H-

rate and L-rate, respectively). Our findings show that (1)

adaptation was faster and exhibited more pronounced general-

ization under the H-rate practice schedule than the L-rate; (2)

learning under H-rate was more labile and subject to interferences;

(3) generalization was asymmetric around the learned target, in

counter force-field direction under the two practice scedules, but

asymmetry was larger under the H-rate; (4) generalization was

more labile under the H-rate; (5) two subgroups of cells which

were previously described by our group [3,33] exhibited different

relationships to the adaptation progress. Specifically, the counter-

FF cells, with preferred directions that ‘‘pushed against’’ the

perturbation, changed as a function of number of trials,

independent of time (‘‘practice-dependent process’’) and mostly

early in learning. In contrast, the co-FF cells, with preferred

directions that assist the perturbation direction, changed at a

timescale that depended on the practice schedule - their learning

pace was significantly slower under L-rate as compared to H-rate,

and depended on the number of trials and the time it took to

perform them (‘‘schedule-dependent process’’). The implications of

these findings are discussed below.

The comparison of the two practice schedules showed that

practicing under H-rate schedule, in which the time between

consecutive force-field trials was short, facilitated adaptation. This

result seems to contradict previous studies that demonstrated

facilitation under long inter-trial-intervals in different learning

tasks [35–38]. In particular, force-field adaptation showed trial-to-

trial facilitation under longer inter-trial-interval [39,40]. However,

in these studies, the inter-trial-intervals were simply pauses in time,

whereas in our study the time intervals between learning trials

were interleaved with unperturbed movements to other directions

that may have undermined the benefits of these long intervals for

learning.

The faster learning and higher lability in the H-rate schedule

may be a combined result of some or all the following reasons:

Figure 7. Generalization of local force-field learning is
asymmetrical around the learned target (LT) and dependent
on the practice schedule. The effect is measured by the initial
directional deviations of the trajectories (TRJ-aftereffects, upper plot)
and the corresponding population vectors (PV-deviations, lower plot).
The figure shows the TRJ-aftereffects (upper) and PV-deviations (lower)
from targets around LT during L-rate (black) and H-rate (grey) learning,
taken at late stages of adaptation. Deviations from target at -45u were
almost 10u larger under H-rate than L-rate (p,0.01). Note that for
illustration purposes, positive values were assigned to deviations
counter to the force field direction. In addition, measuring TRJ-
aftereffects to the LT was only possible in STD2 after the first epoch
of learning trials. Number of cells = 298 for late days of L-rate, number
of cells = 156 for H-rate. Error bars denote SEM. Asterisks denote 1%
significance.
doi:10.1371/journal.pone.0021626.g007

Figure 8. The generalization effect in movements to the target
at 2456 is correlated with adaptation. The developments of TRJ-
aftereffects (upper plot) and PV-deviations (lower plot) from the target
at 245u along learning days. Deviations were significant in the later
days of the L-rate (black) learning set and in both days of H-rate (grey).
Note that the gradual development along L-rate was closely related to
the decreased deviations in movement to the learned target (dashed
red line, upper plot) and to the increased deviations of the
corresponding PVs (dashed red line, lower plot). number of cells =
851. Error bars denote SEM.
doi:10.1371/journal.pone.0021626.g008
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First, the interleaved unperturbed trials may induce anterograde

and retrograde interference effects on movements to the learned

target [41,42,21]. Thus, the larger number of interleaved

unperturbed trials under L-rate could induce higher interference

as compared to H-rate, which could slow down the learning pace

and modulate the lability.

Second, evidence suggests that the brain can switch between

different motor commands as a response of context switching

between different environmental conditions [43–45]. It was

previously shown that mixed practice schedules of several tasks

leads to a slower acquisition but a more stable representation of

the learned tasks [46–48], an effect that is known as the "context

interference effect." Accordingly, our learning paradigm could

elicit a strategy of context switching between the perturbed trials to

the learned target and unperturbed trials to other targets, resulting

in slower but more stable learning under L-rate, which is in line

with our results. It is also possible that the frequent appearance of

the learned target in the H-rate could induce an increased ability

to use the learned target as a context cue to anticipate the

perturbation [49]. However, our results show that as the local

learning progressed, the aftereffects to a non-learned target

increased (Figure 8). Since context switching does not predict

such an effect, it is likely that the brain does not rely solely on

context switching to learn our task.

Third, since the probability of appearance of perturbed reaches

to the learned target during H-rate was four times larger than that

of any of the other targets, it is possible that at higher rate statistics

were learned faster. The effects described above of anterograde,

retrograde and context interferences may contribute to this

process. Under H-rate, the interferences are weaker, facilitating

acquisition of the statistics, and increasing the validity of the

learned adapted model. Thus, in the H-rate condition just a few

consecutive perturbed trials are sufficient to increase the

probability that the adapted model indeed holds, and only a few

unperturbed trials – that the original model should resume. This

possibility is consistent with the notion of optimal control,

predicting that during local adaptation, the brain attempts to

globally minimize some cost function [50,51].

Fourth, a major difference between L-rate and H-rate learning

sets is that the task design allows several periods (four nights) of post-

practice consolidation in the L-rate, but only one in the H-rate

paradigm. The impact of these periods on the dynamics of learning

is controversial. Some studies have shown that the fragility of a

motor memory trace is reduced in time [52-54], with or without

sleep [55], while others have failed to reproduce these results [56–

58]. This contradiction may be the result of an inability to retrieve

the learned skill rather than an inability to form a stable memory

trace. Therefore, it is possible that the higher lability of the learning

under H-rate schedule is a result of the fewer post-practice periods.

Neuronal Changes under L-rate and H-rate practice
schedules

The pace of changes in firing rates of co-FF cells (termed

‘‘schedule dependent’’) was correlated with the learning pace,

while the pace of counter-FF cells (termed ‘‘practice-dependant’’)

was not. We suggest that the difference in the dynamics of these

two groups of cells allows the brain to maintain a good

performance, while achieving flexibility in consolidation that is

advantageous for motor behavior. Our results suggest that the

increased activity of the counter-FF cells is directly related to

performance (evaluated by the trajectories’ kinematic properties),

since most of the improvement in performance occurred early in

learning, just like most of the changes in these cells. In contrast, it

appears that the decrease in activity of co-FF cells may lag behind

the improvement in performance, as shown in the L-rate learning.

Therefore, the co-FF cells are probably related to other aspects of

movement optimization and maybe also to consolidation. It is

most likely that these cells represent the part of the neuronal

population that is more sensitive to the time and/or events

between learning epochs. This may originate from sensitivity to

the interferences imposed by the interleaved unperturbed trials

and/or sensitivity to post-practice periods (nights) during learning.

This sensitivity then results in manipulation of the strength of

consolidation as a function of the practice schedule.

Consequently, we suggest that it is the schedule-dependent

process, and not the practice-dependent process, that accounts for

the weaker retention after H-rate practice. Our experimental data

further support this notion by showing a complete washout after

H-rate but not L-rate (Figure 3C) as well as different decay profiles

of the co-FF cells. In contrast, the decay profile of the counter-FF

cells was similar, regardless of the previous practice schedule

(Figure 5B). In addition, we observed a large overnight drop of the

learned behavior under the H-rate but not the L-rate (Figure 2A,

3A). As discussed in the results section, the behavioral improve-

ment that followed this overnight drop may be related to a re-

adaptation of the schedule-dependent cells.

Our results put strength to the proposal that neuronal processes

with multiple timescales underlie sensorimotor learning [19] in

which one process evolves slowly but retains information well,

while the second evolves faster but shows weaker retention. The

faster changes of the schedule-dependent cells during H-rate

learning decay faster, and may be the cause of the less stable

Figure 9. The generalization effect under H-rate is larger than
under L-rate but more labile. The figure depicts the trajectory
aftereffects (no force-field) to the target at 245u as a function of the
trajectory deviations to the learned target under the force-field (in bins
of 10u) for trials that immediately followed a force-field trial (1st-trials, L-
rate in black, H-rate in grey) and aftereffects after 5–6 trials (5,6th-trials,
L-rate in blue, H-rate in cyan). Note that for any directional deviation
from the learned target smaller than 40u, the immediate aftereffects
under H-rate (grey) were significantly larger than under L-rate (black).
However, note also that under H-rate the large aftereffects significantly
decay within 5 trials (asterisk), while under L-rate they do not show such
decay. Error bars denote SEM. Asterisks denote 1% significance.
doi:10.1371/journal.pone.0021626.g009
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retention of the learned motor skill. When the practice schedule

induced slower learning, these cells show slower changes during

learning with better retention. This could also be a result of the

difference afforded by the overnight consolidation periods in H-

rate (one night) versus L-rate (4 nights) [53,54,59].

A unified scheme to explain how neuronal adaptation processes

serve as the basis of the observed behavioral adaptation is shown in

Figure 10. The figure depicts the neuronal changes during H-rate (top)

and L-rate (bottom) learning sets of the practice-dependent cells (black)

and the schedule-dependent cells (grey). The changes are modeled

between zero to one, where zero is the naive state and one is the

maximal change, such that learning is complete when both groups of

cells reach the value of 1. To obtain the curves that reflect each group’s

dynamics from naive to plateau performance, we normalized the fitted

curves for the changes of co-FF and counter-FF cells during the first

day of H-rate learning (Figure 5A). Details of the relation of the

scheme to the data are further elaborated upon in the figure’s legend.

Generalization
The design of this study differs from previous studies of adaptation

to force-field perturbation. Local adaptation (learning trials to a single

target) with interleaved unperturbed movements (to all other targets)

allowed us to dynamically evaluate the level of generalization by

examining unperturbed movements during learning.

Previous studies have demonstrated limited generalization of

adaptation [21,60,61]. In agreement with these studies we have

previously reported [34] that generalization is indeed limited.

However, we have also shown an increased generalization effect in

the direction that counteracts the force-field; namely, in the

direction that the hand must push to compensate for the force-field

and reach the learned target. Interestingly, we found here that the

behavioral and neuronal aftereffects in this same direction were

substantially stronger under the high rate practice.

This result supports the notion of optimal control, suggesting

that the acquisition and retention is facilitated when the likelihood

of the adapted model is higher and thus it becomes more cost

effective to assume it is the valid one (as discussed above). Hence,

generalization in the direction of the (preferred) adapted model is

facilitated in the H-rate as compared to L-rate schedules.

At the same time, we found that in the H-rate schedule,

generalization decayed faster (Figure 9), in line with the higher

lability of the learned skill. This result suggests that generalization

can be rapidly modulated within few trials.

In conclusion, this study introduced two practice schedules that

demonstrated how the brain learns at two different paces. These

different paces were represented by differences in the dynamics of

changes in the activity of subpopulations of cells. The high

temporal correlation of the behavioral phenomena and changes in

these subpopulations may be suggestive of a neural substrate for

the different paces of learning, the lability of the adapted models,

and the strength of generalization.

Materials and Methods

A. Animals, recordings and behavioral task
Ethics Statement: Animal care and surgical procedures

complied with the US National Institute of Health (NIH) Guide

for the Care and Use of Laboratory Animals. The study was

approved by the Institutional Committee for Animal Care and

Use at the Hebrew University, permit number MD-78-03-3.

Details of animal welfare and steps taken to ameliorate suffering

were in accordance with the recommendations of the Weatherall

report, "The use of non-human primates in research".

Animals were kept in common yards with enrichment devices.

For reinforcement learning reasoning, they were kept under food

restrictions during the week. Drops of juice (usually Gerber

enriched with baby formula) were provided as a reward for task

success. Monkeys enjoyed weekends of full feeding and at all times

were not deprived of water. A veterinarian inspected them weakly

and performed routine tests. All procedures were sterile and under

anesthesia, with pain relievers.

Two monkeys (Macaca fascicularis, ,4 kg) were chronically

implanted with a microelectrode array (Cyberkinetics Neurotech-

nology Systems, Foxborough, MA) on the contralateral arm region

of the motor cortex, under anesthesia and aseptic conditions.

Behavioral task. Two monkeys used a robotic arm

(Phantom Premium 1.5 High Force, SensAble Devices, Cam-

bridge, MA) to control the movements of a cursor on a video

screen in a two dimensional plane. Prior to surgery, monkeys were

trained to perform a default eight-target center-out reaching task

(‘‘standard’’ trials). The phantom manipulated a cursor on the

screen to move from the starting point at the center of the screen

(origin) to a visual target in a delayed go-signal paradigm. The trial

sequence and recording day flow are shown in Figure 1. Figure 1A

depicts the trial flow from left to right during learning. Each trial

began when the monkey moved the cursor to the origin (central

circle). After a variable hold epoch of 0.85–1.35 s, a target

appeared at one of the eight possible positions, which were

uniformly distributed in a circle 4 cm from the origin (Figure 1A,

second column). After an additional 0.85–1.35 s hold epoch the

origin disappeared (go signal, third column), prompting the

monkey to move to the target in less than 0.8 s (fourth column).

This generous time constraint allowed relatively natural reaching

movements. After another 0.4 s when the monkey kept the cursor

still in the target, a liquid reward was delivered.

The perturbation is defined by a combination of a single target

(the "learned target’’) and force-field direction (clockwise or

counter clockwise). The robot-generated force-field pushed the

hand perpendicular to its current velocity in a counterclockwise or

clockwise direction. Given the components of the observed

trajectory in the horizontal plane (x and y), the velocity-dependent

force-field was generated using the following equation:

FFx(t)

FFy(t)

� �
~k

cos (h) { sin (h)

sin (h) cos (h)

� �
_xx(t)

_yy(t)

� �

where FFx and FFy are the robot-generated forces at time sample t,

k = 8 Ns/mm, h= 690u, and _xxand _yyare the components of the

hand velocities in the horizontal plane. Thus, the perturbation is

velocity dependant and the hand was pushed only while it was

moving. Furthermore, the monkeys experienced the perturbation

only while reaching to the learned target and not when returning

the hand to the origin. While movements under standard

conditions were typically straight to the target, when the

perturbation was introduced, trajectories to the learned target

were initially curved (as depicted in figure 2 and in Mandelblat-

Cerf et al 2011). To reduce the curvature the monkeys needed to

compensate for the force-field. This could be carried out by

learning to push against the force-field properly while moving to

the target. Note that since the force-field was velocity dependant it

was not fixed. Therefore, the pattern of the applied compensatory

force should have been adapted accordingly.

A learning set consisted of several learning days during which the

same perturbation (Learned target and force-field direction) was

applied. On each day, during standard epochs, the sequence of

targets was randomly chosen from a uniform distribution and was
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executed without any perturbation. During learning epochs,

targets continued to appear randomly but the rate at which the

learned target appeared was manipulated. Under the ‘‘L-rate’’

practice schedule, as in the standard epoch, the number of trials of

the learned target was equal to that of each of the other targets.

Therefore, it appeared just as often as the other targets (on

average, once every 8 trials). However, under the ‘‘H-rate’’

practice schedule, the learned target appeared at a higher rate,

four times more than each of the other targets. Whenever the

learned target appeared, movement was executed under the force-

field, which perturbed the hand perpendicular to its direction and

proportional to its velocity.

The ‘‘L-rate learning set’’ was constructed as follows (Figure 1B,

upper trace): the first to fourth days involved four successive

epochs: (1) a default (standard) eight-target task (STD1, without

force-field) of 80 trials; (2) a learning epoch (LRN, with force-field)

of 240 trials (30 trials to the learned target); (3) a second default

eight-target task (STD2) of 80 trials and (4) a second learning

epoch (LRN2) of at least 240 trials. The fifth day involved only

three consecutive epochs: (1) STD1; (2) LRN and (3) a long STD

to negate the learning effect ("washout") of 360–480 trials. No cue

was given to the monkey to mark the transitions between standard

and learning epochs.

Note that the number of default trials in STD1 and STD2 were

introduced with caution. The default trials can show the baseline

condition on each day and the post-learning effects. However, they

can interfere with the learning since they have a washout effect.

We chose the number of trials in STD1 and STD2 to balance the

trade-off between these two effects: we kept the number of default

trials small enough to minimize the interference and large enough

to measure the behavior and neural activity in the default

condition. STD1 allowed us to examine the baseline for each day,

before additional learning took place. For example, it made it

possible to estimate the directional tuning of all cells without

perturbation, as well as the overnight retention of learning. STD2

provided a rapid assessment of the learning effect without the

perturbation present, with minimal washout. On days five, STD2

was replaced by the washout STD epoch to negate the learning

effect.

The ‘‘H-rate learning set’’ consisted of only two days, since each

day included four times as many trials of the learned target. As

depicted in figure 1B (lower trace) the first day was identical to the

first day of L-rate with a STD1-LRN-STD2-LRN2 structure,

where the LRN epoch constituted 120 trials of the learned target

and 30 of each of the seven non-learned targets. The second day

was similar to the fifth day of the L-rate, with a washout as the

third and last epoch.

Note that (i) each monkey experienced both L-rate and H-rate

schedules at different sets. (ii) For each monkey, each set had a

unique perturbation (learned target and FF direction) and (iii)

learned targets that were experienced under L-rate were different

than those experienced under H-rate.

Figure 1A illustrates adaptation to force-field in which the

learned target was 0u and the force-field was clockwise. The force-

field was applied only during the learning epoch and only to this

target. Monkeys were trained for several months on the default

eight-target task but were not exposed to the force-field prior to the

recordings.

B. Data analysis
Cells were recorded and sorted online by the Cyberkinetics

online spike sorter. In cases of doubts (this was in about 10–15

electrodes, out of the 96 electrodes in the array, in each day of

recording), we ran off-line spike sorting on the data and re-sorted

the spikes. We selected single neurons for analyses that were

recorded during one of these days and met five inclusion criteria:

(i) well-isolated spikes; (ii) stable recordings based on firing rates in

the first hold epoch throughout all trials; (iii) a significant effect for

direction (one way ANOVA, p,0.01); (iv) a cosine fit (r(d) = a+b*-

cos(d-d0)) for directional tuning [62] that exceeded R2 = 0.65; and

(v) a firing rate above 3 Hz.

Figure 10. A qualitative scheme of the schedule-dependent
and practice-dependant neuronal processes can account for
the observed behavioral changes during learning. The evolve-
ment of the practice-dependent process that reflects the observed
dynamics of counter-FF cells (black) and the schedule-dependent
process reflecting the co-FF cells (grey). The scale is set arbitrarily from
zero to one to represent a transfer from a naive state to a fully adapted
state. The behavior reaches plateau only when the two processes reach
one. Solid lines are based on observed results and dashed lines -
speculations. During H-rate (upper plots) both processes reach the
value of one on the first day. An ‘‘overnight drop’’ in the value of the
schedule-dependent process re-emerged on the second day, corre-
sponding to the observed overnight drop in performance (as in
Figure 3A) and the change of only the co-FF cells in the second day (as
in Figure 6). The washout results in a reversed change (as in Figure 5B)
of both processes to zero, reflecting the diminishing aftereffects (as in
Figure 3C). During the L-rate (bottom plots), the practice-dependent
process evolved as in the H-rate, but it took more time, since trials
appeared at a lower rate. The development of the schedule-dependent
process was slower. The curve is only speculative to illustrate the slow
development. The washout in the L-rate reversed only the practice-
dependent process (as in Figure 5B, black). We assume that the
schedule-dependent process was reversed overnight since the ob-
served results did not show aftereffects on the following day.
doi:10.1371/journal.pone.0021626.g010
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The neuronal ensemble consisted of all the neurons recorded

simultaneously during each session.
Behavioral performance during learning. The deviations

in trajectories were assessed by the angular directional deviation of

the hand from the target direction150 ms after movement onset.

See learning curves in Figure 2.
Changes in firing rate of single cells. The firing rates were

computed around movement onset, 200 ms prior to 300 ms post

movement onset. For each cell we computed the following changes

in activity:

1. For each perturbed trial of the learned target, we calculated

the fraction of change in activity in this trial as compared to the

average activity in unperturbed trials to the learned target during

STD1.

2. For each unperturbed trial of the learned target during the

washout epoch, we computed the fraction of change in activity in

this trial as compared to the average activity in the last 10 force-

field trials before washout.

Given x, the average change in activity for a given subgroup of

cells along a given epoch of trials, we fit a two-exponential

function: f(x) = a*exp(b*x) +c*exp(d*x), using the nonlinear least

squares method.
Drop index. Given the average deviation of trajectories in the

first 3 force-field trials that were executed immediately after

standard epoch STD2 (e.g. first trials of LRN2) and the average

deviation in the 5 trials just before STD2 (e.g. last trials of LRN), we

computed the drop index as the difference between these average

deviations, divided by their sum. Therefore, the drop index is

positive if deviations were larger after STD2 epoch than before it.

Similarly, for each cell we computed the drop index between its

firing rates in the trials before and after STD2.

Preferred direction (PD) analysis. Given the 8 average

firing rates for the 8 movement directions during STD1 epoch,

PDs were computed by a cosine fit (r(d) = a+b*cos(d2d0)) [62] ,

where the attributed angles were the average initial hand

movement directions to each of the target directions.

Data includes both learning sets of CW and CCW curl fields.

Therefore, in all of the analyses and figures, CCW was inverted to

correspond to CW fields. Specifically, positive deviations were in

the force-field direction, and negative deviations were counter to

the force-field.

In all figures, error bars indicate standard error of the mean

(SEM). Asterisks show 1% significance, using the Holm-Bonferroni

method to correct for multiple comparisons.
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