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Area under ROC increases with number of observers

AUR Performance appears to converge to 0.922
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Fig. 1. Measuring human performance. In these plots we see the performance of n observers to predict
fixations from n observers (for the ROC metric), and the similarity and earth movers distance between two
fixation maps, each of n independent observers. As the number of human observers used to create a human
“ground-truth” fixation map increases, performance to predict other humans increases. Therefore the human
baseline performance depends on the number of humans used. The limit of the human performance is 0.907
for ROC, 1 for Similarity and 0 for EMD. The plots on the right with fit curves indicate the rate at which

performance reaches that limit.



Finding optimal blur and center parameters for models under ROC metric

Scores increase slightly with blur

Scores increase with some center weight
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Fig. 2. We optimize the blur and the center parameters for each model under the area under the ROC metric.
Top left shows the change in performance with increasing weight of the center bias as tested on 100 images
from the MIT ICCV 2009 data set. Top right shows the change in performance with increased blur on the
same tests images. While blurring makes only a slight improvement per model, adding a center bias greatly
improves many models. The best center bias and blurring parameter for each model was chosen and then
used to measure the updated performance on the benchmark data set. Updated performances are shown in
the bottom chart.



Finding optimal blur and center parameters for models under Similarity metric

Scores increase with some center weight
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Fig. 3. We optimize the blur and the center parameters for each model under Similarity metric. Further
description in Figure 2



Finding optimal blur and center parameters for models under EMD metric

Scores decrease with some center weight Scores increase slightly with blur
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Fig. 4. We optimize the blur and the center parameters for each model under the EMD metric. Further
description in Figure 2



Model performances on images binned by fixation consistency
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Model performances on images binned by number of fixations per image
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Fig. 5. Top row: Performance of 5 models for all three metrics on images binned by fixation consistency.
As images become less consistent, performance scores get slightly worse under the ROC metric, but gets
slightly better under the Similarity and EMD metrics. On images with low consistency, saliency maps often
predict low saliency everywhere which produces higher Similarity and EMD scores but lower ROC scores.
Bottom row: the same trend is seen when images are binned by number of fixations per image.



Images where humans very consistent, but models perform poorly.

Similarity Scores from 3 top models
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Fig. 6. Current models have a very hard time predicting fixations of some images even though human
fixations are very consistent. Here are images for which ratio of the average performance over 3 of the top
performing to the consistency of humans models was lowest. For example, in image (d) observers read the
text about rip currents rather than look at the bright orange colors. The saliency models do not locate the
text at all. In image (e) observers fixate on the monkey’s faces while saliency models pick up the bright white
paper and orange mushroom in the background.



