Technical Report 980

Image Chunking:
Detining Spatial
Building Blocks

for
Scene Analysis

James V.:Mahoneﬁ

MIT Artificial Intelligence Laboratory

UNLLASSIHILED
SECURITY TLASSIFICATION OF THiS PAGE rWhen Date Entered)

REPORT DOCUMENTATION PAGE

READ INSTRUCTIONS
BEFORE COMPLETING FORM

1. REPORT NUMBER

AI-TR 980

2. GOVY ACCESSION NO.

RECIPIENT'S CATALOG NUMBER

TITLE (end Subtitie)

Image Chunking: Defining Spatial Building Blocks
for Scene Analysis

TYPE OF REPOAT & PERIOD COVERED

technical report

. PERFORMING ORG. REPORT NUMBER

AUTHOR(e)

James V. Mahoney

. CONTRACT OR GRANT NUMBER(e)

DACA76-85-C-0010
NO0O14-85-K~0124

9. PERFORMING ORGANIZATION NAME AND ADDRESS
Artificial Inteligence Laboratory

545 Technology Square
Cambridge, MA 02139

0.

ELE

NT.PROJECT, TASK
OAK

ME
UNIT NUMBERS

Y. CONTROLLING OFFICE NAME AND ADDRESS

Advanced Research Projeéts Agency
1400 Wilson Blvd.
Arlington, VA 22209

REPORT DATE
August 1987

NUMBER OF PAGES

188

14, MONITORING AGENCY NAME & ADORESS(I! ditterent from Centrelling Ollice)
Office of Naval Research

Information Systems
Arlington, VA 22217

SECURITY CLASS. (of thie repert)

[T8a. DECL ASSIFICATION/ DOWNNGRAD
sc»touu: NG

!¢ OISTRIBUTION STATEMENT (of thie Repert)

Distribution is unlimited.

17. DISTRIBUTION STATEMENT (of tHe abatract ontered In Bieck 20, 11 ditfterent trem Repert)

18. SUPPLEMENTARY NOTES

None

15. KEY WORDS (Continue en reverse side Il necessary and idontily by Bleck number)

machine vision blob detection

chunking image understanding
segmentation visual routines
tracing region growing

20. ABSTRACT (Centinue en reveres olde it y and lé ty by bleck number)

Rapid judgements about the properties and spatial relations of objects are
the crux of visually guided interaction with the world. Vision begins, how-
ever, with essentially pointwise representations of the scene, such as
arrays of pixels or small edge fragments. For adequate time-performance in
recognition, manipulation, navigation, and reasoning, the processes that
extract meaningful entities from the pointwise representations must exploit

parallelism. This report develops a framework for the fast extraction of
DD , ' an'ss 1473 cotTion oF 1 nov 6313 omsoLETE

S/N 0:02-014-6601 |

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Enterec

Block 20 cont.
scene entities, based on a simple, local model of parallel computation.

An image chunk is a subset of an image that can act as a unit in the course

of spatial analysis. A parallel preprocessing stage constructs a variety of
simple chunks uniformly over the visual array. On the basis of these chunks,
subsequent serial processes locate relevant scene components and assemble
detailed descriptions of them rapidly. This thesis defines image chunks

that facilitate the most potentially time-consuming operations of spatial
analysis - boundary tracing, area coloring, and the selection of locations

at which to apply detailed analysis. Fast parallel processes for computing
these chunks from images, and chunk-based formulations of indexing, tracing
and coloring, are presented. These processes have been simulated and evaluated
on the lisp machine and the connection machine.

Image Chunking:
Defining Spatial Building Blocks for Scene Analysis

James V. Mahoney

Copyright (©Massachusetts Institute of Technology, 1987.

Revised version of a thesis submitted to the Department of Electrical Engineering and Computer Science
on January 30, 1987 in partial fulfillment of the requirements for the degree of Master of Science.

This report describes research done at the Artificial Intelligence Laboratory of the Massachusetts Institute of
Technology. Support for the laboratory’s artificial intelligence research is provided in part by the Advanced
Research Projects Agency of the Department of Defense under Army contract number DACA76-85-C-0010,
and in part by DARPA under Office of Naval Research contract N00014-85-K—01]24.

Abstract

Rapid judgements about the properties and spatial relations of ob jects are the crux of
visually guided interaction with the world. Vision begins, however, with essentially point-
wise representations of the scene, such as arrays of pixels or small edge fragments. For
adequate time-performance in recognition, manipulation, navigation, and reasoning, the
processes that extract meaningful entities from the pointwise representations must exploit
parallelism. This report develops a framework for the fast extraction of scene entities, based
on a simple, local model of parallel computation.

An image chunk is a subset of an image that can act as a unit in the course of spatial
analysis. A parallel preprocessing stage constructs a variety of simple chunks uniformly
over the visual array. On the basis of these chunks, subsequent serial Processes locate
relevant scene components and assemble detailed descriptions of them rapidly. This thesis
defines image chunks that facilitate the most potentially time-consuming operations of
spatial analysis—boundary tracing, area coloring, and the selection of locations at which to
apply detailed analysis. Fast parallel processes for computing these chunks from images, and
chunk-based formulations of indexing, tracing, and coloring, are presented. These processes
have been simulated and evaluated on the lisp ' achine and the connection machine.

‘‘‘‘‘‘‘‘

Acknowledgements

Shimon Ullman, my thesis supervisor, was an inexhaustible source of ideas, direction and
support. I cherish his vision and friendship, without which this thesis would not exist.

Tomaso Poggio was constantly enthusiastic about my work and very generous with his time.

I had many very helpful discussions relating to this research with Harry Voorhees, Eric
Saund, David Clemens and Anselm Spoerri. In the process these people have become some
of my closest friends.

I am grateful to many other people at the M.L.T. Artificial Intelligence Laboratory for
inspiring conversations and/or moral support, especially Ellen Hildreth, Phil Agre, Dan
Huttenlocher, Jim Little, David Chapman, Dave Braunegg, and Margaret Fleck.

Thanks to my family at home—Matt BenDaniel, Melanie Meyers, Debbie Field, and Brian
and Joo Hooi Albriton—and abroad—Gladys Sumner and Hannah Mahoney.

Without Patrick Winston, Berthold Horn, Charles Fugler, Carlos Perez, and, most of all,
the late Victoria Scott-Sawyerr, I wouldn’t have had this opportunity.

Contents

1 Image chunking and the analysis of spatial information

1.1 The general requirements of spatial analysis
1.2 Visualroutinest
1.3 Basicoperationst
1.4 Parallel models of computation for vision
1.5 Prefabrication—a metaphor for chunking
1.6 Imagechunks
1.7 Image chunking for the rapid extraction of scene entities

2 Local boundary information—the input to chunking processes
2.1 The need to detect boundaries
2.2 Detecting abrupt change boundaries by direct comparisons between neigh-
boringelements
2.2.1 Computing a primitive element’s neighbors
2.2.2 Computing property differences
3 Local prominence information
3.1 Redundancy and local prominence information
3.1.1 Redundancy; figures and background
3.2 Computing local prominence information.

3.2.1 Defining boundary segments. 42
3.2.2 Computing boundary segment properties. 43
3.2.3 Computing prominence.\ 44

3.2.4 Combining prominence information and boundary information. . . . 47

4 Figural chunking 48
4.1 The need for low-level descriptors of objects 49
4.2 Indexable visualobjects, . 53
43 Figuralchunks 55
4.4 Detecting figuralchunks, . 58

4.4.1 Measuring fit and relative isolation 58
4.4.2 Spatially uniform, parallel application 59
44.3 Performance 61
4.5 Indexingfiguralchunks 64
46 Implications 71

5 Curve chunking 75
51 Curvechunks 76
5.2 Limited-extent curve chunking 85

5.2.1 Serial, limited-extent validity checking 86
5.2.2 Parallel, limited-extent validity checking 88
5.2.3 A limited-extent curve chunking algerithm 91
524 Performance 93
9.3 Direct, unlimited-extent curve chunking 96
5.3.1 A parallel, unlimited-extent validity check 97
53.2 Regions 101
5.3.3 A direct, unlimited-extent curve chunking algorithm 102

5

5.3.4 Performance 102

5.4 Divide-and-conquer, unlimited-extent curve chunking 105
5.4.1 The pyramid representation 107
5.4.2 The rule for merging regions 109
5.4.3 A divide-and-conquer curve chunking algorithm 112
54.4 Performance 115

5.5 Two-label, divide-and-conquer, unlimited-extent curve chunking 128
5.5.1 The two-label divide-and-conquer curve chunking algorithm 131
5.5.2 Performance 137

5.6 Summary of the four curve chunking techniques 143

5.7 Implications 145

Region chunking 148

6.1 Regionchunks 149

6.2 Limited-extent region chunking, . 155

6.3 Direct, unlimited-extent region chunking 156

6.4 Divide-and-conquer, unlimited-extent region chunking 156

Comparisons with other work 158

7.1 Grounds for comparison with other image articulation schemes 159

7.2 The input and output of image articulation 160

7.3 Two-stage image articulation 161

7.4 Region-based image articulation schemes 162
7.4.1 Non-descriptive schemes: region segmentation 163
7.4.2 Descriptive schemes: blob detection 164

7.5 Boundary-based image articulation schemes 166
7.5.1 Non-descriptive schemes: boundary segmentation 166

7.5.2 Descriptive schemes: spine transforms
7.6 Sibling studies of fast coloring
7.6.1 Linecoloring
7.6.2 Regioncoloring

8 Conclusion

Chapter 1

Image chunking and the analysis
of spatial information

Visual judgements about the properties and spatial relations of objects are the crux of
our interactions with our surroundings. We perceive and conceive of the world in terms of
objects and configurations, which we recognize, handle, navigate by, and reason about. Qur
primary source of information about these spatial entities and relations is vision. The visual
system makes this information available in a manner that leaves the subjective impression
of immediate, complete, effortless awareness. For example, you might look up from this
text for a moment, reach for your cup, and take a drink, with hardly a thought. For that
matter, vision transparently discerns the words and phrases you are reading, while your

conscious thoughts are focused on their meaning.

Visual processing begins with an image array of pointwise measurements of light intensity.
The physical entities in terms of which we conceive of our surrounds may have widely
varying spatial extent, so they are not, in general, explicitly described in the image array or
any other pointwise scene descriptions derived from it. Moreover, meaningful scene entities
may appear in a very wide range of shapes and configurations, and what is meaningful may
depend on the task at hand. Therefore the problem of making the relevant components
of a scene visually distinct is complex from a computational standpoint, and it is quite

remarkable that this is normally achieved in human vision in what seems an instant.

Figure 1.1: Three prominent blobs.

For example, consider Figure 1.1. We immediately perceive three large, striking blob shapes
amidst an irregular background of curves. The speed with which the human visual system
can locate and describe the outstanding blobs in figures like this does not depend noticeably
on the total length of curves in the figure. Consider also the ease with which we can often
solve connectivity-related problems, such as those in Figure 1.3. The capacities that these
schematic examples illustrate—locating and isolating relevant figures rapidly—serve in all
realms of visually guided activity. For example, the task of finding the largest spoon in

Figure 1.4 seems to require no effort.

The problems of visually-guided interaction with the physical world impose various require-
ments on visual processing organization. One of the most crucial requirements is speed.
This thesis explores the design of computational processes that could approach the time
performance of the human visual system in analyzing visual spatial information, particu-
larly in regard to the extraction of meaningful scene components. The rate of execution
of the processes supporting spatial analysis in the human visual system has been tenta-

tively estimated on the basis of the results of psychophysics and current knowledge of the

Figure 1.2: Three prominent blobs.

a b

Figure 1.3: (a) Are there two “X”s on the same curve? (b) Are there two “X”s inside the
same closed curve?

10

Figure 1.4: Find the largest spoon in this picture.

neurological structures in the visual system. Current estimates suggest that the number of
basic computational steps devoted to extracting a scene component is normally in the tens
[Edelman 85] [Shafrir 85]. Assuming that these estimates are around the correct magni-
tude, and ignoring the detailed derivation of them, how can visual processing be organized

to be so rapid?

This thesis develops a framework for the fast extraction of scene entities, based on a simple,
local model of parallel computation. An image chunk is a subset of an image that can act as
a unit in the course of spatial analysis. A parallel preprocessing stage constructs a variety
of simple chunks uniformly over the visual array. On the basis of these chunks, subsequent
serial processes rapidly locate relevant scene components and rapidly assemble detailed
descriptions of them. This chapter expands on and gives support to this framework. The
rest of the report presents detailed proposals about the required representations and the

means by which they may be computed from images.

The next three sections of this chapter introduce the notion of visual routines, Ullman’s

proposal for the orga.niza.tibn of visﬁal Processes leading to the perception of shape prop-

11

erties and spatial relations [Ullman 84)]. Included in this discussion are the considerations
that suggest a two-stage Processing framework, in which the first stage is spatially uniform
and the second is spatially focused. The research described in this report is an outgrowth
of Ullman’s program for research into visual routines. The remaining sections present

computational motivations for defining extended spatial primitives in low-level vision.

1.1 The general requirements of spatial analysis

Ullman [Ullman 84] formulated the problem of visually analyzing the spatial Properties
and relations of scene entities in terms of the following three general requirements: (i)
abstractness—the capacity to establish computationally abstract properties and relations;
(ii) open-endedness—the capacity to establish a large and extensible variety of properties
and relations; and (iii) complezity—the ability to cope efficiently with the computational

complexity involved.

A property or relation is said to be abstract if (i) its support is so large that it would be pro-
hibitively expensive to detect the property or relation using a straightforward application
of template-matching; and (ii) the set of instances of the property or relation contains regu-
larities that can be captured by an efficient computation. ! Many properties and relations
of fundamental importance to vision are abstract in the above sense, and the abstractness
requirement implies that a visual system must employ computations for capturing the reg-
ularities inherent in these properties and relations. Notable examples of abstract relations
are connectivity and its close variants, such as “inside/outside” (Figure 1.3), “same-curve”
(Figure 1.3), etc. The notion of a “two Xs inside the same closed curve” template-matching
detector is implausible — the support of the connectivity relation is the entire input, so a

different template would be required for every possible case.

The variety of potentially useful properties and relations is open-ended. It is inconceivable

that a detector for every possibly relevant property or configuration could be predefined.

1Inl:uitively, the support of a spatial predicate is that subset of an input upon which the predicate “really
depends” [Minsky and Papert 69]. For the purposes of this discussion, template-matching between plane
figures can be defined as the cross-correlation between the figures.

12

o 9

O

Figure 1.5: Find the small circle nearest the third-largest circle.

For example, the task of Figure 1.5 would require a “small circle nearest the third-largest
circle” detector! The open-endedness consideration implies that the processes for detecting

different properties or relations must use common machinery.

The complexity requirement addresses the fact that the computations for capturing abstract
properties and relations, such as the connectivity relation, may be quite complex from a
computational standpoint, and the implementation of them may be expensive. Moreover,
the inputs to these computations are not constrained - relevant scene entities may appear
with a very wide range of shapes, and they may occur with any spatial extent, at any
locations, and in any number across the visual field. The complexity considerations, too,
imply that the processes for detecting a property or relation at different locations must use

common machinery.

To summarize, all meaningful scene entities, and all their potentially relevant properties
and relations, cannot be detected at once, due to combinatorial explosion in required com-
putational resources. Instead, visual processes must be spatially focused and goal drwen,

locating and assembling scene entities, and computing their relations and properties, as

13

the need arises. These processes must meet the exacting time-performance requirements

imposed by the goal of interacting with an active, changing world.

It is, however, possible and useful to detect certain simple, local, viewer-centered pProp-
erties and features in a manner that is bottom-up, spatially uniform, and parallel. The
very first processes of vision can make this sort of local information available to sub-
sequent focused processes. Research in low-level vision has elaborated the computation
of essentially pointwise properties and features, such as intensity changes, depth, surface
orientation, texture, and so on. The processes that have been studied create pointwise
primitive spatial elements—tokens characterizing depth, orientation, motion, etc., at a
point. (For discussions of these low-level vision Processes, see [Marr 82], [Horn 86], and

[Barrow and Tenenbaum 78], for example.)

1.2 Visual routines

Ullman’s proposal for meeting the requirements of spatial analysis is that properties and
relations should be established in two stages, by the goal-driven application of visual
routines—sequences of basic operations drawn from a fixed set—to a set of base represen-
tations that are created in a bottom-up, spatially uniform, parallel manner. New routines
are assembled to establish newly specified properties or relations. Routines for establishing
different properties and relations, or applications of a routine to different locations, share

the machinery implementing the elemental operations they use.

The goals of the study of visual routines are (i) to establish a theory of what spatial
properties and relations are useful in the context of spatial reasoning, object recognition,
etc.; (ii) to determine a set of basic operations that makes it possible to compute these
properties and relations robustly, and to specify the visual routines involved; and (iii) to

devise efficient implementions of the basic operations and related machinery.

Ullman proposed a partial set of basic spatial operations, including region coloring; bound-
ary tracing and coloring; location marking with respect to spatial reference frames; shift

of a spatial processing focus; and “indexing”—processing shift to a salient location. These

14

Figure 1.6: Part of the execution of a visual routine to decide if there is an “X” inside a
closed curve.

choices were motivated mainly on grounds of potential usefulness in establishing a wide

variety of relations.

To make the notion of a visual routine concrete, Figure 1.6 illustrates one possible routine
for establishing an instance of the inside/outside relation. The task is to determine whether

there is an “X” figure inside a closed curve. The procedure is as follows:

Until an “X” inside a closed curve is found, or Step 1 fails:

1. Shift the processing focus to the location of an unseen “X”.
2. Mark the location of this “X” seen.
3. Color the white region that includes the processing focus.

4. Shift the processing focus to a location at the periphery.

15

5. If the periphery location is not colored, stop—the most recently visited “X” is inside

a closed curve; otherwise “uncolor” colored locations and repeat.

Step 1 involves indexing to certain local features characteristic of an “X” figure, such as
terminations. Further processing is required at this step to establish that the figure at the
location shifted to is indeed an “X”. This routine is based on the simplifying assumption
that all boundaries in the input can stop the spread of coloring. For some tasks, it is
necessary to first single out relevant boundaries, and allow only these to stop coloring

spread. The shift to a periphery location is assumed to be a basic operation.

1.3 Basic operations

This subsection explores the basic operations Ullman proposed in somewhat more detail.
It is possible to divide them into the following three main families: activation operations;

selection and shift operations; and reference frame and marking operations.

Activation operations

Tracing, coloring, and one form of location marking may be viewed as instances of a fun-
damental operation in the analysis of spatial information referred to here as activation.
Activation is the operation of singling out (uniquely labeling) a set of locations or prim-
itive spatial elements in the visual array, so that subsequent operations may be applied
specifically to the distinguished set. The various activation operations differ according to
the criteria that they apply in generating the distinguished set of locations or spatial el-
ements. Region and curve coloring operations activate a set of locations connected to a
given starting location. Curve tracing operations activate a set of locations connected to a
given starting location, subject to a restriction on the number of neighbors each element of

the set may have.

16

Figure 1.7: Figures are indexable based on prominence in global properties.

Selection and shift operations

Spatial analysis requires the capacity to apply certain operations at selected locations. To
accomplish activation, for example, it is necessary to begin tracing or coloring at one or
more locations of the relevant set. In the example routine above to determine whether an
“X” is inside a closed curve, coloring begins from the location of the “X” and a decision is
based on the knowledge of where coloring started. Therefore, the study of visual routines
must account for the processes for (- lecting the location at which a given operation is
to be applied, and (ii) shifting the point of application—the focus of processing—to that

location.

Indezing is defined to be a shift of the processing focus to a salient location. The discussion
of indexing in this report is mainly concerned with the processes for determining saliency.
Various workers have demonstrated pop-out effects in visual search tasks involving arrays
of letters and similar stimuli [Treisman and Gelade 80, [Julesz 81]. These demonstrations

indicate that local features such as color, curvature, line terminations, etc. can serve for

17

direct indexing, as long as the figure of interest is distinguished from irrelevant figures by
a single one of these features. Figure 1.7 illustrates that global properties of an eztended
figure may support direct indexing as well.

Reference frame and marking operations

Reference frames are implicit in many useful spatial properties and relations, such as
“above”, “left-of”, “vertical”, “clockwise”, etc. Spatial analysis therefore requires the ca-
pacity to employ and manipulate frames of reference. One general application of reference
frames is in establishing orientation. For example, the interpretation of a shape may depend
on the reference frame with respect to which the shape is described. Figure 1.8 (a) contains
a famous example of a figure for which different assignments of the “forward” direction lead
to different interpretations (from [Jastrow 00]; see also [Rock 84]). Figure 1.8 (b) illustrates
the frame effect: the direction attributed to the arrow depends on which of the enclosing

rectangles is attended to.

A reference frame also serves as a system for describing and recording location. The location
of a spatial entity is not usefully described in absolute retinocentric terms. It is more useful
to describe the position of one scene component in relation to others. This requires the
capacity to anchor a coordinate system at the image locaton of a given scene component.
The operation of marking a location for later reference involves generating and storing a
descriptor of a scene location with respect to a particular assignment of an internal reference
frame. In Figure 1.9 (a), the point p may be described as “immediately below” the “X”
or “in the upper-right” of the enclosing square (from [Ullman 84]). In the former case, the
internal frame is anchored on the “X” figure; in the latter it is anchored on the enclosing
square. The task of Figure 1.9 (b) involves aligning an internal frame with the elongated

blob.

18

Duek

Ra88IT

a b

Figure 1.8: (a) Interpretation of a shape involves the assigment of a reference frame. (b)
An illustration of the frame effect: which way the arrow seems to point depends on which
enclosing rectangle one attends to.

O

(on

a

Figure 1.9: (a) Describe the position of the point p. (b) Are the two compact blobs on the
same side of the elongated blob? ‘

19

1.4 Parallel models of computation for vision

Visual processing begins with a set of essentially pointwise descriptions of the scene in
terms of intensity, color, texture, motion, depth, surface orientation, intensity boundaries,
etc. Tracing and coloring operations, which are used to extract meaningful entities from
these pointwise spatial representations, can be viewed as specific forms of the graph theo-
retic operation of connected component labeling. Because sequential connectivity algorithms
have running time which is linear in the number of elements in the relevant component, a lot
of research has gone into parallel connectivity algorithms. A number of connectivity algo-
rithms have been proposed whose complexity is poly-log (a polynomial in the logarithm of
the problem size) for a polynomial (and therefore feasible) number of processors. The best
known connectivity algorithms have O(log N) time-complexity [Shiloach and Vishkin 82]
[Lim 86] (see also [Cook 83] [Hirschberg 76]). At the completion of a run of such an algo-
rithm, each connected component of elements in the input is, in effect, uniquely labeled,
so that it is possible to determine in constant time whether any two given elements are “in

the same region”, or “on the same curve”, for example.

Every poly-log parallel connectivity algorithm I know of assumes a model of computation
in which (i) any processor can communicate in a single time step with any other processor,
and (ii) it is possible to associate unique identifiers with Processors, and a processor may
store such an identifier, or transmit it to another processor. I will refer to the class of
models providing these two capabilities as global parallel models. The global parallel mod-
els that have been proposed for connectivity differ mainly with respect to the conventions
for arbitrating read and write conflicts. The O(log N) algorithm of Shiloach and Vishkin
[Shiloach and Vishkin 82| assumes a synchronous computing model in which processors
communicate via a common random access memory; concurrent reads from a location and
concurrent writes to a location are allowed. Lim [Lim 86] recently described connectiv-
ity algorithms with a best case performance of O(log N), based on a model restricted to

exclusive read and exclusive write.

It is costly and difficult to implement global, direct communication between all processors

in a large set. For moderately large sets of processors, truly direct communication is

20

physically unrealizable. In practice, global communication is implemented by dynamically
routing messages through high-dimensional networks (for example, see [Hillis 85], [BBN 85],
and [Gottlieb et al 83]). The duration and/or reliability of this delivery process depends on
the pattern of message traffic through the network at a given time. For example, message
delivery may be severely hampered when many processors simultaneously attempt to send
a message to the same processor. As such, time-complexity figures that treat a message
delivery cycle as a primitive operation—as the O(log N) parallel connectivity figures do—

cannot be taken at face value.

Ullman [Ullman 76b] proposed a number of criteria to characterize what he called simple
local processes, the primary ones being locality and simplicity. The locality criterion is a
restriction on the range of the direct communication in the computation. The simplicity
criterion is a restriction on the power of the Processing elements. It is not feasible to build
very large networks of powerful processors, owing to considerations of size and cost. I refer
to models of parallel computation observing these restrictions as simple, local models. The
general properties of this class of models can constrain representations and algorithms,
without regard to the details of any particular instance of the class, Importantly, the
capacity to establish and transmit unique processor tdentifiers is not compatible with the
class of simple local computing models. This, for example, excludes algorithms based on

pointer-passing.

A simple, local model of computation suggests itself as a possible basis for exploiting paral-
lelism in connectivity computations on two independent grounds. For low-level applications
in machine vision systems, simple, local models may be preferable to global parallel models
because they are less costly and simpler to build—for the same price, they can provide
more parallelism. For the study of biological visual systems, the restrictions of simplicity
and locality are consistent with what is known about biological information processing, so

computations observing these restrictions are more likely to be revealing,.

The goal of this research is to understand how parallelism can be exploited to make the
inherently serial processes of scene analysis sufficiently fast, without relying on global par-

allel computation models. My thesis is that complex scene entities can be rapidly extracted

21

from pointwise initial representations using only simple, local computations, if a two-stage,
parallel-then-serial processing organization is used, in which the first stage assembles sim-
Ple, extended spatial building blocks. I begin by elaborating on the building-construction

metaphor, for it helps to make some important ideas vivid.

1.5 Prefabrication—a metaphor for chunking

If you had to build a house very quickly, you would assemble it from prefabricated sections,
not individual bricks and boards. You would use prefabricated components specifically
suited to the type of structure you were building; the structural elements required for a
tropical bungalow are very different from those required for a bomb-shelter. Moreover,
you would select the complement of component sections that entailed the shortest possible
number of assembly steps. That is, your main objective would be optimization of the
assembly process. The first consideration, specialization, also helps to optimize the assembly
time—it seems natural that components designed with your particular application in mind

will make the construction task go faster and more easily.

If you made a living selling prefabricated building supplies, you would offer simple com-
ponents that could be easily combined into a wide range of more complex structures; they
would be regular sections of wall or floor, for example. There are two reasons for this. First
of all, it would be easier and more economical to construct such simple components. More-
over, more complex structures would have narrower scope, in the sense that they would fit
into fewer customers’ designs. The components would span a range of sizes and shapes just
broad enough that most customers could come reasonably close to their goal of optimizing
assembly time. These considerations of economy—providing simple components across a
sensible range of sizes and shapes—strike a balance between demand and production costs.
The optimization criterion must be traded off with those of scope and economy. It would
be reasonable to ignore the occasional customer whose needs were outlandish. You would
observe the specialization requirement by providing structural components tailored to each

of the most common applications.

22

The power of prefabrication is that it exploits the parallelism inherent in the assembly
process. The process of building a house is inherently serial due to the constraints of physics:
the roof cannot be put up before the walls (or other supports), and the walls must follow
the foundations. As such, if a house is built brick by brick, the first board in the roof must
follow the last brick in the walls, and so on. This serialism, however, is not inherent at the
level of individual bricks, but only at the higher level of walls, roofs, etc., so these abstract
components may be concurrently pre-assembled. The main problems of prefabrication, then,
are (i) to determine, given a detailed description of a complex structure to be assembled, a
decomposition into simpler substructures that can be economically preassembled in parallel;

and (ii) to assemble these simpler components.

1.6 Image chunks

An image chunk is defined to be any subset of a pointwise representation of the scene that
can act as a unit in the sense that applying some spatial operation to (or reading out
some spatial properties of) the set of constituent elements requires minimal computational
effort. Spatial operations on image chunks are the elements from which more complex
spatial operations are composed. Coloring, for example, can generally be expressed as an
iteration of the following parallel operation: color every uncolored image chunk ad [jacent to

a colored image chunk.

The process of making a scene entity distinct on the basis of a pointwise initial description
can be likened to an assembly problem. From this viewpoint, image chunking is closely
analogous to prefabrication, and is governed by similar considerations. The motivation for
image chunking is to optimize the run-time of the processes that extract scene components.
To achieve this, image chunks must be specialized to particular basic spatial operations
— the representational requirements of indexing are different from those of tracing, for
example. Combinatorics limits the range of distinct instances that a chunking process can
generate, so these instances must be carefully chosen to provide the widest possible scope.

In this context, scope refers to the class of inputs for which a particular class of image

23

chunks supports efficient processing, and economy pertains to the hardware cost and time

performance of the chunking process.

There are three main problems to be solved in the design of image chunks to support a
particular basic operation. First, a computational definition of the basic operation must be
formulated, in terms of its constituent operations. Second, image chunks must be devised
that (i) would lead to the desired performance, and (ii) are economically computable from
a pointwise representation of the scene by spatially uniform, parallel processes. Finally, the
processes for computing these chunks, and high-performance, chunk-based formulations of
the associated basic operation, must be defined, implemented, and tested. All of this must

be accomplished in the context of a realizable, affordable model of computation.

1.7 Image chunking for the rapid extraction of scene enti-
ties

This report presents the results of a study of image chunking in support of the most poten-
tially time-consuming operations in the extraction of scene components—indexing, tracing,
and coloring. Consideration of a wide variety of perceptual phenomena has led to a theory
of image chunking that involves several novel low-level vision processes in a novel processing
organization. As illustrated in Figure 1.10, the computation of image chunks can be divided
into four principal stages: (i) the computation of local image properties from the intensity
image; (ii) the computation of local boundary information, which constitutes the primary
input to chunking processes; (iii) the computation of local prominence information, which
augments the boundary information; and (iv) the application of the chunking processes to

this input.

Chunks useful for indexing scene entities may be defined by dividing the boundary data into
relatively isolated configurations of boundary locations. Chunks useful for curve tracing
may be defined by dividing the boundary data into regions each containing a single segment
of a boundary. Chunks useful for region coloring may be defined by dividing the boundary
data into regions each containing no boundary locations. All of these classes of chunks are

computable by simple, local processes.

24

|Image Chunks|

Local Prominence Information|

|Local Boundary Information |

|Pointwise Image Properties|

Image

Figure 1.10: Image chunking and the organization of low-level vision.

Guide to the reader. Chapters 2 and 3 are devoted to specifying the input to image
chunking processes. Chapter 2 argues that boundary information is required as the basis for
chunking. Chapter 3 argues that the boundary information can be more useful if augmented
with prominence information. Chapters 4, 5, and 6 are devoted to the design of chunking
processes proper. Chapter 4 is concerned with indexing, Chapter 5 with tracing, and
Chapter 6 with coloring. Chapter 7 makes comparisons between the two-stage framework
for the extraction of scene components (of which image chunking is the first stage) and a
wide range of other proposals for achieving the same goal. Chapter 8 presents conclusions
from this study and suggestions for future work on image chunking. With the exception of
Chapter 6, which relies on the details of the discussion in Chapter 5, each chapter of this

report may be read on its own.

25

Chapter 2

Local boundary information—the
input to chunking processes

The first step toward designing image chunking processes is to understand how, in general,
the physical components of scenes are manifested in images. The manner in which objects
are described in images determines the nature of the input representations upon which

chunking processes must operate, and hence the nature of the chunks themselves.

The main argument of this chapter is that scene entities, or chunks of them, cannot be
detected directly, because objects do not in general give rise to uniform regions in the
image; they must be detected on the basis of boundaries detected in the image. The blobs
in Figure 2.1, for example, constitute non-uniform regions that are quite similar to the
background; the information defining them lies predominantly at their boundaries. In other
words, chunk-detection is inherently a two-stage process. There are two broad categories
of useful boundaries: abrupt-change boundaries are defined by local differences in local
properties; alignment contours are defined by colinear arrangements of similar features.
The blobs in Figure 2.1 are defined by abrupt-change boundaries; those in Figures 2.2
and 2.3 are defined by alignment contours.

The detection of boundaries in certain local image properties, such as intensity, color, mo-
tion, texture, etc., has been extensively studied in computational vision. In this chapter, I

formulate and demonstrate simple, local computations for detecting abrupt-change bound-

26

— - - T ARANR NS
- ——— =~ N YA 4P e =T TS SANN AN NN AN
TN T R S-SRt NN S NN SN VR A e N NN
\\:\\\‘\’ 7 //,::— ~~\\-\\\\\~~\~ P SSN AV /77) Zrmrm L SO s N NSNS N
L N L T T s TR NN e N S NNV S AN /47 T T e =SSN (NN AN S
A D S TRt NN NN T N R N it e AR
[TN 0T TN s TNy SIS~ o - ~\\‘||~_——“\\\\\\\\“\~
AN R N Dy P AR N N I e NI S TN
"""’\\}‘ :_"_:\‘\\\\::~\:\\x b ==~/ ,—lII’---‘*‘\\\\\\\‘~‘-\\~
St S U AR St it S NN D il Fmo ! 11NN 27777 = al NS aamm e
ASARRNNEY *~‘\\\ W o m———— = A1l AWV oA s SN AW\ e - =
SN PE A S NI Gt i SR A I et R e S
AN JAII_ NN m b /) /N N e NASIN Y Wy = ST
/ =TrC = ’ NN N \ o —mm—
- ——— 771 LA TR NRN NN A e -
v//:// ,lﬂ’ \.\t\ N \\Q\ :\\§\\ \\l::::a—__- 17 ,II’I‘\“ \\\\\§\ AN\ (WP P
. ! I’p"\\\\t::t\: ENENY \5 Vs - ;‘/! [RAREY \\\\\\\\\\\\\/ et
’//Il|\\\\\‘\\\\\\\\\)17 Cr ’/’ Il\\\\\\\\\\\\\\\\\\ ‘,///,tf_:
! Ay A ~ NNV~ yrrrm=- PYVY U an N ngas S vy NS ,,,,:: -
/)l'\.\.‘\\\\“\\ \sz\\:\\ A N o - l}il\\ \\\\\\\\\\\\\‘.\\\V,’ -
VUL A MANAY Sl SN sl e N\ e ”\l\\‘\\\\\\\\\‘ﬁx AV~ -
Hl \\\\ AN NSNS il W ==, IR RS \“\V,‘-\' 1] = -
| NS SN RN \\“~-1I{// N _--\~ \\\\ \\\‘\\\ \~\‘~-//’za) 1] = =
\\\\\\\\\\\\\-s-“l\\T: Yig 233 RN R T A I
REEEAN \\\\\‘__-—)\ NN 77 IsQs N LA RY \\: \\\\“.-_-:J'\ l\\‘:; ~2
UAATRARRRRRE Sk Rt AN S L7 (S S b\\ AVY DAY (e -] NS - \\\ -
PAV (NN SN S e \\-—t/\\\\ NN MUNNANY NSNS s e o2 AN NS e N AR
\\\\\\\\\\sﬁ_‘-”’,//‘~—’\\\\\\\‘ l\ \\\\\\\\\-.‘”///I\\\\ \}\\\\
RN Y I T AR SN AR N R s IR TIR AR SRR
AN O RS TERAY A\ = J N N
AR IR P N N TN NURNAN NANNN N ST s e/ 111,1 \\ Q\Q\\
Ay S AN e e 1’11'1” ‘\\\\‘\\ SN St AN TA TR N NN
N N — - v,/ [N NN - S,y
\\\\\\\ \}\\\:— —/”/’,,’ l, /,"? \ ‘\\ x\\\\\\§\\:-__-/"r,/,, /1/"i?*\\
NN = /A AR ANARNNNY = WA LA TINN
Ty < -
YT Y N 1 - - - - ~
Ny g o ————— = NN PR RN IR RN OANNNDEN
RIS\ 44020 20ns DTN ~\::m(,,g,,,,..,-_“\\\\:w
PN SN Ny 17, 7 rmr= =~~~y SeONNONS NS -~ Ny RGeS N I T
'“:\\\\\\\\(//; ’/’——~~\‘::\\\\\\ S _\‘\ll\\\ 172 %0 @ e = ™S NN NSNS
RN VT L O IFCUEN S SR T AN V et s T NN L R
- \\\\,[‘_'——‘\\\\\\\\\\\\\ Ry \\” I/o:_"‘\\\\\\\\s‘\\\\
N T R N RN S DRt gy A A e N N e
L — = v =l 177 o SO N AN St e ;::,” /~\ L -Ls AN AN AN S ..
Rt A D oSSR SRRy AR o=)\ o= *\\\\\\t\\s‘-*~--
F 11 Y (o e as = NS AN e —_— AN s NN AW C o -
51 ’,“'\\\‘--\\\\\\\\\\\-~_~__~ ;::;}ll:§:\§\\‘:\\\\\::\\\\:—’—---‘
7 2,70 AN Sam SN SNOMN W\ = e [N Ny m———
22 T VAN SN W ST TE T NN NN NN P o=
b 7727 11 \\\\\\\\\\\\\\\\,/l/ﬂ-——' 7 ! \\\\\\\th NNAR et
! |‘\\\ ANNASAN NN W\ V7 7y o e ’ /I | [EARERAY \\\\\\/ Vpt -
/ //H\\\\\\‘\\\\\\\\\\,////—_—.- AT A NN NN AT
,f: R N D R L RN AT AN N N I A N
llf [S SNENRNEN NSasI N o M\ ==] IRABARRIES NSNSNSIN N AV, -
ANIADRINN X - e~ A \‘\\\\\\\\\\-\\\\\1,——.;-_.
LR S e R R W R ” \ N
l’l \ \\\ AMNMN NSNS~ o\] e VAV VNN \\\\w_\\\’ 1) =
VAL Ay AN s \\‘\‘sf”/—>) 177 <~~~ \\ [B) ‘\\\\\\\ SSSan e\ s S
\\ \\\\\ NN NSNS SS—= =00 sr TS Ay N }\ NN S~ S P S vl =
M VAL W M AN S N mm e 2 T = A s NS 1\ \\t NN N = 7 g\~ N
AR TR RS S e e X ‘\\-~ CSNR YN WAANANINN (AN ey l{\\- CSNR LN
AR NN — 2 AV AN == W3 e AR R = ST IR NN N S\
\\\\::\\\‘~‘::-—::’//)\\\~\\\\\\\ N AN et A LB N TR TR D A RN
MY (L \\~-~-—.—¢,/,;,;'n “§“:\{ i\\‘\:x\ :\\:::---_-:—',/,;“ |: “:0‘::{
N N —— - \ \ ——e s,y \
::it\\ \§:\-~_—_/‘zl’:,//ll": \\\\ Wy W \‘\\\\\\~‘_‘—r/,’//l ’l';| ‘\\\\ ‘\\\\\
\\\\\\‘\\\~“—‘—t/”/’/’/"l'\“*:\‘ \\\\:\\\\\\\:: -_'/’”’,:/,,,/,“’\‘ *\“
N N ™ e = L - -
NN P12/ 2P AT M S WA RNt P L3 2/5F VLT Vi R HAN
T AR B
TN \\I’ 5§07 2 =T TS SSINAY NN AN
DS ANM\IT 20 7 i S SN NS
s SN ANV 1 S S v W NS S
~~,\\\\\|I/// Tl P o WWNN NN NN NG
BRARAR LAY IEF s 2 Ny NS RGNy
o NN VN T SN VNS SY A NS
D AP At RPN N Dt gy
e et =N iy RN
"”—’/ NTS S emm AN NN e,
- =7 AN s S SN AWM e e o =)
AR S TR NN X v
”/’/”/‘\\\ NN N NN ™ -
V%1711 NN R R AL S Rt D
p 77/ l‘i\\\\\\\\\\ \\\\\\///—ar---
/’/I RABE) \\\\\\\\\\\\\/ Vo o m—
” FEVEV N AN (NNCN (WY V4774 72===
PN VAN NCas S My 0 v rm=.
/r l,;l ARSI TERNENN \t \! 17 s -
! “\\\\\\\\‘\\‘\\\\\]l/,t-f_.
AW AMNN NSNS (MY ol =
(I R A T et it A el e
R RARIE S T ety - Sttty
MARTEATATRD S T e T4 \ NSO s NS
N BARARNARE S 2 A RS RO TV
MAONNY NSNS e /I\\\\\\\\\\
l\\\\\\\“““‘“”/ " IERINM AN
MANN NN NSNS e el I AV NN
PN NSNS NS —— -), 'l’sl\ NS
DA AN SN\ e e I/l/ |\\\\ AR
‘\\\\\\\\\\—“—"—,,”/// I“"“‘*\{
N ",
NNNRNANS iy /S A L R N

Figure 2.1: Ob jects defined primarily by abrupt changes at their boundaries, not by uniform
region properties—more abrupt changes lead to more definite perception.

27

ly by bounding alignment contours, not by uniform

imari

Objects defined pri

Figure 2.2

ties.

.

region proper

\

-

RN RSO AR Y I zlll\z_A\\.I\\/\.
L A DI F A A
’\\I\\\\\\ IN N2 N\ /n!/'\\\/ ~\ N\ / /
,_\\:\,/:\r\//\,\ \V/ /=AM NNy N
M
<

-\

AN=SE oM =N Ny T S
IS/ \/ 7\ r =\ ll\,ll/z.//\lh\
//v_/,,\l\l\\/ —\///v/ I==/\tNr—
] !l//-\sIVzl..A/I/’ ~_o /N o\" |-
ANy~ /_/s “Ng N oS~ v NNy
Y AW vl W\ ATt ~I~ N=— N = =\~
NbesrAv v Ny e (AN = -
A= TSSO 7 M S
[R O V \\a-\l\\/sﬂ/- N\ N
o~ ANy NJl e N N N~/
VA N a0 Y 28 Wil VD2 f\v\ [Wl NP2 WY
SRR P2 R L RSy i ol BN SR N
R NI RN RN A A A S W AN
A RN i N I NG SN NN ' 117 -~
R S A Tl AR TN N A S W I N A
: -t s N\7 \\lﬁl/\ /l//lx.\/\/__
P R P - N/~ NTN o
\7\;\///,_/,J«_\//_//./l_
—f_\/f.l\\\\— _— N/ /N
—\-~—\/I|’\\/\//\///\\ -
\\u\\/’\-\//al\.\.\s/\\ A2 WA
il B T AP RN G \\///_//_/I//I\\
B A e L S A LA N BN e
A\~ = \/\.//\. |2/ N ~==r> VN SN -
.\//\\!//\\!\/\\l_/_/I\//l/\\/
.\\I\/\////I\/,I_
\/I\\/ /\/\\/\—/\\v
\
\
~

"/\/’\\\
LN el (S 7

SN

-

\[/_l
P RN R TN R
P N T P N)

AN AN
/

\r

-\ -~
O~

o S

_ -~ _~ | I ~\
'/\M /\H/'A//\l/\
VRN AN /\/\s \
.a/\/\\//s
_.\—\l.//\

2N IV N,

=\ Vj/sNNroiNs S,
AN gl N= NV
] \\/\/—\I/ s T -

\
-
|
’ R N T U NI N

An object defined by another kind of alignment contour.

Figure 2.3

28

aries in a single sparsely distributed, spatially varying property. The purpose of this chapter
is not, however, to present a complete theory of boundary detection, but simply to establish
that the detection of boundaries is a requirement. In fact, the study of chunking processes
has suggested some challenging new requirements on the boundary computations, which it
is beyond the scope of this report to meet. These requirements are exposed in Chapters 4,

5, and 6.

2.1 The need to detect boundaries

Region segmentation is a major scene analysis tool in computer vision. Region segmentation
Processes are generally designed to extract image regions that are essentially uniform in
some property, on the assumption that such regions correspond to meaningful scene entities.
For example, a red object in the scene would be expected to give rise to a uniformly
red area in the image. Region segmentation methods differ according to the particular
techniques used to delineate the uniform regions, but their success depends on the degree
to which the uniformity assumption is satisfied in the domain of application [Horn 86].
(Region segmentation methods are discussed in Chapter 7. For more detailed reviews, see

[Ballard and Brown 82], [Horn 86]).

In fact, scene entities often do not give rise to image regions that are nearly uniform in
any properties, for several reasons. First of all, the processes that often generate surface
markings, e.g., growth and accretion, generally do not operate in a globally uniform manner,
and so do not give rise to globally uniform markings. Furthermore, even when properties
like orientation, curvature, elongation, and size are uniform over the entire ob ject surface,
perspective projection does not preserve this uniformity. Similarly, changes in distance and

orientation of the surface with respect to the viewer do not generally preserve uniformity.

A variety of perceptual examples demonstrate that distinct ob jects are compellingly per-
ceived in human vision where no image property is uniform over the areas of the ob Jjects
(see Figure 2.1 and [Muller 86]), or when surface properties are not distinguishable from

those of the background (Figure 2.2). The Craik/OQ’Brien/Cornsweet brightness illusion is

29

an example of a similar phenomenon in the intensity domain [Cornsweet 70].

A more general characterization of the areas corresponding to scene entities in images is
that they vary only slowly in some properties. That is, for example, that each hair in a coat
of fur is similar in orientation to neighboring hairs, not to every other hair. Visible physical
boundaries—which include occlusion boundaries, sharp changes in surface orientation, and
abrupt changes in surface material —almost always give rise to abrupt changes in image

properties.

If the uniformity assumption were correct, processes amounting to template matching could
be used, in principle, to detect and describe objects directly. Such a process would integrate
(or “pool”) local image properties over extended areas. For example, compact red regions
could be detected by applying circular red-center/non-red-surround detectors at a variety
of sizes, all over the image. The failure of this assumption implies at least two stages in

the extraction of objects.

Scene entities do not give rise exclusively to areas in the image. Some scene entities have
curvilinear geometry and give rise to curvilinear structures in the image. It is also possible
for non-curvilinear scene entities to give rise, through projection, to image curves. In a
context in which scene entities are expected to give rise to uniform image regions, region-
based detection processes are often adopted. As such, additional boundary-based processes
are required for the detection of curvilinear structures. In a context in which scene entities
are detected on the basis of their boundaries, curvilinear and compact image structures
may be detected by the same process—it is possible to define boundary-based detection

schemes that work equally well applied to curves as to region boundaries.

The attributes of the locations on the surface of a scene entity include intensity, color,
motion relative to the viewer, distance from the viewer, orientation with respect to the
viewer, and surface marking structure. The term “surface marking structure” refers to
the arrangement of surface marking elements that themselves have attributes of color,
motion, extent, elongation, orientation, etc. This notion is related to the broader notion

of “texture”. For the most part, these properties can be detected in the image by local

30

computations. Previous studies in early vision have addressed the problem of detecting

local properties [Marr 82] [Horn 86].

Considerable research effort has been directed to the detection of intensity boundaries.
Intensity boundary information is certainly useful, but it is not sufficient, for two main
reasons. First, scene entities can be perceptually salient without any intensity changes
being present at their boundaries (as seen in Figure 2.1). Second, even when scene entities
are bounded by intensity changes in an image, it is often hard to distinguish these bound-
aries from the many other intensity boundaries present due to surface structure, shadows,
highlights, and noise (see [Riley 81] for further discussion of these points.) Because the
circumstances of imaging are potentially so varied, no particular property can be expected
to provide adequate information on its own, or even to provide a ma jority of the required
information — information must be combined from all available visual properties. Each one
of the previously listed image properties can give rise to boundaries useful for the definition

of image chunks.

2.2 Detecting abrupt change boundaries by direct compar-
isons between neighboring elements

The local image property elements computed as input to early boundary detection can have
dense or sparse spatial distribution. Dense distribution of properties such as intensity, color,
and motion arises over areas in the image corresponding to scene entities whose surfaces
are uniform, without local markings. Sparse distribution of a property can arise whenever
there are many small entities in the scene (each giving rise to an image property token), or
when the extended entities have many local surface markings. This section examines the

detection of boundaries in sparsely distributed, spatially-varying image properties.

Most proposals for the detection of texture boundaries rely on measures of the distribution
of the values of a property over a neighborhood. Sparseness imposes a lower limit on
the neighborhood size that will support a meaningful and sufficiently accurate distribution

measure. Spatial variation of properties imposes an upper limit on the neighborhood size

31

over which the measure will distinguish (i) the interior of one region from the interior of

another; or (ii) the interior of a region from the boundary between two regions.

A natural way of coping with sparseness and spatial variation is to make direct compar-
isons between neighboring property elements—boundary elements are defined between suf-
ficiently different neighboring elements. Distribution measures do not seem to be necessary

at all.

2.2.1 Computing a primitive element’s neighbors

Due to the possibility of sparse distribution, it is necessary to compute an explicit represen-
tation of the neighbors of each image property element. This section introduces a general
proximity representation useful for this purpose, termed the directional nearest netghbor

graph (DNNG).

Let d(a,b) denote the Euclidean distance between points a and b. g is defined to be a
directional nearest-neighbor of p with respect to @ and D (referred to as the orientation

and range parameters, respectively) if

1. d(¢,p) < D and
2. there exits no other point r such that

(a) d(r,p) < d(g,p), and

(b) gpr < 6.

The DNNG of a set of points in the plane is the set of directed links (i.e., edges) between
points and their directional nearest neighbors. (Directional nearest neighborhood is not a

symmetric relationship, so the links (p,¢) and (g, p) are not identical.)

For certain values of §, the DNNG is somewhat reminiscent of the dual of the Voronoi
diagram (see Figures 2.4 (b) and 2.5 (b)). The Voronoi diagram of a point set P is the

union of the Voronoi polygons of each point p in P. The Voronoi polygon of a point p is

32

[
1o
o

Figure 2.4: Directional nearest neighbors: (a) the input; (b) DNNG for 8 = 45°; (c¢) DNNG
for 6 = 90°.

Figure 2.5: Directional nearest neighbors: (a) the input; (b) DNNG for § = 45°; (c) DNNG
for 8 = 90°. ‘ ' '

33

defined to be the set of all points in the plane closer to p than to any other point in P.
The Voronoi dual of P is a graph in which nodes correspond to points in P, and there is an
edge between two nodes if the corresponding Voronoi polygons are adjacent. The Voronoi
dual is preferable as a proximity representation to the option of simply computing the k
nearest neighbors of each point, because it avoids an @ priorilimit on the number of possible
neighbors a point can have. As such, the Voronoi dual has been used to represent proximity
in a variety of contexts ([Sedgewick 83] discusses a number of these), and it suggests itself
for the problem of detecting early boundaries. The DNNG has several advantages over the

Voronoi dual, however, as a proximity representation:

1. Computation of the DNNG is local, whereas the Voronoi dual computation is non-

local.
2. Computation of the DNNG is simpler to implement.

3. The angle parameter of the DNNG computation provides control over the angular

distribution of a point’s neighbors; the Voronoi dual computation provides no control.

4. The range parameter of the DNNG computation provides control over the spatial

extent over which a point’s neighbors are defined.

2.2.2 Computing property differences

Given the DNNG representation of neighborhood between property elements, there are two
roughly equivalent alternatives regarding the representation of differences between neigh-
bors, one node-based, the other link-based. In a node-based computation of differences, at
each node in the DNNG of property elements, some function of the differences between the
value at a node and the values at each of its neighbors would be associated with the node.
Possible functions are the average and the maximum. In an edge-based computation, the
difference between values at the neighboring nodes defined by a link is associated with the
link; the location of the difference measure may be defined to be the midpoint between

the locations of the two nodes. The link-based scheme is preferable because it gives a

34

ies—
gives
to

.

tional
ions

f boundar
is propor

.
.

airs o
ide with significant

ies coinc

to parallel p
the circle’s radius

boundary locations (right) have been superimposed on the input (left).

.
bl

hereas the node-based method
t necessary to define computat

LI s st P s s, gt s s,
SO AR P e SR R AP NPy S -
S A R R R R AT RN PP
VIR AV Y g sl T, P4 L L,
Z, \\\\\\\\\\\\\\\\\ s S, s,
P AR AR P R P P A A s sl S,
H\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
P AR APV R A R PPN N AR A P
C sl Dl vl s P s s s or sy
R R L VAL T VTP s,
\\\“\\ \\“\\\\\I/Il//\\\\\\\\\\\\\\
- L sl s NSNSNNNN(N\ A v,
\\\“\\\\\\\\\\\//NII//////\\\\\\\\\\\.
\\\\\\“\ PA SN /I//////\\\\\\\\\\\
” ed FANINANN NI\,
\\\\\\\\\\ NN ONNN r
r 2l sl s NSNS SN NN,
Sl pl sl T NSNS NN NN \Np s s,
pld \\\\\\\\I////////////\\\\\ Tl
L AV A A N N R S P YL s
\\“\\ L s P IS NNSSNNSNSN Nl D,

LAl INSNSIN NN S
Pl sl Ll st INNINNN S s, s,
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
I R RN SR DYV VI A
I bl s s e L T
AP P R I 2 A A L A N A
Sl LIS LSS Py p Pl vy Pty Sy s
Cr s S ” \\\\\\\\\\\\\\ vy s
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
2Ll Syl v S s, L’
Al AR PV R R N N VR DI PP
\\\\\\\\\\\\\.\\\\\\ Flp IS rs” s S s,

gions, w
Object boundar

18 no

ions give rise

35

.

Node-based difference computat
in the difference measures. It

.
o

le, well-localized boundary between two re
shown in Figure 2.9. (The DNNG for this example is shown in Figure 2.8.) A circle is
maxima

“double” boundaries (Figure 2.6). For that reason, in the implementation of abrupt-change
The result of the abrupt-change boundary computation on the example of Figure 2.7 is

boundary detection, the link-based scheme was adopted.
displayed at the center location of each edge in the DNNG

to the difference measured at that location.

Figure 2.6
local

sing

.

distinguish boundary values from non-boundary values at this stage—chunking processes

may be defined to respond preferably to the locally maximal values.

input.
ith 6

on

: the
: DNNG defined w

i s I =T

Iyl oy o e — R S RNNN
“\\ \\\\\\\llll////////
\\\
\\

on

R N NN NN

I PP N NN Y RN
e T N N NG APt ST NN NN N U
T T N U s — NN //\\ - s N NN G
- =TT NN L e OSSO NN N
- - ———t, = ‘~I U NN R SR T
v v\\ [S RN AN N i

R IR \\\/////////.// ~~
A T N O N N e SRR
AP A NN e NN i YR
: \///I///////// -~

\ o ————— O

: NN NAN VN~

NANN WG s
NN MW s e e -
SN M NN s e
SNONNT =N WV -l

36

N R N AP S
A A N R A AR LN
RN Y & NS N
—~——_] W ////

7/
/
/
’

f

////////////
7
’

,///////////’

'
\
\
\

L
.'
\

|
\

- /////////’/
e /////,///,__.

ey

/
Q
1
\
\
\
\
\
N
N
N
\
W\
\
\
AN
AN

e 2y
[e S Sy
A

An example abrupt-change boundary computat

An example abrupt-change boundary computat

Figure 2.7

Figure 2.8
30°.

Figure 2.9: An example abrupt-change boundary computation: link-based differences.

37

Chapter 3

Local prominence information

This chapter extends the bottom-up specification of the input to chunking processes. Chap-
ter 2 argued that since objects do not necessarily give rise to uniform image regions, chunks
must be computed from a representation of image boundaries, such as sharp local differ-
ences. The main observation of this chapter is that, in general, boundaries alone do not
support efficient, spatially parallel detection of visual chunks—local prominence information
about local boundary segments, is required in addition. The local prominence information —
the measure of how different each boundary segment is from its neighbors—reflects a type
of image redundancy that may be exploited to distinguish salient scene structures from
“run-of-the-mill” ones. Typically, humans perceive such structures as “figures” standing
out against a “background” of other figures, as in Figure 1.2, This chapter formulates and
demonstrates computations for describing appropriate boundary segments and measuring

their local prominence.

3.1 Redundancy and local prominence information
3.1.1 Redundancy; figures and background

The information in images is highly redundant. Because of redundancy in intensity infor-
mation, the intensity changes in an image can constitute a nearly complete, but much more

compact, description of a scene [Yuille and Poggio 83]. Redundancy can also arise at the

38

Figure 3.1: Human perception is fast and robust even in the face of dense, connected
context.

level of shape or arrangement of the scene’s physical components. For example, an image of
a uniform, dense arrangement of many small, roughly identical ball bearings and one large
bearing is very high in redundancy at this level. It is this figural redundancy that makes it
possible to describe this hypothetical scene as succinctly, yet as expressively, as I have. The
boundary representation of this image would contain the boundaries of every bearing, and
this contezt would make it difficult for simple parallel computations to detect and localize
the large bearing [Minsky and Papert 69]. A variety of perceptual examples show that hu-
man vision copes very effectively with context in certain circumstances (Figures 1.2, 1.1,
3.1)—it seems that this is the case precisely when the scene is high in figural redundancy.
In fact, this tendency for objects to “stand out” is so prevalent that it is frequently relied
upon to resolve ambiguous references in the course of everyday spatial reasoning and verbal
communication about the visual surroundings. In Figure 1.2, for example, one might refer

to “the blobs”, where there are in fact many entities deserving of the term.

Two observations about the natural world suggest that figural redundancy occurs often

39

enough in scenes to make computations dedicated to exploiting it very beneficial. First,
uniform or slowly varying distributions of similar objects or surface markings are quite
commen. Second, it is common for an object with very different properties to occlude, or be
embedded in, such a distribution of objects. I refer to such a situation as a figure/background
situation. It follows that economical, spatially uniform, parallel computations for exploiting
figural redundancy can provide part of the solution to the difficult problem of rapidly
extracting meaningful entities from complex scenes. Local prominence information about
local segments of boundary may be used to, in effect, separate boundaries of salient ob jects
from other boundaries in parallel, so that chunking processes may be applied selectively to

the former.

It is shape properties that distinguish foreground figures from background figures in the
figure/background situation. The distingushing shape properties may be properties of local
portions of the figure or properties of the entire figure. Differences in global properties are
often reflected locally. For example, when there is a substantial difference in size between a
foreground entity and background entities, local boundary curvature may be substantially
lower for the foreground entity than for the background figures, as in Figure 1.2. (In Fig-
ure 3.2, the big blobs were camouflaged somewhat by keeping the local curvature of their
boundaries similar to that of the background.) The properties with respect to which bound-
ary segments might be prominent include orientation (Figure 1.1), curvature (Figure 1.2),
and extent (Figure 3.3). The distribution of the scene entities of the background may vary
slowly (Figure 3.4), so differences in shape properties should be detected over local scene

neighborhoods.

3.2 Computing local prominence information.

This section outlines computations for measuring local prominence of boundary segments.
These computations involve (i) making boundary segments explicit; (ii) measuring their
useful properties; (iii) establishing local neighborhoods over these boundary segments; and

(iv) measuring local prominence of boundary segments over these neighborhoods.

40

o
Q0565
‘900 (@)
O 0
P800
(@)
CcCovYYO
A e
00)
O <,
DY’
o855
e O
O47. 0
0. e
Y900

0
0
o

Figure 3.2: The big blobs are not very prominent because local segments of their boundaries
are not very different in curvature from neighboring background segments.

|
| I: ' o

1N
MIER

" Figure 3.3: Boundary prominence due to extent.

41

Figure 3.4: Figural prominence is a local phenomenon.

3.2.1 Defining boundary segments.

The computations for making boundary segments explicit are to be applied in a spatially
uniform manner all over the input. Because properties like orientation and curvature depend
on scale, the segments must be defined at a series of scales. Scale, in this context, is related
to arc-length. Prominence computations must be performed independently at each of these
scales; the results are then combined. Figure 3.5 illustrates the definition of boundary
segments at a location at multiple scales. The boundary segments at a particular location
and scale must be made explicit by a local boundary tracing process, because the spatial
extent of segments at the larger scales allows for enough variation in segment shape to
preclude detection by template matching. Therefore, the largest defined scale is determined
by some reasonable limit on the number of tracing steps to be incurred in the course of

defining boundary segments.

Boundary segments at the larger scales may span many pixels, so standard pixel-at-a-time

methods for boundary tracing may be inadequate for this task. Much better performance

42

e —
, IR

| REn
N

2 3
Figure 3.5: Computing boundary segments at multiple scales.

may be achieved by a simple application of concurrency. First, basic boundary segments
at the smallest possible scale are made explicit by pixel-by-pixel tracing, over elementary
regions defined by a fixed, a priori tesselation of the input. Then, to define segments at
any larger scale, these starting segments are sequentially or hierarchically linked together.
The issues to be addressed in the detailed design of this kind of simple segment-by-segment
tracing process include (i) the choice of the prior tesselation over which the basic segments
are defined; (ii) the representation of basic segments, and the details of the pixel-by-pixel
tracing process used to define the basic segments; (iii) the mechanisms by which tracing
links basic segments into longer ones. Further discussion of these issues is deferred to

Chapter 5—the definition of basic segments is a kind of curve chunking process.

3.2.2 Computing boundary segment properties.

The explicit representation of a boundary segment consists of a set of distinguished loca-
tions within a region. The useful shape properties of such a set of locations for computing

local prominence information include orientation, curvature, and extent, or measures closely

43

related to them. The details of how to implement such measures in simple local hardware
will not be explored here. The implementation of local prominence computations demon-
strated here makes use of the following measures: (i) orientation of a boundary segment
is taken to be the orientation of its axis of least inertia; (ii) a measure related to average
curvature of a boundary segment—termed pseudo-curvature here—is the difference of the
least and greatest moments of inertia divided by the sum of the least and greatest mo-
ments (see [Winston and Horn 84] and [Horn 86]); (iii) the extent of a boundary segment
is proportional to the diameter of the smallest region including the segment, measured in

elementary regions, not pixels.

3.2.3 Computing prominence.

Prominence measures must be computed independently for each defined boundary segment
property and for boundary segments at each scale. Then these results must be combined
into a single, “best™ description of prominence at each location on the boundaries. A rea-
sonable measure of local prominence of a boundary segment with respect to a particular
property is the sum of the absolute differences between the value of the property for the
given segment and the values for neighboring segments. The particular difference measure
used depends on the property in question. The Directional Nearest Neighbor Graph, intro-
duced in Chapter 2, provides an effective neighborhood representation for this application.
(A position must somehow be associated with each segment. In my experiments, the center
of the square region defining a segment—see Figure 3.5—was used.) The results of the
prominence computation at a single scale for examples highlighting prominence in orienta-
tion are shown in Figures 3.7 and 4.13 (b). The result of the prominence computation at

a single scale for an example highlighting prominence in curvature is shown in Figure 3.9.

One possible way of combining the results for a particular property across all scales is to
take the maximum at each location. One possible way of combining the results for various
properties is to sum, after scaling values for different properties into the same range. These

possibilities require further study.

44

L
C

Figure 3.6: A figure with prominent local boundary orientations.

Figure 3.7: Boundary segment Prominence in orientation at a single scale.

45

Figure 3.8: A figure with prominent local boundary curvatures.

Figure 3.9: Boundary segment Prominence in pseudo-curvature at a single scale.

46

3.2.4 Combining prominence information and boundary information.

The details of how local prominence information should be integrated with boundary in-
formation depends on the details of the particular chunking process to which the data is
applied. There are two main possibilities. First, the local prominence measures may simply
be added to corresponding discontinuity measures. Secondly, the prominence measures may

be used to threshold the discontinuities, thereby extracting salient boundaries.

47

Chapter 4

Figural chunking

The preceding two chapters partially specified the input to chunking processes, taking a
bottom-up approach. This chapter is the first of three devoted to the design of the chunking

Processes themselves.

The main concern of this chapter is indexing—the effective, time-efficient selection of pro-
cessing locations in the course of focused vision. I will argue that (i) focused processing
requires the capacity to select processing locations on the basis of descriptions of the promi-
nent objects in the field of view, and (ii) crude descriptions of these objects or their parts
are adequate for effective location selection. An examination of the intermediate vision
processes that rely most heavily on processing shifts will provide the main justification
for this claim. Furthermore, crude descriptions of scene entities may be useful for initial
assignment of object reference frames and initial description of object configurations; both

of these applications may support initial access into recognition memory.

I introduce a class of crude object descriptors for indexing termed figural chunks. Figural
chunks describe relatively isolated configurations of boundary locations. Figural chunking

computations are formulated and demonstrated, and the use of these chunks in indexing is

discussed.

48

4.1 The need for low-level descriptors of objects

Spatially focused and goal driven processing brings with it the problems of making intel-
ligent decisions about (i) what location to process next and (ii) what processes to apply
there. The decision to process a location is intelligent if the processing done there con-
tributes directly to the agent’s current goals. The agent’s goals usually pertain to physical
objects and their relations, so the low-level vision tokens used to select processing loca-
tions should be descriptors of these objects. For example, vision might need to locate and
analyze the largest yellow object in a complicated scene, as a step in deciding whether or
not a tiger is present. In this example, items of information relevant to deciding to shift
processing to a location are the color and relative size of the physical entity present at that
location. Only approximate values of ob ject properties are required to identify truly salient
entities. The occasional need to locate non-salient objects may preclude the use of crude,
rapidly available descriptors—and, hence, indexing—leading to substantially slower time

performance.

To support the view that low-level vision should provide descriptors of scene objects, this
section explores the visual processes that rely most heavily on processing shifts. The pro-

cesses examined are tracking, search, and scanning.

Visual tracking of objects and events

The viewer and/or the viewed objects may move around in the environment, resulting in
relative motion between them. If the processing focus coincides with an object at one
moment, it may not at the next moment. Therefore, if processing is to remain with an
object, some computations must be devoted to assuring this. These computations can
be based on local or global motion information. Local motion information includes, for
example, motion vectors of edge elements. Global motion information requires knowledge
of the global spatial properties of the object being tracked, which makes it possible to

select a new location based on similarity in global properties to a previous location. When

49

objects move abruptly, object tracking may be more effective based on global information

than local information.

Closely related to the tracking of moving objects is the problem of responding to changes
(events) associated with objects, including sudden motion of a previously static object, or
effectively instantaneous appearance or disappearance of an object due, for example, to

rapid occlusion or exposure.

Visual search for objects

Visual search is the problem of shifting the processing focus to the location of a spatial
entity whose properties match some arbitrary, top-down specification, where the relevant
spatial entity has not been recognized to begin with. Visual search requires an “extract-
and-test” procedure; to be efficient, only likely candidates should be extracted. The basis
for generating plausible candidates over implausible ones is to compute crude descriptions
of spatial entities and their properties ahead of time. For example, in Figure 1.4 rough
elongation and size comparisons among the items in the scene might make it possible to

locate something that might be a teaspoon before it is actually recognized.

Visual scanning of objects, sets of objects, and areas

Visual scanning is the problem of repeatedly shifting the processing focus to new locations,
subject to some fixed, simple condition. The condition controlling the scan involves prop-
erties of the spatial entities, measured at each location, or relations between successive
locations. The purpose of scanning is generally to integrate information across a set of
closely related locations. This fact, and the simplicity of the controlling condition, dis-
tinguish scanning from visual search. Examples of visual processes mediated by scanning
include counting of similar items (Figure 4.1); tracing or delineation of long-range group-
ings of similar items (Figure 4.2); and inspection of the constituent locations of extended

objects or areas, as in finding simple paths (Figure 4.3).

50

o . ’
)) o °
o ¢ ©
o
o [0 .
0

Figure 4.1: A task requiring scanning: count the dots.

Figure 4.2: Perceiving the “7” shape requires scanning

51

Figure 4.3: A task requiring scanning: is there a path to the dot wide enough for the black
disc?

Tracking, search, and scanning compared

Tracking, search, and scanning are closely related, so some comparisons and contrasts
between them are in order. Tracking is a strictly data-driven Process; only simple properties
of objects are relied upon; focus is maintained on a single object over the course of the
process. Scanning is potentially a mixed control-structure process; only simple properties
of objects are involved; processing shifts among similar items which may consitute the
elements of a single object or an abstract group. Search is a primarily top-down, goal-
driven process; arbitrary properties of objects may be involved; only one of the ob jects to

which the focus of Processing is brought is of ultimate interest.

All three processes are iterative and “shift intensive”. Roughly speaking, they involve an
iteration of three basic steps: (i) decide upon the next relevant location; (ii) execute a
shift to the new location; (iii) perform appropriate computations at this location. For our
purposes here, the decision step is the most important—each of these processes could indez
relevant locations if descriptors of the scene entities meaningful to them were made ezplicit

at the outset.

52

4.2 Indexable visual objects

The preceding section brought out the importance of object properties in the selection of
processing locations. The notion of an “object” is quite problematic, however. This section
attempts to bring out some of the difficulties and specializes the notion of “object” for the

purposes of indexing.

Characters, words, sentences, lines of text, and paragraphs may all be viewed as ob jects,
but the visual processes for extracting them may be quite varied and complex. Which
of these entities, if any, could one reasonably expect low-level vision to provide indicators
of? In the perception of natural scenes, one intuitive notion of an object is rooted in
the phenomenon of physical coherence, often indicated by visible surfaces or occluding
boundaries. Visible surfaces or occluding boundaries are not by themselves a reliable basis
for defining objects, however. This problem is illustrated by the famous “man on a horse”
example. In general, object boundaries—boundaries between image regions corresponding
to the surfaces of different physical objects— and internal boundaries—due to changes in
local visual properties, between image regions corresponding to the surface of the same
physical object—cannot be distinguished from each other solely on the basis of information
in the image. ! As such, the process for distinguishing the man from the horse may be no

less complex than that for extracting this sentence.

Descriptions of the surface markings in a scene may be no less useful than descriptions
of object silhouettes. For instance a tiger’s stripes may constitute visual objects that are
as useful for detecting it as its outline. Moreover, there are other possible grounds for
establishing physical coherence than visible surfaces or occluding boundaries. For example,
schools of fish and flocks of birds display coherence in the form of common motion of
their members. Proximity and similarity are well known as grouping criteria for defining
visual objects. It is therefore useful to make a distinction between visual objects defined by
continuous occluding boundaries, termed primitive objects here, and abstract objects defined

by proximity /similarity, or other grouping of primitive objects.

!Disparity information or curve continuity make it possible to distinguish the two types of boundaries
only sometimes.

53

There is no unique, bottom-up object-decomposition of any given input that can serve
all visual tasks. Whether or not some configuration in the input should be interpreted
as a unit depends on the immediate goals of vision. The criteria used to define objects
for recognition (or reading, or manipulation) are certainly not appropriate for the rapid
selection of processing locations. For recognition, it is necessary to describe an object’s
shape in detail. Because scene entities may take on an unbounded variety of shapes and
may occur at many locations and orientations, spatially uniform and parallel processes
for extracting these entities in detail would be prohibitively costly. The extraction of
detailed shape involves relatively slow serial processes, like boundary tracing; the criteria
for extracting an object include, for example, connectivity and boundary continuity. For
indexing, it is necessary to describe rapidly, but perhaps not accurately, the overall shape
properties, such as extent, elongation, and orientation, of some prominent objects; detailed
shape is not required at this stage. To provide the required speed, these rough descriptions
must be generated by bottom-up, spatially uniform, “hard-wired” processes. The objects
in a scene are implicitly described in the input by configurations of boundary locations
that may take on a very wide range of shapes. To be feasible, a parallel, spatially uniform
process for detecting possible objects must be limited in the range of configurations of

boundary locations it can define and evaluate.

A useful, crude criterion for defining objects for the purpose of indexing is local spatial
isolation, a measure of the distance of a given set of boundary locations from surround-
ing boundary locations. By the isolation criterion, Figure 4.4 (a) would be described as

containing two objects; by the criterion of connectivity it contains four.

The strength of a boundary location is some measure of discontinuity in a local surface
property, some measure of local prominence of a boundary segment, or some combination
of the two (see Chapters 2 and 3). An overall difference in strength between a given
set of boundary locations and surrounding boundary locations is also a useful criterion
for defining objects. For example, in Figure 4.4 (b), the bold circle is no more isolated,
strictly speaking, than any other circle in the figure; however, its locations are not near
any boundary locations of similar contrast. Therefore, it is useful to broaden the notion of

“isolation” to include relative strength as well as proximity. This broader notion is termed

54

Figure 4.4: (a) A figure containing four objects by the criterion of connectivity, and two by
the criterion of isolation. (b) A broadened notion of isloation - the bold curve is isolated
with respect to boundary locations of similar contrast.

relative isolation. ?

4.3 Figural chunks

This section is concerned with the low-level, crude detection of Primitive objects and surface
markings, which will be referred to in brief as objects. (See Figure 4.5. It may be possible
to detect certain classes of abstract ob jects by methods similar to the ones described here,
but that problem will not be addressed.) The input assumed is a pointwise boundary
representation of the scene—each location in this array describes discontinuity in some

local property at a point, or local Prominence of a boundary segment.

A parallel, spatially uniform process for detecting objects must accomplish three things: (i)
extract configurations of boundary locations; (ii) measure the relative isolation of the con-

figurations; and (iii) associate measures of Position, extent, elongation, and orientation—of

2One obvious possibility for implementing a measure of relative isolation is to apply a strict isolation
measure after thresholding boundary strengths, either locally or globally.

55

\
~
J

)
o .o
\ —?
a b C
L
oooo °o ~r
00

/-
00 w
P 7o

Figure 4.5: Each frame in this figure may be usefully described as containing three ob jects.
The figural chunking scheme introduced in this section does not necessarily apply to cases
(d), (e), and (f)

the bounded regions—with the configurations.

A way of extracting a configuration of boundary locations that lends itself to parallel,
spatially uniform implementation is to fit configurations of predefined shape, size, and
orientation to the boundary array. A predefined configuration used for this purpose is
termed a basic configuration. Suppose that at a given location p, the best-fitting member
of the set of basic configurations C is found to be ¢, according to some measure of fit
f. Given f, it is possible to single out the configuration of boundary locations that ¢ is
a fit to. Such a configuration is termed a boundary configuration. Useful attributes of a
basic configuration, such as size, elongation and orientation, can be directly attributed to

a boundary configuration it fits.

There are three main problems to be solved. One problem is to define useful basic config-
urations. The discussion and demonstrations of figural chunking in this report make use
of only one basic configuration —the ellipse. The ellipse is a natural choice because jt is
one of the simplest shapes that has attributes of elongation and orientation. Additional

candidates include bars and arcs (see Figure 4.6). The second problem for figural chunking

56

ave
© z s

Figure 4.6: Some useful basic configurations. (a) Ellipses. (b) Bars. (c) Arcs.

is to define an effective measure of fit for extracting boundary configurations. An important
requirement is that the measure permit considerable deviation in shape between the bound-
ary configuration and the basic configuration, while capturing similarity in overall shape
parameters, because object boundaries will seldom closely match the basic configuration.

The third problem is to develop a measure of relative isolation.

The alliance of the set of basic configurations, the measure of fit, and the measure of relative
isolation support an operational definition of a visual ob ject for the purpose of indexing. A
figural chunk is defined to be a boundary configuration whose measure of relative isolation is
a local maximum. A figural chunk is a crude descriptor in two senses. First, it provides only
an indication, not a guarantee, that the best-fitting boundary configuration at a location
may correspond to a meaningful scene entity. Secondly, the shape attributes associated
a priori with the basic configuration defining the chunk describe the scene entity only

approximately.

57

4.4 Detecting figural chunks

This section develops a technique for detecting figural chunks. The main purpose of the
discussion is to demonstrate that figural chunks can be generated by simple, efficient com-
putations. The implementation strategy presented here is not the only possibility. The
discussion is centered on one basic configuration—the ellipse. First, a combined measure of
fit and relative isolation is presented. Then, an affordable mechanism for spatially uniform,

parallel application of this measure is formulated.

4.4.1 Maeasuring fit and relative isolation

Let B denote the array of local discontinuity/prominence values that is the input to figural
chunking. Let E denote an elliptical mask at a particular scale, eccentricity, and orientation.
A measure of local fit of E is given by convolving B with a filter fg that is a smoothed
version of E: F = B * fg, where fg = § x E and S is some smoothing filter. Intuitively,

this measure is high when the locations of the boundary configuration are near those of E.

An indicator of relative isolation is a decrease in F(z,y) as scale s of the ellipse increases.
Hence, a relative isolation measure is given by convolving B with a filter fg.(5) that is
the first difference fg(,) — fg(,+1) (see Figure 4.7): Ig = B x fi,. The filter fg is an
elliptical center/surround operator that can also be defined by sweeping a one-dimensional

first derivative operator around E.

Let 7 denote the space generated by computing Zg for elliptical masks at all descriminable
combinations of scale, eccentricity, and orientation. Figural chunks are defined by local
maxima in 7. Let En.. denote the elliptical mask corresponding to a particular local
maximum in 7 at position z,y, and let I(Emaz(2,y)) denote the corresponding value of
Z. A figural chunk is defined to be the set of boundary locations falling inside Ermaz(2,y).
I(Emaz(2,y)) is referred to as the strength of the figural chunk.

In the simulation described below, fr was defined as follows:

58

Figure 4.7: Profile of an elliptical operator for measuring relative isolation.

fe(z,y) = { 0 otherwise,

where dg(z,y) = 22/a%+y?/b2. For simplicity of implementation, at most one figural chunk
was defined at each location —a figural chunk was defined at a location if T (Emaz(z,y))

had the largest value in the vicinity of that location.

4.4.2 Spatially uniform, parallel application

Two main practical issues arise in the computation of figural chunks, both pertaining to
hardware cost. First, it is necessary to limit the set of discriminable positions, eccentricities,
orientations, and scales supported. In the most time-efficient parallel hardware implemen-
tation, for each possible combination of descriminable values of the five ellipse parameters
(z,y,a,b,0), aunique processor would be dedicated to computing one value ig in the convo-
lution Zg. The number of processors required is approximately the product of the number
of descriminable values of each of these parameters. Therefore a cost-performance tradeoff

must be made.

59

The second practical issue concerns the manner in which variation in scale is implemented.
The processor for applying ff; at a particular location would take input directly from each
location in an elliptical region. In a straightforward implementation of scale variation, both
the length and number of the input connections would grow with scale. When the extent
of an ellipse approaches the size of the input, the required communication degree (number
of input connections) of the associated processor approaches the number of input locations.
A more economical way of implementing scale variation is to fit ellipses of limited extent
to a set of versions of the boundary array created by sampling at a series of resolutions.
This set is termed the date pyramid. A simple pyramidal figural chunk detection scheme
is formulated in the following paragraphs. The maximum major radius of an ellipse used
in this scheme is a. The scheme is used to construct not only a data pyramid but also a

processor pyramid—a set of processors whose inputs are provided by the data pyramid.

Let Cg denote the number of locations in the filter f,—this is the number of input connec-
tions to the processor for computing Ig(z,y). An upper bound on Cfg is given by a circle

of radius 2a: Cpez = 47a’.

Let d. and dy denote the number of discriminable ellipse eccentricities and orientations,
respectively. At each location of every size-scaled copy of the boundary array, N; ~ 2d.dg
processors are required for computing I'g(z,y) for all different ellipses. (The factor of 2
roughly accounts for the additional processors required for detecting local maxima in 7 at

each location.)

Suppose the boundary array input to the figural chunk detection process is a square array
of width wo. An exponential pyramid may be defined using repeated scaling by some factor
[, 0 < f <1 w4y = fwy, where w; denotes the width in pixels of the square array at
level I of the pyramid. The scaling factor f is chosen so that scale changes as slowly as
possible, such that for all /, w; # w;4;. The top level of the pyramid is a square array of
width wy, = fPwg ~ 4a, where A is the (zero-origin) height of the top level; at this level, an
object whose diameter is half that of the input array can be detected. The total number

of array locations in the pyramid, denoted by Np, is given by the following expression:

60

h h
Np =Y (fwo)? =wd 3 2
=0 =0

Therefore, approximately N;Np processors are required altogether. An upper bound on
the total number of connections required by these processors is Cpnaz NyNp. In a simula-
tion described in the following subsection, which seemed to provide generous precision in
describing the properties of scene entities, the following orders of magnitude were used for
the preceding numbers. Cy,,, and N; were both be on the order of 102; Np was on the
order of 10%. The total number of processors required was on the order of 106. The total

number of connections required was on the order of 108.

To construct the data pyramid, an operation is needed for sampling the input array. One
simple way of doing this is to assign each location of the array at level / of the data pyramid

the maximum of the values in the corresponding region of the input.

There is a severe quantization effect at very low sampling resolutions (e.g., see Figure 4.9
(d)). Performance of the measure of fit is significantly improved by the following mod-
ification: only the boundary value on each radius of the ellipse for which the product

dg(z,y)B(z,y) is a maximum is allowed to contribute to the sum Ig(z,y).

4.4.3 Performance

This scheme was simulated with the following parameters: a = 8 pixels; d, = 7 (i.e., b
ranged from 2 to 8 in increments of 1); dg = 12 (i.e., 0 ranged from 0° to 165° in increments
of 15°); wo = 128 pixels; and f = 0.8. The height of the pyramid A was 10. The number
of convolutions computed was 84. The total number of locations in the pyramid was
approximately 45,000. This implies roughly 3.78 million processors in a strictly parallel
hardware implementation. It is possible to serialize over the convolutions Zz—if only one
processor is provided per location in the pyramid, 45,000 processors are required, and the

computation involves 84 iterations.

61

The simulation was implemented on the Thinking Machines Corporation Connection Ma-
chine [Hillis 85], a single instruction stream, multiple data parallel computer. The computa-
tion of convolutions was highly serialized, due to the limited number of processors avaliable
—one parallel convolution T was computed at a time. Each convolution involved serial
scanning over the locations of a stored mask. The Connection Machine run time of the

simulation, on half the processors of a 16,384 processor machine, was roughly 4 minutes.

Figure 4.8 shows the ten highest-ranking figural chunks for a hand-drawn binary input.
Each figural chunk is represented graphically by (i) a pair of perpendicularly bisecting
dashed lines, which represent the major and minor axes of the defining ellipse; (ii) a set
of shaded square regions forming a crude, discrete ellipse; and (iii) the set of black input
pixels inside the crude ellipse, which constitutes the defined figural chunk. Two numbers
are displayed near the center of each ellipse: the lower number is the chunk’s strength; the

upper number is the chunk’s rank—all defined chunks are ranked in terms of strength.

The main considerations in evaluating the performance of the figural chunking scheme are
the effects of shape variation, context, and noise. An extensive performance evaluation has

not been carried out, but it is possible to make some general observations.

First, the proposed measure of fit copes well with shape variation, as it was designed to
do. When the shape of an object deviates a great deal from that of the basic configuration,
however, there may be no figural chunk corresponding to the entire boundary (for example,
see Figure 4.12). If there is one, it may be ranked lower than other chunks corresponding
to parts of the boundary. For example, in Figure 4.8, the chunks ranked second and fourth
are both subparts of the chunk ranked sixth. A single basic configuration can capture
only part of the range of possible shapes occuring in images. For example, Figure 4.12
shows the three strongest figural chunks generated for an input consisting of the intensity
boundaries of a connecting-rod—the long, narrow central portion of the connecting-rod was
not captured by any ellipse, but probably would have been captured by a bar-shaped basic

configuration.

Secondly, context can have a significant effect, in the form of strong figural chunks that

do not correspond to any meaningful scene entity. Figure 4.10 shows the four strongest

62

chunks for a cartoon figure. The weakest of the four is a spurious output due to a circular
configuration of boundary locations whose relative isolation measure was coincidentally
high. The geometric distortion (quantization effect) resulting from the simple sampling
scheme used to build the data pyramid certainly worsens the effect of context. (Figure 4.11
shows two extreme and two intermediate levels of the data pyramid.) It would therefore be
interesting to investigate other ways of scaling and sampling the input. It seems, however,
that spurious responses due to context are unavoidable in principle, due to the local nature
of the computations being used. At the moment, it is difficult to judge the significance of
spurious figural chunks, because the serial scene analysis processes that will make use of
figural chunk information have not received much study. It seems reasonable to assuine,
though, that figural chunking would be very beneficial even with high incidence of “false
positives”—it is much better to have indicators of objects that are meaningful only half or

even a quarter of the time than to have no object indicators at all.

All of the examples demonstrate that small amounts of noise in the form of (i) omission
of some of the locations of an object boundary and/or (ii) addition of noisy segments or
internal boundaries near object boundaries do not prevent the detection of an ob ject. Noise
does affect what ellipse will be a best fit at a particular location though and, as a result,
the properties attributed to the best-fitting boundary configuration.

Figure 4.13 shows an array of local orientation prominence information (see Chapter 3)
for a synthetic input similar to Figure 1.1, and the three strongest figural chunks resulting
for that input. Two out of three of the strongest chunks coincide with the prominent
blob figures—an encouraging but inconclusive result. This result may be explained by the
fact that the top and bottom portions of the blob that was not detected run parallel to
neighboring curves and are therefore not locally prominent. It may be that additional
local measures, e.g., local boundary density, would lead to the detection of this blob. The
example does illustrate, nonetheless, that local prominence information can support the

parallel detection of figures in context.

63

Figure 4.8: An input demonstrating the ability to cope with shape variation.

4.5 Indexing figural chunks

Section 4.2 defined crude descriptors of objects for indexing, and fast, low-level compu-
tations for generating them from the boundary representation. This section examines a
number of bottom-up and top-down criteria for selecting figural chunks in the course of

serial, spatially focused processing.

Bottom-up location selection

The rapid and correct interpretation of a scene must not depend critically on the availability
of a priori knowledge about it, because scenes can change frequently and dramatically. In
the absence of a priori information, data driven methods are needed to guide the initial
processing [Ullman 84]. Two forms of prominence information provide the basis for bottom-
up selection of processing locations. One is the local boundary prominence information
introduced in Chapter 3. The other is prominence of the shape attributes associated with

figural chunks.

64

Figure 4.9: Levels 0 (lowest), 4, 7, and 10 (topmost) of the data pyramid for the preceeding
example.

65

Figure 4.10: An input illustrating the problem of context. The figural chunk ranked fourth
is spurious.

Chunk strength/boundary prominence. In all of the preceding examples of figural chunking,
chunks were ranked according to the value of Z(Emaz(2,y)). This measure of relative
isolation reflects boundary prominence (see Chapter 3). For a set of objects with roughly
equal fit to the basic configurations, those with stronger boundaries will be processed first.
(In Figure 2.7, one blob has more abrupt changes at its boundary. By the chunk strength
ranking criterion, this blob would be indexed first.)

Prominence of figural chunk attributes. The global properties of a scene entity may stand
out in comparison to those of neighboring entities (Figures 1.7 and 3.4). In order to make
use of this source of figural prominence, a further computation is required whose input is
the set of figural chunks, and whose output is a measure, for each figural chunk, of its
prominence with respect to its neighbors. Once again, the Directional Nearest Neighbor
Graph (see Chapter 3) provides a useful Proximity representation for establishing neighbors
for this application.

66

Figure 4.11: Levels 0 (lowest), 4, 7, and 10 (topmost)

of the data pyramid for the cartoon
input.

67

Figure 4.12: Ellipses are not enough—the bar of the connecting-rod might have been cap-
tured using a bar-shaped basic configuration.

Proximity-similarity facilitation. The processes that distribute similar entities in a scene
tend to operate continuously in space. Therefore, proximity and similarity to the most
recently processed figural chunk are useful joint criteria for selecting the next figural chunk
(Koch and Ullman 84]. This is one possible basis for visual scanning (see Figures 4.1, 4.2,
4.3).

Top-down location selection

When a priori information is available about the scene to be processed, this may be used
to select figural chunks. Top-down criteria for selecting processing locations include values

of chunk attributes, connectivity relations, and position relations.

Facilitation and suppression of labeled locations. Coloring, tracing, and marking operations
can be viewed as defining a special “subscene” of the scene—the subscene is the set of

locations labeled by the operation. Processing may be restricted to (or excluded from) such

68

PN S ————\ N N P!
/ \ [\ /
| } &~ /
\ #
[S)] L v ——eo
4 ek
// S S P
(AL UV } $ Drwn
/I tu 8 wopeBr® |\
~—y L e 3 - 11 9) \ \
— \jo/
A= ot) ¥ [Ao o e
/ ¢] § —od
s 2oy [a
4 owmw & 24 D
o - S/
B e R ra \
RN !
RIS e U N
N o uvt‘ : oy o S J
— R $eOr W
g NW . § . ea—— -

Ny ~y W w -4 \
N Nt © Py o
p— ' -~

a b

- Figure 4.13: (a) The input. (b) Orientations and orientation prominence of local boundary
segments. (c) The three strongest figural chunks (one of the three prominent blobs was
missed). (d) Radii of small circles are proportional to figural chunk strength.

69

Figure 4.14: Count the dots inside the curve.

a subscene by facilitating (or suppressing) indexing of a figural chunk according to whether
its location is specially labeled or not. One way of performing the task of Figure 4.14, for
example, it is to first color the interior of the curve and then count, indexing only to dots

that are at colored locations.

Figural chunk attributes. The items of information relevant to selecting a location for
Processing are the properties, such as color, extent, etc., of the scene entity present at
that location. This sort of information may mediate selection directly or indirectly. The
bottom-up selection strategy discussed above under the heading “Prominence of figural
chunk attributes” is an example of indirect application of this information. For instance,
if we are asked to describe the largest yellow object in a scene, the location of the relevant
object might be quickly selected for processing owing simply to the fact that that ob ject
is prominent by virtue of relative size or color. In a direct application of spatial property
information, the selection process would select chunks whose associated attributes match

those specified in the query, e.g., “yellow” and “large”.

70

4.6 Implications

The use of figural chunks has implications for the computation of spatial properties and
relations relevant to both the design of machine vision systems and the study of human
vision. Figural chunking raises questions regarding human visual perception at two levels.
At the more general level, the hypothesis that figural chunks are made use of may lead to
novel interpretations of perceptual phenomena, without regard to the particular proceses by
which the figural chunks are generated. Some pertinent observations in this regard are made
in this section. At a more detailed level, it may be possible to make hypotheses about how
figural chunks are generated in the human visual system, based on psychophysical studies
and an understanding of the range of possiblities for computing figural chunks—future work

may take up this intriguing problem.

The two-stage spatial analysis framework provides two distinct levels of description of the
scene. The figural chunk level is crude and limited, but immediately available and unlimited
in range. The other level can be as detailed as necessary but is demand-driven, spatially fo-
cused, and potentially time-consuming. The detailed information must be spatially indexed
by the crude information. The overall implication of this framework is that the speed and
assurance with which a visual task can be accomplished depends on the level of description
that it utilizes. Execution of a task will be much faster at the crude level, so the frame-
work provokes a bias toward solutions at that level. Such solutions will apply under more
restrictive conditions, though, than their detailed level counterparts. Each of the following
paragraphs examines how a particular class of visual tasks can be accomplished using the

figural chunk representation.

Figural chunks explicitly describe certain approximate properties of simple ob jects or object
parts. Therefore, some tasks that involve the comparison of these properties could be
performed without necessarily extracting the relevant objects in detail. It would be much
faster, for example, to determine that two figures have roughly the same size or orientation
than that they have matching shapes. Similarly, relative position judgements like “above”,
“left-of”, “inside”, etc. can be obtained almost directly from figural chunk information.

71

For example, given two circular figural chunks A and B, A is inside B if the sum of A’s

diameter and the distance between the centers of A and B is less than the diameter of B.

Figural chunks make possible the immediate, parallel classification of global configurations
of many elements. It is possible to create a summary description in which the distributions
of chunk attributes in a global configuration is expressed concisely. Figures 1.2 and 3.4 give
rise to an assured but qualitative sense of the overall arrangement of many similar items.
This description may be augmented by a serial, detailed local description that moves from
one location to another. The subjective impression of immediately available panoramic
detail in such scenes may result from the effective integration of the immediate, parallel,
global summary description with the incremental, detailed, local descriptions. The detailed
description need not be performed exhaustively over the scene—if the summary description
indicates that the scene has uniform or slowly varying structure, it is possible to extrapolate

the local detailed description.

Another important implication of indexing on the basis of figural chunks is that a figure will
be indexable only if it or its simple parts give rise to prominent figural chunks. Consider
Figure 3.3 — the long curves stand out. This phenomenon is independent of the number of
curves in the input or their lengths. In Figure 4.15, however, a meandering curve that is
more than twice as long as any other curve in the figure is effectively hidden. If it is assumed
that connected and/or continuous curves are distinguished and described in low-level vision,
say by curve tracing, then the discrepancy between these two figures is hard to account for.
Processes amounting to curve tracing should have no more difficulty describing a winding
curve than a straight one. In the view I propose, configurations of boundary locations
that may be approximately described as simple arcs are individually described in early
vision, but more complex curves are described only in terms of their simpler components.
As such, the long lines in Figure 3.3 give rise to local descriptors that are outstanding in
length, relative to the local descriptors generated for the other lines. The longer curve in
Figure 4.15, on the other hand, gives rise to no outstanding descriptors. Similar arguments
apply to Figure 4.16, in which a curve twice as long as any of the others is hidden. In this
case, the early descriptors of the figures express the properties of the small, compact region

effectively occupied by each curve, not properties of the curves themselves.

72

A striking phenomenon of human visual perception is the tendency to interpret outline
figures spontaneously as regions bounded by curves, rather than as curvilinear figures.
This happens even when the outlines are incomplete, as in Figure 4.5 (b). This observation
seems at odds with an account of object extraction based on segmentation into connected
components. An account of object extraction in which region detection processes (like
figural chunking using ellipse configurations) are applied to boundary information may

provide part of the explanation of this phenomenon.

74

Chapter 5

Curve chunking

The preceding chapter developed means for efficiently focusing processing on the locations
of relevant scene entities, on the basis of crude early descriptors of these entities. As noted
in Chapter 1, a fundamental operation for establishing detailed shape properties of an
object is that of making its boundary distinct from other boundaries. The main aim of this
chapter is to develop time-efficient schemes for curve and boundary activation based on a

simple, local model of computation.

The central idea of this chapter is that it is possible to trace a curve segment-at-a-time rather
than pixel-at-a-time. A curve chunk is defined to be a region containing a single segment
of a curve. This definition is region-based owing to the combinatorics of labeling curve
segments in parallel. Curve chunking is open to a variety of implementation strategies;
four techniques are developed and evaluated here. First, a simple scheme is defined for
generating curve chunks whose extent is limited with respect to the size of the input. Then,
a direct method of defining curve chunks of unlimited extent, but limited local and total
curvature, is presented. Next, a divide-and-conquer method for generating curve chunks of
unlimited extent, with no explicit restrictions on curvature, is developed. Finally, the power
of the divide-and-conquer scheme is extended by adding a local labeling capability. The
behavior of each method is evaluated with regard to its performance benefits to tracing. All
of these parallel schemes were simulated and tested on a serial machine. The final section

of this chapter discusses the implications of chunk-based tracing for the establishment of

75

shape properties and spatial relations.

5.1 Curve chunks

In this section, curves and curve tracing operations are defined from a computational point

of view, and a definition of a curve chunk is derived.

Curves

A curve is a set S of curve elements such that (i) for any two elements P, ¢in S, there is a
path from p to ¢, and (ii) either all elements of § have exactly two neighbors in § or S| -2
elements of § have exactly two neighbors in $ and two have exactly one. (Assume that
|§| > 2. A path from an element p = py to an element ¢ = Pn is a sequence of elements

Po; P1s -..Pn such that p; is a neighbor of p;_1, 1 < i < n [Rosenfeld 79).)

The preceding definition characterizes a broad class of curvilinear configurations. It is
useful to make a clear distinction between curvilinear geometry in general and the detailed
nature of the local curve elements and the neighborhood relation on them. This chapter
_defines curve chunking and tracing processes that are general in the sense that they apply

without regard to how the curve elements are defined.

A simple curve is a curve whose elements are boundary pixels in a pointwise represen-
tation of the scene’s boundaries. An abstract curve is a curve whose elements are local
configurations of pixels in some pointwise representation of the scene (see Figure 5.1). In
both cases, the neighborhood relation between elements involves proximity and perhaps
.direction. Chunking and tracing processes are demonstrated in this chapter on examples
consisting of simple curves—i.e., thin curves in square binary arrays. The extraction of the
elements of abstract curves may itself be viewed as an application of chunking, but this

problem is beyond the scope of this report.

A general way of representing curves or sets of curves is by using a graph. Nodes of the

graph correspond to curve elements. Edges correspond to instances of the neighborhood

76

NN
\ [a}) AN
O"“\\ \\
) \ \
o © k \
x X }
X)
: N
X X X —_—___

Figure 5.1: An abstract curve.

relation between curve elements.

Curve activation

Curve activation is a labeling operation: a single element of a curve in the input is specified
to begin with; the goal is to label every element of the curve containing the given element.
Such a curve labeling operation faces two main problems. One problem is to distinguish
the set of elements constituting the relevant curve from the elements of irrelevant curves,
on the basis of the single curve location that was given. The other problem is to execute

the labeling of this set of locations.

Let C be a variable that can be associated with a single curve element. A single element
s is given to start, which is initially assigned to C. Each curve element has an associated
two-valued label which may take on the values seen/unseen, say. The basic form of an

element-at-a-time curve labeling process is as follows:

While C has a neighbor n labeled unseen:

1. label n seen;

7

2. assign n to C;

3. repeat.

(At the start of such a process, there may be more than one possibility for which neighbor
to label next. The above procedure will trace in only one direction. It is useful here to
think about the structure of curve tracing processes in the abstract, ignoring this control
issue. Note that there is at most a two-fold speedup arising from a direct application of

parallelism to this basic tracing process.)

The problem of labeling a curve is inherently serial. To guarantee a correct result in
the general case without the use of sequential operations would require prohibitively costly
hardware. The stepwise progress along a curve leads to the term “tracing” for curve labeling
operations. Evidently, the time-complexity of tracing is a function of the number of elements

comprising the curve operated upon.

If curves are represented by a graph, then the operations on this representation useful for
tracing are (i) labeling a node, and (ii) indexing a neighbor of a node, i.e., accessing the
node that shares a given edge with the given node. For labeling, it is useful to assume that
each node of a graph representing curves has an associated two-valued label which may

take on the values seen/unseen.

Curve location ordering

There is a natural ordering on the elements of a curve, and this ordering can be useful in
establishing certain shape properties and spatial relations (for example, see Figure 5.54).
The stepwise progress of tracing along a curve can often be used to advantage as a way of
establishing ordering. Therefore, the operation of curve tracing is applicable as a solution

to two distinct problems, labeling and ordering.

78

Curve chunking

To reduce the number of iterations incurred by the tracing operation, the tracing process
must simultaneously label a chain of curve elements — termed a curve segment—at a step,
rather than a single element. Any operation for simultaneously labeling a curve segment
must be hard-wired. There are so many possible segments, however, that the cost of
dedicated labeling hardware for each possibility would be prohibitive. This implies that
the parallel labeling machinery must be shared across different curve segments. Perhaps the
most straightforward way of achieving this sharing is to use machinery for labeling an entire
region to label any curve elements falling within the region. A parallel operation for labeling
a region may be used to label any curve segment that occupies the region provided nothing
else occupies the region. Hence, the need for an essentially parallel labeling operation leads

to a definition of a curve chunk as a region containing exactly one curve segment.

More precisely, if the curve elements in a given region are viewed as nodes of a graph, and
edges represent the neighborhood relation between curve elements, then a curve chunk is a
region such that (i) the set of curve elements in the region is a chain (a connected graph of
mazimum degree 2) and (i) no curve element in the region has more than two neighbors,
where neighbors outside the region are counted. The second condition is introduced because
when a curve junction coincides with the border of the region, as in Figure 5.2 (b) and (c),

it would be incorrect to call the set of curve elements in the region a curve segment.

A curve chunking process must accomplish two things. First, it must construct a decompo-
sition of the input into regions each containing one curve segment. The process of finding
such a decomposition may be thought of in terms of two components. One component
generates some of the possible tessellations of the input. The other component evaluates
each region of a tessellation with regard to whether it meets the curve chunk criterion.
(In practice, these aspects of the curve chunking process do not necessarily constitute dis-
tinct modules or stages. Nonetheless, the conceptual distinction between them is useful for
characterizing curve chunking methods.) The other task of a curve chunking process is to
establish, for each adjacent pair of regions in the decomposition, whether there is curve

continuity between the two regions. This information is what allows chunkwise tracing to

79

T 7 NS

Figure 5.2: A single chain in a region does not necessarily constitute a curve segment, for a
junction may coincide with the region border. The right-hand region defines a curve chunk
in (a) but not in (b) or (c).

select neighboring chunks to label.

Curve continuity between curve chunks

There is curve continuity between two adjacent regions r1 and r2 if there exist some curve
elements el in r1 and €2 in r2 such that el and e2 are neighbors. If this condition is met,

the common boundary between r1 and 72 is said to be crossed. 1

Curve chunk representation and chunk-at-a-time tracing

A graph may be used to repfesent curves at the chunk level in the following way. A node
in the graph corresponds to a region in the input. Each node has an associated two-valued
label which may take on the values valid/invalid. Throughout the discussion of curve
chunking, the following two definitions will be useful. A region is said to be vacant if it

contains no curve elements, and valid if (i) it is vacant or (ii) it contains exactly one curve

'1t is possible to exclude the second condition from the definition of a curve chunk. This is a less natural
definition however, and furthermore it makes it necessary to explicitly check for junctions when establishing
curve continuity between chunks. Legal curve continuity between regions must be defined as follows: (i)
each curve element el in r1 having a neighbor in r2 has exactly one neighbor in r2; (ii) each curve element
e2 in r2 having a neighbor in r1 has exactly one neighbor in r1.

80

segment (and no elements with more than two neighbors). A curve chunk is a non-vacant

valid region. An edge in the graph represents curve continuity between regions.

This representation of curves preserves the basic form of the tracing process. Let C be a
variable that can be associated with a single curve chunk. A single valid node s is given
to start, which is initially assigned to C.2 Each curve chunk has an associated two-valued
label which may take on the values seen/unseen, say. The basic form of a chunk-at-a-time

curve labeling process is as follows:

While C has a valid neighbor n labeled unseen:

1. label n and all the curve elements in the corresponding region seen (this is a parallel

operation);
2. assign n to C;

3. repeat.

This process stops when an invalid region is encountered. An extension is required to
enable the tracing process to label the correct curve segment in an invalid region (i.e., a
region containing more than one curve segment). One possibility is to switch to curve-
element-at-a-time tracing when an invalid region is encountered, and then switch back to
chunk-at-a-time tracing once a curve element is reached which is in a valid region. This
“two-level” tracing may be supported in the curve representation by “splicing” each portion
of the elementwise graph that corresponds to an invalid region into the chunkwise graph at

the appropriate place. This approach involves a substantial slowdown in tracing at invalid

regions.

Another possibility for coping with invalid regions is to skip them. That is, rather than

attempt to ¢race through an invalid region (i.e., label the relevant curve segment in it), the

*In this report, I do not discuss the processes that determine the starting chunk s. Generally, some
independent process, such as indexing, will shift the processing focus to a location at or near an element
of the relevant curve. A mechanism is required for accessing the chunk node s corresponding to the region
containing the processing focus.

81

available information about the local direction of the curve is used to select a neighboring
valid region with which to continue tracing. If invalid regions are always small then it
is likely that the curve will not change direction in traversing the region. The labeling
accomplished by this method may be incomplete—there will be a short unlabeled segment
at the site of each invalid region the curve passes through. This method does not necessarily
involve a slowdown in tracing at invalid regions, but it is more prone to error and may not

always be applicable.

“Two-level tracing” and “skipping” are not incompatible alternatives. The choice between
them may be viewed as a tracing time control decision which trades off assurance and
speed. In evaluating the various curve chunking schemes, I will distinguish between the
time-performance connotations of the chunking method itself and those of the method used

to traverse invalid regions.

Parallel region labeling processes

The process for labeling a region may be hierarchical or direct. A direct labeling process
requires each node to have a direct connection to every location in the corresponding region
of the input (Figure 5.3 (a)). This implies a maximum communication degree of N? for a
square input array of width IV pixels. (Communication degree is defined to be the number
of direct communication lines coming into a processor.) A node simultaneously labels every
associated input location. The runtime for tracing given a direct labeling operation is equal

to the number of iterations incurred by the basic tracing procedure.

A hierarchical region labeling process uses a tree structure to connect a node to correspond-
ing input locations (Figure 5.3 (b)). In the hierarchical case, the label is propagated from
a node down through successive intermediate nodes until it reaches all corresponding input
locations. Let /(n1,n2) denote the length of the path between the two nodes nl, n2. If s
denotes the start node of tracing, the number of steps it takes for the tracing operation to
reach a node n is I(n,s). Let h(n) denote the number of levels of indirection between n

and the locations of the region n corresponds to. The time to label the curve elements in

82

/\

\\\\.\) . /
P4 A&\\ . /q\’i\/z ?\ j/\\'b / e

a b c

Figure 5.3: Parallel region labeling. (a) Direct labeling. (b) Hierarchical labeling. (c)
Hybrid labeling.

the region corresponding to n is Tnode(n) = I(n,s) + h(n) steps. Let A" denote the set of
all nodes reached in tracing a given curve c. The runtime for tracing ¢, Teyrye(c) is given

by the following expression: Teurve(€) = max,cp Tode(n).

It is possible to reach a cost/performance compromise between the direct and hierarchical
schemes. One simple hybrid region labeling approach is to have nodes corresponding to
large regions propagate the label down to nodes representing sufficiently small elementary
regions, which then label input locations directly (Figure 5.3 (c)). The maximum commu-
nication degree is d?, where d is the diameter of the elementary regions. The runtime for
tracing is calculated just as in the pure hierarchical scheme. The three unlimited-extent
curve chunking schemes presented in this chapter are evaluated on the basis of this hybrid
approach and, for comparison, the ideal, but practically unrealizable, direct approach.

Curve chunking performance considerations

The effectiveness of a decomposition into curve chunks is measured in terms of the number

of steps incurred in tracing, which is related to the size of the curve chunks. In general,

83

larger curve chunks imply fewer tracing steps. The number of potential input configura-
tions is very large, as is the number of possible tessellations of the input. Comparatively,
the set of tessellations that a chunking mechanism can generate is quite small, because
parallel labeling hardware must be committed to each region of each tessellation that can
be generated. Therefore, no curve chunking mechanism can generate the optimal set of
curve chunks for all inputs. (In fact, it would be a highly unlikely event for a particular
mechanism to give the optimal curve chunking of any independently given input.) As such,
a reasonable performance goal for curve chunking processes is the production of good, not

optimal, decompositions over a relatively large class of potential inputs.

The main factor limiting the extent of curve chunks is proximity between curve segments.
Any parameter of a configuration of input curves, such as high curvature or curve intersec-
tions, that connotes proximity between curve segments influences the sizes of curve chunks
into which the input can be decomposed. Position and extent of an isolated input curve
may also affect the number of curve chunks, depending on the set of tessellations that a

particular chunking process can generate.

84

5.2 Limited-extent curve chunking

Perhaps the simplest possible scheme for defining curve chunks is one involving (i) the use
of the most straightforward techniques, such as conventional pixel-level tracing, for estab-
lishing region validity, and (ii) a predetermined tessellation of the input array into regions
of limited size. The limitation on the size of the regions is an unavoidable consequence of
the use of very simple validity computations. The specific reasons for the size restrictions
depend on the particular validity computation used. In addition, given a predetermined

tessellation, the larger the regions, the more of them are likely to be invalid.

The techniques of limited-extent curve chunking are an important component of the more
powerful, unlimited-extent schemes presented in subsequent sections of this chapter. The
divide-and-conquer curve chunking methods begin with a limited-extent decomposition. Di-
rect, unlimited-extent curve chunking is made hardware-efficient by an initial limited-extent
decomposition. (Note, also, that the limited-extent approach was assumed, in Chapter 3,
to provide the “basic segments” of boundaries used for computing local prominence infor-

mation.)

Simple, regular tessellations are appropriate for this application because they are easy to
implement. The problem of curve chunking does not, however, seem to place any restrictions
on the shape of the regions of the tessellation pattern—e.g., rectangular vs. hexagonal. The
specific choice may be governed mainly by the available hardware. Also, there is no need

for the regions to be ezactly the same size or shape.

The next two subsections develop a serial method and a parallel method for determining
validity of small regions. The serial method works by distinguishing and counting each
of the curve segments in the region by pixel-level tracing. The parallel method involves
detecting two local features, certain combinations of which indicate the presence of two
curve segments. Subsequently, the limited-extent chunking algorithm and an account of its

performance are presented.

Figure 5.4 shows an example decomposition by the limited-extent scheme. The scheme was

simulated on the Lisp Machine. The input was a square binary array of width 512 pixels.

85

Figure 5.4: A decomposition of an input by limited-extent curve chunking —invalid regions
are shaded.

The input curves were entered by hand using a tracking device. The input was decomposed

into square regions of width 16 pixels.

5.2.1 Serial, limited-extent validity checking

The curve segments in a region may be counted by tracing within the region at the pixel
level to make them distinct. (This imposes a limit on the region size because the time for
establishing validity grows roughly with the diameter of the regions.) The tracing process
is defined to follow a particular curve segment, starting from a given element, and marking
the curve elements until the region is exited or until a previously marked element js reached
again. When the current element has two or more unmarked neighbors, the tracing process
must apply rules for selecting the new neighbor. If regions are small, then normally the
direction of the curve upon entry into the region will be essentially preserved through the
region. For example, a curve entering a small square region through the top or bottom

edge is likely to traverse it vertically. At the same time, spurious changes in direction may

86

occur at the pixel level. Occasionally, a curve may bend sharply in the region.

A predefined directional priority scheme (DPS) for selecting a neighbor can impart a spec-
ified overall directionality while allowing for temporary (spurious) or permanent direction
changes. A DPS is a list of coordinate offsets. Each pair specifies the positional offsets
of an immediately neighboring curve element (pixel) in a particular direction. The trac-
ing process moves at each step from the current element to the neighboring curve element
whose coordinate offsets occur earliest in the list. The priority schemes associated with
the up, down, left and right directions (and thus the bottom, top, right and left region
borders, respectively) are shown in Table 5.1. An algorithm for tracing and counting the
curve segments in a small rectangular region (of a rectangular array) is given below. The
top, bottom, left, and right edges of a region are defined in the obvious way. The count is

initially 0. The algorithm makes use of two labels.

For each edge b of the region r, while there is an unmarked curve element e in b having no

more than two neighbors, do the following:

1. Shift the starting location for tracing to e.

2. Trace using the DPS associated with b, and a label that is unused so far. (The tracing

Process terminates not at the region border but one or more pixels beyond it.)
3. Increment the count by 1. Exit if the count exceeds 1.

4. Repeat.

Tracing slightly beyond the region border makes it possible to distinguish the following two
situations: (i) the intersection of two curves coincides with a border of the region; (i) a
sharp direction change of a curve coincides with a border of the region. With tracing beyond
the border, if a crossing coincides with the border, tracing will proceed a bit through the
crossing and stop (and the count of the curve segments in the region will ultimately be 2);
if a corner coincides with the border, tracing will simply proceed around the corner. The
second condition in the definition of a curve chunk—no elements in the region with more

than two neighbors—is thereby implemented.

87

1 2 3 4
up [(0-1)] (1-1)(-1-1)[(10)(-10)[(-11)(01)(11)
down [(01) [(ID(-1D) [(10)(10)[(1-1)(0-1)(L-])
left | (10) |(1-)QD) [(0-D(01)](10)(-1-1) (1D
right [(-10) [(I-)(ED[OD(0-1)](10)(Q-1) (1)

Table 5.1: Directional priority schemes for a rectangular tessellation. Order among pairs
of coordinate offsets in the same column does not matter. Y-coordinates increase in the
down direction.

The runtime of the tracing process depends on the length of the curve segment in the region.
Many local tracing processes will operate concurrently, and they will terminate at different
times. The runtime of the concurrent tracing process is the maximum of the execution
times of all the local processes, i.e., the maximum length of any curve segment in one of the
local regions. This value is not known initially, but an upper bound is given by the region
size—in a square region of width d locations, the maximum possible curve segment length
is about d?/2. This maximum is unlikely, however; it is reasonable to impose a smaller
limit proportional to d (e.g., 3d) on tracing time, and to treat regions in which the local

tracing process fails to terminate in that time as invalid.

5.2.2 Parallel, limited-extent validity checking

Validity may be established in parallel in terms of two local geometric features—curve
terminations in the region and curve exits of the region border. (This imposes a limit on
the region size because the cost of distinct hardware units for establishing validity of each

region grows with the area of the regions, at least.)

The border of a region r is defined to be the set of locations in r that have fewer than
eight neighbors in 7. An ezit of a region r is a connected set s of curve elements in the
border of a region adjacent to r, such that some curve element e in s has a neighbor in r.
A termination is a curve element (i) included in the region, and (ii) having no more than
one neighboring curve element in the region. The termination count T and the exit count

E can be used to establish that a region contains a single curve segment (and no curve

88

Figure 5.5: Parallel validity check based on termination count and exit count—valid cases,

elements with more than two neighbors), assuming that the region contains no closed curve

loops.
A region containing no closed loops is valid if T + E < 2. (See Figure 5.5.)

Figure 5.6 shows some examples of disallowed combinations. It is necessary to explicitly
disallow loops because T and E cannot be used to distinguish between the cases in Figure 5.5
(a) and Figure 5.7, for example. For small regions, this “no loops” assumption is very likely
to be correct; when it is violated, tiny loops very near the relevant curve may be incorrectly

labeled, but for most applications this is likely to be harmless.

The parallel validity check can be implemented by simple, local processes. Terminations
and exits are detectable by simple template matching. The simplest perceptron-like devices
may be used to detect the valid combinations of T and E [Minsky and Papert 69]. A general
counting mechanism is not required; it is only necessary to implement predicates of the form
“There are exactly 2 terminations in the region,” etc. The outputs of these predicates can

be combined by simple logical operations.

89

Figure 5.6: Some invalid feature combinations.

Figure 5.7: An invalid region for which T + E < 2.

90

5.2.3 A limited-extent curve chunking algorithm

The output representation of limited-extent curve chunking is a graph. The graph consists
of an array of nodes labeled valid or invalid—one node for each non-vacant region—and
a set of edges between nodes indicating legal curve continuity between adjacent regions.
The limited-extent chunking algorithm is a single-stage parallel process: the region-validity
computation is simultaneously applied to each region and the valid/invalid label is assigned
the appropriate value. At the same time, the curve continuity computation may be applied
simultaneously to all pairs of adjacent regions, and edges are created between corresponding
pairs of nodes accordingly. (For each region in the tessellation, three hardware processing
mechanisms are required, one for the validity computation, one for the curve continuity
computation, and one for the tracing-time region-labeling operation.) The runtime of the
algorithm is constant. If the serial validity check is used, kd steps are required, where d is
the region width and k is some small integer determined by the maximum expected length
of a curve segment in a region. The parallel validity check involves a small constant number

of steps that depends on the circuitry used to detect valid combinations of features.

Dynamic choice of region size

The discussion so far has assumed a single predetermined region size. Suppose invalid
regions are traversed by tracing temporarily at the pixel level. Tracing time for a given
curve is the sum of the number of valid regions traversed and the number of curve elements
in invalid regions traversed. The number of invalid regions is a function of the density of
input curves in relation to the region size. It is therefore possible to use the data to select a
region size that will optimize tracing time—smaller regions imply that curves in the input
will traverse more regions, but fewer of these may be invalid. One possibility is to use the
largest size for which the number of invalid regions is close to the minimum. (The minimum
number of invalid regions is obtained for the smallest available region size—for sufficiently
small regions, the set of invalid regions coincides with the set of curve crossings.) The
motivation for this is that the minimum number of invalid regions is achieved (or almost

achieved) as soon as region size becomes small enough that no two extended curves (or parts

91

ozt

a b
mzt

-‘C, T d, !

Figure 5.8: Dynamic choice of region size for limited-extent curve chunking. (a) d = 64.
(b) d =32. (c) d=16. (d) d = 8. Shaded regions are invalid. The chosen size is 16.

of curves) occupy the same set of regions. Figure 5.8 illustrates this idea. Tessellations of
an input are shown for a series of region sizes, and invalid regions are shaded. The selected
region size is the one corresponding to the last big drop in the number of invalid regions as

size is decreased.

92

5.2.4 Performance

The runtime of tracing using limited-extent curve chunks depends on two factors. The
primary factor is the sizes of the curve chunks into which the relevant curve is decomposed
(i.e., the valid regions containing segments of the curve). The secondary factor is the
overhead involved in traversing invalid regions. In the limited-extent scheme, the chunk
size is fixed and uniform over the input, so consideration of the primary factor alone would
lead to a simple relationship between curve length and tracing time. The influence of invalid
regions cannot be ignored, however, and this makes it difficult to analyze performance in
Precise terms, for two reasons. First, the number of invalid regions depends on the geometry
of the input curves, i.e., incidence of curve crossings and points of curve proximity. A precise
performance analysis would require a detailed, statistically justified characterization of the
geometry of some universe of inputs. This would be difficult to provide even for a specific
domain of application; it is beyond the scope of this thesis to attempt to provide a general
characterization of input geometry, if there is such a thing. (This comment also applies to
the rest of the curve chunking schemes developed in this chapter—for them, the geometry

of the input curves is the primary performance factor.)

The second difficulty is that there are at least two possible strategies for traversing invalid
regions (see Section 5.1), each with different time-performance, and the choice between them
may depend on the circumstances—different strategies might be used even in the course of
tracing a single curve. In the following analysis I present the extremes of performance that

these alternative strategies lead to.

Let the region diameter used in the limited-extent scheme be d pixels. The best case arises
when no region traversed by the relevant curve is invalid—i.e., it never traverses the same
region more than once, and never traverses a region that another curve traverses. In this
case, limited-extent curve chunking provides a roughly d-fold speedup over pixel-at-a-time
tracing. This relationship is approximate, for one thing, because tracing time is insensitive
to possible variations in the length in pixels of a curve segment in a region. Also, there is
a small position dependence analogous to quantization effect, as illustrated in Figure 5.9.

This effect depends on the shape of the regions in the tessellation; a rectangular tessellation

93

Figure 5.9: Position dependence in limited-extent curve chunking.

is in this respect inferior to a hexagonal one.

The worst case arises when every region traversed by the relevant curve is invalid—in this
case no valid curve chunks are available at all, and the entire curve must be traced at the
pixel level. Figure 5.10 shows two situations which give rise to the worst case: (i) two
parallel curves are separated by a distance of less than d; (ii) a curve is repeatedly crossed
at intervals along its length of less than d.

If v and i denote the number of valid and invalid regions, respectively, traversed by a curve
¢, then the time to trace c is given by T ~ v + di.3 For typical inputs, 7 is normally small
compared to v, for any given curve, so tracing time is still much improved over pixel-level
tracing. For example, the “2” in Figure 5.4 is 817 pixels long. 65 of the regions it traverses
are valid and 7 are invalid. 81 of its pixels are in invalid regions. Therefore, the time to trace
this curve is 72 steps at best (i.e., invalid regions are skipped, using local curve direction

information) and 65 + 81 = 146 steps at worst (invalid regions traversed by pixel-at-a-time

3If tracing proceeds concurrently in two directions along the curve, tracing time can vary by a factor of
up to 2, depending upon where tracing begins.

94

Figure 5.10: Examples of the worst case for limited-extent curve chunking— no curve
chunks are defined for any of the horizontal curves.

tracing).

It is useful to note the effect of region size here. Given 4-pixel-wide regions (Figure 5.11),
the “2” traverses 256 valid regions and 6 invalid ones. 16 of its pixels are in invalid regions.
In this case, the time to trace this curve is 262 steps at best and 262 + 16 = 278 steps at

worst.

95

Figure 5.11: A decomposition of an input into 4-pixel-wide elementary regions—invalid
regions are outlined by solid lines.

5.3 Direct, unlimited-extent curve chunking

This section and the following two develop schemes that generate curve chunks with no
a priori limit on extent. The capacity for defining curve chunks of unlimited extent is
gained by introducing somewhat more elaborate computations than the simple ones that
were used to establish region validity in the case of limited-extent curve chunking. Those
simple methods do not scale up directly to regions of arbitrary size. Pixel-at-a-time tracing
becomes too slow—that is, after all, why curve chunking is being explored. The “no loops”

assumption made by the parallel validity computation becomes unrealistic.

The methods for establishing validity of large regions may be classified according to whether
or not they involve a series of intermediate computations. The method introduced in this
section does not, and it is therefore referred to as a direct method. The methods of the

next two sections are indirect—they are based on the technique of divide-and-conquer.

96

(1

__/

Figure 5.12: Decomposition of an input by direct, unlimited-extent curve chunking.

The direct, parallel, unlimited-extent validity check developed in this section is based on
a simple extension of the parallel validity check developed for the limited-extent scheme.
Restrictions on local curvatures and the range of local curve orientations are introduced to

exclude regions containing closed loops.

There are three main considerations in the design of a direct, unlimited-extent curve chunk-
ing scheme: (i) the computations for ascertaining region validity; (ii) the size, shape, and

arrangement of the regions; and (iii) the algorithm of the chunking process.
Figure 5.12 shows an example decomposition by the direct, unlimited-extent scheme, for

an input that was previously used to demonstrate limited-extent curve chunking.

5.3.1 A parallel, unlimited-extent validity check

This section extends the feature-based parallel validity check introduced in Section 5.2.2 to
regions of arbitrary size. That check may be applied to regions of any size, but the problem

with it is that closed loops in the region are “invisible” to it, because they do not give

97

— T~

®
o

Figure 5.13: (a) Closed loops with no points of very high or discontinuous curvature have lo-
cal orientations spanning the range 0 to 180. (b) Closed loops with curvature discontinuities
need not span the entire possible range of orientations.

rise to terminations or exits. Because it is not safe to assume that a large region contains
no closed loops, it is necessary to introduce additional computations that will explicitly
determine whether or not the region contains a closed loop. The computations introduced

are required to be direct.4

The possible presence of a closed loop in a region can be established in a very simple, direct,
parallel way, based on the set of local curvatures and orientations in the region. Suppose
local curve orientation is measured between 0° and 180°. If a loop has sufficiently low
curvature at every location, then the set of local orientations must span the entire possible
range (Figure 5.13 (a)). (Note that the presence of orientations across the entire possible
range implies only the possibility of a closed loop.) A loop need not span the entire range,

however, if it includes points of very high or discontinuous curvature (Figure 5.13 (b)).

‘[Edelman 85] used an indirect method—divide-and-conquer—to exclude closed loops in a related appli-
cation. See Chapter 7.

98

Figure 5.14: Local curve orientations defined by the curve segments in 16-pixel-wide ele-
mentary regions. Regions in which an orientation could not be reliably defined are shaded.

Computing local curve orientation and curvature

There are a variety of possibilities for computing local orientation and curvature, but the
particulars of how these measures are computed are not crucial to this discussion of direct,
unlimited-extent curve chunking. Perhaps the most problematic issue that arises in defining
local curve orientations and curvatures is the choice of the appropriate scale at which to
compute these measures. This issue is not addressed here. Many edge/line detectors can
provide edge orientation information. In the simulation, local curve segments were defined
by dividing the input into small regions, and the orientation of" the axis of least inertia
of the set of pixels in each region was used as the local curve orientation measure (see
[Horn 86), [Winston and Horn 84]). A region diameter of 16 pixels was chosen, somewhat
arbitrarily. Figure 5.14 shows the local curve orientations computed for an example input.
The local curve segments that gave rise to these orientations are those in Figure 5.4, because

limited-extent curve chunking was applied to the same example with the same region size.

99

The validity check

The orientation difference d(6,,65), 0 < 6,0, < 180, is defined as follows:
d(ola 02) = min(ah - 01’(01 +180) - oh)a

where 6, = max(6,, 6;) and 6; = min(6;,6,).
Let the set of local curve orientations defined in a given region R be denoted by O(R). The
orientation spread S(O(R)) is defined by the following expression:

S(O(R)) = (61,62)

max d
6,,0.€G(R)

In principle, for any region R containing a closed loop S(®(R)) > 90°. In practice, because
of error in the computation of local curve orientations, it is necessary to limit the orientation
spread further. Recall the definitions of T, the termination count, and FE, the exit count,

introduced in Section 5.2 for the limited-extent parallel validity check.

A region R is valid if (i) it includes no points of very high or discontinuous curvature; (ii)

S(O(R)) < (90 —€)°; and (i) T + E < 2.

Orientation spread and curvature thresholds

The value of € used in the simulation was 25°; this value was found empirically to be safe

in the context of the orientation computations that were used.

There are a variety of possible curvature measures, and the curvature threshold depends on
the particular measure used. The choice of the curvature threshold has not been explored.
(The curvature restriction was not implemented; the simulation is not guaranteed to give

correct results for inputs including points of high or discontinuous curvature.)

(It is worth pointing out here that the orientation spread and curvature restrictions were

not used to exclude loops in the limited-extent case because they are not suitable for

100

very small regions. Within a small region, local curve orientation may only be defined at
the pixel-level, that is, by the directions between neighboring pixels. Pixel neighborhood
provides a very small total range of eight local orientations. The spurious local variation
in curve direction at the pixel level is large in comparison to this total range. Therefore no
restrictions on orientation spread and curvature can both exclude loops and permit curve

segments in a small region.)

Reducing combinatorics

A truly direct implementation of this scheme would have maximum communication degree
of N2, for a square input array of width N pixels, where N is on the order of 102, say. By
adding a single level of indirection to the computation for regions above a certain size, its
hardware cost can be brought into a reasonable range. By dividing the input into small
elementary regions of diameter d pixels, and computing validity of larger regions on the
basis of these, the maximum communication degree can be reduced to O((N/d)?). The
O(N?) communication requirement comes from the computation of T. Adding indirection
to the computation of T is straightforward: the termination count of a region R is the
sum of the termination counts for the elementary regions R includes. 7T is computed for

elementary regions directly.

It is slightly more involved to add indirection to the exit count. The extension is not strictly
necessary—the communication requirement for computing E is only O(N)—but it is worth
sketching here. The elementary edges of a region R are edges of R’s elementary regions
that are included in R’s edges. The exit count of a region R is the number of exits that

occur at its elementary edges.

5.3.2 Regions

Given a validity check for large regions, it becomes necessary to decide upon the range of
sizes, shapes, and positions of the regions over which it will be applied. Intuitively, tracing

time can be optimized by detecting curve chunks at the maximum possible number of sizes,

101

shapes, and positions, subject to a restriction on total cost. The direct curve chunking
scheme could be applied in a manner very similar to the one Shafrir [Shafrir 85] developed
for fast region coloring (see Chapter 7). He used a direct, parallel computation to detect
empty regions at many positions and sizes, subject to cost restricfions. At each coloring

step, all uncolored regions overlapping a previously colored region may be colored.

In this report, the direct curve chunking approach is demonstrated in the context of an
economical, pyramid scheme for decomposing the input into subregions known as the binary
image tree. This is done so that it can be compared to the upcoming divide-and-conquer
methods, which use the same scheme. The detailed description of the pyramid is given in

Section 5.4.1.

5.3.3 A direct, unlimited-extent curve chunking algorithm

The output representation is a graph. The graph consists of an array of nodes labeled
valid or invalid—one node for each non-vacant region—and a set of edges between nodes
indicating legal curve continuity between adjacent regions. The unlimited-extent curve
chunking algorithm is a single-stage parallel process: the region-validity computation is
applied simultaneously to each region and the valid/invalid label is set appropriately. At
the same time, the curve continuity check is applied to pairs of adjacent regions and links
are appropriately established between nodes representing these regions. The runtime of the
algorithm is a small constant that depends on the circuitry used to measure orientation

spread and detect valid combinations of features.

5.3.4 Performance

The runtime of tracing using the unlimited-extent curve chunks provided by the direct
scheme depends on the sizes of the curve chunks into which the relevant curve is decom-
posed. Chunk size, in turn, depends on two factors. The primary factor is the geometry
of the input curves — total curvature, local curvature, and incidence of curve crossings and

points of curve proximity. (Taken by itself, curve length does not affect chunk size, so

102

tracing time is scale independent.) The influence of curve geometry makes a precise per-
formance analysis difficult, for the reasons Previously stated in the performance discussion
for limited-extent chunking. The secondary factor is the scheme by which the regions to
be checked for validity are defined (e.g., binary image tree, quadtree, overlapping or non-
overlapping regions, etc.). Each such scheme has different performance ramifications, and
there is a wide, essentially unexplored range of possibilities. For that reason, the following
paragraphs attempt to characterize the general aspects of the behavior of direct, unlimited-
extent curve chunking, i.e., the aspects that do not depend on the particular scheme used

to define regions.

The best case occurs when the relevant curve (i) does not cross itself or any other curve;
(i) includes no points of very high or discontinuous curvature; (iii) does not have local
orientations spanning the range Sioop- If a region R including the entire curve is checked
for validity, the result is a single curve chunk. “Tracing” this curve involves one parallel
region-labeling operation. In the hybrid model of region labeling (Section 5.1), this requires
about log D/d steps, where D and d are the diameters of R and the elementary regions of
the hybrid labeling process, respectively. (In the direct model of region labeling, only a

single step is required.)

The worst case arises when of all regions checked, none larger than a pixel and traversed by
the relevant curve prove valid. In this case, direct, unlimited-extent chunking provides no
improvement over pixel-level tracing. The examples of worst case inputs presented above in
the performance discussion for limited-extent curve chunking also apply to unlimited-extent
curve chunking.

Using the binary image tree decomposition, for typical inputs the number of steps required
Jor tracing a curve is normally on the order of 10. (This does not depend much on the
size of the image.) Figure 5.15 shows the result of tracing one of the curves in the example
of Figure 5.12. In the left frame, the small circle indicates the starting point of tracing,
and shaded regions are curve chunks that were labeled. The right frame shows the curve
extracted by this labeling process. The figure caption gives performance metrics. Ty

and Tp denote the number of steps required to trace the portion of the curve falling in

103

shaded regions, counted using the hybrid and direct region-labeling models, respectively.5
P denotes the number of pixels in the traced curve. I denotes the number of pixels of the

traced curve in invalid regions.

In the hybrid labeling scheme, the time to trace a curve is Ty steps at best (i.e., invalid
regions are skipped, using local curve direction information) and Ty + I steps at worst
(invalid regions are traversed by pixel-at-a-time tracing). I, the additional time for tracing
the curve pixel-by-pixel through invalid regions, depends on the width of the smallest
regions checked for validity. As shown in Section 5.4.4, when the region width goes from 16
to 4 pixels, I drops from 81 to 16 for the “2” in this example, and Ty increases by about
10. Therefore, for 16-pixel-wide elementary regions, tracing the “2” involves 114 steps; for

4-pixel-wide elementary regions, tracing the “2” involves about 60 steps.®

As pointed out above, the binary image tree decomposition is not the most effective pos-
sibility for defining regions for direct, unlimited-extent curve chunking—equal or better
performance can be achieved by any scheme that defines regions at an equivalent or larger

range of positions and sizes.

Curve chunk size is affected by the limit on orientation spread Sjo,p. Figure 5.16 shows the

decompositions of a region containing a circle for several values of Sloop-

*Where A is the set of nodes reached in tracing, s is the starting node, and I(n, s) is the path length
between n and s, Tp = maxqexl (n, 5). Suppose a hybrid labeling scheme is used in which square elementary
regions of width d pixels can be directly labeled, but larger regions must be labeled indirectly. Let D(n)
denote the maximum of the horizontal and vertical dimensions, in pixels, of the region corresponding to
a node n. The number of steps it takes to label a region defined by the binary image tree is given by
h(n) = 2log D(n)/d, and Ty = maxaexl(n, s) + h(n).

®The direct validity check can be applied to regions of any size—even down to a single pixel. By making
the minimum region a pixel, the added term I is eliminated. Ty also increases, however, so tracing time
would not be much different from that for a minimum region width of 4 pixels.

104

Figure 5.15: Tracing the “2” by unlimited-extent curve chunks given by the direct scheme:
P=817Tg = 33; Tp = 28; I = 81.

5.4 Divide-and-conquer, unlimited-extent curve chunking

The strategy of divide-and-conquer provides an effective alternative way of establishing
validity of large regions without explicit restrictions on local curvature or orientation spread.
In the divide-and-conquer approach, large valid regions are assembled by combination of
smaller regions that have previously been shown to be valid, subject to a simple rule. The
main components of a divide-and-conquer curve chunking scheme are (i) an initial limited-
extent decomposition into curve chunks, providing the basis for the divide-and-conquer
process; (ii) a pyramid representation; (iii) rules for combining valid regions into valid

regions; (iv) an algorithm for building up the decomposition by applying these rules.

Figure 5.17 shows an example divide-and-conquer decomposition for a now-familiar input.

105

N
]

AN

~—1

Figure 5.16: Decompositions of a region containing a circle for several valu

€

90°; (b) 89°; (c) 60°; (d) 45°; (e) 30°; (f) 15°.

106

f

es of Sj,05: (a)

E
yd
Y. \\

/
/1
/
~—

\\/

Figure 5.17: Decomposition of an input by divide-and- conquer curve chunking.

5.4.1 The pyramid representation

A pyramid representation is used to construct the tessellation. Each node in the pyramid
represents a region of the image. Associated with each node is a label which can take
on the values valid/invalid. The size of the region represented by a node is determined
by the node’s level in the pyramid. The position of the region represented by a node is
determined by the node’s position in the array of nodes that are at the same level. The
array of nodes at a particular level represents a regular tessellation of the input at some
scale. A node is linked to a number of child nodes in the level immediately below it. The
children of a node in the pyramid represent the subregions of the region that the parent node
represents. The base-level nodes represent the regions — termed elementary regions—in the
initial decomposition. The pyramid as a whole can represent a large number of irreqular
tessellations of the input. (A subset of the pyramid’s nodes constitutes a description of a
particular tessellation if the union of the regions these nodes represent is the entire input

array.)

107

Some of the more natural possibilities for defining the subregions of a region in a rectangular
array include the following (Figure 5.18): (i) two subregions per region and one common
boundary (binary image tree); (ii) four subregions per region and four common boundaries
(quadtree); (iii) nine subregions per region and twelve common boundaries (9-tree). (See
[Pavlidis 82] for discussions of the binary image tree and the quadtree.) These schemes

may be applied with or without overlap between the subregions.

The two-subregion-per-region scheme is adopted here because of two main advantages
that it offers. First, it leads to the simplest computations for merging the subregions—
curvilinearity relations need be checked at only one boundary, which means a savings in
hardware in parallel implementation, a savings in time in serial implementation. Perhaps
more importantly, a failure to merge in a two-subregion scheme is less costly than it is in
any of the others—it leads to one additional chunk, not three or eight. The two-subregion
scheme does have two disadvantages, however. First, regions of two different shapes are
required (squares and rectangles), which makes design and implementation somewhat more
involved than it would be for a quadtree. Also, more merging steps are required in the

assembly of regions of a given size than in any of the other schemes.

Most of the demonstrations of divide-and-conquer curve chunking presented here are the
output of an implementation based on non-overlaping regions. In practice, the use of over-
laping regions requires somewhat more hardware, but it may be much easier to construct
because it does not require precise alignment of region boundaries. Figure 5.19 illustrates

a pyramid built on the two-subregion decomposition without overlap.

A binary image tree representing a square array of width N pixels has A = 2log N levels,
2" nodes, and 2" links between nodes. In order to represent curve continuity, additional
direct links are required, to connect nodes in the pyramid that correspond to adjacent
regions. (Associated with each of these links is a two-valued label, say continuity/no-
continuity.) The rectangular region a node n at level I of the tree represents is adjacent
on each side to up to 2! other regions represented by nodes in the tree, so n may require
up to 2!*? continuity links. This requirement leads to an O(N) upper bound on maximum

communication degree (MCD); specifically, the upper bound is 2(*-1+2 — 27 (h—1is

108

T I W L

Figure 5.18: Some possible ways of defining the subregions of a region in a rectangular
array (without overlap).

used instead of A because the region represented by the top-level node is the entire image
and does not require continuity links). Thus for N = 512, the MCD is at most 1024—a

costly but not unrealistic communication requirement.

The communication requirement can be reduced considerably, as follows. The binary image
tree need not represent the image all the way down to the pixel level. If fringe nodes of the
tree represent square elementary image regions of width d pixels, then the MCD is bounded
by 2N/d. For example, for N = 512 and d = 16, the MCD is at most 64, and for d = 4 it
is at most 256. The use of elementary regions provides a reduction in hardware cost but
involves a certain time performance sacrifice, as the performance results presented below

show. Therefore, a cost-performance compromise must be made.

5.4.2 The rule for merging regions

The union of two adjacent valid regions is valid if (i) either region is vacant; or (ii) the

common boundary is crossed (see section 5.2). (See Figure 5.20.)

109

0 tvd
L.l 00 0110 1t 0% 1v 13

(N |
'] I I
2 I T
3 LT '
0O
0
o 1
’]
; |
! | ’
' o '
-1 o) l:
/
k3
o

@
Lz

3,

4

Figure 5.19: A binary image tree, starting from a four-by-four array of elementary regions.

110

Figure 5.20: Nlustration of the rule for merging adjacent regions: (a) vacant regions are
valid; (b) a vacant region and a valid, non-vacant region form a valid region; (c) two valid,
non-vacant regions form a valid region if their common boundary is crossed.

Proof:
Condition (i): Obvious.

Condition (ii): Let R1, R2 denote two adjacent valid regions. A curve segment may
be viewed as a chain, i.e., a connected graph of maximum degree 2, whose nodes are
curve elements and whose edges are instances of the neighborhood relation between curve
elements. By definition, that a region is valid implies that the set of curve elements in the
region either is the empty set or constitutes a chain, and no element in the region has more
than two neighbors. That the boundary between R1 and R2 is crossed implies that both
regions contain one or more curve elements, and that for some curve elements el in R1 and
€2 in R2, el and €2 are neighbors. Therefore, the union of the sets of curve elements in R1

and R2 constitutes a single chain, so the union of the two regions is valid.

(The extension of the preceding rule to overlapping regions is straightforward. When two
regions overlap, each one includes part of the boundary of the other. Condition (ii) is

replaced by a requirement that each section of “overlapped” boundary must be crossed.)

111

5.4.3 A divide-and-conquer curve chunking algorithm

This section presents an algorithm for divide-and-conquer curve chunking. The output
representation of divide-and-conquer chunking is a graph. The graph consists of an array
of nodes labeled valid or invalid—one node for each maximal valid region defined by the
chunking process—and a set of edges between nodes indicating curve continuity between
adjacent regions. The algorithm has three main components: (i) elementary regions are
checked for validity by a direct method; (ii) non-elementary regions are checked for validity
by divide-and-conquer; (iii) maximal valid regions are identified; (iv) nodes representing

adjacent regions are linked if there is curve continuity between them.

Checking elementary regions for validity

The computations described in Section 5.2 may be used to establish validity of the elemen-
tary regions. The validity labels of corresponding nodes at the base of the pyramid are set

appropriately.

Building valid regions

Suppose the height of the pyramid is A, where the lowest level—the representation of the
initial decomposition—has height 0. The variable ! indicates the pyramid level currently
being operated upon; its initial value is 1. The wvalid/invalid label of each node in the

pyramid is initialized to ¢nvaelid. The algorithm for building up valid regions is as follows:
Repeat for [from 1 to h:
1. (In parallel) for each node r at level I both of whose children are valid, apply the

merging rule computations to its subregions. Modify the valid/invalid label as appro-

priate.

112

}
}

\J N\)

Figure 5.21: Input demonstrating the asymmetric behavior of the binary image tree.

Applied in the context of the binary image tree, the behavior of the above algorithm is
asymmetric. In Figure 5.21 (a) it gives rise to one curve chunk but in Figure 5.21 (b) it
gives rise to two; one figure is simply a 90° rotation of the other. To correct this asymmetry,
a symmetric binary image tree is used instead (Figure 5.22). This necessitates two different
merging operations. (The new image tree is described for the non-overlaping case only; the
required extension for the case of overlaping regions is very similar.) Each square region
may be defined either by a pair of horizontal regions or by a pair of vertical ones. Also, each
square region may define half of a horizontal rectangular region or half of a vertical one. As
before, at odd levels of the pyramid, squares are merged into rectangular regions; at even
levels, rectangles are merged into squares. Now twice as many nodes are required at odd
levels of the pyramid, half of them representing vertical rectangles, the other half horizontal
ones. Each rectangle has a pair of square children; validity is established for every rectangle.
At even levels, the number of nodes required remains unchanged; such a node now has two
pairs of children, one vertical and one horizontal, and therefore two opportunities to be
labeled valid. The merging rule computations are applied independently to the horizontal
pair and to the vertical pair of subregions; the common parent node is labeled valid if the

merging rules were satisfied by either pair of subregions.

113

AND

l

Figure 5.22: Defining the symmetric binary image tree.

Identifying maximal valid regions

Assume that each node in the pyramid may take one of two states, active and inactive, and
all nodes are initially active. The algorithm for identifying maximal valid regions (MVR’s)
does so by suppressing non-maximal valid regions. Nodes remaining active after this process

are the maximal valid regions.

Repeat for [from h down to 1:

1. (In parallel) for each active valid node r at level / , deactivate every descendant node of
r. (A descendant node of r is any node than can be reached by following parent-child

links downward through the pyramid.)

Establishing curve continuity between regions

The curve continuity process is not dependent on the preceding two processes. For any
given pair of regions, the curve continuity check involves determining whether their common
boundary is crossed. The check may be applied in parallel for every adjacent pair of regions

represented in the pyramid.

114

Examples illustrating the divide-and-conquer process

Figures 5.23 and 5.25 illustrate the progress of this algorithm for two small, similar ex-
amples. The base of the pyramid is at the top of the diagram — pyramid level increases
downward. Dashed and solid lines in the arrays at the left indicate the decomposition so
far. A string of the form /- ji will be used to refer to the region in the array at level ! whose
y-coordinate is j and whose x-coordinate is i. In the first example, an attempt to merge
regions 0-10 and 0-11 fails because 0-11 is invalid. In the second example, an attempt to
merge regions 0-10 and 0-11 fails because the common border of these two regions is not

crossed. Figures 5.24 and 5.26 show the output.

If the serial check is used to establish validity of elementary regions, the runtime of the entire
divide-and-conquer process is about 2k + kd, where d is the elementary region diameter
and k is some small constant. If the parallel validity check is used for elementary regions,

the runtime is 2h + k, for some small k.

5.4.4 Performance

The runtime of tracing using the unlimited-extent curve chunks provided by the divide-
and-conquer scheme depends on the sizes of the curve chunks into which the relevant curve
is decomposed. Chunk size, in turn, depends on two factors. The primary factor is the
geometry of the input curves—total curvature, local curvature, and incidence of curve
crossings and points of curve proximity. (Taken by itself, curve length does not affect
chunk size, so tracing time is scale independent.) The influence of curve geometry makes a
precise performance analysis difficult, for the reasons previously stated in the performance
discussion for limited-extent chunking. The secondary factor is the scheme by which the
regions to be checked for validity are defined. Each such scheme has different performance
ramifications, and there is a wide, essentially unexplored range of possibilities. For that
reason, the following paragraphs attempt to characterize the general aspects of the behavior
of divide-and-conquer curve chunking, i.e., the aspects that do not depend on the particular

scheme used to define regions.

115

Ve -9

o
)
2
3
0 "
-

/

o
o|af ©Q
, —J

3
100

g2

Figure 5.23: Divide-and-conquer curve chunking, Example 1. A solid circle surrounding the
coordinate of a node in the tree indicates a maximal valid region. A dotted circle indicates

an invalid region.

116

Figure 5.24: The output for Example 1. A solid circle surrounding the coordinate of a node
in the graph indicates a maximal valid region. A dotted circle indicates an invalid region.

The best case occurs when (i) no elementary region traversed by the relevant curve is
invalid—i.e., it never traverses the same elementary region more than once, and never
traverses an elementary region that another curve traverses; and (ii) for some region R that
is checked for validity, R includes the relevant curve and nothing else. “Tracing” involves
one parallel region-labeling operation applied to R. In the hybrid model of region labeling
(Section 5.1), this requires log D/d steps, where D and d are the diameters of R and the
elementary regions of the hybrid labeling process, respectively. 7 (In the direct model of

region labeling, only a single step is involved.)

The worst case arises when every elementary region traversed by the relevant curve is
invalid—in that case no valid curve chunks are available at all, and the entire curve must
be traced at the pixel level. In this case, divide-and-conquer curve chunking provides
no performance improvement. The examples of worst case inputs presented above in the

performance discussion for limited-extent curve chunking apply here as well.

Using the binary image tree decomposition, for typical inputs the number of steps required

"It is reasonable to define the elementary regions of the hybrid labeling process to be the elementary
regions of the divide-and-conquer Process.

117

GO -

o
’
F 3
3

')
¢ J
4

0o
-3
L§)

OO0)
\‘_/

K

Figure 5.25: Divide-and-conquer curve chunking, Example 2. A solid circle surrounding the
coordinate of a node in the tree indicates a maximal valid region. A dotted circle indicates

an invalid region.

118

Figure 5.26: The output for Example 2. A solid circle surrounding the coordinate of a node
in the tree indicates a maximal valid region. A dotted circle indicates an invalid region.

for tracing a curve is normally on the order of 10. (This does not depend much on the
size of the image.) Figure 5.27 shows the result of tracing one of the curves in the example
of Figure 5.17. In the left frame, the small circle indicates the starting point of tracing,
and shaded regions are curve chunks that were labeled. The right frame shows the curve
extracted by this labeling process. The figure caption gives performance metrics (these
numbers were introduced in Section 5.3.4.) In the hybrid labeling scheme, the time to trace
a curve is Ty steps at best (i.e., invalid regions are skipped, using local curve direction
information) and Ty + I steps at worst (invalid regions are traversed by pixel-at-a-time
tracing). I, the additional time for tracing the curve pixel-by-pixel through invalid regions,
depends on the width of the smallest regions checked for validity. As shown in Figure 5.28,
when the region width goes from 16 to 4 Pixels, I drops from 81 to 16 for the “2” in this
example, and Tg increases by about 10.8 Therefore, for 16-pixel-wide elementary regions,
tracing the “2” involves 113 steps; for 4-pixel-wide elementary regions, tracing the “2”

involves 61 steps.

%For this example, the direct and divide-and-conquer schemes have very similar behavior, so these com-
ments apply equally to the former.

119

Figure 5.27: Tracing a curve by unlimited-extent curve chunks given by the divide-and-
conquer scheme: P = 817; Ty = 32; Tp =27; I = 81.

The divide-and-conquer scheme can be applied to regions of any size — even down to a single
pixel. By making the minimum region a pixel, the added term I is eliminated. Ty also
increases, however, so tracing time would not be much different from that for a minimum
region width of 4 pixels. As pointed out in Seetion 5.4.1, maximum communication degree
is inversely proportional to elementary region width, so a width of 4 pixels is preferable to

a width of 1.

The worst case described above is unlikely. A more likely “bad case” for this technique
is a situation in which most elementary regions traversed by the relevant curve are valid,
but for which most attempts to merge regions fail. In this case, divide-and-conquer curve
chunking provides little or no speed-up over limited-extent curve chunking. For example,
Figure 5.29 shows an example that is best case for limited extent curve chunking and “bad
case” for divide-and-conquer (Figure 5.30).

Using the binary image tree decomposition, divide-and- conquer curve chunking is somewhat

120

Figure 5.28: Divide-and-conquer curve chunking: effect of elementary region size: P = 817;
Ty = 45; Tp = 36; I = 16.

position dependent. This is not revealed by a test configuration of a single extended straight
line. Test configurations revealing position dependence are shown in Figures 5.31 and 5.32.
It is possible to correct for this position dependence by somehow normalizing the input
for position, or by applying the divide-and-conquer process independently at a number
of different positional offsets and accepting the result of the application that gave rise to
the fewest curve chunks. For all but the simplest inputs, however, the effect of position
is in fact quite small, and the additional cost of these corrective measures may not be
justified. Figure 5.33 shows the decompositions of an input resulting for a number of
different (manually chosen) positional offsets. The difference in the number of curve chunks
in the best and worst cases is small in comparison to the total number of chunks defined

for the curve.

Figure 5.34 illustrates the effect of curvature on curve chunk size. Figures 5.35 and 5.37
show the curve chunks computed from real image intensity boundaries, and the results of

tracing the object boundaries. In both cases, a single invocation of the tracing operation

121

Figure 5.29: A best-case input for limited-extent chunking that is “bad case” for divide-
and-conquer.

did not extract the entire object boundary—it was stopped by small gaps. Also in both
cases, curve chunk size was limited by the incidence of internal boundaries of the ob jects.
Both of these phenomena indicate that the time-performance of tracing could benefit if,
prior to curve chunking, the following processes were applied to the boundary array: (i)
a “clean-up” process of gap filling and the suppression of noisy or weak boundaries; (ii) a
process for distinguishing occlusion boundaries (or some other type of “relevant” boundary)

from irrelevant boundaries.

The divide-and-conquer scheme seems somewhat more powerful than the direct scheme of
the preceding section, because it does not involve explicit restrictions on local curvature
or orientation spread. For example, Figure 5.39 shows a number of inputs for which the
divide-and-conquer scheme gives rise to a single chunk, but for which the direct scheme
gives several smaller subregions. On the other hand, though, the direct scheme is less
position dependent than the divide-and-conquer method—for example, it results in a single

curve chunk for both inputs in Figure 5.31. A detailed comparison of the performance of

122

=

,,_r_rr_r

Figure 5.30: Divide-and-conquer provides only a factor of 2 improvement over limited-
extent chunking for this “bad-case” example.

b > -) L/

Y
}
Pa
\
)
’

e R

Figure 5.31: Position dependence of divide-and-conquer curve chunking.

123

Figure 5.32: Position dependence of divide-and-conquer curve chunking.

the two methods is an interesting problem for further work.

124

L f]
al
/J{ /
; /
\ . /
\\
///
%
7~ - // ///
L—’/' ' - Va

a b
N /
\\\ N
1)
A) - /////)
/ T
C L
L~
|
C

d

Figure 5.33: Position dependence is insignificant for all b i
ut the simplest inputs: 1
chunks (best case); (b) 20 chunks; (c) 21 chunks; (d) 26 chunks (worst case). 7 (*) 19

125

Figure 5.34: Divide-and-conquer curve chunking: effect of curvature.

126

Figure 5.35: Divide-and-conquer curve chunking applied to intensity boundaries from an
image of a garlic.

) 1

Figure 5.36: Tracing (incomplete due to small gaps): P = 361; Ty = 10; I = 36.

127

| Code=d 1
J ""\r
_AP’ .
¥ ap=,
5 hair
4 k- §
hefort /£
.
\.
L4
]
XN

Figure 5.37: Divide-and-conquer curve chunking applied to intensity boundaries from an
image of a connecting-rod.

5.5 Two-label, divide-and-conquer, unlimited-extent curve
chunking

This section develops an extension to the preceding divide-and-conquer scheme that encoun-
ters less fragmentation at points of intersection or close proximity between curves. Merging
failures are avoided by distinctly labeling curve segments that are in close proximity and
then applying the merging rules on a per-label basis. The extended scheme simultaneously
generates (i) a tessellation of the input and (ii) a two-valued distinguishing labeling within
each region of the tessellation (Figure 5.40). Given this representation, a tracing process
may issue a label to the elements of one of the curve segments in a region by specifying the
relevant label to a selective region labeling operation. The region labeling operation modi-
fies the seen/unseen label associated with a curve element only if another label associated

with the element, call it the 0/1 label, has a specified value (Figure 5.40).

Two-label, divide-and-conquer curve chunking involves three simple extensions to the “one-

128

Figure 5.38: Tracing of connecting-rod boundary (incomplete due to small gaps): P = 327;
Ty =12; I = 50.

Figure 5.39: For each of these simple configurations, the divide-and-conquer scheme gives
rise to a single chunk, but the direct scheme gives several smaller chunks, because its local
curvature and orientation spread restrictions are violated.

129

I/

/ ’
/
/

Figure 5.40: Two-valued distinguishing labeling of the curve segments in a region permits
selective labeling at tracing time.

)

.
/
N [

Figure 5.41: The result of two-label divide-and-conquer curve chunking. Each array repre-

sents one label. The regions of the tessellation in both arrays are in one-

to-one correspon-
dence.

130

label” divide-and-conquer method: (i) an initial two-label, limited-eztent decomposition and
(ii) an algorithm for building the two-label tessellation; and (iii) a modification to the curve
continuity links in the pyramid. The rules for merging regions remain unchanged. The

required extensions are developed in the following sections.

5.5.1 The two-label divide-and-conquer curve chunking algorithm

This section presents an algorithm for two-label, divide-and-conquer curve chunking. The
choices for defining the subregions of a region and the rules for combining regions apply
without modification. The divide-and-conquer algorithm involves the same four compo-
nents: check elementary regions for validity; build valid regions; identify maximal valid

regions; establish curve continuity between regions.

The initial two-label, limited-extent decomposition

A two-label, limited-extent validity computation is required to provide the starting point
for the two-label divide-and-conquer process. It generates two effects as output: (i) each
region in a fixed, predetermined tessellation is marked valid if it contains no more than
two curves, and (ii) the curve segments in each valid region are distinctly labeled. For the
purpose of this labeling, each curve element is associated with a two-valued label. It does

not matter which segment gets which value of this label.

The curve segments in a given region may be distinctly labeled by pixel-at-a-time tracing;
in the process of doing so, these curves may also be counted, thereby establishing region
validity. To implement this, it is only necessary to modify the exit condition of the pixel
tracing process described in Section 5.2.3: the procedure is exited when the count exceeds
2, not 1. The region-validity/curve labeling computation is simultaneously applied to each
elementary region—the valid/invalidlabel is assigned appropriately, and each curve segment

in a valid elementary region ends up labeled uniquely.

131

Building valid regions

As before, suppose the height of the pyramid is h, where the lowest level—the representation
of the set of elementary regions—is 0. The variable [indicates the level of the pyramid
currently being operated upon. The valid/invalid label of each node in the pyramid is
initialized to tnvalid. The algorithm for building up valid regions is as follows:

Repeat for { from 1 to hA:

1. (In parallel) for each node r at level I both of whose children are valid do the following:

(a) Apply the merging rule computations to its subregions independently per label.

(b) Ifthe result of the merging rule check is positive for both labels, set the valid/invalid
label to valid.

(c) Otherwise, do the following:

i. Interchange the labels of the curve elements in one subregion. (That is, if
the labels are 0 and 1, then curve elements with label 0 are assigned label 1
and vice versa. This operation is referred to as flipping labels.)

ii. Apply the merging rule computations independently per label once again.

iii. Set the wvalid/invalid label according to this new result.

2. Increment [/ by 1.

There are two aspects of the performance of this basic algorithm that can be moderately
improved. Firstly, according to the merging rules a vacant region and a non-vacant valid
region may be merged, so there are three configurations in which the segments of a curve
in the two subregions may be left with different labels by this algorithm upon a merge.
I refer to this as “split-labeling” of a curve segment. Split-labeling leads to additional
steps during tracing (the tracing operation must apply the region labeling operation to a

split-labeled region twice, once for each label). It cannot be avoided, because labels are

132

assigned independently within different subregions. Figure 5.42 shows three configurations
for which the preceding algorithm can result in split-labeling. Split-labeling can be corrected
by relabeling in cases (a) and (b), but not in (c). Correction requires the explicit detection
of configurations (a) and (b). The required modification to the algorithm for accomplishing
this correction is to replace Step 1b by the following:

If the result of the merging rule check is positive for both labels, then

1. Set the valid/invalid label to valid, and

2. if the common border of the two subregions is crossed but the elements involved are

labeled differently then

(a) flip labels in one subregion;

(b) apply the merging rule computations to the two subregions independently per
label;

(c) if the result of the merging rule check is negative for either label, flip labels in
one subregion again (i.e., we had something like the configuration in Figure 5.42

(c)—put things back the way they were).

The algorithm can give asymmetric results when applied in the context of the binary image
tree. This is the second aspect of its performance can be improved, by extending it to
apply in the context of the symmetric binary image tree. Recall that at odd levels of the
symmetric binary image tree, horizontal and vertical rectangles are formed from square
subregions; at even levels, each square is formed by the succesful merge of either a pair
of horizontal rectangles or a pair of vertical rectangles. The required extension to the
two-label algorithm is quite elaborate, and the added complexity does not seem to be
justified by the improvement in performance.® The complicating factor is that each square
region is a subregion of both a vertical rectangular region and a horizontal one—the flipping
operation modifies the curve element labels, so merging cannot be performed independently

for a horizontal rectangle and a vertical rectangle that have a square subregion in common.

*This extension was implemented and tested—it did not give a substantial performance improvement.

133

) | , '
b {0 o1
g0 —p !
- RN 0 \,""JHOEJ/

Figure 5.42: (a), (b), and (c) are valid configurations, but segments of the same curve in
different subregions have been labeled differently. This is correctible in cases (a) and (b),

but not in (c).

134

Identifying maximal valid regions

The process described for the one-label divide-and-conquer scheme applies in the two-label

case without modification.

Establishing curve continuity

The process for establishing curve continuity between adjacent maximal valid regions in
the one-label divide-and-conquer scheme applies in the two-label case with a minor modifi-
cation. It is necessary to associate an additional bit of information with each edge between
adjacent MVR’s; this bit indicates whether the label associated with the curve elements is
preserved or reversed across the region boundary. The curve tracing operation uses this bit

to determine, for each node reached, the correct argument to the per-label region labeling

operation.

Example illustrating the two-label divide-and-conquer process

Figure 5.43 illustrates the progress of this algorithm on a small example. The base of the
pyramid is at the top of the diagram—pyramid level increases downward. The left-hand
pair of columns of arrays corresponds to the first attempt to merge. The right-hand pair
of columns of arrays corresponds to the second attempt to merge (following a flip), if any.
The left-hand column of arrays in each pair shows the contents of regions per label 0. The
right-hand column of arrays in each pair shows the contents of regions per label 1. Shading
indicates a pair of regions for which an attempt to merge per the corresponding label fails.
A string of the form ! — j7 will be used to refer to the region in the array at level ! whose
y-coordinate is j and whose x-coordinate is i. In the example, an attempt to merge regions
0-10 and 0-11 per label 0 fails because both regions are non-vacant but their common border
is not crossed per that label. When labels are flipped in 0-11, (i) the merge succeeds per
label 0 because both regions are still non-vacant but their common border is crossed; (ii)

the merge succeeds per label 1, because 0-10 is vacant.

135

ENRN
SN
HNNER
SUER

\J
NN
[
2 |

@
im

-
3

®
’0 !

Figure 5.43: The two-label divide-and-conquer curve chunking process.

136

Figure 5.44: Tracing a curve by unlimited-extent curve chunks given by the two-label
divide-and-conquer scheme: P = 817; Ty = 14, Tp =9; I = 0.

5.5.2 Performance

Figure 5.44 shows the result of tracing one of the curves in the example of Figure 5.41. In
the left frame, the small circle indicates the starting point of tracing, and shaded regions are
curve chunks that were labeled. The right frame shows the curve extracted by this labeling
process. The figure caption gives performance metrics (these numbers were introduced in

Section 5.3.4.)

On the whole, the behavior of the two-label scheme closely parallels that of the one-label
scheme, but its performance for any given input is substantially better. Notice that in the
example of Figure 5.44, not only is Ty much smaller, but I has vanished—crossings (or
near proximity) of just two curves do not give rise to invalid regions, so two-label tracing is
not slowed down at these locations, even with the use of relatively large elementary regions.
(Therefore, the use of two labels provides low maximum communication degree without a

sacrifice in time performance.)

137

Figure 5.45: Simple worst-case for all previous methods - nearby parallel lines.

The best-case performance of the one-label scheme is achieved by the two-label scheme for
somewhat more complex inputs. For example, Figures 5.46, 5.47, and 5.48 show that for
simple configurations for which the one-label scheme is affected by proximity, curvature, and
position, respectively, the two-label scheme is unaffected. Similarly, worst-case inputs for
the one-label method are not quite worst-case for the two-label method—two labels provide
a speed-up over pixel-tracing for complex inputs for which one-label does not. Figure 5.49
shows the result of two-label curve chunking on the input that was introduced in Section

9.4.4 as a “bad-case” for the one-label method (see Figure 5.30).

The performance advantage of the two-label scheme over the one-label scheme is large
for simple inputs and decreases as the input becomes more complex. For example, an
intersection of three lines leads to a degree of fragmentation similar to that resulting from
the one-label divide-and-conquer scheme in the case of two intersecting lines (Figures 5.50
and 5.51). Figures 5.52 and 5.53 show that chunking and tracing performance are only
moderately improved over the one-label scheme for the noisy intensity boundaries of the

connecting-rod image.

138

Figure 5.46: Two-labels lead to less proximity dependence.

Figure 5.47: Two-labels lead to less position dependence.

139

Figure 5.48: Two-labels lead to less curvature dependence.

171]111111]

il

Figure 5.49: Two-labels lead to larger chunks even for “bad-case” inputs.

140

Figure 5.50: Fragmentation at a crossing of three intersecting curves: one-label divide-and-
conquer.

Extension to more labels. The performance of the two-label scheme is much improved over
the “one-label” scheme. How much is to be gained by adding more labels? n-label schemes,
for n > 2 are unlikely to provide benefits worth the additional implementation cost, for
three reasons. First, the number of independent merging checks to be done grows as n!.
Secondly, much of the benefit of labeling arises at the locations of crossings, and crossings
of three or more curves are uncommon in comparison to crossings of two curves. Finally,
it is difficult for a pixel tracing process in the initial validity checking step to correctly

distinguish curve segments at a crossing of three or more curves.

141

Figure 5.51: Fragmentation at a crossing of two intersecting curves: two-label divide-and-
conquer.

Figure 5.52: Two-label curve chunking applied to intensity boundaries from an image of a
connecting-rod.

142

Figure 5.53: Tracing of connecting-rod boundary (incomplete due to small gaps): P = 327;
Ty = 15; I = 50.

5.6 Summary of the four curve chunking techniques

Each of the four preceding sections introduced a technique for defining image chunks for
curve tracing. These methods were introduced in increasing order of potential performance
benefits. The limited-extent curve chunking scheme, the weakest method, provides a d-
fold speed-up over pixel-level tracing, at best, where d is the region diameter. The three
unlimited-extent curve chunking schemes lead to tracing times that depend not on the
length of the input curves, but on their geometry - for all of these methods, the number of

tracing steps is typically on the order of 10.

The direct, unlimited-extent curve chunking scheme is somewhat less powerful than the
one-label divide-and-conquer scheme, because of its explicit restrictions on local curvature
and orientation spread (the range of local orientations defined on a given curve.) On
the other hand, the direct method is considerably faster and simpler to implement than
the divide-and-conquer method. The difference in runtime between the two methods may
not be very important, because tracing time may dominate chunking time. In order to

make a proper assessment about this, more study in the application of these processes

143

may be required. It does seem safe to say, though, that the difference in ease and cost of
implementation may justify the slightly poorer performance of the direct method. Perhaps
the most important difference between the two methods is that the divide-and-conquer
approach can be extended in power through the addition of a local labeling capability,

whereas the power of the direct technique cannot be extended in any simple way.

The two-label divide-and-conquer curve chunking scheme is considerably more powerful
than the one-label divide-and-conquer scheme, because of its local curve segment labeling
capability. The two-label method is also somewhat more complicated to implement, how-
ever; again, more study in the application of these processes would be needed to justify
the additional cost. The ability of the two-label scheme to make pairs of distinct curve
segments explicit in local regions at a series of scales is useful, however, quite apart from
the consequent performance advantage to tracing—it could, for example provide the bound-
ary segments that were required for the computation of local prominence information in
Chapter 3. (Due to fragmentation at crossings, the one-label curve chunking scheme is very

much less useful for this application.)

For very simple inputs, the performance advantage of the three unlimited-extent curve
chunking schemes over the limited-extent scheme is dramatic. For very complex (but plau-
sible) inputs, the performance advantage of the unlimited-extent schemes is rather small.
This suggests that the quest for ever-more-powerful curve chunking techniques is an enter-
prise with rapidly diminishing returns—when the input curves have complex geometry, the
task of “untangling” them is one to which local, parallel computations are inherently not

suited.

In the worst case, none of the four curve chunking methods provides any improvement over
pixel-level tracing, but the worst case configurations are extremely unlikely to occur in the

course of visual spatial analysis.

144

5.7 Implications

The use of curve chunks has implications for the computation of spatial properties and
relations relevant to both the design of machine vision systems and the study of human
vision. Curve chunking raises questions regarding human visual perception at two levels. At
the more general level, the hypothesis that curve chunks are made use of may lead to novel
interpretations of perceptual phenomena, without regard to the particular processes by
which the curve chunks are generated. Some pertinent observations in this regard are made
in this section. At a more detailed level, it may be possible to make hypotheses about how
curve chunks are generated in the human visual system, based on psychophysical studies
and an understanding of the range of possibilities for computing curve chunks. Future work

in curve chunking may take up this intriguing problem.

Many spatial judgements about curves involve the ordering of locations on the curve. The
tasks of Figure 5.54 are examples. An important implication of the use of curve chunks
for tracing is that the goal of extracting a curve as rapidly as possible may conflict with
the goal of making judgements like these—the set of curve chunks representing a curve will
only partially preserve ordering information. In the most extreme case, a curve may be
represented by a single chunk, in which case no ordering information will be available at
all! Therefore, it may sometimes take less time to establish curve connectivity (e.g., “same-
curve”) relations than relations involving curve ordering—the establishment of ordering
relations may require a deliberately serial retracing of the curve, using chunks of artificially
restricted extent. Thus, there is a possible distinction between the process by which a
curvilinear entity is extracted and the process by which its properties and relations are
computed. As such, in Figure 5.54 (a) it would take less time to decide that the two dots
are on the same curve than that the curve in question is a right-handed spiral. Similarly,
in Figure 5.54 (b) it would take less time to establish that the dot and the circle are on the

same curve than to decide which is closer to an endpoint of the curve.

It is worth noting in this context that some properties and relations pertaining to curves
may in certain circumstances be established without the use of curve tracing. The problem

of evaluating tracing processes in the human visual system is complicated by this fact. For

145

Figure 5.54: Judgements involving the ordering of locations on a curve. (a) Is the spiral
curve right-handed or left-handed? (b) Which is closer to a termination of the curve, the
small circle or the dot.

example, in Figure 5.55, it is possible to establish that the two dots lie on the same curve
by counting curves and checking for breaks. Also, it may be possible to recognize certain
curvilinear properties and configurations strictly in parallel. Perhaps the most striking
demonstration of this is Fraser’s illusion, Figure 5.56, in which nested concentric sets of
disconnected spiral segments give rise to the irresistible impression of continuous nested
spirals. This percept suggests that in this case local curve information is integrated in

parallel in the human visual system.

146

Figure 5.55: Establishing that the dots lie on the same curve in this example may not
require curve tracing.

Figure 5.56: The Fraser illusion [Fraser 08): perhaps the reason spirals are perceived where
there are none is that descriptions of curves are being generated without the use of tracing.

147

Chapter 6

Region chunking

The preceding chapter explored one fundamental operation for establishing detailed shape
properties of an object: that of making its boundary distinct from other boundaries. An
equally important operation is that of making distinct the region in the image corresponding
to an object’s surface. This chapter explores time-efficient schemes for region activation,

based on a simple, local model of computation.

Shafrir’s [Shafrir 85] recent work has established that high-performance region coloring may
be achieved by describing the input in terms of extended empty regions. This is the notion
of a region chunk adopted in this report; it is open to quite a variety of implementation
strategies, a number of which Shafrir explored in depth. The purpose of this chapter
is to put representational support for high-performance region activation in the broader
perspective of image chunking. Two main observations are made. The first is that it
is possible for region and curve chunking processes to share their underlying machinery;
parsimonious extensions to the curve chunking processes of the preceding chapter lead to
effective region chunking processes at almost no additional cost. The second observation
is that region chunking is most effective when applied to the results of curve activation

operations, rather than to the input boundary representation itself.

148

6.1 Region chunks

In this section the computational nature of regions and region coloring operations is inves-

tigated and a definition of a region chunk is established.

Regions

A region is any connected set § of region elements, i.e., for any two elements p, ¢ in S, there
is a path from p to ¢.! A representation of the scene’s boundaries is a two dimensional
array some of whose elements are distinguished as curve elements; a region element is
simply an element of this array that is not a curve element. (For example, if the boundary
representation is a binary array in which locations having the value 1 constitute curve
elements, then locations with value 0 constitute region elements.) The curve elements
induce a division of all the region elements into a set of mazimal regions; for any two

maximal regions R;, R;(i # j),Vp € R; and Vg € R;,p and g are not neighbors.

Region activation

Region activation (or coloring) is a labeling operation: a single region element is given to
begin with, and the goal is to label uniquely all elements of the maximal region containing
the given element. As in curve activation, there are two problems: (i) establishing the set
of locations constituting the relevant region on the basis of the single given location; and

(ii) labeling this set of locations.

A parallel process for region coloring generally takes the following form: (i) label all un-
labeled elements that neighbor labeled elements; (ii) if there are any unlabeled elements
that neighbor labeled elements, repeat. The time-complexity of coloring is a function of
the diameter of the maximal region to be colored, where the diameter of a region is defined

to be the length of the longest path connecting two elements of the region.

1A definition of a path was given in Section 5.1.

149

Figure 6.1: Input divided into non-overlaping region chunks.

Region chunking

The motivation for region chunking is to reduce the number of iterations incurred by the
coloring operation. To do this, the coloring process must simultaneously label a subregion
of a region at a step, rather than a single region element. A region chunk is defined to be a
region containing no curve element (Figure 6.1). In the terminology introduced in Chapter
5, a region chunk is a vacant region. A “region chunking” is a tessellation of the input
combined with an assertion, for each region, about vacancy. Region chunking defines a set
of vacant subregions of each maximal region. The union of the set of subregions is a subset
of the maximal region (some of the elements of a maximal region may be included in the
non-vacant regions that contain the curve elements bounding the region). The effectiveness
of a decomposition into region chunks is measured in terms of the number of steps incurred
in coloring, which is related to the size of the region chunks—in general, the larger the
region chunks, the fewer coloring steps are required.

150

Figure 6.2: A region colored in chunks.

Region chunk representation and chunk-at-a-time coloring

A graph may be used to represent regions at the chunk level in the following way. A node
in the graph corresponds to a region in the input. Each node has an associated two-valued
label which may take on the values vacant/non-vacant. An edge in the graph corresponds

to an instance of the connectivity (adjacency) relation between regions.

This representation of regions preserves the basic form of the coloring process, which is just
a connected component labeling operation. Let C be a variable that can be associated with
a set of region chunks. A single valid node s is given to start, which is initially assigned to
C.? Each region chunk has an associated two-valued label which may take on the values

seen/unseen, say. The basic form of a chunk-at-a-time region labeling process is as follows:

While any node in C' has a vacant neighbor n labeled unseen:

In this report, I do not discuss the Processes that determine the starting chunk s. Generally, some
independent process, such as indexing, will shift the Processing focus to a location coinciding with or near
an element of the relevant region. A mechanism is required for accessing the chunk node s corresponding
to the region containing the processing focus.

151

1. for all vacant neighbors n of nodes in C:

(a) label n and all the region elements in the corresponding region seen (this is a

parallel operation);
(b) add n to C;

2. repeat.

At the end of this process, a connected set of vacant nodes bounded by non-vacant nodes
will have been labeled. If the region chunking process is capable of defining region chunks
at a range of sizes that goes down to one pixel, the labeled set will correspond to a maximal
region; otherwise, the labeled set may correspond to a subset of a maximal region. In the
latter case, elements of the relevant maximal region that are in non-vacant regions will
not have been colored by the end of the coloring process. An extension is required if the
coloring process is to label the region elements of a maximal region that are in a non-vacant

region.

One possibility for coping with non-vacant regions is to switch to region-element-at-a-time
coloring when an invalid region is encountered (and switch back to chunk-at-a-time coloring
if a region element is reached which is in a vacant region). This “two-level” coloring may
be supported in the region representation by “splicing” each portion of an element-wise
region representation that corresponds to an invalid region into the chunk-wise graph at

the appropriate place.

The input to region chunking

When the goal is to color the region corresponding to an object’s surface, only the phys-
ical (e.g., occluding) boundaries of the object should stop the coloring spread. Internal
boundaries of the object of interest are irrelevant. Boundaries of other scene entities are
irrelevant when the goal is to color the background of an object (the complement of the
area in the image corresponding to the object’s surface.) Irrelevant boundaries make the

coloring process slower and more difficult. The process is slower because the relevant region

152

Figure 6.3: In this example, one boundary was first singled out for region chunking. In
Figure 6.1, region chunking was applied to all boundaries.

is described by smaller, and therefore more, région chunks. The process is more difficult
because a relevant region may not be colorable in a single invocation of the coloring process
from a single starting location in the relevant region—irrelevant boundaries may divide the
region of interest into two or more regions each of which must be separately colored (as in
Figure 6.1). Therefore, it is desirable to first single out relevant boundaries and then apply
region chunking. Figure 6.3 shows the result of region chunking of an input for which a
relevant boundary was first singled out. Both the breakup of the relevant region into dis-
connected subregions and the reduced size of its region chunks are illustrated by comparing

this example to Figure 6.1.

The machinery of region chunking

Like curve chunking, the process of finding a decomposition into region chunks may be

thought of in terms of a component for generating a tessellation and a component for

153

P
I —
% SHENAN B I S

‘[{.

Figure 6.4: Singling out the relevant boundary before region chunking made coloring of its
interior easier and faster.

checking region validity. It is possible for region and curve chunking processes to use com-
mon underlying machinery. The first point in support of this claim is that the mechanism
for generating a tessellation obviously does not depend on the application which the regions
in the tessellation are to serve. Secondly, the validity check for curve chunking subsumes
the one for region chunking—recall that a valid region was defined to be a vacant region or

a region containing exactly one curve segment.

This is not to say that curve and region chunking must use common machinery. Shared
machinery connotes a savings in hardware cost, but it may also imply a compromise in the
time performance of coloring, tracing, or both. Shafrir [Shafrir 85] showed that coloring
speed is a function of the shape of the tessellation regions, and that, in the average case,
coloring is swiftest using very elongated regions. The effect of region shape on tracing time
has not been investigated, but suppose, for the sake of argument, that optimal average-

case tracing required non-elongated regions.® Then, to support both optimal tracing and

*1 conjecture that tracing performance is not optimized by the elongated region tessellation that optimizes

154

optimal coloring, two specialized tessellation mechanisms would be required.

The remainder of this chapter examines how the close relationship between curve and region
chunking may be exploited to minimize hardware cost. Two main tessellatio? schemes were
introduced in Chapter 5. One involved regions of fixed, limited extent. The other involved a
binary image tree representation for defining regions at a series of sizes up to the size of the
input. Associated with the limited-extent tessellation were two direct validity computations.
Associated with the binary image tree tessellation were a direct validity computation and a
divide-and-conquer validity computation. The following sections explain how each of these

validity computations can support region chunking and assess the performance of such a

region chunking method.

6.2 Limited-extent region chunking

The serial validity check for limited-extent curve chunking explicitly counts the curve seg-
ments in a region. A count of zero indicates a vacant region. The parallel validity check
detects valid configurations on the basis of the measures 7' (termination count), and E (exit

count). A region is vacant if 7 = 0 and E = 0.

The single-stage, parallel process which performs limited extent curve chunk validity check-
ing can simultaneously generate region chunks—the only additional operation is to appro-
priately set the vacant/non-vacant label of a corresponding node in the region chunk output
representation. Edges representing region adjacency in this representation are independent

of the data—unlike curve continuity edges, they do not require state.

Let d denote the diameter of the regions defined by the tessellation. For inputs whose
convex kernel is somewhat larger than d, the number of coloring steps resulting from the
limited extent region chunking scheme is roughly linear in the diameter of the region in

pixels. There is a roughly d? speedup over pixel-at-a-time parallel coloring.

coloring. For coloring, most regions may be decomposed into a relatively small number of straight elongated
regions at just two orientations. It seems that elongated regions at a series of orientations and curvatures
would be required to decompose an arbitrary curve into a correspondingly small number of chunks.

155

6.3 Direct, unlimited-extent region chunking

The validity check for direct, unlimited-extent curve chunking detects valid regions on the
basis of the measures S(@(R)) (orientation spread), T (termination count), and E (exit

count). A region is vacant if S(O(R)) =0, T = 0, and E = 0.

The one-step, parallel process which performs direct, unlimited-extent curve chunking can
simultaneously generate region chunks—the only additional operation is to appropriately
set the vacant/non-vacant label of a corresponding node in the region chunk output rep-
resentation. Edges representing region adjacency in this representation are independent of

the data.

The number of coloring steps resulting from the unlimited extent region chunking scheme,

using the binary image tree tessellation, is better than linear in the diameter of the region

in pixels.
6.4 Divide-and-conquer, unlimited-extent region chunking

The validity check for divide-and-conquer, unlimited-extent curve chunking builds up max-
imal valid regions on the basis of some simple merging rules. Maximal vacant regions may
be identified by an independent and even simpler process using the same pyramid. A node
may be labeled vacant if every one of its descendant nodes is also vacant. A vacant node

represents a mazimal vacant region if its parent is labeled not-vacant.

Suppose the height of the pyramid is &, where the lowest level—the output representation
of the initial chunking—has height 0. The variable ! indicates the level of the pyramid
currently being operated upon; its initial value is 1. A two-valued label, which may take
on the values vacant/not-vacant is associated with each node of the pyramid. For all nodes
at levels greater than 0 this label is initialized to not-vacant. The limited-extent region
chunking process provides the initialization for level 0. The following process correctly sets

the vacant/not-vacant label of every node in the pyramid.
Repeat for [from 1 to h:

156

1. (In parallel) for each node r at level ! both of whose children are vacant, set the

vacant/non-vacant label to it vacant.

Assume that each node in the pyramid may take one of two states, active and inactive, and
all nodes are initially active. The algorithm for identifying maximal vacant regions does so

by suppressing non-maximal vacant regions, as follows:

Repeat for [from h down to 1:

1. (In parallel) for each active vacant node r at level I, deactivate every descendant node

of r.

Nodes remaining active after this process are the maximal vacant regions. They constitute
the nodes of the output graph of region chunking. Edges between nodes, representing region

adjacency, are independent of the data.

The number of coloring steps resulting from this unlimited extent region chunking scheme,

using the binary image tree tessellation, is better than linear in the diameter of the region

in pixels.

157

Chapter 7

Comparisons with other work

For the purpose of contrasting this work with related efforts, this study of image chunking
may be appreciated on two different levels. At the more general level, this research is
motivated by the need to make scene entities visually distinct rapidly, so that their spatial
properties and relations may be established. At a more detailed level, this research is the
study of effective representation for three basic spatial operations—indexing, tracing, and

coloring—with time-performance being a primary consideration.

A great variety of image analysis techniques that have been proposed may be seen as, in
large part, low level methods for articulating a pointwise description, i.e., for creating a new
description whose constituent elements are more meaningful—that is, more directly useful
to the goals of visual processing—than those in the initial description. By “low level,” T
mean methods that are in their essentials data driven, spatially uniform, and parallel. These
schemes may be compared to image chunking at the more general level; they are reviewed in
sections 7.4 and 7.5. Sections 7.1, 7.2, and 7.3 set the stage for this review. Section 7.1 sets
out the criteria which will be the basis for evaluating previous image articulation methods.
Section 7.2 examines the range of possibilities regarding input and output representation
of an image articulation scheme—this discussion makes it possible classify and assess the
various proposals. Section 7.3 recapitulates and assesses the image articulation framework

which image chunking supports.

There has not been a great deal of work devoted to the problem of representing the image

158

in support of very fast formulations of indexing, tracing, and coloring. Most of the work
that has been done is in fact. part of the same research program that mine is a part of—the
study of visual routines. This closely related work, pertaining to line and region coloring,

is reviewed in Section 7.6.

7.1 Grounds for comparison with other image articulation
schemes

An image articulation scheme must meet two general requirements. First, the method must
generate descriptions of scene entities that are effective for the tasks to be performed. Sec-
ond, it must do so rapidly enough for the tasks to be accomplished succesfully. Two image
articulation techniques can be directly compared only if they are designed to support sim-
ilar tasks. The chunking methods I have proposed are not themselves directly comparable
to most existing image articulation methods. Each chunking process performs a limited
sort of image articulation designed to support a particular basic spatial operation. Most
previous image articulation proposals are instead targeted directly toward ultimate goals of
vision, like recognition or navigation, and they are usually intended to generate complete,

detailed descriptions of scene components meaningful for these applications.

The thesis I have put forward in this report is that complete, detailed descriptions of
meaningful scene components must be the product of a two-stage process, of which image
chunking constitutes the first stage. The second stage assembles detailed descriptions from
image chunks in a goal-driven, spatially focused manner. This two-stage process as a
whole, but not image chunking by itself, may be usefully compared to most Previous image

articulation proposals.

The examples shown in Figure 1.1 and Figure 1.2 were designed to demonstrate that the
best existing image articulation techniques do not provide adequate time-performance for
tasks such as recognition, manipulation, and navigation in a general setting. These exam-
ples suggested two general requirements for rapid, effective extraction of scene components.
The first requirement is that useful analysis of a scene should not rely on an initial, de-

tailed, exhaustive extraction of the scene’s components —there should be some data-driven

159

basis for selectively applying detailed extraction processes at the likely locations of rele-
vant entities. The second requirement is that detailed -extraction should not take place
on a pixel-at-a-time basis. It is with particular reference to these two requirements that

previous image articulation methods will be evaluated.

7.2 The input and output of image articulation

Two distinctions regarding the nature of the output representation are useful in character-
izing image articulation methods. The first distinction concerns the means by which the
segregation of the set of all pointwise image elements into subsets constituting meaningful
entities is achieved in the output representation. The pointwise information may be segre-
gated in a local or global sense. In the local case, called linking, the output representation
of an entity consists of its pointwise elements, each explicitly linked to its immediate neigh-
bors. Elements of two different entities are (necessarily) distinguished from one another
only by virtue of the fact that there is no path of links connecting them. In the global case,
called labeling, each element of an entity is associated with an identifier that is unique to
that entity. A labeled representation is more powerful than a linked one, in that spatial
operations may be applied on a per label basis, and it is possible to operate directly on the
set of elements constituting a relevant scene entity by specifying the associated label. To
operate on a linked set of elements, the set must first be extracted from the array, which is
equivalent to labeling it uniquely. (This is exactly what activation operations—e.g., trac-
ing and coloring—accomplish.) N aturally, it is more costly in time, hardware, or both, to

generate labeled representations than linked ones.

Secondly, the process of segregating the input into meaningful components may be dis-
tinguished from the process of describing the properties of these components. Description
involves computing useful attributes of a set of pointwise elements and explicitly associating
these attributes with the set. To implement this association, a token—some sort of declar-
ative structure having a slot for each attribute—must be spatially identified with the set.
Labeling is a prerequisite for description. Description is an optional adjunct to labeling.

Image articulation schemes may therefore be classified as descriptive or non-descriptive.

160

(Note that labeling and description do not necessarily constitute distinct Processing stages.
For example, descriptive, labeled image articulation can be accomplished directly by tem-
plate matching. A template match is descriptive if certain properties of the figure are
explicitly associated a priori with the template. The matching template may serve as a
label for (i.e., be uniquely identified with) the set of input locations that contributed to the

match.)

The preceding distinctions lead to three useful classifications of articulated scene repre-
sentations. These classifications are non-descriptive, linked, non-descriptive, labeled; and
descriptive, labeled. Since there is no such thing as a “descriptive, linked” representation,
the preceding classifications may be referred to in brief as linked, labeled, and descriptive,

respectively.

Another distinction useful in characterizing image articulation methods regards the nature
of the input representation to the articulation process. An image articulation scheme is
said to be region-based if the input describes pointwise surface properties of the scene; it is

boundary-based if the input represents discontinuities in these surface properties instead.

7.3 Two-stage image articulation

This section reviews and consolidates the two-stage image articulation framework, through

the use of a complete example.

The first-stage representation of a scene entity consists of three components: (i) a set of
figural chunks; (ii) a set of curve chunks; (iii) a set of region chunks. Of these, only the first
component, the figural chunks, comes close to being a description directly applicable to
recognition, manipulation, etc. The figural chunk representation is primarily a boundary-
based, descriptive, labeled articulation of the scene into likely objects or object parts. The
second-stage incrementally generates a descriptive, labeled articulation of the input into
objects, by tracing boundaries, coloring regions, etc. This incremental process is guided by
the figural chunk representation and by the visual task to be performed. A more detailed,

general account of the two-stage articulation process is beyond the scope of this thesis. It

161

is possible, hoywever, to illustrate the general flavor of the two-stage articulation framework,
by means of examples like Figure 1.1 and the task of counting the large blobs. In contrast to
traditional image articulation methods, which would have to extract every figure in detail
in order to perform this task, the two-stage scheme can detect and count the blobs in quite
a small number of steps, in the course of which most irrelevant figures are never processed.

The processing involved is as follows (see Figure 4.13):

1. Boundary detection.
2. Local prominence computations.
3. Chunking (figural and curve chunking done concurrently)

4. Extraction and counting of prominent blobs—three repetitions of the following se-

quence:

(a) Shift to the most prominent, unprocessed, large figural chunk.

(b) Trace the boundary underlying the figural chunk at this location to verify that

we are indeed counting a large blob.
(c) Mark the current location (so that it may be avoided at Step 4 (a).)

(d) Increment the count.

7.4 Region-based image articulation schemes

This section presents a brief general review of region-based image articulation schemes.
Region-based schemes subscribe to the uniformity assumption—the assumption that scene
entities give rise to homogeneous image regions—so the arguments presented in Section 2.1
pose a serious general objection to these methods. Looking beyond this, there are a number

of interesting points of comparison.

162

7.4.1 Non-descriptive schemes: region segmentation

The methods refered to under the heading of “region segmentation” are generally non-
descriptive. The basic methods of region segmentation include local linking, split-and-
merge, and global, histogram-based clustering [Ballard and Brown 82] [Horn 86]. (Many
of the specific proposals do not fall strictly into one of these basic categories, but combine

some aspects of each.)

In local linking, a local region property, e.g., average intensity, is measured over small pixel
neighborhoods. Neighboring locations with sufficiently similar values of the measure are
linked together. The result of such a process provides no support for selecting locations of
relevant scene entities. Moreover, extracting an entity must be done on a pixel-at-a-time

basis.

In split-and-merge schemes, the image is repeatedly subdivided into regions—say using a
quadtree data structure—until every region gives a sufficiently high measure of homogeneity
in some region property. (One of the simplest homogeneity measures used is the difference
between the lowest and highest intensity values in the region.) After this spliting process,
adjacent regions are merged (linked together) if the measure of the relevant region property
is sufficiently similar over each of them. Split-and-merge may be viewed as a region-based
analog of region chunking. The spliting phase is analogous to the process of establishing
maximal vacant regions. The merging phase is analogous to the process of establishing
connectivity links between adjacent maximal vacant regions. There are, however, two
important advantages to the boundary-based region chunking proposal made in this report,
beyond the fact that the uniformity assumption inherent in region-based split-and-merge
schemes is generally incorrect. First, the extraction of regions based on region chunks
can be more efficient because region chunking can be selectively applied to relevant Scene
boundaries, whereas region-based split-and-merge schemes apply directly to the image.
Secondly, because it is boundary based, region chunking can completely share machinery
with curve chunking processes—it does not seem that region-based split-and-merge schemes

can share machinery as effectively with Processes for extracting boundaries.

163

In global clustering methods, local region property. measures taken at every image location
. are histogrammed, clusters: in the histogram are used to.divide the range of values of the
measure into intervals, and each image location is labeled according to the interval of the
measure to which its value belongs. A simple clustering technique is to establish interval
boundaries at values of the measure coinciding with valleys in the histogram. Beyond the
fact that the uniformity assumption inherent in these schemes is generally incorrect, an un-
desirable effect of global clustering methods is that they may label disconnected, physically
unrelated image regions with the same value. Since it therefore cannot be generally assumed
that locations having the same label belong to the same ob ject, the labeling produced by
global clustering cannot be used to directly extract meaningful scene components—a color-
ing process is still required. In other words, the output of global clustering is not a labeled

representation in the sense defined above—instead, the labels merely provide a form of local

linking.!
7.4.2 Descriptive schemes: blob detection

The region-based methods often referred to under the heading of “blob-detection” are
descriptive, at least to some degree. These methods are generally pyramid-based. This

section reviews the methods of [Pizer et al 85], [Dawson and Treese 85], and [Rosenfeld 86).

[Pizer et al 85] and [Dawson and Treese 85] had the explicit goal of providing indicators
of possible objects prior to detailed identification. These workers adopted a two-stage ap-
proach to image articulation too, but the role of the first stage in their schemes is confined to
the problem of object localization. Both proposals involve the use of copies of the intensity

image at a series of resolutions (created by recursive Gaussian filtering and resampling).

In the method of [Dawson and Treese 85, a blob is defined to-be a region in one of these
images that is significantly lighter or darker than its surrounding area—that is, a local
intensity extremum. Such regions are considered to correspond to objects. Spatial corre-

spondence is established between such regions at adjacent resolutions; nesting relationships

1Only in artificially restricted situations, in which each image region is guaranteed to have a unique value
of some local region property—e.g., uniquely colored items on a conveyor-belt —does the output of global
clustering constitute a true labeled representation

164

are established between regions at the same resolution. A region constituting a blob at one
resolution is defined using a local threshold—the mean intensity computed over a corre-

sponding region at the immediately lower resolution.

In the method of [Pizer et al 85], blobs—termed “extremal regions” — are delineated in the
original image by tracking intensity extrema from fine to coarse resolutions. The path of
such an extremum moves continuously and eventually the extremum vanishes as resolution
decreases. A blob is defined in the original image by the set of isointensity contours that
(i) have the same intensity as a point on the extremal path and (ii) surround the extremal

path’s finest scale starting point.

In both of these methods, blobs can be detected by alocal computation which notes the dis-
appearance of an intensity extremum in scale space. The resolution at which this happens
provides an indication of the spatial extent of the blob in the image. This blob detec-
tion technique does not directly provide other attributes of the blob such as elongation
or orientation—to obtain these, spatial computations must be applied to the constituent

locations of the blob at some substantially finer resolution than the one at which it vanishes.

Blob detection schemes of this sort can in principle support rapid detailed extraction of the
region corresponding to a blob. [Pizer et al 85] describes a parallel process for generating
a tree of links from blob-pixels in the original image to the extremum in the blurred image
in which that blob vanishes. Presumably, to extract that blob in detail, it would only
be necessary to propagate a label down through this tree from its root, and the time
to do this is logarithmic in the diameter of the image. Such an account of the detailed
extraction of scene components faces two main difficulties. The first is that it relies on
a particularly restrictive form of the uniformity assumption —that objects are defined by
intensity contrast with their surroundings. Secondly, the tree structure requires a large
number of connections: scale must vary very gradually to provide continuous extremal
paths in scale space, so many scale space images are required; image locations at adjacent

resolutions must be individually linked.

[Rosenfeld 86] describes a pyramid-based divide-and-conquer scheme for constructing large,

compact, homogenous regions. Measures of the mean and variance of some region property

165

are used to determine whether two subregions may be merged. He proposes a modification
of this basic idea to allow:smoothly. varying regions to be constructed —the new criterion
for merging regions is that the Fisher distance between them should be small. In Chapter
2, the use of such distribution measures for defining regions was called into question on the
grounds that it is possible in human vision, and should be possible in general, to perceive
distinct regions even when sparsity and/or the rate of spatial variation of the relevant local

property preclude a reliable estimate of any useful distribution measure.

7.5 Boundary-based image articulation schemes

This section reviews boundary-based image articulation schemes. Many boundary-based
schemes subscribe to an assumption about the structure of images which I refer to as the
Gestalt assumption. This is the assumption that meaningful scene components can be ex-
tracted in detail by bottom-up processes which establish local relations such as proximity,
similarity, and colinearity. Systematic local Proximity, similarity, or colinearity does typi-
cally arise from meaningful structure in the visual world, but it often is not enough to allow
this structure to be recovered—there are many possible ambiguities. There are two options
for dealing with these ambiguities. One is to generate all the scene components for which an
ambiguity leaves open the possibility—this is impractical in general because there may be
many such possibilities. The other option is to generate only the parts of scene components
that can be generated unambiguously, and later assemble these parts into complete scene
components using top-down information. This alternative is workable, and is frequently
adopted, but it is inherently serial and slow. This is because the parts of scene components

that can be extracted may take on a wide range of shapes or configurations.

7.5.1 Non-descriptive schemes: boundary segmentation

Spatially uniform schemes for linking local edge fragments together have been proposed, and
these are pertinent to the problem of providing the input to chunking processes. [Zucker 80
and [Zucker 82], for example, developed cooperative processes for disambiguating local ori-

entation operator responses in the context of line detection and dot grouping, respectively.

166

~ Cooperative computations provide a way of enabling-more global information to bear on the
_descriptions of local spatial elements. These methods have the advantage, over other tech-
niques that have been applied to similar goals in computer vision [Ballard and Brown 82],
of being parallel and spatially uniform. These non-descriptive linking methods, however,
do not by themselves constitute a significant step toward the goals of rapidly selecting

processing locations or rapidly extracting scene components at these locations.

Marr’s [Marr 76] proposal for extracting forms from the raw primal sketch (a set of point-
wise assertions, called place tokens, about intensity changes in the image) constitutes a
descriptive, boundary-based method. In his method, recursive grouping processes, applied
in a spatially uniform manner, replace certain aggregates of place tokens by new place to-
kens. The grouping processes are irreversible, and so must be conservative. They repeatedly
modify the same representation. Marr’s account of the grouping processes suggests that
the place token representing an aggregate would explicitly encode certain spatial properties
of the aggregate; this information is made use of at higher grouping stages. For example,
the grouping processes applied local colinearity, local connectivity, and closure constraints

in order to extract complete object boundaries.

[Hong et al 82] and [Rosenfeld 86] describe a divide-and-conquer scheme whose ajms are
similar: the extraction of curvilinear forms on the basis of “good continuation.” In this
pyramid-based scheme for extracting smooth curves, each node in the pyramid stores a sum-
mary description of each curve segment in the corresponding region of the image. (There is
a small fixed limit on the number of curves for which this may be done.) A node computes
the description of the curve segment passing through its corresponding image region by
combining the descriptions computed by its children for their subregions. Nodes at the
base of the pyramid compute the description directly from the input. The description con-
sists of the segment’s overall orientation, endpoints, and local orientations at its endpoints.
In a single pass from the base of the pyramid to the top, descriptions of the input curve
segments at all scales are computed. This scheme is reminiscent of the divide-and-conquer
curve chunking schemes presented in this report, but the resemblance is superficial. The
goal of the method of Hong, et al, is to generate descriptors of scene curves—as individ-

ual components. The summary descriptions of curve segments and curves generated are

167

approzimate and incomplete. Detailed arithmetic computations are involved in generating
‘these descriptors. The storage requirements per pyramid node appear to be quite exten-
sive, if the method is to cope with complex inputs. The technique is quite involved in
comparison to curve chunking, which has a goal that is more limited and therefore more
appropriate to spatially uniform, parallel computation. ([Hong and Schneir 82] describe a
closely related scheme for extracting compact objects as individual components from point-
wise grey-scale and boundary data by explicitly computing surroundedness at each pyramid

node. In comparing this scheme to region chunking, similar comments apply.)

[Samet and Weber 82] describe an ezact quadtree representation for boundaries called a
line quadtree. This representation is isomorphic to the conventional region quadtree. The
tree’s terminal nodes, however, store information about which sides of the corresponding
region in the image correspond to a boundary (rather than whether the region includes a
boundary location.) The elements of this representation conform to the definition given in
Chapter 5 of curve chunks: each active node corresponds to a region containing a single
curve segment; it simply happens that the curve segment in a region always runs along
the region’s border. The fact that image boundaries are normally quite irregular, however,
limits the effectiveness of the line quadtree as a representation for fast curve tracing—most
curve chunks it defines for a typical image are quite small, in fact of minimal size. Samet
included storage for border information in the non-terminal nodes to make it possible to
trace boundaries without individually examining all the terminal nodes of the tree. This
modification, however, leads to undesireably large storage requirements. The divide-and-
conquer curve chunking schemes I proposed support rapid curve tracing with minimal

storage requirements.

7.5.2 Dchriptive schemes: spine transforms

The methods discussed in this section are related to figural chunking in that they are

low-level techniques for detecting and describing shapes in the input.

Crowley’s [Crowley 84] proposal for describing shapes in an intensity image involves detect-

ing and linking local maxima in band-pass (difference of low-pass) filtered versions of the

168

_image at a series of resolutions. Crowley’s method may be thought of as boundary based

because bandpass filtering provides edge enhancement—it is less sensitive to slow-variation
in intensity than the blob-detection schemes that make use of recursive low-pass filtering.
A peak or ridge point in this scale space indicates a local best fit of the circularly symmetric
center lobe of the band-pass filter to the grey-level shape. This scheme is somewhat similar
to the figural chunking scheme of Chapter 4 - the circular center lobe of the filter corre-
sponds to a basic configuration model. There are, however, three significant differences.
First, figural chunking may be applied to the result of any boundary computations, whereas
Crowley’s scheme is limited to intensity images. Secondly, Crowley’s scheme is designed
to provide exact descriptions of shapes for recognition, whereas the main goal of figural
chunking is to provide crude descriptions of shapes for indexing. Finally, Crowley’s scheme
describes shapes, in effect, in terms of a single circular basic configuration model. For most
shapes, the description consists of many local fits to this model, no one of which necessarily
captures the overall shape or any of its prominent parts particularly well. Figural chunks
are crude but self-contained descriptors of an overall shape or its simple parts. Individual
figural chunks can therefore provide more guidance in the selection of processing locations
than an individual match (a peak or ridge point) in Crowley’s scheme. A linked set of
matches in Crowley’s representation cannot directly support indexing. A set of figural
chunks provides a more concise (though perhaps less precise) description of an object or

configuration than a linked set of local matches.

Crowley’s shape representation is in essence an instance of a class of spine representations of
shape. This class also includes Blum’s symmetric azis transform (SAT) [Blum and Nagel 78]
and Brady’s smoothed local symmetry representation (SLS) [Brady and Asada 84|. Apart
from the fact that these representations, like figural chunks, are computed from a bound-
ary representation, similar comments apply to them as do to Crowley’s. Associated with
the smoothed local symmetry representation is Fleck’s [Fleck 85] local rotational symmetry
(LRS) representation. The LRS representation may be viewed as a descriptive represen-
tation restricted to the class of “roughly round” shapes. Apart from its restricted scope,
the LRS technique has the disadvantage in comparison to figural chunking that its per-

formance depends on the accuracy of the local boundary orientation information, and it

169

involves detailed arithmetic.computations using this information. The scheme is therefore
inherently more sensitive to noise and apparently less suited to implementation in a simple

local model.

7.6 Sibling studies of fast coloring

Two recent studies approached the problem of extracting scene components from a stand-
point very similar to the one taken in the research reported here. One of these was a study
of fast coloring of connected curvilinear components [Edelman 85]; the other was a study of
fast region coloring [Shafrir 85]. Both workers achieved their goals by dividing the problem
into two stages—a preprocessing stage defined appropriate building blocks for a subsequent
coloring stage. They did not emphasize the notion of chunking in their discussion of the

preprocessing. In my review of their work I have done so, to make the parallels clear.

7.6.1 Line coloring

Edelman’s [Edelman 85] work on fast boundary coloring is related to my study of curve
chunking for fast tracing. Boundary coloring is the problem of activating a connected
curvilinear component.? The local relation used to establish the relevant set of curve
elements in boundary coloring is connectivity, not curvilinearity. Edelman describes two
closely related schemes for boundary coloring, both of which involve two phases. In the first
phase, large regions of the image that contain a single connected curvilinear figure—called
“OK-regions”—are detected by a quadtree-based, divide-and-conquer process. The second
phase activates a connected curvilinear component starting from a given location on the
relevant component by coloring one maximal OK-region at a step. Edelman’s two methods
differ in the computation used to detect OK-regions. In one algorithm, called MAC-1, a
region is deemed OK if (i) all its subregions are OK; (ii) the Euler number computed over

the region is 1; and (iii) the number of intersections of boundaries in the region with a

?Edelman uses the terms “boundary activation” and “boundary coloring” interchangeably. I reserve the
term activation to refer to the general problem of distinctly labeling a set of locations—boundary tracing
and boundary coloring are two different boundary activation operations.

170

~ vertical and a horizontal line each passing through the center of the region is 0 or 1 (this
‘number is called the I-count). The purpose of the third requirement is to exclude the case
in which the region contains a closed loop. In the other algorithm, called MAC-2, the Euler
number measured over the region is required to be 1 (except in the case of a vacant region
in which case it may be 0), and the I-count check is omitted. MAC-1 is provably correct—it
is guaranteed never to mark a region containing more than one connected component OK.
MAC-2 leads to substantially faster coloring than MAC-1, because it is less conservative
and generates larger OK-regions, but it may sometimes wrongly label a region containing

more than one connected component OK.

Edelman’s proposal for computing the Euler number involves unrestricted counting of curve
junctions and terminations in large regions, and the results must be passed between pyramid

nodes. This is undesireable in the context of a simple, local computing model.?

It should be noted that curve chunking cannot be implemented by any straightforward
modification of the preprocessing phase of the MAC algorithms. In those algorithms, the
OK-check involves applying a partial connectivity test directly to the region as a whole;
divide-and-conquer simply augments this computation by excluding certain illegal cases
which the partial connectivity test wrongly accepts (i-e., loops in the region). In view of
this secondary role of divide-and-conquer, the MAC algorithms are actually more similar
to the direct, unlimited-extent curve chunking technique of Chapter 5 than they are to the

divide-and-conquer schemes.

7.6.2 Region coloring

Shafrir [Shafrir 85] reports a thorough and very revealing study of the problem of fast
region coloring. He investigated three high-performance schemes all of which involve (i) a
Preprocessing stage that detects regions of the input containing no boundary elements, and

(ii) a coloring process whose basic operation is the simultaneous activation of all the pixels

3Incidentally, Edebnan’s implementation made use of pixel coordinates in the detection of junctions and
terminations. The passing of absolute addresses between nodes is also undesirable in the context of a simple
local computing model. It seems, though, that Edelman’s basic scheme is implementable without address
passing.

171

Figure 7.1: Some of Shafrir’s test shapes: (a) stars (b) snakes.

in such a region. The schemes differ according to the shapes of the region chunks that the
preprocessing phase can define, their degree of overlap, a.nd the maximum communication
degree of the hardware mechanism used to detect these regions. (Communication degree
is defined to be the number of direct communication lines coming into a processor.) The
average case performance of the different coloring methods was established by simulation.
Mean coloring times were recorded for five families of visually important input shapes.
These shapes included circles, horizontal squares, horizontal rectangles, “stars” (randomly
generated shapes whose convex kernels were large in comparison to their total area), and
“snakes” (randomly generated shapes whose convex kernels were small in comparison to

their total area). Examples of stars and snakes are shown in Figure 7.1.

One of the schemes Shafrir investigated—the quadtree model — makes use of a quadtree-like
input decomposition and processor network. The network’s maximum communication de-
gree is small (exactly 9). There is no overlap between regions. Region-vacancy is established
by a hierarchical process. The basic computing step in this model is the operation of com-
municating a value between nodes that share a communication link. For compact shapes
(circles, squares, stars) coloring time has only a small dependence on area of the shape.

The position of the shape in the input and the position of the starting location within the

172

shape did not significantly influence coloring time. For elongated shapes (rectangles and

snakes), however, coloring time depended significantly on area.

Taking human performance as a guide, Shafrir found it unsatisfactory that the quadtree
model’s performance is significantly worse for simple elongated shapes (rectangles) than it
is for compact ones. He developed another scheme—called the rectangular model—that is
more satisfactory in that it colors simple elongated regions just és rapidly as compact ones.
This scheme, illustrated in Figure 7.2, directly detects one-pixel-wide vertical and horizontal
region chunks at a series of lengths and positions governed by a scaling parameter $ and an
overlap parameter O. For § small enough and O large enough, all possible region chunks are
detectable, but this requires O(n3) processors, where n is the diameter of the square input
array in pixels. Shafrir tested the performance of the the rectangular model for virtually
the full range of settings of § and O subject to an O(n?) limit on the number of processors
and an O(n) limit on communication degree. He found that the particular settings of § and
O did not significantly affect performance—all choices with similar “density” (number of
chunk detectors and communication degree) gave similar behavior. The rectangular model
is insensitive to the area of the input in the case of circles, squares, rectangles, and stars.
Coloring requires fewer than 10 steps for these simple inputs. For snakes, there appears to
be a small dependence on the area of the input figure. Naturally, performance improves

even further with higher density.

The third high-performance coloring scheme Shafrir investigated—the square model—was
built along the same lines as the rectangular model, but makes use of square regions instead.
Squares are defined at a series of diameters and positions governed by S and O. The square
model proved more sensitive to area of the input figure, and substantially slower overall,

than the rectangular model.

The region chunking proposal of Chapter 6 is very similar to Shafrir’s quadtree model. The
discussion of region chunking in this report goes beyond Shafrir’s study only in that (i) it
explores the possibility of sharing machinery between curve and region chunking processes,
and (ii) it integrates region chunking into a general framework. It is interesting to note that

the representational requirements of the best known curve and region chunking schemes (the

173

A2 2222222
2002202000220 80e
00222 reerrrrri LY
*#32222222222222233%
*#221322 2222222222

IR (3131 VY]
R~ RN
et ® Ll e
MR~ RIRIRA)
SRR~ RIRRRIN)
IR~ IR
RN~ RIRRRR,
RRIRRIN - RRIR)
R~ RIRR
RS RN e~ RIRIRIRIR)
IR~ RIRIAIR)
SR
R mnn
AR
”ﬁ:jnﬂ
ll”ﬂ”
RN

IR

:‘lﬂ

RN

) Bﬂ

))|

s RunAAERR
RRRAN

RIRIRRIN)

RNRRRR)

»
4
§
ol
N
i
BNI)R
T

AR
IR
RN

N

|
L 4
Q)
)
N
R RIRIR)
nm”
IR
nmg B
3
)

*#2333333
#RRINRBRBRS

Figure 7.2: Shafrir’s rectangular region coloring model, applied to a circular input. Each
numeral indicates the step of the coloring process at which a location was colored.

two-label divide-and-conquer scheme and the rectangular model respectively)

moment to be quite incompatible.

174

appear at the

Chapter 8

Conclusion

On the whole, low-level vision has been the study of extracting images from images. This
thesis demonstrates that low-level processes can and must go much further than this—
spatially uniform, parallel, bottom-up processes can build representations which make the
inherently serial operations of scene analysis very time-efficient, even under the conserva-
tive restrictions of simplicity and locality. Image chunking is the “missing link” between
traditional “very low-level” vision — the computation of pointwise properties—and the gen-

eration of detailed descriptions of complex spatial entities, properties, and relations.

Image chunking may be distinguished from the traditional notions of segmentation and
grouping. Image chunks function much more as building blocks and “beacons” than as de-
scriptors. Furthermore, there is a methodological distinction to be made, having to do with
representation design—a more specific formulation of the application of a representation
makes it possible to design a more effective representation for that application. The chunk
representations are specifically designed to support particular basic operations of interme-
diate vision, whereas many proposals for “perceptual organization” have been designed to
support general goals of vision, like recognition or reasoning, without detailed formulations

of the processes that are to use the representations to achieve these goals.

Image chunking is not merely the exploitation of parallelism—it is the application of a
crucial parallel-then-serial problem decomposition. This thesis is as much concerned with

what low-level processes cannot do effectively, as with what they can. The goals of image

175

chunking are deliberately limited compared to those of many other scene analysis schemes -

that exploit parallelism, because parallelism is exploited most effectively if its limits are

not exceeded.

In this thesis I have emphasized the role of image chunks in providing time-efficiency in
spatial analysis, but their importance goes beyond this—they also provide ezpressive power.
Image chunks allow spatial analysis processes—visual routines—to be expressed in terms of
entities that are more meaningful to the immediate goals of vision than are individual pixels.
For example, the indexing operation —shifting of the processing focus to the location of a
likely object —cannot be expressed on the basis of pixel-level representations of the scene,
because the objects of interest in vision are typically extended. Similarly, it is more natural
to express a “find-space” operation in terms of region chunks than pixels. Ultimately, I
believe this notion of expressive power will prove crucial to the effective development and

modification of visual routines, both in man and machine.

Future work

There are many ways in which the ideas explored in this report may be further developed.

It is only possible to hint at some of them here.

Input to image chunking processes. Chapters 2 and 3 presented partial specifications of the
input to chunking processes. The general problems of detecting boundaries and computing
local prominence of boundary segments must be addressed more thoroughly. Boundary
detection may be somewhat outside the scope of image chunking, but the study of image

chunking will provide specific requirements that have not been available before.

Real inputs. Most of the demonstrations of image chunking in this report were on artificial
inputs, so as to highlight the capabilities of the methods. Image chunking can provide
substantial performance benefits even for very noisy, cluttered inputs, but the benefits are
truly dramatic when the input is relatively noise-free. There are indications that it is
possible to suppress a great deal of noise and irrelevant information in images at a very low

level. The potential performance benefits to serial spatial analysis provide a very strong

176

. motivation for investigating this essentially unexplored and very intriguing problem. Some

of the possibilities for generating high-quality boundary input to chunking are the following:

e more robust boundary detection, perhaps through the integration of multiple sources

of information (ie. intensity, color, texture, motion, disparity) [Poggio 86];
e selection of boundaries according to their physical causes, especially occlusion [Voorhees 87];
e gap filling (for example, see [Ullman 76a]);

e suppression of short noisy boundary segments (one available technique is the detection
of edges at low spatial resolutions, but it may be useful to explicitly suppress noise

at high resolutions, in order to preserve detail).

Performance analyses of chunking processes. In this report I have given mainly qualitative
accounts of the performance of chunk-based indexing, tracing, and coloring. More detailed

quantitative performance analyses, both analytic and empirical, would be useful.

Refinement of the chunking processes. In this initial study of image chunking, it made sense
to focus on simple, general formulations of the basic operations. There are, however, many
specific situations arising in the analysis of images that may pose problems for the general
formulations. These cases must be dealt with on an individual basis, and this may lead to
more specific formulations of basic operations and the chunking processes supporting them.
For example, the general formulation of curve tracing defines a curve to be a connected
sequence of local elements. The basic tracing operation in this formulation would stop at
every gap. In the processing of visual images, however, tracing across short gaps might be
so frequently useful that it would be appropriate to implement this behavior in the basic
operation itself, rather than at the level of the control in a tracing routine. This might be

accomplished by somehow allowing for small gaps in the generation of curve chunks.

Visual routines. Image chunking is meant to support the efficient operation of visual
routines—therefore, the ultimate justification for image chunking processes is in the ben-

efits that they provide for the formulation and execution of visual routines for demanding

177

visual tasks. The development of visual routines for a wide variety of tasks may lead to
more detailed requirements on the chunking processes proposed here, and perhaps to the

invention of new kinds of chunks.

Image chunks for other applications. Indexing, tracing, and coloring are not the only
possible applications of image chunks. For one thing, it may be useful to detect chunks
representing local shape in detail for recognition. It may also be useful to detect commonly
occuring orientation patterns—distributions of local orientations often attributed to growth
or propagation—such as parallelism, concentricity, radial convergence, spiral convergence,
dendritic and other kinds of branching, etc. Global symmetry is another possible candidate

for low-level detection.

Dedicated image-chunking hardware. Ultimately, it will be worthwhile to experiment with
the construction of special-purpose hardware for image chunking. At the moment, tech-
nologies for constructing simple, local computing machinery have not been much explored.
Therefore, for practical applications such as industrial vision systems, a likely implemen-
tation direction for the immediate future is the formulation of image chunking strategies
specifically matched to the state of the art in hardware architectures. Perhaps research
into the engineering of simple local machinery will eventually be motivated by the need
for optimal visual time-performance in mobile robots and other compact, low-cost vision

systems.

Psychological investigations. A number of implications of image chunking relevant to the
study of human visual perception were discussed in Chapters 4 and 5. Psychophysical and
neurophysiological studies may be devised to investigate whether image chunks support the
analysis of spatial information and, if so, what the detailed nature of the chunking processes

at work are.

178

Bibliography

[Ballard and Brown 82]

[Barrow and Tenenbaum 78]

[Blum and Nagel 78]

[BBN 85]

[Brady and Asada 84]

[Canny 83]

[Cook 83]

[Cornsweet 70]

[Crowley 84]

Ballard, D. H., and Brown, C. M., 1982. Computer Vision.
Englewood Cliffs, NJ: Prentice-Hall.

Barrow, H. G., and Tenenbaum, J. M., 1978. “Recovering
Intrinsic Scene Characteristics From Images,” in Computer
Vision Systems, A. R. Hanson and E. M. Riseman (eds.)
New York: Academic Press.

Blum, H., and Nagel, R. N., 1978. “Shape Description Using
Weighted Symmetric Axis Features,” Pattern Recognition,
10: 167-180.

Bolt Beranek and Newman Inc., 1985. “Development of a
Butterfly Multiprocessor Test Bed,” Rep. 5872, Quarterly
Technical Report No. 1.

Brady, M., and Asada, H., 1984, “Smoothed Local Symme-
tries and their Implementation.” Int. J. Robotics Research,
3 (3).

Canny, J. F., 1983. “Finding Edges and Lines in Images.”
Cambridge, MA: M.I.T. Artificial Intelligence Laboratory,
AI-TR-720.

Cook, S., 1983. “The Classification of Problems which have
Fast Parallel Algorithms,” Proc. FCT-83, Springer-Verlag
Lecture Notes in Computer Science, 1983.

Cornsweet, T. N., 1970. Visual Perception. New York: Aca-
demic Press.

Crowley, J, L., 1984. “A Representation for Shape Based on
Peaks and Ridges in the Difference of Low-Pass Transform,”
IEEE Transactions on Pattern Analysis and Machine Intel-
ligence, PAMI-6, (2): 156-170.

179

[Dawson and Treese 85]

[Duda 76]

[Edelman 85]

[Fleck 85]

[Fraser 08]

[Gottlieb et al 83]

[Hillis 85]

[Hirschberg 76]

[Hong et al 82]

[Hong and Schneir 82]

[Horn 86]

[Jastrow 00]

[Jolicoeur et al 86]

Dawson, B. and Treese, G., 1985. “Locating Objects in a
Complex Image,” SPIE Vol. 534, Architectures and Algo-
rithms for Digital Image Processing II: 185-192.

Duda, R. 0., and Hart, P. E., 1973. Pattern Recognition and
Scene Analysis. New York: Wiley.

Edelman, E., 1985. “Fast Distributed Boundary Activa-
tion,” M.Sc. Thesis, Department of Applied Mathematics,
Feinberg Graduate School, Weizmann Institute of Science,
Rehevot, Israel.

Fleck, M., 1985. “Local Rotational Symmetries.” Cam-
bridge, MA: M.I.T. Artificial Intelligence Laboratory, Al-
TR-852.

Fraser, J., 1908. “A New Visual Ilusion of Direction,”
British Journal of Psychology 2: 307-320.

Gottlieb, A., Grishman, R., Kruskal, C., McAuliffe, K.,
Rudolph, L., and Snir, M., 1983. “The NYU Ultracomputer
— Designing an MIMD Shared Memory Parallel Computer,”
IEEE Transactions on Computers C-32 (2): 175-189.

Hillis, W. D., 1985. The Connection Machine. Cambridge,
MA and London: The MIT Press.

Hirschberg, D. S., 1976. “Parallel Algorithms for the Tran-
sitive Closure and Connected Component Problems.” ACM
8th Symposium on Theory of Computation: 55-57.

Hong, T. H., Schneier, M., Hartley, R., Rosenfeld, A., 1982.
“Using Pyramids to Detect Good Continuation,” Computer
Science TR-1185, University of Maryland.

Hong, T. H., Schneier, M., 1982. “Extracting Compact Ob-
Jjects Using Linked Pyramids,” in Proc. Image Understand-
ing Workshop, Stanford, CA, 1982: 58-71.

Horn, B. K. P., 1986. Robot Vision. Cambridge, MA and
London: The MIT Press.

Jastrow, J., 1900. Fact and Fable in Psychology. Boston:
Houghton Mifflin.

Jolicoeur, P., Ullman, S., and Mackay, M., 1985. “Bound-
ary Tracing: An Elementary Visual Process,” Memory and
Cogniition {: 219-227.

180

[Julesz 81]

[Koch and Ullman 84]

[Lim 86]

[Lowe 83]

[Marr 76]

[Marr 82]
[Marroquin 76]

[Minsky and Papert 69)

[Muller 86]

[Pavlidis 82]

[Pizer et al 85]

[Poggio 86]

[Riley 81]

- Julesz, B., 1981. “Textons, the Elements of Texture Percep-

tion, and their Interactions.” Nature, 290: 91-97.

Koch, C., and Ullman, §., 1984. “Selecting One Among the
Many: A Simple Network Implementing Shifts in Selective
Visual Attention.” A. I. Memo 770. Cambridge, MA: MIT
Artificial Intelligence Laboratory.

Lim, W., 1986. “Fast Algorithms for Labeling Connected
Components in 2-D Arrays.” Report No. NA86-1, Thinking
Machines Corporation. Cambridge, MA.

Lowe, D. G., 1984. “Perceptual Organization and Visual
Recognition.” Computer Science Department Report. Stan-
ford, CA: Stanford University.

Marr, D., 1976. “Early Processing of Visual Information.”
Phil Trans. Roy. Soc. B, 275: 483-524.

Marr, D., 1982. Vision. San Francisco: W. H. Freeman.

Marroquin, J., 1976 “Human Visual Perception of Struc-
ture.” §.M. Thesis. Cambridge, MA: Dept. of Electrical En-
gineering and Computer Science, MIT.

Minsky, M. and Papert, S., 1969. Perceptrons. Cambridge,
MA and London: The MIT Press.

Muller, M. J., 1986. “Texture Boundaries: Important Cues
for Human Texture Discrimination.” IEEE Proceedings of
Conference on Computer Vision and Pattern Recognition,
1986: 464-468.

Pavlidis, T., 1982. Algorithms for Graphics and Image Pro-
cessing. Rockville, MD: Computer Science Press.

Pizer, S. M., Koenderink, J. J., Lifshits, L. M., Helmink, L.,
Kaasjager, A. D., 1985. “An Image Description for Object
Definition, Based on Extremal Regions in the Stack,” in Int.
Proc. in Med. Imaging, 9th IPMI Conf., Washington D.C.,
1985.

Poggio, T., 1985. “Integrating Vision Modules with Coupled
MRFs.” (Unpublished.) Cambridge, MA: M.L.T. Artificial
Intelligence Laboratory.

Riley, M. D., 1981. “The Representation of Image Texture.”
S.M. Thesis. Cambridge, MA: Dept. of Electrical Engineer-
ing and Computer Science, MIT.

181

[Rock 84]

[Rosenfeld 79]
[Rosenfeld and Kak 76]
[Rosenfeld 86]

[Samet and Weber 82]

[Sedgewick 83]

[Shafrir 85]

[Shiloach and Vishkin 82]

[Stevens 78]
[Treisman and Gelade 80]

[Ullman 76a]

[Ullman 76b]

[Ullman 84]

[Voorhees 87]

Rock, L., 1984. The Logic of Perception. Cambridge, MA and
London: The MIT Press.

Rosenfeld, A. 1979. Picture Languages. New York: Aca-
demic Press.

Rosenfeld, A. and Kak, A. C., 1976. Digital Picture Process-
ing. New York: Academic Press.

Rosenfeld, A., 1986. “Pyramid Algorithms for Perceptual
Organization,” in preparation.

Samet, H., and Weber, R. E., 1982. “On Encoding Bound-
aries with Quadtrees,” Computer Science TR-1162, Univer-
sity of Maryland.

Sedgewick, R., 1983. Algorithms. Reading, MA and London:
Addison-Wesley.

Shafrir, A., 1985. “Fast region coloring and the computa-
tion of inside/outside relations,” M.Sc. Thesis, Department
of Applied Mathematics, Feinberg Graduate School, Weiz-
mann Institute of Science, Rehevot, Israel.

Shiloach, Y., and Vishkin, U., 1982. “An O(log n) paral-
lel connectivity algorithm,” Journal of Algorithms 3 (1),
March, 1982.

Stevens, K. A., 1978. “Computation of Locally Parallel
Structure,” Biological Cybernetics 29: 19-28.

Treisman, A. and Gelade, G., 1980. “A feature integration
theory of attention.” Cognitive Psychology, 12: 97-136.

Ullman, S., 1976. “Filling in the Gaps: The Shape of Sub jec-
tive Contours and a Model for their Generation,” Biological
Cybernetics 25: 1-6.

Ullman, S., 1976. “Relaxation and Constrained Optimiza-
tion by Local Processes.” Computer Graphics and Image
Processing 10: 115-125

Ullman, §S., 1984. “Visual Routines.” Cognition, 18 (1984):
97-159.

Voorhees, H. L., 1987. “Finding Texture Boundaries in Im-
ages,” §.M. Thesis (forthcoming). Cambridge, MA: Dept. of
Electrical Engineering and Computer Science, MIT.

182

[Winston and Horn 84]

[Yuille and Poggio 83]

[Zucker 80]

[Zucker 82]

- Winston, P. H., and Horn, B. K. P., 1984. Lisp. Reading,

MA and London: Addison-Wesley.

Yuille, A. L., and Poggio, T. A., 1983. “Fingerprints Theo-
rems for Zero-crossings.” Cambridge, MA: M.I.T. Artificial
Intelligence Laboratory, AI-Memo 730.

Zucker, S. W., 1980. “Labeling Lines and Links: An Ex-
periment in Cooperative Computation.” Montreal, Quebec:
McGill University Computer Vision and Graphics Labora-
tory, Technical Report 80-5.

Zucker, S. W., 1982. “Early Orientation Selection and

- Grouping: Type I and Type II Processes,” Montreal, Que-

bec: McGill University Computer Vision and Graphics Lab-
oratory, Technical Report 82-6.

183

