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Abstract

In this thesis, we address two problems involving partial differential equations. In the first
problem, we reformulate the incompressible Navier-Stokes equations into an equivalent pres-
sure Poisson system. The new system allows for the recovery of the pressure in terms of the
fluid velocity, and consequently is ideal for efficient but also accurate numerical computa-
tions of the Navier-Stokes equations. The system may be discretized in theory to any order
in space and time, while preserving the accuracy of solutions up to the domain boundary.
We also devise a second order method to solve the recast system in curved geometries im-
mersed within a regular grid. In the second problem, we examine the long time behavior of
the Klein-Gordon equation with various nonlinearities. In the first case, we show that for a
positive (repulsive) strong nonlinearity, the system thermalizes into a state which exhibits
characteristics of linear waves. Through the introduction of a renormalized wave basis, we
show that the waves exhibit a renormalized dispersion relation and a Planck-like energy spec-
trum. In the second case, we discuss the case of attractive nonlinearities. In comparison,
here the waves develop oscillons as long lived, spatially localized oscillating fields. With an
emphasis on their cosmological implications, we investigate oscillons in an expanding uni-
verse, and study their profiles and stability. The presence of a saturation nonlinearity results
in flat-topped oscillons, which are relatively stable to long wavelength perturbations.
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Chapter 1

A Tale of Two PDEs



1.1 Setting the Stage

In this thesis we addresses two problems involving physically motivated partial differential

equations (PDE). The first problem is in numerical analysis and concerns the problem of

how one computes solutions to the Navier-Stokes equations. In contrast, the second problem

is physical in nature and deals with describing the long time behavior of solutions to the

Klein-Gordon equation.

1.2 The Navier-Stokes Equations

We encounter fluids such as air and water everyday in our lives. Due to their practical

importance, engineers and physicists often seek to model fluid behavior through analytic

methods and physical principles. These principles result in the Navier-Stokes equations.

A fluids behavior is often modeled using a continuum theory by its velocity vector field.

Through the conservation of mass and momentum, or equivalently Newton's law, one obtains

a system of differential equations that describes the evolution of the fluid field. In the

case of Navier-Stokes, one retains a fluid dissipative force, a pressure force and possibly

body forces in the momentum balance. This force balance defines one equation for each

velocity component. Moreover, in many cases, such as water, the behavior of the fluid is

essentially incompressible, and consequently the conservation of mass reduces to a divergence

free condition on the fluid velocity. The result is the incompressible Navier-Stokes equations:

put + p(u -V)u = Au - Vp + f, (1.1)

V-u 0. (1.2)

Here t and p are constants representing the fluid viscosity and density, while u and p are

the dependent variables representing the velocity field and pressure. The term f represents

body forces such as gravity.

The equations (1.1-1.2) have recently received widespread interest in both the mathe-



Figure 1-1: The computation of forces requires the evaluation of the stress tensor a near
domain boundaries. The stress tensor components are functions of the pressure and the
velocity gradients.

matics community and general public due to their inclusion in one of the Clay Institute

Millennium prize problems [26]. In particular, despite the practical importance of equations

(1.1-1.2), the question of whether three dimensional solutions exist and stay smooth for all

time remains an open problem'. In addition to the theoretical, analytic difficulties of Navier-

Stokes, the equations also present many practical problems. The equations form a nonlinear,

coupled set of PDEs which admit analytical solutions in a limited number of cases. As a

result, one often resorts to solving equations (1.1-1.2) numerically on a computer. Due to

their widespread use, however, the Navier-Stokes equations arise in many different scenarios

with each problem presenting its own numerical difficulties. For instance, a few cases where

the equations present numerical challenges include systems with small2 or large p1, domains

with moving or deformable boundaries, or domains with free boundaries. Consequently,

'We currently know that two dimensional solutions stay smooth for all time - see [261 for the millennium
problem statement.

2Or more specifically small and large Reynolds numbers



there is no magic bullet for numerically solving Navier-Stokes.

A critical issue in the numerical solution of the incompressible Navier-Stokes equations

is the question of how to implement the incompressibility constraint (1.2). As described

theoretically in [98], and first exploited numerically by Chorin [20] and Temam [99], the

pressure acts3 to control the divergence constraint in the velocity field. As a result, efficient

numerical schemes rely on the ability to quickly recover the pressure as a function of the

velocity field p = p[u]. In domains with symmetry, such as periodicity, or for fluid problems

where the pressure is prescribed around the entire domain boundary, the accurate recovery

of the pressure is possible with current schemes. In contrast, many physically interesting

problems specify velocity boundary conditions. For instance, one often models the fluid

interaction with a hard wall by specifying no flux (ie. no fluid can penetrate the wall) and

no slip (ie. the fluid sticks to the wall at very close distances). For such domains with

prescribed velocity boundary conditions, the accurate and efficient recovery of the pressure

from the velocity field becomes more difficult. This also follows from the fact that the

equations do not provide any boundary condition for the pressure. As a result, the recovery

of the pressure has been an area of intense research, ever since the pioneering MAC scheme

[50] of Harlow and Welch in 1965. Of course, one can avoid the problem by simultaneously

discretizing the momentum and the divergence free equations, as in the difference scheme

proposed by Krzywicki and Ladyzhenskaya [67]. For instance inside the domain, equations

(1.1-1.2) can be written as:

Pat -p/A V u f- p(u- Vju
-. (1.3)

V- 0 p 0

Along with augmenting additional equations for the velocity boundary conditions, discretiz-

ing and inverting the left hand side of (1.3) avoids the need for pressure boundary conditions.

This process does not however lead to efficient schemes since the velocity and pressure remain

coupled together in a very large system of equations.

3 Also as a Lagrange multiplier.



Generally the dilemma when numerically solving the Navier-Stokes equations has been

that of a trade-off between efficiency and accuracy of the solution near the boundary. Many

applications, however require both efficiency, and accuracy. For example, to calculate fluid

solid interactions, both the pressure and gradients of the velocity are needed at the solid

walls, as they appear in the components of the stress tensor. Furthermore, computation

of the pressure and velocity must be achievable for arbitrary geometries, not just simple

ones with exploitable symmetries. Unfortunately, these requirements are not something that

current algorithms are generally well suited for. We now present a brief review of some

popular current methods. However, we believe that algorithms based on a Pressure Poisson

Equation (PPE) reformulation of the Navier-Stokes equations, reviewed towards the end of

this section, offer a path out of the dilemma. The work presented in chapter 2 is such an

approach. Namely the pressure Poisson formulation allows for the efficient recovery of the

pressure from the velocity field.

1.2.1 Projection methods

Projection methods are very popular in practice because they are efficient. They achieve this

efficiency by: (i) Interpreting the pressure as a projection of the flow velocity into the set of

incompressible fields. That is, writing the equations in the form

put = P(pAu-p(u -V)u+f), (1.4)

where P is the appropriate projection operator. (ii) Directly evolving the flow velocity. The

question is then how to compute P. Here the nature of a projection follows from the Hodge-

Helmholtz decomposition theorem. Namely, given any vector field w (in L2 ), then there are

functions [98] b and vector fields a and h such that4 :

w = V x a + Vb + h. (1.5)

4 Here h is a harmonic vector field with V - h = V x h = 0. Such fields exist in domains with nontrivial
homology groups.



To see how the pressure plays the role of a projection, one can apply the decomposition (1.5)

on the field w = pAu - p(u -V)u + f. Noting that V - u = 0, implies that the divergence

of Pw should vanish. To preserve V - u = 0, the projection P must therefore remove all

gradient terms (at least those which are not Harmonic fields) in the field w. This then

suggests that for suitable b and a, p = b and ut = pAu + V x a + h. Hence computing the

Hodge-Helmholtz decomposition of w, which is a function of u, almost provides a method to

efficiently recover the pressure and evolve the Navier-Stokes equations. The problem is that,

in bounded domains, the Hodge-Helmholtz decomposition (1.5) requires boundary conditions

to make the individual terms (Vb) and (V x a) unique5 . Specifically, the terms (Vb) and

(V x a), and even whether they are mutually orthogonal in an L2 norm, depend on their

boundary values'. For a more detailed summary, Liu et al. [72] discuss the pressure boundary

conditions in the context of a Hodge-Helmholtz decomposition, and include applications to

fractional step methods.

In their original formulation by Chorin [20] and Temam [99], the projection method was

formulated as a time splitting scheme in which: first an intermediate velocity is computed,

ignoring incompressibility. Second, this velocity is projected onto the space of incompress-

ible vector fields - by solving a Poisson equation for pressure. Unfortunately this process

introduces numerical boundary layers into the solution, which can be improved (but not com-

pletely suppressed) for simple geometries - e.g. ones for which a staggered grid approach

can be implemented [23]. Interestingly enough, as discussed in [47, 79, 97], the projection

method is an approximate LU factorization of the differential operator matrix on the left

hand side of equation (1.3). As a result of "splitting" the matrix into approximate operators

L and U, one introduces an irreducible temporal error into the scheme. Namely, naive higher

order discretizations of the time derivative in the projection method do not actually improve

the order of the method. Consequently, new difficulties are introduced when devising high

order (in time) projection and fractional steps methods.

5Note, b and a are never unique. For instance a can always vary by gauge field VX.
6Note, there are two natural types of boundary conditions to take when constructing the Hodge-Helmholtz

decomposition. These are somewhat analogous to Dirichlet and Neumann conditions.



The development of second order projection methods [9, 60, 63, 77, 103] provided greater

control over the numerical boundary layers and accuracy in the pressure [15]. These are the

most popular schemes used in practice. However, particularly for moderate or low Reynolds

numbers, the effects of the numerical boundary layers can still be problematic [47]. Non-

conforming boundaries add an extra layer of difficulty. The search for means to better control

these numerical artifacts is an active area of research.

The numerical boundary layers in projection methods are reflected in the known conver-

gence results (e.g. [83, 85, 93]). Convergence is stated only in terms of integral norms, with

the main difficulties lying near the boundary. There point-wise convergence (and even less

convergence of the flow velocity gradient) cannot be guaranteed - even if the solution is

known to be smooth. Hence the accurate calculation of wall stresses with these methods is

problematic. Guermond, Minev and Shen [47] provide further details on convergence results,

as well as an extensive review of projection methods and the improved pressure-correction

schemes.

1.2.2 Other methods

Two other methods for solving the Navier-Stokes equations are the immersed boundary [71,

75, 80, 101, 81, 97], and the vortex-streamfunction [10, 16, 76] methods. These also decouple

the calculation of the velocity and of the pressure. The immersed boundary method does so

by introducing Dirac forces to replace the domain walls, which makes obtaining high order

implementation of the boundary conditions difficult. The vortex-streamfunction formulation

decouples the equations, but at the expense of introducing integral boundary conditions for

the vorticity, which negatively impacts the efficiency. An interesting variation of the vortex-

streamfunction approach, using only local boundary conditions, is presented in reference [49].

Closely related to the immersed boundary methods are the penalty (alternatively: ficti-

tious domain or domain embedding) methods - e.g. see [8, 40, 62]. These methods, effec-

tively, replace solid walls in the fluid by a porous media with a small porosity 0 < n < 1. In

the limit T1 -+ 0, this yields no slip and no flow-through at the solid walls. Two important



advantages of this approach are that complicated domains are easy to implement, and that

the total fluid-solid force can be computed using a volume integral, rather than an integral

over the boundary of the solid. Unfortunately, the parameter ?q introduces i boundary

layers which make convergence slow and high accuracy computations expensive, since q can-

not be selected independently of the numerical grid size. Spectral methods [18, 42] are very

efficient and accurate, but can have grid generation issues for complicated geometries.

1.2.3 Pressure Poisson equations

Finally, we mention the algorithms based on a Pressure Poisson Equation (PPE) reformula-

tion of the Navier-Stokes equations [46, 57, 58, 64, 84, 86, 90]. The work presented in chapter

2 falls within this class of methods. In this approach the incompressibility constraint for the

flow velocity is replaced by a Poisson 7 equation for the pressure. This then allows an extra

boundary condition which must be selected so that incompressibility is maintained by the

resulting system. Such a strategy was first proposed by Gresho and Shani [46], who pointed

out that adding V - u = 0 as a boundary condition yields a system of equations that is

equivalent to the Navier-Stokes equations. Unfortunately, their particular PPE formulation

incorporates no explicit boundary condition that can be used to recover the pressure from

the velocity through the solution of a Poisson problem. In [51, 52] the issue was resolved

at the discrete numerical level, where they demonstrate high order schemes. For instance

[51] demonstrates a fourth-order in space and second-order in time implementation using

overlapping grids. Subsequent work at the continuum level was then introduced by Henshaw

et. al. [53] and Johnston and Liu [58]. Recently, work in PPE formulations have led to

interesting analysis and improvements on projection methods [72]. In chapter 2, we present

another PPE system, also equivalent to the Navier-Stokes equations, which allows an explicit

recovery of the pressure given the flow velocity.

PPE reformulations of the Navier-Stokes equations, such as the one we present in chapter

2, or in reference [581, have important advantages over the standard form of the equations.

7 The choice of the Poisson equation for the pressure is not unique, e.g. see [57].



First, the pressure is not implicitly coupled to the velocity through the momentum equation

and incompressibility. Hence it can be directly (and efficiently) recovered from the velocity

field by solving a Poisson equation. This allows one to march the velocity field in time using

the momentum equation, with the pressure interpreted as some (complicated) function of

the velocity. Second, no spurious boundary layers are generated for neither the velocity, nor

the pressure. This follows since:

- There are no ambiguities as to which boundary conditions to use for the pressure -

hence errors induced by not-quite-correct boundary conditions do not occur8 .

- Incompressibility is enforced at all times.

Hence pressure and velocities that are accurate everywhere can be obtained, in particular:

near the boundaries. Finally, PPE formulations allow, at least in principle, for the systematic

generation of higher order approximations.

It follows that PPE strategies offer the promise of a resolution for some of the difficulties

with evolving the incompressible Navier-Stokes equations. They retain many of the advan-

tages that have made projection methods popular, while not suffering from the presence of

numerical boundary layers, or restrictions in temporal accuracy. On the negative side, the

boundary conditions for PPE systems tend to be more complicated than the simple ones

from other methods.

In chapter 2 we present a PPE formulation, using an alternative form of the veloc-

ity boundary conditions, that allows a complete splitting of the momentum and pressure

equations. Namely, the pressure can be recovered from the flow velocity without boundary

condition ambiguities. In addition, we resolve some of the numerical issues that arise when

solving the resulting PPE formulation through the introduction of an extended Navier-Stokes

system. This extension is done at the continuum (PDE) level so that the resolution remains

independent of any numerical details. Moreover, the system is valid for an extended class

8 Note that these errors should not be confused with the truncation errors that any discretization of the
equations will produce. Truncation errors are controlled by the order of the approximation and, for smooth
solutions, are uniformly small



of initial conditions, and for smooth solutions contain the Navier-Stokes equations as an at-

tractor. Lastly, we describe a second order solver for the new system on an irregular domain

embedded within a Cartesian staggered grid.

1.3 The Klein-Gordon Equation

The Klein-Gordon equation describes a wide variety of phenomena, including both classical

wave systems, such as the displacement of a string attached to an elastic bed [105], or semi-

classical and quantum systems based on scalar field theories [104]. Despite Klein-Gordon's

simplicity, the fact that the equation is both dispersive, yet also hyperbolic, with the possi-

bility of adding nonlinear potentials (such as a quartic 4 potential) has lead to a variety of

interesting problems for the solutions.

As with many equations in physics, the Klein-Gordon equation often arises through the

application of Newton's law, or the conservation of energy. For instance, in classical wave

systems, such as a string on an elastic bed, application of Newton's law f = ma to the string

yields

pOth - TOxh + kh + V'(h) = 0, (1.6)

where h(x, t) is the height of the string, p, T are the density and tension of the string, k

is the linear elastic constant of the bed, and V(h) describes a nonlinear restoring potential.

Moreover, in quantum systems, identifying energy and momentum with the operators E -

zh8t and y= -%h&2, followed by the relation E2 = m 2c4 + p2c2 yields a scalar field equation

of the form

h28 - h2 O1 + m2c4  + V'(O) = 0, (1.7)

where we have retained the additional V'(p) term to include nonlinear effects.

In both equations (1.6-1.7), the addition and relative sign of the nonlinearity V(h) or

V(p) can drastically change the nature of the wave solutions. Of particular importance is

the resulting behavior over long periods of time. For example, depending on the type of



physical system, the long time wave behavior can govern what we hear, see or observe. We

will now discuss more generally the physical importance, and types of behavior that may

result in systems with positive and negative nonlinearities.

1.3.1 Positive nonlinearities and thermalization

In this section we provide some background on Klein-Gordon systems with positive non-

linearities. For example, modern applications of the classical Klein-Gordon wave equation,

with a positive V(p) = p4 potential, include models of both early cosmology and ultrarela-

tivistic heavy ion collisions [14]. In the context of a string on an elastic bed, the addition of

a V(h) = h4 potential acts to harden the response of the bed.

As we will show in chapter 3, a positive nonlinearity tends to alter the linear Klein-

Gordon dispersion relation of w2  M2 + k2, while also redistributing the wave energy

throughout different Fourier modes. For a simple analytic discussion, Whitham [105] outlines

the dispersive effects for a weak nonlinearity in the Klein-Gordon equation. As discussed in

chapter 3, if the waves are restricted to a fixed domain, the continuous sharing of energy

between Fourier modes tends to approach a reasonably stable distribution. In these cases,

the wave field is said to thermalize (a more precise definition of thermalization may be found

in chapter 3). In applications such as the early universe [14], understanding thermalization

for different out of equilibrium initial conditions may lead to a deeper understanding of a

waves long time behavior. Specifically, recent studies have focused on the thermalization for

the Klein-Gordon equation in both quantum [59, 17], and classical [14, 2, 1] field theories.

These studies indicate that generic initial wave fields tend to thermalize into a state with

large quantities of energy in a wide range of Fourier modes.

In previous studies [1, 2, 14, 89, 91, 66], the thermalization of the classical Klein-Gordon

equation has been examined with an emphasis on the applications to quantum field theory

or quantum systems. For example, Boyanovsky et al. [14] examine the approach to ther-

malization for out of equilibrium initial conditions. Meanwhile, Aarts et al. [2] consider

both the thermalization of single fields as well as the statistical average of many initial fields



to + V(h) h(x, t)

ti

Figure 1-2: The diagram loosely illustrates how a string with some initial condition (at time
to) starts to thermalize under a positive nonlinearity (time ti).

(canonical ensemble average). Moreover, they also consider the interesting case of a strong

nonlinearity as a nonperturbative system. One general trend in the previous work is the ex-

istence of a local thermodynamic equilibrium (LTE). Here an LTE refers to a wave solution

which exhibits characteristics of a thermal equilibrium, such as a stable sharing of energy

between Fourier modes. The term local, however, refers to the fact that such distributions

are defined only locally in time, and may drift slowly over longer time scales.

One trend in the previous work on thermalization, is the use an effective Green's func-

tion (two point correlation function) [2, 14] or the application of functional integrals for

computing thermodynamic quantities [66, 91]. In contrast, a recent approach for studying

classical systems is through the use of renormalized waves introduced by Gershgorin et al.

[34, 35]. Although the introduction of renormalized waves has been primarily restricted to

the case of a finite lattice, a recent study [70], uses the approach for the infinite dimensional,

Majda-McLaughlin-Tabak wave system. Specifically, they examine the resulting renormal-

ized dispersion relation, and demonstrate how the new dispersion relation can effect the

dynamics of the wave resonance structure.



In analogy with work by Gershgorin et al., in chapter 3 we show that the thermal (LTE)

state of the Klein-Gordon wave equation may be examined using renormalized waves. Specif-

ically, we show that the resulting renormalized basis exhibits features of a weakly nonlinear

system, even in the presence of strong nonlinearities. As a result, we obtain a simple form for

the renormalized wave dispersion relation. The net result is a mass shift in the Klein-Gordon

dispersion relation that is related to the waves mean field. Moreover, we find that the ef-

fective mass shift is different than that suggested by the simple (Hartree) nonperturbative

approach. Lastly, we verify that the stable sharing of energy between Fourier modes achieves

a Planck-like spectrum. Namely there is equipartition of energy in the low frequency modes,

followed by an exponential decay in the high modes. In the classical case of a string on an

elastic bed, the characterization of the LTE may be posed as understanding the long time-

averaged sound of the string. For instance, what frequencies does the string make (dispersion

relation), and how loud do they sound (energy distribution)?

1.3.2 Negative nonlinearities and oscillons

A number of physical phenomenon from water waves traveling in narrow canals [87], to

phase transitions in the early Universe [32] exhibit the formation of localized, energy density

configurations. The reason for their longevity are varied. Some configurations are stable due

to conservation of charge, while some are stable due to a dynamical balance between the

nonlinearities and dissipative forces.

Relativistic, scalar field theories (with nonlinear potentials) form simple yet interesting

candidates for studying such phenomenon. Some well-studied examples include topological

solitons in the 1 + 1-dimensional Sine-Gordon model and nontopological solitons such as Q-

balls [21]. The Sine-Gordon soliton is stationary in time whereas the Q-balls are oscillatory

in nature. Both have conserved charges which make them stable (at least without coupling to

gravity). In chapter 4 we discuss another interesting example of such localized configurations

called oscillons (also called breathers). Like the Sine-Gordon soliton, they can exist in real

scalar fields, and like the Q-balls they are oscillatory in nature. Unlike both of the above



examples they do not have any known conserved charges (however, see [61] for an adiabatic

invariant). In general they decay, however their lifetimes are significantly longer than any

natural time scales present in the Lagrangian. Along with their longevity, another fascinating

aspect of oscillons is that they emerge naturally from relatively arbitrary initial conditions.

For instance, see [4] for a study of oscillons emerging from fluctuations in a homogeneous

background field.

Oscillons first made their appearance in the literature in the 1970s [13]. They were

subsequently rediscovered in the 1990s [37]. Oscillons are not exact solutions and (very

slowly) radiate their energy away. The amplitude of the outgoing radiation (in the small

amplitude expansion) has been calculated by a number of authors, see for example [29, 30,

92]. Characterization of their lifetimes and related properties using the "Gaussian" ansatz

for the spatial profile was done in [39] (also see references therein). The importance of the

dimensionality of space for these objects has been discussed in [38, 88].

Their possible applications in early Universe physics has not gone unnoticed. For ex-

ample, they could be relevant for axion dynamics near the QCD phase transition [65]. The

properties of oscillons in a 1 + 1-dimensional expanding universe (in the small amplitude

limit) have been discussed in [24, 44]. Their importance during bubble collisions and phase

transitions have been discussed in [22]. In [55], interactions of oscillons with each other and

with domain walls were studied in 2+1 dimensions.

Not all scalar field theories support oscillons, however, we note that the requirement is

satisfied by a large number of physically well-motivated examples. For example, the potential

for the axion, as well as almost any potential near a vacuum expectation value related to

symmetry breaking, support oscillons. Oscillons have also been found in the restricted

standard model SU(2) x U(1), [25, 43, 44].

Since oscillons are oscillatory, localized field configurations, we find it convenient to visu-

alize them as spatially localized wave envelopes, oscillating with a constant frequency. To get

a heuristic understanding for the types of potentials that support oscillons, let us consider

the Klein-Gordon equation (1.7) with an even nonlinear potential V(-p) = V(p). For a



small amplitude oscillon, we may seek an ansatz of the form <p(t, x) ~ 4(x) cos[wt], where

1<b| < 1 for all x'. To have a localized field configuration, as we move far enough away from

the center (whereby the nonlinearity in the potential is irrelevant), the oscillon must satisfy

the linearized equation (we have set h= c = 1):

-W2<b- 4 + m 24 ~ 0. (1.8)

Again, because we are looking for smooth, localized configurations which vanish exponen-

tially as x -+ oo, we must have w2 < m2 . In addition, for the lowest energy oscillon

configuration, we expect that the field decays monotonically to zero (ie. has no nodes), and

is an even symmetric function about the origin. As a result, B&2b = 0 for some value of x, and

hence Ox4 < 0 for some range of x. Without loss of generality in the following argument,

assume that &jcb < 0 at x = 0, so that (M 2 _ W2)<D - 24Ix=o < 0. Also, the linear profile

approximately satisfies the equation

[(m 2 _ 2 )<p - 024b] cos(wt) - -V'[cos(wt)<b]. (1.9)

Multiplying (1.9) by cos(wt) and integrate over one period, at x = 0 we obtain

SV'[cos()<bo] cos(O) dO < 0, (1.10)

(1.11)

where <bo = <b(0). For a symmetric potential, the product V'(x)x is also an even function.

The relation (1.10) then implies

V'[xo] X dx < 0. (1.12)o "v1 -X 2
(1.13)

9The ansatz may be justified by retaining the first term in a small amplitude expansion for <.



By the mean value theorem for integrals, there exists an x* with 0 < x* < 1 such that

V'[x*<>o] < 0, (1.14)
#1 -(*)

Hence, for oscillons to exist in potentials with a quadratic minimum, we require the nonlin-

earity V' < 0 for some range of field values.

The above (heuristic) argument does not provide a reason for the longevity of oscillons.

For oscillons, their shape, which determines their Fourier content, guarantees that the am-

plitude at the wave number of the outgoing radiation is exponentially suppressed (at least

for the small amplitude oscillons). For details see [54] and the subsection in chapter 4 on

radiation.

It is not too difficult to think of physically motivated potentials satisfying the above

requirement. For example, the potential for the QCD axions V(p) = m 2f 2 [1 - cos(/f)]

where f is the Peccei-Quinn scale and m is the mass, or any symmetry breaking potential

expanded about it's vacuum expectation value. Both potentials "open up" a little when we

move away from the minimum.

In chapter 4, we examine oscillons in a scalar field theory for a class of nonlinear potentials.

To study individual oscillon properties, we first consider a theory without expansion. We then

derive the oscillon frequency, as well as the spatial profile, for both 1 + 1 (analytically) and

3+1 (numerically) dimensions. In particular, we show a nonmonotonic relationship between

the height and the width of the oscillons, and discuss their stability to small perturbations

(see [69] for a somewhat related analysis for Q-balls). For instance, in the model under

consideration, large amplitude oscillons become very wide and develop flat tops. In contrast

to the small amplitude oscillons, these flat topped oscillons may be physically important

since they are more stable to long wavelength perturbations. Secondly, since oscillons could

have important applications in cosmology, especially in the early Universe, we discuss the

effect of expansion on their profiles and lifetimes. Specifically, when oscillons are placed in

an expanding universe, we show the effect of expansion can tend to stretch the energy in

the oscillon tails. As a result, there is additional outgoing radiation which can reduce the



oscillon lifetime.

The work in chapter 4 appears as a first step towards understanding oscillons in an

expanding universe. Subsequent work [5] shows that the effect of expansion does not tend to

significantly alter the stability results we derive in chapter 4. Hence, aside from a reduced

lifetime, qualitative oscillon properties, such as profile shapes and stability, remain intact

in an expanding universe. There are, however, quantitative properties that do change. For

example, the effect of expansion can tend to modify the growth of oscillons [4]. Lastly,

expansion may also be of practical importance as a mechanism to first spread out generic

initial conditions which then expedites the formation of oscillons. Note however, expansion

may not be a necessary ingredient for the spontaneous formation of many oscillons. For

instance, even in the absence of expansion, parametric instabilities about a homogeneous

background field can potentially generate oscillons.
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Chapter 2

A Pressure Poisson Approach for

Navier-Stokes



2.1 Motivation

As outlined in the introduction, there is often a trade off between accuracy and efficiency

when computing numerical solutions to the incompressible Navier-Stokes equations. For

example, many common efficient schemes for the incompressible Navier-Stokes equations,

such as projection or fractional step methods, have limited temporal accuracy as a result of

matrix splitting errors, or introduce errors near the domain boundaries.

In this chapter we present a reformulation of the incompressible Navier-Stokes equations,

and a corresponding numerical method to solve the resulting system [95]. The advantage

of our approach is that we maintain both numerical accuracy and computational efficiency.

Specifically, we recast the constant density Navier-Stokes equations, with velocity prescribed

boundary conditions for the primary variables velocity and pressure. We do this in the

usual way away from the boundaries, by replacing the incompressibility condition on the

velocity with a Poisson equation for the pressure. The key difference from other common

methods occurs at the boundaries, where we use boundary conditions that unequivocally

allow the pressure to be recovered from knowledge of the velocity at any fixed time. This

avoids the common difficulty of an, apparently, over-determined Poisson problem. Since in

this alternative formulation the pressure can be accurately and efficiently recovered from the

velocity, the recast equations are ideal for numerical marching methods. The new system

can be discretized using a variety of methods, in principle to any desired order of accuracy.

This chapter begins with an introduction to the Navier-Stokes equations and the pressure

Poisson approach. We first discuss our new formulation in section 2.3 and outline potential

difficulties that may arise in a numerical implementation of the new system. In sections

2.4 and 2.5 we resolve these potential difficulties by introducing an extended Navier-Stokes

system. The resulting extended system is then suitable for numerical implementation.

In section 2.7 we illustrate the new approach with a 2-D second order finite difference

scheme on a Cartesian grid. Here we devise an algorithm to solve the equations on domains

with curved (non-conforming) boundaries and in section 2.8 we present tests for the scheme

in both a square domain, and a domain with a circular obstruction. Our tests verify that



the algorithm achieves second order accuracy in the L norm, for both the velocity and the

pressure.

Finally, we conclude the chapter with a section on potential future work. These in-

cluding the starting framework for a Galerkin formulation of the new system, as well as an

introduction to a second pressure Poisson reformulation of the Navier-Stokes equations.

2.2 The Pressure Poisson Equation.

In this section we introduce the well-known pressure Poisson equation (PPE), and use it

to construct a system of equations (and boundary conditions) equivalent to the constant-

density (hence incompressible) Navier-Stokes equations, with the velocity prescribed at the

boundaries. Specifically, consider the incompressible Navier-Stokes equations in a connected

domain Q E RD, where D = 2 or D = 3, with a piece-wise smooth boundary 0. Inside 2,

the flow velocity field u(x, t) satisfies the equations

ut+(u-V)u =p Au-Vp+f, (2.1)

V-u = 0, (2.2)

where p is the kinematic viscosity,' p(x, t) is the pressure, f(x, t) are the body forces, V is

the gradient, and A = V 2 is the Laplacian. Equation (2.1) follows from the conservation of

momentum, while (2.2) is the incompressibility condition (conservation of mass).

In addition, the following boundary conditions apply

u = g(x, t) for x E 0S2, (2.3)

where

n -g dA = 0, (2.4)

'We work in non-dimensional variables, so that p 1/Re (where Re is the Reynolds number) and the
fluid density is p = 1.



n is the outward unit normal on the boundary, and dA is the area (length in 2D) element

on 0. Equation (2.4) is the consistency condition for g, since an incompressible fluid must

have zero net flux through the boundary.

Finally, we assume that initial conditions are given

u(x, 0) Uo for x E Q, (2.5)

V-u 0  = 0 for x e Q, (2.6)

uo(x) g(x, 0) for x E OQ. (2.7)

Remark 2.1 Of particular interest is the case of fixed impermeable walls, where no flux

u -n = 0 and no slip u x n = 0 apply at 80. This corresponds to g = 0 in (2.3). Note that

the no-slip condition is equivalent to u-t = 0 for all unit tangent vectors t to the boundary. 4

Remark 2.2 In this chapter we will assume that the domain Q is fixed. Situations where

the boundary of the domain, 8Q, can move - either by externally prescribed factors, or from

interactions with the fluid, are of great physical interest. 4

Next we introduce the Pressure Poisson Equation (PPE). To obtain the pressure equation,

take the divergence of the momentum equation (2.1), and apply equation (2.2) to eliminate

the viscous term and the term with a time derivative. This yields the following Poisson

equation for the pressure

Ap = V - (f - (u -V) u). (2.8)

Two crucial questions are now (for simplicity, assume solutions that are smooth all the way

up to the boundary)

2.2a Can this equation be used to replace the incompressibility condition (2.2)? Since

given (2.8) - the divergence of (2.1) yields the heat equation

dt= PAO, (2.9)



for # = V - u and x E Q, it would seem that the answer to this question is yes -

provided that the initial conditions are incompressible (i.e.: = 0 for t = 0). However,

this works only if we can guarantee that, at all times,

# =0, (2.10)

for x E OQ.

2.2b Given the flow velocity u, can (2.8) be used to obtain the pressure p? Again, at first

sight, the answer to this question appears to be yes. After all, (2.8) is a Poisson equation

for p, which should determine it uniquely - given appropriate boundary conditions.

The problem is: what boundary conditions? Evaluation of (2.1) at the boundary, with

use of (2.3), shows that the flow velocity determines the whole gradient of the pressure

at the boundary, which is too much for (2.8). Further, if only a portion of these

boundary conditions are enforced when solving (2.8) - say, the normal component of

(2.1) at the boundary, then how can one be sure that the whole of (2.1) applies at the

boundary?

Remark 2.3 From an algorithmic point of view, an affirmative answer to the questions

above would very useful, for then one could think of the pressure as some (global) function of

the flow velocity, in which case (2.1) becomes an evolution equation for u, which could then

be solved with a numerical "marching" method. 4

The issue in item 2.2a can be resolved easily, and we do so next. We postpone dealing with

the issue in item 2.2b till the next section, § 2.3. Since the addition of an equation for

the pressure allows the introduction of one extra boundary condition, we propose to replace

the system in (2.1), (2.2), and (2.3) by the following Pressure Poisson Equation (PPE)

formulation:

ut+(u-V)u = pAu-Vp+f, (2.11)

Ap = V-(f-(u-V)u), (2.12)



for x E Q, with the boundary conditions

u = g(x,t), (2.13)

V-u= 0, (2.14)

for x E 80 - where, of course, the restriction in (2.4) still applies. The extra boundary

condition is precisely what is needed to ensure that the pressure enforces incompressibility

throughout the flow (see item 2.2a)

Remark 2.4 It can be seen that for smooth enough solutions (u,p), the pair of equations

(2.11-2.12), accompanied by the boundary conditions (2.13-2.14), are equivalent to the in-

compressible Navier-Stokes equations in (2.1), (2.2), and (2.3). Of course, this result is

not new. This reformulation of the Navier-Stokes equations was first presented by Gresho

and Sani [46] - it can also be found in reference [84]. However, it should be pointed out

that Harlow and Welch [50], in their pioneering work, had already noticed that the boundary

condition V - u = 0 was needed to guarantee, within the context of their MAC scheme, that

V - u = 0 everywhere.

This formulation does not provide any boundary conditions for the pressure, which means

that one ends up with a "global" constraint on the solutions to the Poisson equation (2.12).

Hence it does not yield a satisfactory answer to the issue in item 2.2b, since recovering the

pressure from the flow velocity is a hard problem with this approach.

Direct implementations of (2.11-2.14) have only been proposed for simple geometries -

in particular: grid-conforming boundaries. In [64] a spectral algorithm for plane channel

flows is presented. We have already mentioned [50], where they use a staggered grid on a

rectangular domain, and the condition V -u = 0 is used (at the discrete level) to close the

linear system for the pressure. In [57], by manipulating the discretization of the boundary

conditions and of the momentum equation (2.11), they manage to obtain "local" approximate

Neumann conditions for the pressure - both on rectangular, as well as circular, domains

where u = 0 on the boundary. Unfortunately, the approaches in [50, 57] seem to be very tied



up to the details of particular discretizations, and require a conforming boundary.

2.3 Theoretical Reformulation

We still need to deal with the issue raised in item 2.2b. In particular, in order to implement

the ideas in remark 2.3, we need to split the boundary conditions for (2.11-2.12), in such a

way that: (i) there is a specific part of the boundary conditions that is used with (2.11) to

advance the velocity field in time, given the pressure. (ii) The remainder of the boundary

conditions is used with (2.12) to solve for the pressure - at each fixed time, given the flow

velocity field u. This is the objective of this section.

The conventional approach in projection or fractional step methods is to associate (2.13)

with equation (2.11). This is reasonable for evolving the heat-like equation (2.11). Unfor-

tunately, it has the drawback of only implicitly defining the boundary conditions for the

Poisson equation (2.12). Specifically, the correct pressure boundary conditions are those

that guarantee V -u = 0 for x E OQ, and such boundary conditions cannot easily be known

a priori as a function of u. Hence one is left with a situation where the appropriate bound-

ary conditions for the pressure are not known. This leads to errors in the pressure, and in

the incompressibility condition, which are difficult to control. In particular, errors are often

most pronounced near the boundary where no local error estimates can be produced, even

for smooth solutions. By the latter we mean that the resulting schemes cannot be shown

to be consistent, all the way up to the boundary, in the classical sense of finite differences

introduced by Lax [68].

In our formulation we take a different approach, which has a similar spirit to the one used

by Johnston and Liu [58] - see remark 2.5. Rather than associate all the D components of

(2.13) with equation (2.11), we enforce the D - 1 tangential components only, and complete

the set of boundary conditions for (2.11) with (2.14). Hence, when evolving equation (2.11)

we do not specify the normal velocity on the boundary, but - through the divergence

condition (2.14) - specify the normal derivative of the normal velocity. Finally, the (as yet

unused) boundary condition on the normal velocity, n -(u - g) = 0 for x E OQ, is employed



to obtain an explicit boundary condition for equation (2.12). We do this by requiring that the

pressure boundary condition be equivalent to (n - (u - g))t = 0 for x e 00 - which then

guarantees that the normal component of (2.13) holds, as long as the initial conditions satisfy

it. This objective is easily achieved: dotting equation (2.11) through with n, and evaluating

at the boundary yields the desired condition. The equations, with their appropriate boundary

conditions, are thus:

ut-[tAu = -Vp- (u-V)u+f for x E: ,

nx (u-g) = 0 for x E 0Q, (2.15)

V-u = 0 for xEc , J
and

Ap -V.((u-V)u)+V-f for x E , (2.16)

n-Vp = n-(f-gt+ p Au-(u-V)u) for x E 09.

Again, for smooth (up to the boundary) enough solutions (u, p) of the equations: the in-

compressible Navier-Stokes equations (2.1-2.2), with boundary conditions as in (2.3), are

equivalent to the system of equations and boundary conditions in (2.15-2.16).

For the sake of completeness, we display now the calculation showing that the boundary

condition splitting in (2.15-2.16) recovers the normal velocity boundary condition n-u = n-g.

To start, dot the first equation in (2.15) with the normal n, and evaluate at the boundary.

This yields

n-ut = n. (IpAu-Vp- (u-V)u+f) for x E o9. (2.17)

Next, eliminate n - Vp from this last equation - -by using the boundary condition for the

pressure in (2.16), to obtain

(n- (u-g))t= 0 for xE &0. (2.18)

This is a trivial ODE for the normal component of the velocity at each point in the boundary.

Thus, provided that n - (u - g) = 0 initially, it holds for all time.



An important final point to check is the solvability condition for the pressure problem.

Given the flow velocity u at time t, equation (2.16) is a Poisson problem with Neumann

boundary conditions for the pressure. This problem has a solution (unique up to an additive

constant) if and only if the "flux equals source" criteria

/ n - (f - g + pAu - (u- V) u) dA = V - (f - (u V) u) dV, (2.19)

applies. This is satisfied because:

2.3a fa n -(f - (u -V) u) dA = f2 V -(f - (u - V) u) dV,

2.3b fn Au dA = fn A (V - u) dV = 0,

2.3c fan.gtdA= n - gdA = 0,

where we have used Gauss' theorem, incompressibility, and (2.4).

2.4 Modification for Stability

For the system of equations in (2.15-2.16), it is important to notice that

2.4a The tangential boundary condition on the flow velocity, n x (u - g) 0 for x E O,
is enforced explicitly.

2.4b The incompressibility condition, V -u = 0 for x E Q, is enforced "exponentially". By

this we mean that any errors in satisfying the incompressibility condition are rapidly

damped, because 4 = V - u satisfies (2.9-2.10). Thus this condition is enforced in a

robust way, and we do not expect it to cause any trouble for "reasonable" numerical

discretizations of the equations.

2.4c By contrast, the normal boundary condition on the flow velocity, n - (u - g) = 0 for

x C 80, is enforced in a rather weak fashion. By this we mean that errors in satisfying

this condition are not damped at all by equation (2.18). Thus, this condition lacks



the inherent stability provided by the heat equation. In practice, numerical errors

add (effectively) noise to equation (2.18), resulting in a drift of the normal velocity

component. This can have de-stabilizing effects on the behavior of a numerical scheme.

Hence it is a problem that must be corrected.

In this section we alter the PPE equations (2.15-2.16) to address the problem pointed out in

item 2.4c. We do this by adding an appropriate "stabilizing" term. The idea here is similar in

nature to the feedback controller [41] proposed to control the boundary velocity for immersed

boundary methods, as well as the divergence stabilizing term introduced by Henshaw [51, 53].

Our goal here is to develop a pair of differential equations - fully equivalent to (2.15-2.16) -

which are suitable for numerical implementation. In order to resolve the issue in item 2.4c,

we add a feedback term to the equations, by altering the pressure boundary condition.

Specifically, we modify the equations from (2.15-2.16) to

ut -pAu -Vp-(u-V)u+f for x E Q,

n x (u - g) = 0 for x E 0, (2.20)

V-u = 0 for xEO, J
and

Ap = -V-((u-V)u)+V.f for x E 1
n-Vp = n-(f-gt+pAu-(u-V)u) (2.21)

+ An.(u-g) for x E JQ
where A > 0 is a numerical parameter - see § 2.4.1. This system is still equivalent to the

incompressible Navier-Stokes equations and boundary conditions in (2.1-2.3), for smooth

(up to the boundary) enough solutions (u, p). The heat equation (2.9-2.10) for < = V - u

still applies, while the equation for the evolution of the normal velocity at the boundary

changes from (2.18) to:

(n-(u-g)),=-An-(u-g) for xE Oi. (2.22)



Thus, if n - (u - g) = 0 initially, it remains so for all times. In addition, this last equation

shows that this new system resolves the issue pointed out in item 2.4c.

Finally, we check what happens to the solvability condition for the pressure problem,

given the system change above. Clearly, all we need to do is to modify equation (2.19) by

adding - to its left hand side, the term

Aj n-(u-g) dA=A V-udV-A n-gdA=O, (2.23)
Jan in fen

where we have used incompressibility, and equation (2.4). It follows that solvability remains

valid.

Remark 2.5 The reformulation of the Navier-Stokes equations in (2.20-2.21) is similar to

the one used by Johnston and Liu in [58]. In their paper the authors propose methods of

solution to the Navier-Stokes equations based on a similar system (for simplicity, we set

g = 0, as done in [58]) where

(a) For x G Q, the same equations as in (2.20-2.21) apply.

(b) For x G OQ, u = 0 is used for the momentum equation.

(c) For x G 80, n -Vp = n - (-p V x V x u + f ) is used for the Poisson equation.

For this system the incompressibility condition # = V -u = 0 follows because these equations

yield

(d) pt = A q for x G Q, with n -V & = 0 for x E c Q.

Thus, if $ vanishes initially, it will vanish for all times. Note that the n -V $ = 0 boundary

condition follows from using n - (V x V x u) instead of n - (Au) in the pressure boundary

condition.

(e) The main advantage of this reformulation over the one in (2.20-2.21) is that depending

on the implementation, the boundary condition V - u = 0 in (2.20) may couple the

components of the flow velocity field - see § 2.7.3. Thus an implicit treatment of the



viscous terms in (2.20-2.21) would be more expensive (and complicated) than for the

system in items a-c above. However, it is not clear to us at this moment how much of

a problem this is. The reason is that the coupling is "weak", by which we mean that:

in the NG x NG discretization matrix for the Laplacian - where NG is the number

of points in the numerical grid, the coupling induced by the boundary condition affects

only O(N1/ 2) entries in 2-D, and O(N / 3 ) entries in 3-D - at least with the type of

discretization that we use in § 2.7.3.

(f) The velocity divergence is controlled through the damping of the heat equation. If the

heat equation cannot suppress the divergence fast enought (for example in the case of

large Reynolds numbers), the method can be modified using an idea by Henshaw [51, 53].

For example: modify the Poisson equation for the pressure to

Ap = -V - ((u - V) u) + V - f + A V - u.

This then changes the system in item d to

#t =yAq#-A #for xE 9, with n-V#=0 for x 80Q.

Remark 2.6 It would be nice to be able to use A = A(x), so as to optimize the implemen-

tation of the condition n - u = n - g for different points along o&f. However, this is not

a trivial extension, since it destroys the solvability condition for the pressure. Thus, other

(compensating) corrections are needed as well. We postpone the study of this issue for future

work. 4

Remark 2.7 As show earlier in (2.19) and (2.23), the validity of the solvability condition,

for the problem in (2.21), relies on the velocity field satisfying the incompressibility constraint

V - u = 0. On the other hand, in the course of a numerical calculation, the discretization

errors result in a small, but non-zero, divergence - thus solvability fails. However, the errors

in solvability are small. Hence, a least squares solution of the discretized linear equation for



the pressure provides an approximation within the order of the method - which is as good

as can be expected. These considerations motivate the following theoretical question: can the

equations in (2.20-2.21) be modified, so they make sense even for V - u f 0? In section 2.5

we show that this is possible. 4

2.4.1 Selection of the parameter A.

For numerical purposes, here we address the issue of how large A should be, by using a

simple model for the flow's normal velocity drift. Notice that no precision is needed for this

calculation, just order of magnitude. In actual practice, one can monitor how well the normal

velocity satisfies the boundary condition, and increase A if needed. In principle one should

be wary of using large values for A, since this will yield stiff behavior in time. However, the

calculation below shows that A does not need to be very large, and does not depend on the

grid size Ax.

It seems reasonable to assume that one can model how the numerical errors affect the

ODE (2.22) for S = n - (u - g), by perturbing the coefficients of the equation, and adding a

forcing term to it. Hence we modify equation (2.22) as follows

Et = -AcE + e-y for x E 0Q, (2.24)

where e < 1 characterizes the size of the errors (determined by the order of the numerical

method), while c, = c,(x, t) = 1 + 0(e) and y - y(x, t) 0 O(1) are functions encoding

the numerical errors. What exactly they are depends on the details of the numerical dis-

cretization, but for this calculation we do not need to know these details. All we need is

that 2

0 < Cm cp and |7| < F, (2.25)

where CM and F are some positive constants, with CM ~ 1, and F 0 O(1) - but not

necessarily close to one.
2For smooth enough solutions, where the truncation errors are controlled by some derivative of the

solution.



The solution to (2.24) is given by

E = Eo e-AIl + 0 (x, s) e-A 2 ds, (2.26)

J

where E is the initial value, I1 = Ii(x, t) = fg' c,(x, s) ds, and 12 = Ii(x, t) - Ii(x, s).

The crucial term is J, since the first term decreases in size, and starts at the initial value.

However

|JI < F ] - cm (t-) ds < . (2.27)

Within the framework of a numerical scheme, the normal boundary velocity may deviate

from the prescribed velocity by some acceptable error J. Thus we require E J = O(6) or less,

which - given (2.27) - will be satisfied if

A ~ ~ -C or larger. (2.28)
6 CM jI

For the second order numerical scheme in § 2.7, it is reasonable to expect that e = (Ax) 2,

and to require that 6 = (Ax) 2 . Then (2.28) reduces to A > F. Of course, we do not know

(a priori) what F is; this is something that we need to find by numerical experimentation -

see the first paragraph in this § 2.4.1. For the numerical calculations reported in § 2.8, we

found that values in the range 10 < A < 100 gave good results.

For this scheme, comparing the time step restriction imposed by feedback (Atx < 0(1/A))

to the one imposed by diffusion At < 0((Ax) 2 /p), results in a stiffness ratio that scales as

-t- ~ Ax2. (2.29)
AtA P

Hence for low to moderate Reynolds numbers, A can be chosen quite large while maintaining

a ratio well below unity. As a result, in these regimes, the feedback term does not introduce

additional stiffness in the equations.



2.5 Further Modification for Solvability

In this section we address the question posed and motivated in remark 2.7. Namely: Can

the equations in (2.20-2.21) be modified in such a way that they make sense even for initial

conditions that are not incompressible? In fact, in such a way that if a solution starts with

V- u f 0 and n- (u - g) $ 0, then (as t -+ oo) V- u -+ 0 and n -(u - g) -+ 0 - so that

the solution converges towards a solution of the Navier-Stokes equation.

As pointed out in remark 2.7, the problem with (2.20-2.21) is that the solvability con-

dition for the Poisson equation (2.21) is not satisfied when V -u / 0. Hence the equations

become ill-posed, as they have no solution. The obvious answer to this dilemma is to in-

terpret the solution to (2.21) in an appropriate least squares sense, which is equivalent to

modifying the non-homogeneous terms in the equation by projecting them onto the space of

right hand sides for which the Poisson equation has a solution. Symbolically, write (2.21) in

the form
Ap = g for x Q (2.30)

n-Vp = h for xCE OQ,

where g and h are defined in (2.21). Then modify the equation to

Ap = g, for xC (2.31)

n - Vp h, for x EOf2 J
where (gp, h,) = P (g, h) for some projection operator P such that

gp dV j hp dA. (2.32)

The question, however, is: which projection?

The discretization failures in solvability arising during the course of a numerical calcu-

lation are small, since it should be (ge, he) - (g, h) = 0 ((A x)q) - where q is the order

of the method, and (ge, he) is the exact right hand side. Thus one can argue that, as long

as (g,, h,) - (g, h) = 0((A x)q), the resulting numerical solution will be accurate to within



the appropriate order - see remarks 2.7 and 2.11. In this section, however, the aim is to

consider situations where there is no small parameter (i.e. A x) guaranteeing that solvability

is "almost" satisfied. In particular, we want to consider situations where V - u # 0, and

IV -u| < 1 does not apply - leading to errors in solvability which are not small. It follows

that here we must be careful with the choice of the projection.

Obviously, a very desirable property of the selected projection is that it should preserve

the validity of equations (2.9-2.10) - so that the time evolution drives V -u to zero. Hence:

it must be that gp = g, with only h affected by the projection. Further: since the solvability

condition involves h only via its mean value over 0 Q, the simplest projection that works is

one that appropriately adjusts the mean of h, and nothing else. Thus we propose to modify

the equations in (2.20-2.21) as follows: leave (2.20) as is, as well as the imposed boundary

condition constraint (2.4), but replace (2.21) by

Ap = -V-((u-V)u)-+ V-f for x E 1
n-Vp = n-(f-gt±+pAu-(u-V)u) (2.33)

+ An-(u-g)-C for x E JQ
where

C =- n- (pAu+Au) dA, (2.34)
S a n

and S = fa d A is the surface area of the boundary. In terms of (2.30-2.31) this corresponds

to the projection

gp=g and h,= h-C, (2.35)

where

C h d A - d V. (2.36)

This is clearly a projection, since C = 0 for (gp, h,), so that P 2 = P. Further, since the

solvability condition for (2.30) is precisely C = 0 - see equation (2.32), the solvability

condition for (2.33) is satisfied - even if V -u f 0, though (of course) C = 0 when V -u = 0.

Finally, we remark (again) that the projection in (2.35) is not unique. In particular,



numerical implementations of the Poisson equation with Neumann conditions often use least

squares projections, which alter both the boundary condition h and the source term g. This

makes sense if the solvability errors are small. However, in general it seems desirable to not

alter the source term, and keep (2.9-2.10) valid. This still does not make (2.35) unique, but it

makes it the simplest projection. Others would also alter (in some appropriate eigenfunction

representation) the zero mean components of h.

The system of equations in (2.20) and (2.33) makes sense for arbitrary flows u, which

are neither restricted by the incompressibility condition #= V -u= 0 in 0, nor the normal

velocity boundary condition E = n - (u - g) = 0. Furthermore: this system, at least in

bounded domains Q, includes the Navier-Stokes equations as a global attractor for the smooth

solutions. This is easy to see as follows:

First, because of equations (2.9-2.10), # decays exponentially, at a rate controlled by the

smallest eigenvalue of L = -A in Q, with Dirichlet boundary conditions. In particular:

C n- (pAu+ Au) dA= ](pA + A#) d V,

vanishes exponentially.

Second, it is easy to see that, for the system in (2.20) and (2.33), equation (2.22) is

modified to

Et= -AE+C for xcEff, (2.37)

where E = n - (u - g). Hence S also vanishes exponentially.

Of course, if 4 = 0 and E = 0 initially, then they remain so for all times, and the evolution

provided by (2.20) and (2.33) is, exactly, the Navier-Stokes evolution.

In conclusion, the formulation in this section is not only an interesting theoretical fact.

It also provides a robust framework within which numerical solvers for the incompressible

Navier Stokes equations can be developed, without having to worry about the (potentially

deleterious) effects that discretization (or initial condition) errors, can cause when they

violate mass conservation - because either V -u = 0 in Q, or n -(u - g) = 0 in & Q, fail. In



addition, the formulation eliminates the necessity of having to enforce the condition V -u = 0

directly, which is a core difficulty for the solution of the Navier-Stokes equations.

2.6 Stability of Semi-implicit Schemes

In the case of moderate to low Reynolds number flows, the stiff viscosity term pAu requires

very small time steps. Hence, there is a large practical interest in treating puAu implicitly

while keeping the associated pressure explicit. In this section we write down and analyze

semi-implicit schemes for the PPE splitting (2.15-2.16). Inspired by many of the ideas from

[58], we then show the subsequent schemes are unconditionally stable.

To analyze the stability of the semi-implicit schemes, we require several properties of the

Hodge-Helmholtz decomposition. Given w E L2 , then w has a unique orthogonal decompo-

sition as

w = a + Vb, (2.38)

where b is determined by Ab = V - w with boundary conditions n - Vb = n - w. Hence

a is divergence free with zero normal boundary component. Moreover the component a is

orthogonal in the L 2 norm to every gradient field (i.e., (a, V#) = fn a - V4 dV = 0 is the

standard inner product on L2(Q)). We may therefore write Vb = Qw and a = 7w where

P and Q are complementary orthogonal projections (ie. p + Q = I, p 2 = P and P = Pt).

As a result, the following identities hold vector fields w and v

(w, Pv) = (Pw, Pv) (2.39)

= (Pw, v), (2.40)

and

(w,w) = (Pw, Pw) + (Qw, Qw). (2.41)



To motivate the stability proofs for semi-implicit time discretizations, note that the Stokes

equation can also be written in an equivalent projection form

Ut = pAAU

nxu = 0

for xC ,

for xEO,

Dotting equation (2.42) through by' -Au = V x V x u - V(V -u) and integrating yields

2 a ((V x u,V x u) + (V - u,V -U)) = -p(Au, PAu). (2.43)

Here the first line follows directly from integration by parts, noting that the boundary

integrals vanish. The last equation can be written in a more compact form:

|| xt u(| + ||_M|2 p|llpA 2. (2.44)

From this it follows that the curl and divergence are bounded in the L 2 sense. As a first

example of a semi-implicit scheme, we analyze the backward Euler discretization for the

Stokes equation:

Un+1 - u" - At p Aun+1

n x un+1

V - un+1

-At Vp"

=0

= 0

for x E Q,

for x C &,

for x C &Q,

Ap"

n -Vp"

for x C

for x C

=0

=n -pAu"

We note that the scheme (2.45)-(2.46) preserves the divergence free condition

velocity exactly. Assume V -u = 0 for x C Q. Taking the divergence of (2.45), and

(2.46)

on the

setting

3To obtain the energy bound (2.44) by a straightforward calculation, we have kept the V - u terms
throughout the computation even though they are in fact zero.

(2.42)

and

(2.45)



4(x) = V - un+1 yields

-AtA4 = -# for x Q (2.47)

4 = 0 for x EOR,

Since -A does not have a negative eigenvalue, 4 0 for all x E Q is the only solution to

(2.47). Consequently, the pressure equation for pn+ 1 automatically satisfies the Neumann

consistency condition and is therefore well defined. As a direct consequence of preserving

the divergence condition, the pressure as defined by (2.46) is equivalent to the projection:

Vp" = QAu". (2.48)

Remark 2.8 Since the scheme (2.45)-(2.46) preserves the divergence constraint, there is

never the need for a projection step (ie. one may associate un+1 - u*n+ 1, where u*n+1 is the

conventional intermediate velocity field with non-zero divergence). 4

A stability proof for equations (2.45)-(2.46) closely follows the one for periodic channel

flow in [58]. Specifically, dot both sides of equation (2.45) by -A(un+ 1 + un), and integrate

(this is the discrete analog of the steps required to derive equation (2.44)). The first two

terms on the left hand side of equation (2.45) become

(un+1 - u", -A(un+1 + un)) = liv x un+1Ii 2 + li un+1v2 (2.49)

- |IV x u"||2 - IV -uI|2. (2.50)

In addition, we have

(Aun+l, A(un+1 + u)) = 1Aun+1 + Au"|2 + IIAun+1 2 - |Au"||2, (2.51)222

and

(QAu", A(un+ 1 + u")) 1|QAun+1 + QAU"||2 1 | IIQAun+1l2. (2.52)
2 22



For brevity, we also introduce the energy E where

E[u] = IV x u||2 + IV -u|| 2 + piAtiiAuI| 2 + pAtIIQAu||2 . (2.53)

Finally, combining everything, we have

E[un+]Au 1 + Au"|| + At IIQAun+1 + QAu"|| 2  (2.54)
2 2

S PAtI|PAun+1 + pAunI 2, (2.55)
2

so that

E[un+1] < E[u"]. (2.56)

For simply connected domains, the energy bound (2.56) implies the scheme (2.45)-(2.46) is

unconditionally stable. Unfortunately the bound (2.56) is not sufficient to prove stability in

periodic domains, or domains with holes. The reason here is that E[h] = 0 for any vector

field h that has V - h = V x h = 0 in Q, and V -h = n x h = 0 in MQ. In simply connected

domains, the only such vector fields are h = 0. On the other hand, in periodic domains or

domains with holes, there exist vector fields h #/ 0, which satisfy V -h = 0 and n x h = 0 on

&Q and E[h] = 0. Here the energy bound (2.56) does not control the growth of these modes.

We note however that such vector fields h have non zero flux h - n $ 0 at the boundary.

Hence, we expect that the modified scheme (2.20)-(2.20) with addition of the term An -u in

the boundary condition for the pressure will stabilize the growth of such modes.

2.6.1 Stability of a second order scheme

Following a procedure analogous to the one in [58], we discuss the stability of a second order

Crank-Nicholson scheme where we treat the pressure with a second order Adams-Bashforth



extrapolation:

u n+1 - U = At (Aun+1 + Au") - 3AtVp" + _AtVp" 1  for x E 9,
n x un+1 = 0 for x E 0, (2.57)

V. n+1 =0 for x E 9,J

where p" is given by (2.46). Proceeding with a normal mode analysis4 , we set u" = ii

where ii satisfies the boundary conditions in (2.57), and a is an eigenvalue of the time

stepping operator. Upon substitution we obtain

(a 2 - a)u + a)A6I - -AtaQAi + -AtQAii. (2.58)
22 2

In analogy with the steps in the previous section, we dot equation (2.58) through by -A5

and integrating by parts to obtain

2(a2 - a)(I|V x 6||2 + ||V - il| 2) +tAt(a 2 +a)I|Aiil 2 =[At(3a - 1)|IQAiiII 2. (2.59)

Equation (2.59) is now a quadratic of the form aa 2 - ba + c = 0 for the eigenvalues a where

a = 211V x i|| 2 + 21V -15|2 + pAt|IAiiII 2, (2.60)

b - 2IIV x ii| 2 + 21V -a6| 2 - pAtIIAf6I 2 + 3pAtIQA|I2 , (2.61)

c = ptAtIQAI| 2. (2.62)

Since the coefficients a, b, c satisfy the following inequalities 0 < c < a and IbI < a + c,

it follows [96] that the eigenvalues a lie within the unit circle. The preceding argument

indicates that the normal modes n remain bounded for the second order Crank-Nicholson

scheme (2.57). Hence the scheme is stable for domains with simple geometries5 .

'We will not discussed here the questions of whether the resulting eigenvectors forms a complete basis.
'Note that in domains which are not simply connected, and have nontrivial homology groups, there is a

family of harmonic modes which satisfy AGi = 0. For these modes one can check that a = b = c = 0 and the
argument fails to show that |al < 1



2.6.2 Domains with holes and the role of feedback

In domains with nontrivial topologies, controlling the velocity gradients in the scheme (2.45)-

(2.46) is not enough to ensure stability. For example, in simple domains, the Laplacian on

vector fields (with V -u = 0 and n x u = 0 boundary conditions) is self-adjoint and positive

definite [98]:

l|V x u112 +||V -u12 = (-Au, u) (2.63)

> ami|u||2, (2.64)

where amin > 0 is the minimum eigenvalue. Hence, in this case liV x u112 + iV u11 2 -+ 0

implies ALIlull -+ 0 as well. In domains with nontrivial homologies, for instance periodic

domains or domains with holes, the Laplacian has nonzero eigenvalues. Hence, controlling

liV x u112 + liV - u1 2 does not necessarily control ||ull. In fact, in cases such as periodic

flow, the velocity field may have a component corresponding to a zero eigenvalue of the

Laplacian which grows in time. As a result, we now show that at the continuum PDE level,

the addition of the A feedback term indeed controls the growth of such modes. Written in a

projection form, the extended Navier-Stokes system with the feedback term has the form

ut tPAu - AQu for xE Q (2.65)

nxu = 0 for xEoQ,

where the pressure now contains two projection components. Dotting equation (2.65) by

-Au and integrating yields

|V( x u1|2 ±||v- u|2)= -Ip|PAul l2 + A(Au, Qu). (2.66)

In addition, dotting (2.65) by u and integrating yields

12
28t||u||2 = pi(u, Au) -jp(u, QAu) - A|Qu| 2. (2.67)



Multiplying (2.66) by p, (2.67) by A and adding the two equations we obtain

'(lu||12 +pI|Vxu|2+p||V -u_2|'pAuII 2 - Ap|I|V x u112  (2.68)
2 Ot x-~

- ApIIV -u12 -A 2 ||Qu|| 2  (2.69)

< 0. (2.70)

Hence the addition of the A feedback term explicitly controls an appropriate (HI) velocity

norm.

2.7 Numerical Scheme

In this section we outline an efficient numerical scheme for solving the coupled differential

equations (2.20-2.21) on a two-dimensional irregular domain. As should be clear from the

prior sections, the main issue we aim to address is that of how to effectively implement

the incompressibility condition and the boundary conditions for the pressure, avoiding the

difficulties that projection and fractional step methods have. These are problems that are not

related to the nonlinearities in the Navier-Stokes equations, and occur even for the linearized

equations. Hence, in the spirit of focusing on the key issues only - also see remark 2.9,

the calculations presented in § 2.8 are for the linear equations. Furthermore, while in the

description of the scheme in this section we carry through the nonlinear terms, we do not

describe their implementation. We note that there is extensive literature on this topic, and

one may refer to the book by J. Ferziger and M. Peric [28] for more details.

To achieve an efficient scheme, we decouple the pressure and velocity fields, and explicitly

treat each term in the time evolution of (2.20-2.21). Specifically, since both the right hand

side and boundary conditions of equation (2.21) depend solely on u, we may view the pressure

as a computable functional of the velocity, p p[u]. The computation of p[u] requires the

solution of a Poisson equation with Neumann boundary conditions. With this in mind,

the momentum equation then has the form ut = F[u], where F[u] has a complicated, yet



numerically computable form:

F[u] = p Au-Vp[u] - (u.V)u+f for xE Q. (2.71)

We now use an explicit forward Euler scheme to discretize the time evolution for (2.20-2.21),

paired with an appropriate discretization in space described later in this section. This yields

the scheme

11 (u" 1 - u") = y Au" - Vp" - (U -V) u" + f for x E Q, (2.72)

with boundary conditions n x u = n x g and V - u = 0 for x C 89, where the pressure is

given by

Ap" = -V - ((" -V) u") + V. f" for x E Q, (2.73)

with the boundary condition

n - Vp"=- n - (f" - gt,"+yI Au" - (u". V)u") + A n - (u" - g"),

for x E 0. Here, starting with the initial data uo, a superscript n is used to denote a

variable at time t = n At, where 0 < At < 1 is the time step.

Remark 2.9 Our purpose here is to illustrate the new approach with a simple scheme that

does not obscure the ideas in the method with technical complications. Hence, the scheme

here is first order in time (explicit) and second order in space, with the stability restriction

At oc (Ax) 2 . However, unlike projection methods and other approaches commonly used to

solve the Navier-Stokes equations, this new formulation does not seem to have any inherent

order limitations. Unfortunately, the Navier-Stokes equations are stiff and nonlinear, which

means that the fact that higher order extensions are possible does not mean that they are

trivial. A



2.7.1 Space grid and discretization

To discretize the equations in space, we use finite differences over a cartesian, square (Ax =

Ay), staggered grid. The pressure values are stored at the nodes of the grid, while the

horizontal and vertical components of the velocity are stored at the mid-points of the edges

connecting the grid nodes (horizontal component on the horizontal edges and vertical com-

ponent on the vertical edges).

When handling an arbitrary curved boundary, we cannot conform the boundary to the

grid, but rather we immerse it within the regular mesh - see figure 2-1. Then, to numerically

describe the domain boundary, we identify a set Cb of Ne points in &Q, say xj = (Xb, Yb),

for 1 < j < Ne - see item 2.7c below. These Ne points are located at O(Ax) distances

apart, so that the resolution of the boundary is comparable with that of the numerical grid.

3 -------- --- ------- ---- ---

01
Ax

Figure 2-1: This plot shows the staggered grid, and the boundary. The numerical pressure
values correspond to the graph nodes, while the velocities (arrows) correspond to the edge
midpoints. Here the circles (o) and squares (LI) denote ghost pressure points, and boundary
velocities, respectively. These are used to implement the boundary conditions in the Poisson
and momentum equations, respectively. The diamonds (0) denote the points (Xb, Yb)i, used
to represent the boundary OQ.

For the heat equation Tt = p AT, the stability restriction for the standard scheme using



a 5 point centered differences approximation for the Laplacian, and forward Euler in time,

is

At < C (AX), (2.74)

where C = and D = 1, 2, ... is the space dimension. Since the method described

here uses exactly the same approach to advance the velocity flow field u, we expect the

same restriction (with, perhaps, a different constant C) to apply. For the 2D numerical

calculations presented in § 2.8, we found that the algorithm was stable with C < 0.2, while

C > 0.3 generally produced unstable behavior. Below we separately address the numerical

implementation of equations (2.72) and (2.73).

2.7.2 Poisson equation

To solve the pressure Poisson equation (2.73) with Neumann boundary conditions, we use the

ghost point idea with a method by Greenspan [45] to implement the boundary conditions.

As discussed above, we embed the domain Q within a cartesian square grid, and classify

the computational points in the grid into inner and ghost points (see next paragraph).

Then: (i) for the inner points we discretize the Laplace operator using the standard 5 point

centered differences stencil. (ii) For the ghost points we obtain equations from an appropriate

discretization of the Neumann boundary condition. In particular, if there are N inner points,

and Nb ghost points, then the discretized pressure is represented by a vector p E RN where

N = N + N.

The computational domain, C,, for the pressure is comprised by the inner points and the

ghost points, defined as follows:

2.7a The inner points are the points in the cartesian grid located inside Q.

2.7b The ghost points are the points in the cartesian grid that are either outside 9 or on

0Q, and which are needed to complete the 5 point stencil for some inner point.

2.7c Construct the set Cb used to track the boundary OQ as follows: For every pressure ghost

point in the grid: x" , 1 j 5 Nb, select the closest point in the boundary xbj e 0Q.



We will use these points to produce equations that approximate the Neumann boundary

conditions (one equation per point).

Remark 2.10 With the set Cb as above, N, = Nb. This is not the only possibility. In the

end, the discretized equations for the pressure have to be solved in the least squares sense

(see remark 2.11). Thus, we could have elected to over-determine the implementation of the

boundary condition by selecting Ne > N points in OQ. One reason for doing this being to

obtain a "smoother" implementation, avoiding the irregularities that occur as the boundary

placement (relative to the cartesian grid) changes along & Q. In our calculations we found

that this is not a must for the solution of the Poisson equation. On the other hand, for the

momentum equation this strategy is needed to avoid numerical instabilities - see § 2.7.3.

6

It follows that, on the computational domain C,, the Poisson equation (including the

boundary conditions) is discretized by Na equations inside Q, and N equations derived from

the boundary conditions. Specifically

2.7d We use the standard 5 point centered differences stencil for the Laplacian, to obtain one

equation for each of the Na inner points. Similarly, we use a second order approximation

for the forcing terms on the right hand side of the equation.

2.7e We construct one boundary condition equation for each pressure ghost point x, 1 <

j ; N. This is done by using 6 nearby points from the computational domain to

obtain a second order approximation to the normal derivative at the corresponding

point Xbj E O -- see item 2.7c above. We use a similar approach to approximate the

terms on the right hand side of the Neumann boundary conditions.

Hence, each boundary condition equation involves the ghost point, points inside the

domain, and (possibly) other nearby ghost points.



Thus the Poisson equation can be written in a matrix form with the following structure

p =(2.75)
B ) (b)

Here B E RNbxN and L E RNaxN are the discrete matrix representations for the derivatives

(n- V) in the Neumann boundary condition,, and Laplacian (A), respectively. The terms

a E RNa and b c RN are the discrete representations of the source terms and applied

boundary conditions for the Poisson equation:

a ~ V-(f-(u-V)u), (2.76)

b ~ n-(f-gt+fyAu-(u-V)u)+

An - (u - g). (2.77)

Thus the pair of equations

L =- a and Bj^= b (2.78)

are the discrete analog of equation (2.21).

Remark 2.11 As pointed out earlier in remark 2.7, the discretization errors cause solvability

for equation (2.75) to fail. These solvability errors are "small" (second order). Hence, as

it is commonly the case with numerical solutions of the Poisson equation with Neumann

boundary conditions, we solve equation (2.75) in the least squares sense. This provides an

approximation to the pressure which is within the discretization error. 4

2.7.3 Momentum equation

The main numerical difficulty with implementing (2.72) is produced by the boundary con-

ditions. Specifically: on a cartesian staggered grid the boundary conditions V - u = 0 and

n x (u - g) = 0 couple the "horizontal", u, and "vertical", v, components of the flow velocity

- with the exception of the special case of a boundary aligned with the grid, where there is



no coupling. Hence, in general, the implementation of the boundary conditions requires the

solution (at every time step) of a linear system of equations that couples all the boundary

velocities (these are defined below).

The computational domain for the velocities, Cu, is defined in terms of the edges in the

cartesian grid with which the velocities are associated (see figure 2-1). To define C., it is

convenient to first introduce the extended set of pressure nodes, E,, from which Cu is easily

constructed:

2.7f A pressure node in the cartesian grid belongs to E, if and only if it either belongs to

C,, or if it is connected (by an edge in the grid) to a ghost pressure node that lies on

on.

2.7g A velocity is in Cu if and only if: (a) Its corresponding edge connects two points in E,.

(b) At least one of the two points is in Q (or 0).

Remark 2.12 Notice that E, is exactly what C, becomes if 80 is modified by an "infinites-

imal" perturbation that turns all the ghost pressure points on &Q into inner pressure points.

The computational domain C. is, in turn, sub-divided into inner and boundary velocity edges

2.7h An edge in C. is an inner velocity if and only if Cu includes the four other edges needed

to compute the Laplacian (either Au or Av) at the edge mid-point, using the 5 point

centered differences approximation.

2.7i An edge in Cu is a boundary velocity if and only if it is not an inner velocity. Let M

be the number of boundary velocities.

The solution of the momentum equation (2.20) is thus performed as follows:

2.7j At the start of each time step the right hand side in (2.72) is approximated (to second

order, using centered differences) at the inner velocity locations, which can then be

updated to their values at the next time.



2.7k Next, using the boundary conditions, the values of the boundary velocities at the

next time step are constructed from the inner velocities. This "extension" process is

explained below.

Let y E RM be the vector of boundary velocities. Then y is determined by two sets of

equations, corresponding to the discretization on 80 of V -u = 0 and n x (u - g) = 0. In

our approach the divergence free criteria is enforced "point-wise", while the condition on the

tangential velocity is imposed in a least squares sense.

Implementation of the divergence free V - u = 0 boundary condition. At first sight, this

boundary condition appears to be the hardest to implement, since it is a Neumann condition

(essentially) prescribing the value of the normal derivative of the normal component of the

velocity, in terms of the tangential derivative of the tangential velocity. However, because

(for the exact solution) V - u = 0 everywhere, an implementation of this condition which is

second order consistent (in the classical sense of finite differences introduced by Lax [68]) is

easy to obtain, as follows:

First: identify the Md pressure nodes in C,, which have at least one boundary velocity as

an adjacent edge. These Md pressure nodes lie either on OP, or inside Q, and are all within

a distance O(Ax) of OD - definitely no further away than V2 Ax. Second: for each of these

Md points, use centered differences to approximate the flow divergence at the point, and set

V - u = 0. This provides Md equations that couple the (unknown) boundary velocities to

the (known) inner velocities. In matrix form this can be written as

Dy = s (2.79)

where D is the portion of the discrete divergence operator acting on the unknown boundary

velocities, while s is the associated flux derived from the known inner velocities. D is

a rectangular, very sparse, matrix whose entries are 0 and ±1 - note that Ax can be

eliminated from these equations.

Remark 2.13 Notice that V - u = 0 for the exact solution. Hence, setting V - u = 0 at



the nodes near the boundary (as done above) involves no approximation. The second order

nature of (2.79) is caused by the error in computing V - u - there is no "extrapolation"

error. 4

Implementation of the tangential velocity n x (u - g) = 0 boundary condition. It is easy to

see that Md ~ M/2, since most of the Ma pressure nodes in the selected set will connect with

two boundary boundary velocities. Thus (2.79) above provides approximately one half the

number of equations needed to recover y from the inner velocities. It would thus seem natural

to seek for M - Md additional equations using the other boundary condition. Namely, find

M - Md points on &Q, and at each one of them write an approximation to n x (u - g) = 0

using nearby points in Cu. Unfortunately, this does not work. It is very hard to do the

needed approximations in a fashion that is robust relative to the way Q is embedded in the

rectangular grid. Our attempts at this simple approach almost always lead to situations

where somewhere along DO an instability was triggered.

To avoid the problem stated in the previous paragraph, we over-determine the implemen-

tation of the tangential velocity boundary condition, and solve the resulting system in the

least squares sense. The boundary condition is replaced by the minimization of a (discrete

version) of a functional of the form

fin x (u - g)12 w dA, (2.80)

where w is some (strictly positive) weight function. This approach yields a robust, nu-

merically stable, approximation - fairly insensitive to the particular details of how Q is

embedded within the cartesian grid.

In fact, we do not implement the minimization of a functional as in (2.80), but a simpler

process which is (essentially) equivalent. To be specific, we start with the set Cb of points in

0 - see item 2.7c. For each xg C Cb, where 1 < j Ne, we identify a local horizontal,

'P7, and vertical, Pj, velocity "patch". These patches - see figure 2-2 - have the following

properties



Figure 2-2: This plot illustrates the implementation of the momentum equation boundary
conditions. The circles (o) indicate the points at which the velocity divergence is set to
zero. The six arrows indicate the horizontal velocity components in the patch, PT., used to
extrapolate u to the three boundary points indicated by the diamonds (O). The squares (D)
denote the boundary velocities - which are part of the patch Py,.

2.71 Each patch contains both inner and boundary velocities.

2.7m Each patch contains 6 velocities, in an appropriate structure, so that these velocities

can be used to extrapolate (with second order accuracy) values of the corresponding

velocity (u or v) to nearby points along the boundary. For example: the 5 point stencil

used to approximate the Laplacian, plus one of the four next closest points to the

center point.

2.7n The union of all the patches contains all the boundary velocities.

These patches are used to (linearly) interpolate/extrapolate the velocities to nearby points

along the boundary. Each patch is used to extrapolate the velocity to the three "closest"

boundary points to the patch. In this fashion, for every xj, 1 < j 5 Ne, three different

approximations to the tangential velocity at the boundary follow. These involve different

(linear) combinations of velocities at the nearby edges in C., including both boundary and

inner velocities. In this fashion, a set of 3 Ne additional linear equations - beyond those in



equation (2.79) - for the boundary velocities follow.

Remark 2.14 The idea in the process above is to "link" the patches used to extrapolate

the velocity to the boundary. This is so that no "gaps" occur in the implementation of the

tangential boundary conditions, as the positioning of &0 relative to the grid changes. We

elected to use minimal coupling (each patch linked to its two neighbors). In principle one

could increase the amount of over-determination of the tangential boundary condition. This

would require using a set of points in &0 that is "denser" than Cb, but in our calculations

we found that this was not needed.

Finally, an interesting question is: why is a process similar to this one not needed for the

implementation of the boundary conditions for the Poisson equation in § 2.7.2? The obvious

answer is that the Poisson equation itself couples everything, so that no extra coupling needs

to be added. 4

Putting everything together, an overdetermined system of equations for the boundary

velocity vector y follows, which can be written in the form

Dy = s, (2.81)

Ey = t. (2.82)

Here E C R3NexM, and the second equation is to be solved in the least squares sense, subject

to the constraint imposed by the first equation. One way to do this is as follows: write

y =y, + Pc (2.83)

where P is a matrix whose columns are a basis for the kernel of D - hence D P = 0, y,

is a particular solution of (2.81), and c is a constant vector parameterizing the space of

(numerical) divergence free boundary velocities. Substituting the ansatz (2.83) into (2.82)

yields

(E P) c = t - E y,, (2.84)



which is a constraint-free least squares problem for the vector c. Thus we can write

c = (E P)+ (t - Ey,), (2.85)

which, together with (2.83), gives the solution y.

Remark 2.15 In (2.85), (E P)+ is the pseudo-inverse, defined by the singular value de-

composition of the matrix F = E P. In fact, since FT F should be invertible (see below),

F+ = (FT F)-1 FT.

One of the objectives of the above construction is to ensure that the boundary velocities are

completely determined by the boundary conditions (and the inner velocities). If the problem

in (2.82) for y, with the constraint in (2.81), were to have more than one solution that

minimizes the L2 norm of t - E y, then this would be a sure sign that the boundary condition

implementation is flawed, and there is missing information (i.e.: more equations are needed,

see remark 2.14).

Of course, the requirement in the prior paragraph is equivalent to the statement that FT F

is invertible. Finally, notice that in a domain with a fixed boundary, one may preprocess the

matrices E, D and P. 4

Remark 2.16 It should be clear that the scheme developed in this section, is second or-

der consistent6 (all the way up to the boundary) in the classical sense of finite differences

introduced by Lax [68]. 4

2.7.4 Comparison with the projection method

The scheme proposed here - which involves the implementation of the equations in (2.72-

2.73), appears to be quite similar to fractional step methods, such as Chorin's [20] original

projection method. Specifically: advancing one time step requires both the evolution of a

diffusion equation for the flow velocity, and the inversion of a Poisson equation for the pres-

sure - which is the same as in projection methods. But there are important differences,
6For the system of PDE in (2.20-2.21).



mainly related to the implementation of the boundary conditions, and of the incompress-

ibility condition. Below we highlight the similarities and differences between the pressure

Poisson approach proposed here and, for simplicity, the projection method in its original

formulation [20]. A (fairly recent) thorough review of projection methods, exploring the

improvements to the approach since [20], as well as their drawbacks, can be found in [47].

First, the starting point for the method here is the discretization of a reformulation of

the equations: (2.20-2.21), not the "original" Navier-Stokes equations (2.1-2.2). In this

equivalent set: (i) there is a natural way to recover the pressure from the flow field at any

given time. (ii) The time evolution automatically enforces incompressibility. As a conse-

quence, there is (in-principle) no limitation to the order in time to which the reformulated

equations can be numerically discretized. In contrast, the projection method is equivalent

to an approximate L U matrix factorization [47, 79, 97] of the discrete differential operators

coupling u and p. This approximate factorization yields a splitting error in time, which is

very hard to circumvent in order to achieve higher accuracy.

Second, the pressure Poisson formulation used here ensures both that, at every point

in the time integration: (i) the normal and tangential velocity boundary conditions are

accurately satisfied. (ii) The zero divergence condition is accurately satisfied. On the other

hand, in the original projection method, the step advancing the flow velocity forward in

time enforces the velocity boundary conditions, but cannot guarantee that incompressibility

is maintained. In the other step, the pressure is used to recover incompressibility - by

projecting the flow velocity field onto the space of divergence free fields. Unfortunately,

while removing the divergence, this second step does not necessarily preserve the correct

velocity boundary values [47].

Finally the modified equation (2.72) implemented here differs from the projection's

method velocity forward step primarily by the boundary conditions imposed.7 Specifically,

the projection method imposes Dirichlet boundary conditions for each component of the

velocity field when propagating the flow velocity. Dirichlet boundary conditions have the

7In the projection method the contribution from the pressure is ignored in the momentum equation step,
but we will not focus on this here - the prior two paragraphs deal with the consequences of this difference.



obvious advantage of decoupling the velocity components. Numerically this means that an

implicit treatment of the stiff viscosity operator Ot - pu A is straightforward. By contrast, on

a regular grid, the boundary conditions in (2.72) couple the boundary velocities. Although

this coupling does not pose a serious difficulty for explicit schemes, it adds a (potentially

serious) difficulty to the implementation of any scheme that treats the viscosity operator in

the equations implicitly.

2.8 Implementation

The objective of this section is to study the convergence and accuracy of the scheme proposed

in § 2.7. In particular: to verify the theoretical prediction that the scheme is second order

in space, all the way up to the boundary. To this end, here we present the results from

numerical computations done with two examples of flows driven by an external forcing f on

a domain: (i) Flow on a square domain in § 2.8.1, and (ii) Flow on an irregular domain in

@ 2.8.2. In these examples the external forcing is selected so that an exact (analytic) solution

to the equations can be produced [47].8 In each case we compare the numerically integrated

fields, u and p, with the known exact fields, and the errors are computed in an appropriate

norm (see below). Note that, as pointed out at the beginning of § 2.7, here we only solve the

linear Navier-Stokes equations. At some level, the nonlinear terms can be thought of as a

non-zero divergence external forcing function. Consequently, to ensure a fair test, we choose

f so that it is not divergence free.

In what follows the numerical errors are measured using the discrete L' grid norm

defined by

||g||oo = max{1gi11}. (2.86)

Here the maximum is over all the indexes i and j - corresponding to the appropriate grid

coordinates (Xi, yj) in the computational domain - for the field g in the staggered grid.

Namely: nodes for the pressure p, mid-points of the horizontal edges for u, and mid-points

'That is, proceed backwards: first write an incompressible flow, and then compute the forcing, and
boundary conditions, it corresponds to.



of the vertical edges for v. Note that neither ghost pressure points, nor boundary velocities,

are included within the index set in (2.86) - we consider these as auxiliary numerical

variables, introduced for the purpose of implementing the boundary conditions, but not part

of the actual solution. Finally, for the exact (analytic) solution, grid values are obtained by

evaluation at the points (Xi, y). For example, to compute the error in the pressure, first

define the discrete field ei= - p(xi, y3 ) - where p is the numerical pressure field and p

is the exact continuous field, and then compute the norm above for e.

2.8.1 Flow on a square domain

Here we present the results of solving the linear Navier-Stokes equations on the unit square

0 < x, y 1, with no-slip and no flux boundary conditions (i.e.: u = v = 0 on &0), and

viscosity t = 1. We selected the forcing function f = ut + Vp - p A u to yield the following

(incompressible) velocity and pressure fields:

u(x, y, t) = 7r cos(t) sin(27ry) sin 2 (7r x), (2.87)

v(x, y, t) = -7r cos(t) sin(27rx) sin 2 (7r y), (2.88)

p(x, y, t) = - cos(t) cos(7rx) sin(7r y). (2.89)

Using as initial conditions those provided by (2.87-2.88) at t = 0, we solved the equations

for various grid sizes Ax, with time step A t = 0.2 (A x)2  for stability: see § 2.7.1,

equation (2.74). Then we compared the numerical results with the exact fields in (2.87-

2.89). For instance, figure 2-3 shows the error fields for the velocity and pressure at time

t = 47r, for a (fairly coarse) 40 x 40 grid. Note that the error is fairly uniform in size across

the whole domain. Unlike the common situation with projection methods [47], there are

neither numerical boundary layers, nor numerical corner layers.

Since the algorithm is second order consistent in space, and first order in time, with

A t ~ (A x) 2, we expect the errors to scale with (A x) 2. This is precisely what we observe,

with the errors measured in the L' norm - see equation (2.86). We omit the convergence
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Figure 2-3: Error fields for the numerical solution corresponding to the exact formulas in
(2.87-2.89). The plots are at time t = 4w, for a 40 x 40 grid, with A t = 0.2 (A x)2 and
A = 100. The horizontal velocity u (top) and the pressure p (bottom) error fields are shown.
The error is uniform in size across the domain. There are neither numerical boundary layers,
nor numerical corner layers.

plots for the current case, and show them for the case presented in § 2.8.2 only.

This example is not particularly taxing in terms of the algorithm implementation, since

the boundaries are parallel to the grid lines. Instead, the aim here is to illustrate the role of

the feedback parameter A. For this purpose we present here the results of two tests. In the



first test, we evolved the numerical solutions (with a fixed A x) for different values of A. To

be precise, we used a 40 x 40 grid.9 Figure 2-4 illustrates the results of this first test, with

plots of the L' error in the horizontal velocity u, as a function of time, for various values of

A. The errors in the pressure p, and in the vertical velocity v, exhibit the same qualitative

behavior. In the absence of feedback - i.e. A = 0, the errors grow steadily in time, as can

be expected from equation (2.18) when influenced by the presence of numerical noise. Even

though this effect does not constitute an instability (in the sense of exponential growth),

there appears to be no bound to the growth. Thus, after a sufficiently long time, the errors

can become substantial. The figure shows also that moderate values of A - i.e. A ~ 10 or

bigger, are enough to control the errors.
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Figure 2-4: Time evolution of the L' error in u, for the flow in a square domain, on a 40 x 40
mesh, with different values of the parameter A. For A = 0 the error grows in time. Values
larger than A ~ 10 control the error.

Physically, the errors that occur when A is too small correspond to fluid leakage through

the domain walls. However, these errors cause no net mass loss or gain, since V - u = 0

applies - actually, V -u 0 ((A X) 2), as we show later: see figure 2-14. Any positive flow

across some part of the boundary must be compensated by a negative flow elsewhere.

9With viscosity y = 1 and a a time step At = 0.2 (A x)
2 .



In the second test, we introduce artificial random errors to the normal velocity along

the boundary. The purpose of this second test is to study, under a controlled situation, the

error sensitivity of the normal velocity boundary condition implementation - the purpose

for which the parameter A was introduced in § 2.4. Specifically, the main concern are the

errors that are introduced by the implementation of the Neumann boundary condition for

the pressure on non-conforming boundaries (as happens for the example in § 2.8.2). For

simple geometries, such as a square, a finite differences discretization of the equation can be

easily designed so that the discrete analog of the solvability condition applies. For curved

geometries, however, this is generally not possible - therefore, a least squares solution of

the equation is required, which introduces errors throughout the pressure field. Further,

even though these errors are small (of the same order as the approximation scheme used),

they are hard to quantify in detail - e.g. write a leading order approximation in terms of

derivatives of the exact solution.
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Figure 2-5: Time evolution of the L' error in n, for the flow in a square domain, on a 40 x 40
mesh, with a random forcing on the boundary. Without feedback (A = 0, solid line) the error
grows steadily. With feedback (A = 100, dashed line) the error growth saturates at a small
value.

To perform the test, we introduce independent random errors at each point on the domain



boundary, at the start of each Euler time step. To be precise, the boundary condition for

equation (2.73) is taken as

n - Vp" = n - (f + Au" + Au") + r, (2.90)

where, at each boundary point r is sampled randomly from the interval [0, 1]. This represents

an 0(1) random perturbation to the normal component of the desired velocity, g = 0, at the

boundary.10 Hence, it is a very demanding test of how insensitive the boundary condition

implementation is to errors. On the other hand, because of the highly "oscillatory" nature of

the perturbation, the effect it has is to merely produce a thin boundary layer on the pressure

- with the perturbations damped away from the boundary. Hence the perturbation only

affects the solution at the boundary, and a large enough value of A can keep the solution

under control.

Figure 2-5 shows the error in the horizontal velocity u as a function of time, both for

the feedback controlled solution with A = 100, and the undamped solution with A = 0. The

errors saturate in the feedback solution, but they grow steadily for the undamped solution.

Without damping, the drift errors contribute sizable effects to the solution after a short time

period.

Finally, figure 2-6 illustrates the flow leakage produced by the random errors. This figure

shows a cross section of the horizontal velocity u after 1000 time steps, for two values of

the control parameter: A = 0 and A = 100. The first value shows a significant flow through

the boundary, while the second does not. This plot also illustrates the point made earlier:

there is no significant mass loss (gain) even when A = 0, with positive flows compensated by

negative flows elsewhere.

2.8.2 Flow on an irregular domain

In this section we implement the numerical scheme described in § 2.7, for an example with

an externally forced velocity field on an irregular shaped domain. An exact solution in

ioRecall that in this section we take t = 1, and neglect the nonlinear terms.
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Figure 2-6: Velocity cross-section u(x, y = 0.4872), at time t = 0.1315 (1000 time steps), for
the flow in a square domain, on a 40 x 40 mesh, with a random forcing on the boundary.
The dashed line (A = 100) reproduces the correct field with zero flux at the boundaries. The
solid line (A = 0) shows a non-zero flow through the boundary.

the domain, needed to compute the errors, is constructed in a similar fashion to that in

§ 2.8.1. However, instead of the unit square, the selected domain Q is the 2 x 2 square

0 < x, y < 2, with the disk of radius 1/4 centered at (3/4, 1) removed. In addition, we use

periodic boundary conditions (with period 2) in the y direction, and impose a nonzero flux

(u = g -/ 0) on the rest of the boundary.

To construct an incompressible velocity field in the domain Q, we use a stream function

, with u = (u, v) = (0,, -@b). Then we prescribe a pressure, and choose the forcing

function by f = ut + Vp - pLAu, with viscosity y = 1. The function g, used to prescribe the

boundary condition for the velocity, is selected to match the values given by (!,, -92).

In this example we set the feedback parameter A to A = 100, considerably larger than

the minimum needed to get good behavior in the calculations in § 2.8.1. This is to be

expected from the results of the last test in § 2.8.1 - see figures 2-5 and 2-6. Because

of the curved inner boundary in the current example, errors in the implementation of the

Neumann boundary condition for the pressure occur, which trigger a drift in the normal



boundary condition for the velocity - unless a large enough A is used. Thus, for example,

values where A = 0(10) did not allow the feedback to quickly track fluctuations in the normal

velocity component of the boundary conditions.

Figure 2-7: Contour lines for the stream function 0, defined in equation (2.92), on the
irregular domain of the second example. The domain is a 2 x 2 square, with a hole of
radius 1/4 centered at (x, y) = (3/4, 1). The stream function is periodic, of period 2, in the
y-direction.

The stream function i= 4'(x, y, t) (see figure 2-7) is defined as follows: First, introduce

the function Oo90 = o(x, y), defined on R 2 , by

)o(x, y) = r2, (2.91)

where r = V(x - 3/4)+ (y- 1)2. Then construct a 2-periodic function in y by adding

shifted copies @0, as follows

4'(x, y, t) cos(t) o(x, y + 2k).
k=-oo

(2.92)



Finally, the pressure is given by the formula

p(x, y, t) sin(t) cos(r x) sin(iry) (2.93)

Figure 2-7 shows the contour lines for # on the domain Q. Note that, although both 'O and

' /o vanish at the edge of the circle centered at (3/4, 1) - the inner boundary of 9, the

shifted copies of o do not. Therefore, the resulting flow velocity ( -@1) has some small

components, both in the normal and tangent directions to the circle.

Second order convergence.

To illustrate the second order convergence of the scheme, below we present the results of

evolving the velocity and pressure fields (for the problem described above), for varying grid

sizes A x, up to the fixed time t = 0.0657, using A = 100 and A t = 0.2 (A X) 2 . Note that the

selected final time appears small, but it is large enough to require a number of time steps in

the range O(103) to O(104) - for the grid sizes we used. This is large enough to provide a

reliable measure of the order of the scheme.

Figure 2-8 shows the convergence of velocity and pressure, while figure 2-9 shows the

convergence of the partial derivatives of the horizontal velocity u. The figures indicate

second order L' convergence for the velocity u, the pressure p, and even the velocity gradient

(uX, uy) - see § 2.8.3.

Typical error behavior.

We illustrate the (typical) error behavior - both in time and in space, by showing the

results of a calculation done at a fixed resolution. Specifically, we take an 80 x 80 grid, with

At = 0.2(AX) 2 and A = 100, and solve the forced system of equations in this "flow on an

irregular domain" example - recall that y = 1.

Figure 2-10 shows the time evolution of the L' (spatial) errors in the pressure and in

the horizontal velocity. It should be clear that, while the errors oscillate (over almost one

decade in amplitude), they do not exhibit any measurable growth with time.
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Figure 2-8: (Flow on an irregular domain example). Convergence plot for the pressure
(circles: o) and the horizontal velocity (squares: L). The errors (in the L* norm) are
computed at the fixed time t = 0.0657, for different grid resolutions, with At =0.2 (Ax)2.
The slope of the solid straight line corresponds to the second order scaling error oc (Ax)2.

Figure 2-11 shows the horizontal velocity field at time t = 4.25 ir, while figure 2-12 shows

the associated error field. Notice that, while the error is largest near the internal boundary

-as expected from the difficulties that a curved, non-conforming, boundary causes - it is

fairly well behaved, without abrupt transitions on the scale of the grid size. This explains

why the error in the gradient of the velocity is also second order accurate see figure 2-9

and remark 2-9, a feature that should be particularly useful for the calculation of fluid-solid

forces (stresses) along domain boundaries.

Similarly, figure 2-13 shows plots of the pressure and of the associated pressure error field,

again for the time t = 4.25 ir. Just as in the case of the velocity, the errors are dominated by

what happens at the internal circular boundary. The error near the internal wall is a bit more

jagged than the error for the velocity field. We did not check the order of convergence for

the gradient of the pressure since one does not need the gradient of the pressure to compute

forces.

Finally, figure 2-14 shows a plot of the error in the numerical divergence of the flow

field, also for time t = 4.25 r. The errors in the divergence are also second order. However:

.. , a 3.. .3 . 2 3" n. .. " on .. o ,,.u, .. .n... ::: a 8 ..... ...,.a.... . ....... .,8, ... .n 8

.se . e eg~ i g ap 13 agiasasgeme~e pes.. . .. liesit.asee n~as i n s it .........E... t ....... ..,...19 E.



10~

10
0
I..

104

10

Figure 2-9:

10- 101

(Flow on an irregular domain example). Convergence plots for the partial
derivatives of the horizontal velocity: u, (circles: o) and u. (squares: 0). The errors (in
the L' norm) are computed at the fixed time t = 0.0657, for different grid resolutions, with
At = 0.2 (Ax)2. The slope of the solid straight line corresponds to the second
error oc (Ax)2 . The fact that the errors for the gradient of the velocity are also
is important - see § 2.8.3.
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Figure 2-10: (Flow on an irregular domain example, on an 80 x 80 grid). Evolution in time of
the L* norms of the (spatial) errors for the pressure (dashed curve) and horizontal velocity
(solid curve).
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Figure 2-11: (Flow on an irregular
velocity field u at t = 4.25 r.
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Figure 2-12: (Flow on an irregular domain example, on an 80 x 80 grid). Error field for the
horizontal velocity u at t = 4.257r.

notice that they are much smaller than the errors in the flow field or in the pressure. This

is indicative of the rather strong enforcement of incompressibility that equations (2.9) and

(2.10) guarantee.
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Figure 2-13: (Flow on an irregular domain example, on an 80 x 80 grid). Left: numerical
pressure field p at t = 4.25 ir. Right: associated error field.

2.8.3 Convergence of the derivatives

A key reason to worry about uniform convergence, up to the boundary, of the numerical solu-

tion is that this is a necessary condition for the accurate modeling of solid-fluid interactions.

The evaluation of fluid-solid stresses requires both the pressure, as well as the derivatives of

the velocities, to be accurate at the boundaries. Hence, we also investigate the behavior of
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Figure 2-14: (Flow on an irregular domain example, on an 80 x 80 grid). Numerical error

in the divergence of the velocity at t = 4.25 7r. The 0(10-6) amplitude is the result of the

0(AX2) order of the scheme.

the errors for not just the pressure p and the velocity fields (u, v), but for the gradient of

the flow velocity as well.

An important point to notice is that figure 2-9 shows that

The derivatives of the velocities exhibit errors that appear to be
(2.94)

second order as well- in the Lo norm.

At first sight this may seem surprising: since the velocities are second order accurate, one

would expect their derivatives to be first order only. However, this is a worse case scenario,

based on the assumption of random errors. On the other hand, the errors for finite differences

approximations (on regular grids) are typically not random: If the solutions are smooth

enough, the errors can be expanded in powers of Ax, with coefficients that involve derivatives

of the solution. Hence, in this case, taking low order derivatives" does not degrade the order

of convergence. This, of course, is an important advantage of finite differences over other

approaches (e.g. projection) which do not have this property.

"At high order, round off errors dominate. There is an irreducible O(e (Ax) -- ) contribution from them,
where c is the round off error, and q is the order of the derivative.



The astute reader may have noticed that the argument in the prior paragraph avoids the

issue of boundary condition implementation, which can ruin the smooth error expansions

available for finite differences. This requires some extra considerations:

2.8a On conforming boundaries, it is usually possible to approximate the boundary condi-

tions in such a way that smooth expansions (in powers of A x) remain available for the

truncation errors.

2.8b On non-conforming boundaries, on the other hand, it is very easy to ruin the smooth

error expansions. The local stencils used to approximate the boundary conditions along

the boundary will, typically, experience abrupt changes in response to the placement

of the boundary relative to the regular grid.

This is where the global approach that we used in § 5.2 to implement the boundary conditions

comes to the rescue: by linking each local stencil to its neighbors, the non-smoothness caused

by abrupt stencil changes is smeared. Thus a better behaved error is obtained, which then

explains why the result in (2.94) occurs. Notice that, as of now, we neither know if the

smearing process is enough to make the errors C' at leading order - which is what is

needed to make the errors in the velocity gradient second order, nor if the errors in the

velocity gradient are actually second order. However, the numerical evidence seems to point

in this direction.

A final point is that, the "simplest" way to get around the issue in item 2.8b above,

is to implement the boundary conditions at a higher order than required. This has the

disadvantage that it can lead to a messier than needed algorithm, but (generally) it should

not significantly increase the computational cost - since it only involves the boundary points

of the grid.

2.8.4 Driven cavity

In this subsection, we solve for the fluid velocity field in a driven cavity. We use the second

order semi-implicit scheme (2.57) and the regular staggered grid described above. In addition,



this test also demonstrates the application of a non-vanishing boundary condition where

n x u # 0. Here we include the nonlinear terms and treat them explicitly in the numerical

scheme. To discretize them in space, we use a standard, second order upwind finite difference

scheme. In this test, we take the velocity of the moving wall Uu = 1 and consider different

Reynolds numbers. Starting with rest initial conditions, we evolve the fields, setting A = 30,

until they reach a steady state flow. Figures (2-15) and (2-16) show the midpoint steady

state velocities for u at Reynolds numbers Re = 100 and Re = 400 respectively. The plots

are done with a 220 x 220 grid and also compare the computation to the standard benchmark

of [36]. In addition figure (2-17) shows the streamfunction contours for a Reynolds number

of Re = 400.
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-0.2 ',0

-. 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
x (or y)

Figure 2-15: Midpoint steady state velocities (after t = 20) for Re = 100 and a 220 x 220
grid. For u = (u, v), the solid line shows u(0.5, y), the dashed line shows v(x, 0.5), while the
circles and triangles correspond to data from [36].

2.9 The V - u - 0 Boundary Condition

In the numerical implementation section of this chapter, the V -u = 0 boundary condition is

discretized using a regular Cartesian grid. In Cartesian coordinates, this boundary condition
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Figure 2-16: Midpoint steady state velocities (after t = 30) for Re 400 and a 220 x 220
grid. For u = (u, v), the solid line shows u(0.5, y), the dashed line shows v(x, 0.5), while the
circles and triangles correspond to data from [36].

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
x

Figure 2-17: Plots shows steady state streamfunction contours for the driven cavity with
Re = 400.

relates the horizontal and vertical velocities (for two dimensions) via the standard formulas



u = U + vj, (2.95)

V- V + -- (2.96)ax ay'

where i and J are the coordinate unit vectors.

For some applications, it may be more convenient to implement the numerical compu-

tation on a coordinate system where the boundaries are conforming. In general curvilinear

coordinate systems, the divergence acquires a more complicated form than the one above.

Hence, it is our purpose here to display the form that the V - u = 0 boundary condition

takes for a conforming boundary in a general orthogonal curvilinear coordinate system. We

do the 2-D case only - the 3-D case is quite similar.

2.9.1 Curvilinear coordinates and a conforming boundary

In some region near the boundary a Q of the domain of integration, assume that an orthog-

onal, curvilinear, set of coordinates (y, () has been selected - such that the boundary is

given by y = c, for some constant c. In terms of the coordinates (y, (), the vector field u

can then be written in the form

u = Ut 7+ u (, (2.97)

where u., and u are the velocity components in the coordinate directions given by the unit

vectors fj and (, respectively. Let now the functions x = x(,q, () and y = y(q, () describe

the relationship of the curvilinear coordinates with a Cartesian system.

Then (e.g. see [56])

ip=- + and =I ( +-i, (2.98)
sn O'q OB s 0( 8a



where s. and se are local normalization factors

8x2 gY)2 (, 2 + 2L+2 - + and s2= 2 - + - . (2.99)

Further, re-interpreting s and se as functions of (9, q), we have

VU - 1 (se u7) + (ST u)) . (2.100)

The V - u = 0 boundary condition is accompanied by the Dirichlet boundary condition

n x u = n x g for the vector momentum equation. For a conforming boundary, this is just

uC =- g along the boundary curve where q = c. Thus the V - u = 0 boundary condition

reduces to a Robin boundary condition on the normal velocity (provided that the boundary

is piecewise smooth)

- (SCU) + (s gC)=0 (2.101)

along q = c.

2.9.2 Example: polar coordinates

Consider the special case of a polar coordinate system x = r cos 0 and y = r sin 0, with the

boundary at r = 1. Let the angular velocity at the boundary be given by uo(1, 0) = ge(6).

Then since (in this case) so = r and s, = 1, the zero divergence boundary condition becomes

a a
a (r ur) + a go=O for r=1. (2.102)

2.10 Steps Toward a Finite Element Implementation

As is often the case in engineering applications, finite element methods are a popular choice

for the spatial discretization of a partial differential equation. One reason for their popularity

is that they reduce some of the difficulties of computing solutions in arbitrary geometries. In

this section we lay some preliminary ideas for a weak formulation of the recast Navier-Stokes



system. With the weak formulation, one may then seek to develop appropriate finite element

schemes.

In our recast Navier-Stokes system, the recovery of the pressure from a velocity field

involves the solution of a Poisson equation, with Neumann boundary conditions. In this

case, the weak formulation of a Poisson equation may be found in standard texts on finite

elements methods [100]. Here, we are ultimately interested in the weak formulation for the

recast Navier-Stokes momentum equation. As a first step, we examine the corresponding,

vector Poisson equation (in a domain Q with a smooth boundary):

-Au = f for xE G

nx (u-g) = 0 for x E & , (2.103)

V-u = 0 for xE0, J

Now introduce a standard L 2 inner product on functions and vector fields:

(u,v) j uv dV, (2.104)

(u,v) j u -v dV, (2.105)

where u -v is the dot product for vectors. We now list several integral properties which will

be useful in the variational formulation of the vector Poisson equation:

(Vxu,v) = (u,Vxv)+ v.(nxu)dA for 3D, (2.106)

(V x u, v) = (u, V'v) + v(nx u)dA for 2D, (2.107)

(V -u, v) = (u, -Vv) + v(n -u) dA for all D. (2.108)

In 2D, the term V x u = O102 - 0 2U1 is a scalar, while V'v = &2vR 1 - 1vR 2 is a standard

representation in Cartesian coordinates. Lastly, we note that the Laplacian on a vector field

in 3D may be written as -A = VxVx -V(V.), while in 2D we have -A - V'(Vx)-V(V-)



We now introduce the positive (semi)definite functional (defined on H1):

E [u]
D

= IVu|2 dV
k=1

V. -U12 + IV X U12 dV

1 1
= 2(V-uV-u)+-(V

where Uk are the Cartesian coordinates of u.

the identities (2.106-2.108), let us also define:

With the boundary conditions appearing in

W = {u E H 2(9) : nxu= 0 forxEO,V-u=0 forxcE0}.

Remark 2.17 For u E W:

1
E[u] -(-Au, u).

2

(2.112)

(2.113)

This follows since the boundary integrals in equations (2.106-2.108) vanish for u E W.

Remark 2.18 For u, V E W:

(-Au, v) = (u, -Av). (2.114)

Again, the identity follows from the vanishing boundary integrals. As a consequence, for u, v

restricted to these boundary conditions, the vector Laplacian (-A) is self-adjoint.

Remark 2.19 For the self-adjoint operator -A, there exists:

1. A spectral decomposition, -Auk = Aku with Ak ;> 0 and Uk E W. The dimension of

the Ak = 0 eigenspace (Harmonic fields) depends on the topology of the domain.

I'These identities are very nicely combined using the theory of differential forms on RD

x u,V x u),

(2.109)

(2.110)

(2.111)



2. A Green's function G such that -AGu = (I - P)u where P is the projection onto

the nullspace of -A (ie. onto the space of harmonic fields) and I is the identity

operator. For functions f E L2 with no harmonic components (ie. Pf = 0), the

function u = Gf G W solves -Au = f with the boundary conditions specified in W.

Remark 2.20 (Hodge-Helmholtz decomposition) For any vector field v (in L2), there are

vectors and scalars a, b, h such that:

v = V x a + 7b + h, (2.115)

The components Vb and V x a are in general not unique, but depend on their boundary

values (ie. one could take n -Vb = 0 or n x Vb = 0 and have different decompositions). One

special decomposition, that may be useful is:

a = VxGv, (2.116)

b = V-Gv, (2.117)

h = Pv. (2.118)

Using this choice, the components V x a, Vb and h are mutually orthogonal under the vector

inner product (-, .).

2.10.1 A Galerkin approach

To approach the topic of a Galerkin method, we compute the variational derivative of E. For

fixed u, the variational derivative of E is a linear functional in v, defined as follows (assume



that u and v are smooth enough but with no particular boundary conditions):

6E
- - -Eu + ev]|e=o0

= (V. u, V -v) + (V x u, Vx v)

= (-Au, v) + (V - u)(n -v) + (V x u) - (n x v) dA.

Note that the boundary integral contains two terms, which we will use when defining the

appropriate space of functions to minimize in. We now seek a variational solution to (2.103).

Minimize the energy functional

= (V - u,V - u) + 1(V x , V x u) - (f, u), (2.123)

for functions u E T where

T=u E H'() : n x u = 0 for x E 80}. (2.124)

The interesting point here is that T only contains a Dirichlet boundary condition on the

velocity field.

Remark 2.21 For vector fields u, v C T, the energy functional S' has the variation

= (-Au-f,v)+ Jon(V - u)(n -v) dA.

The minimum functional E' occurs when the variation vanishes for all v. Namely -Au = f

in Q and V -u = 0 in 80.

Therefore, to construct a Galerkin solution:

1. Imagine having a suitable mesh for a domain. Enumerate the mesh elements with i.

(2.119)

(2.120)

(2.121)

(2.122)

6E
- (2.125)

(2.126)



2. Choose a finite dimensional basis u' for each element i. For elements on the boundary,

choose ui = 0 on 19.

3. Construct an approximate solution u = E Ek Ck,iUk E T by substituting into ' and

minimizing with respect to each ck,j.

4. This yields an approximate solution to problem (2.103).

2.11 General Comments on PPE Formulations

The PPE formulations proposed by Henshaw, and later Johnston and Liu, as well as the one

we propose in section 2.3 share some common traits. Most notably, the formulations i) allow

for the recovery of the pressure as a function of the velocity field, ii) are defined for extended

Navier-Stokes systems, ie. systems which do not necessarily satisfy the required initial data

constraint V-uO = 0. In such cases where the initial data starts off the Navier-Stokes solution

manifold, the equations act as attractors, pulling the solutions back to Navier-Stokes. In

this section, we examine properties, i) and ii), that PPE formulations share.

We start by considering the following linearized equations with a no slip boundary con-

dition:
ut - pAu = -Vp+f for x E (2.127)

u = 0 for xCO,

and
Ap = V-f for x E , (2.128)

n-Vp = n - (f + pAu) for x E 09.

We assume smooth initial data uO satisfying

UO = 0 for x E , (2.129)

j(V - uo) dV = 0, (2.130)

n - (Auo) dA = 0. (2.131)

(2.132)



Here the second line, via the divergence theorem, follows as the result of the velocity bound-

ary condition. The third line is a solvability condition on the pressure (which is automatically

satisfied for velocity fields with V - uo = 0). Note however that these conditions are more

general than those required for the original Navier-Stokes, namely V - u = 0 may not be

satisfied at every point in space.

Even when the initial data uo is divergence free, these equations are not equivalent

to Navier-Stokes. In fact, they are ill-posed in the sense that solutions are not unique.

Specifically, the equations form a linear system whose null space is equivalent to the space of

harmonic functions' 3 . We may construct the null space of equations (2.127-2.128) as follows.

Suppose the functions (u,p) solve equations (2.127-2.128) for initial data u(x, 0) = uo(x).

Then construct a new solution (u + v, p + q) with functions (v, q) as follows. Take any

boundary valued function h(x, t) for x G &Q such that:

J h(x, t) dA = 0, (2.133)

and define q as

Aq = 0 for x E , (2.134)

n - Vq h for x E- 8. (2.135)

For instance q is any harmonic function with zero mean. Once we have q, we can now define

v as the unique solution to the following heat equations:

vt - pAy -Vq for x E Q, (2.136)

V 0 for x E 8Q. (2.137)

By construction, the pair (v, q) solve (2.127-2.128) with f = 0. Hence, every zero mean

harmonic function can be mapped to a unique null solution of (2.127-2.128). Note that the

"The pressure may always vary by a constant. We consider two pressure solutions equivalent if they differ
by a constant.



previous construction contains the entire null space. For instance, given a solution (v, q), to

(2.127-2.128) with f = 0, then q is already a harmonic function.

The system above has a very large null space, and hence only contains the Navier-Stokes

equations as solutions. In fact, these null space functions result in velocity fields with a

nonzero divergence. In other words, the system (2.127-2.128) fails to control the divergence

of the velocity field. The idea behind the various PPE formulations is to alter either the

boundary conditions, or right hand side of equations (2.127-2.128) so that:

1. the velocity evolution becomes unique (ie. the kernel of the linear system (2.127-2.128)

is trivial),

2. allow for the explicit recovery of the pressure from the velocity,

3. velocity fields starting on the V - u = 0 surface remain constrained their for all time,

4. the V -u = 0 surface is an attractor in the larger extended Navier-Stokes system.

In [58] Johnston and Liu propose several ways to modify the boundary conditions of

equations (2.127-2.128) so that they satisfy items 1, 2 and 3 in the list above. Only one

method satisfies item 4. The following is a brief description of these methods. For brevity,

as in the previous sections of this chapter, let 4 = V - u.

1. Alter the right hand side of the Poisson equation (2.128) to

Ap = V - f + pA(V -u). (2.138)

The divergence field 4 then satisfies 4t = 0. Hence, if 4 = 0 at t = 0, then 4 = 0 for all

time. Navier-Stokes are not an attractor in this system. In fact, any initial condition

with V -uo / 0 will preserve the nonzero divergence for all time.

2. Alter the right hand side of the momentum equation (2.127) to

ut - pV x V x u = -Vp + f. (2.139)



Using the identity V x Vx = V(V-) - A, the divergence field 4 then satisfies 4t = 0.

Hence, if 4 = 0 at t = 0, then 4 = 0 for all time. In analogy with the previous method,

this system does not contain Navier-Stokes as an attractor.

3. Alter the boundary conditions of the Poisson equation (2.128) to

n -Vp = n - (f - V x V x u). (2.140)

The divergence then satisfies

t = p.AO for x E Q, (2.141)

n-V = 0 for x E O& . (2.142)

Hence, if 4 = 0 at t = 0, then 4 = 0 for all time. Moreover, one can even relax the

constrain (2.131) in the initial conditions (ie. these equations are valid for a larger

class of functions).

This system does contain Navier-Stokes as a global attractor. Specifically, all solutions

with the extended Navier-Stokes initial conditions (2.129) converge to Navier-Stokes

solutions. To show that initial conditions converge to ones with 4 = 0 Vx E Q, first

note that solutions to the heat equation (2.141) all converge to constant, steady state

values as t -+ oo. Hence O(x) -+ C. To show that the constant C = 0 we observe that

the heat equation preserves the average temperature:

jd = p A4 dV (2.143)

= p (n -V4) dA (2.144)
Jan

=0. (2.145)

Since ff 4dV = 0 at time t = 0, we obtain C = 0 so that O(x) -+ 0 as t -+ 00.

Remark 2.22 The V x V x u boundary condition in method 3 is not unique. For instance,



n - Vp = n - (f + ptAu) + h, (2.146)

where h = -pn -V#. The correction h is only one possible choice. In fact, one may achieve

the same results using h = An -V# for any A. In this case, the solvability condition for the

pressure is still preserved, however requires the constraint (2.131).

2.11.1 Generalizations

In the most general form (with a u = 0 boundary condition for the

the PPE equations have the form:

Ut - [L

and

Ap

n -Vp

Au = -Vp + f + a(u)

u= 0

- V - f +#O(u)

- n - (f + pAu) +y(u)

momentum equation)

for x ER ,

for x O,

for x E,

for x E OQ.

(2.147)

(2.148)

where a(u), #(u) and 7(u) are functions of the velocity field. The functions are not com-

pletely independent. For instance, through the solution of a Poisson equation, nonzero #
and 7 can be thought of as an equivalent a. These functions do satisfy the constraints:

1. For the system (2.147-2.148) to contain Navier-Stokes, we require a = = 0

when # = V - u = 0.

2. Poisson solvability criteria fn n dA =f #3 dV.

These constraints are necessary, but not sufficient. For instance, the well-posedness of the

system (so that solutions are unique) places additional restrictions on the functions.

equivalently, one can think of the pressure boundary condition as:



2.12 Summary

Through the introduction of the pressure Poisson equation with consistent boundary con-

ditions, we give an equivalent formulation of the incompressible Navier-Stokes equations.

In this formulation the momentum equation takes the form of a vector heat equation with

unconventional boundary conditions, while the pressure Poisson equation can be used to

explicitly describe the pressure as a function of velocity at any fixed time. It follows that

the reformulated system of equations is ideal for using efficient numerical marching methods,

where there are no particular theoretical limitations to the order of accuracy or the method

of implementation. In addition, we devise and implement a second order discretization (uni-

form up to the boundary) of the equations on irregular domains. We address the issue of

numerical stability for the normal boundary velocity by adding an appropriate feedback term

to the equations.

There are several issues and extensions that we hope to address. First, for irregular

domains on a regular grid, the proposed momentum equation boundary conditions implicitly

couple all the components of the velocity field. Therefore, the resulting vector heat operator,

Ot - p A, cannot be solved "component by component". This makes the implementation

of schemes that do a naive implicit treatment of the stiff viscosity term computationally

expensive, is there a better way? If so, then can a simple implicit scheme be extended to

achieve high order in time? Second, our PPE formulation is for fixed domains, but extensions

to deformable and or moving geometries seem possible. Third, can the ideas here be extended

to flows with variable densities (e.g.: stratified flows)?
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Chapter 3

Thermalization of the Klein-Gordon

Equation



3.1 An Introduction to Thermalization

In the present chapter we discuss the thermalization of the Klein-Gordon (KG) equation

due to a nonlinear (quadratic) interaction. Here by thermalization, we essentially seek to

describe the evolution of generic, out of equilibrium, initial wave fields. Although the results

and discussion in this chapter focus on characterizing such long time wave behavior, the

problem is also physically motivated as follows. Consider some physical system described by

the Klein-Gordon equation, such as a finite length string on a nonlinear' elastic bed. As an

isolated, energy conserving system, what is the long time behavior of an initial disturbance?

For instance, if the wave field is confined to a fixed domain in space, does the nonlinear

interaction result in a long time behavior with general trends and features? In short, the

answer is yes - the wave field thermalizes into a local thermodynamic equilibrium (LTE)

[94].

In particular, we numerically show that in the presence of strong nonlinearities, the local

thermodynamic equilibrium state exhibits a weakly nonlinear behavior in a renormalized

wave basis. Starting with the Klein-Gordon equation, section 3.2 introduces the notion of

a renormalized wave basis as a linear transformation of the wave field Fourier modes and

the requirement of vanishing wave-wave correlations. In section 3.3, we discuss properties

of the renormalized waves and show that they oscillate around a single frequency. The

section also addresses several characteristics of the renormalized waves, most notably the

nonlinear frequency dispersion relation and energy spectrum. Specifically, the renormalized

waves exhibit a Klein-Gordon dispersion relation with a nonlinear shift in the mass (or

k = 0 Fourier mode frequency), as well as a Planck-like energy spectrum. Namely, there is

equipartition of energy in the low-frequency modes described by a Boltzmann distribution,

followed by a linear exponential decay in the high-frequency modes.

1As described in section 3.2, the nonlinearity here is a positive contribution to the potential.
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3.2 The Klein-Gordon Equation

In this section, we introduce the classical u' Klein-Gordon (KG) field 2 . In 1+1 dimensions,

on the fixed domain x e [0, 27r], the KG equation admits a Hamiltonian structure, where the

Hamiltonian is given by3

H = - [(tU) 2 + (&2u)2 + u2] +u] dx, (3.1)
0 2 4

Letting p = &tu so that H = H[p, u] is a functional of the fields p and u, one obtains the KG

equation via, &tp = - 6Htu - :

O2U = O2U _ U U 3 . (3.2)

In addition to the conservation of total energy H, periodic boundary conditions u(0, t)

u(2ir, t) result in a second integral of motion, the total momentum

P = - (&u)(Otu) dx, (3.3)

In this chapter, we focus explicitly on the case where the potential V(u) =ju2 + u4 has a

coupling constant A > 0. This is in stark contrast to chapter 4 where we examine potentials

with negative nonlinear contributions to the energy. In such cases where A < 0, waves may

spatially trap energy through the development of coherent structures [37]. As a result, the

resulting thermalization discussed in this chapter is a direct consequence of the positive

coupling.

In our work we study the LTE solutions for a wide variety of initial wave configurations.

Hence, we evolve each solution from a fixed, out of equilibrium initial condition and do

not consider ensemble averages. Instead, all appropriate thermal quantities are obtained by
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averaging over time. For instance

1t+srT/2
(A)(t) = I A(t') dt', (3.4)

t-AT/2

where AT is the averaging interval. The quantity (A), however, is not fixed for all times,

but exhibits characteristics of an LTE and (for a fixed averaging interval) may drift in time.

Lastly, in the following subsections, we make repeated use of the waves square mean field

S(t), as it appears in the nonlinear Klein-Gordon dispersion relation:

SWt) - U2, t) dx. (3.5)
27r 0

3.2.1 The linear case

Although we will ultimately focus on the study of equation (3.2) for strongly interacting

waves, to motivate the introduction of renormalized waves, we first address (3.2) in the

linear case, followed by the case of weakly interacting waves. In the absence of nonlinearity,

A = 0, (3.2) reduces to the linear KG equation. Hence, wave solutions decouple into linearly

independent Fourier modes, with conservation of energy in each mode. Specifically, the

Fourier series for p(x, t) and u(x, t) are

p(x,t) = ZpA(t)e-,

u(x, t) = -'

with summation k over all integer values. Taking p(x, t) and u(x, t) as real fields restricts

U =Uk P and Pk = so that H becomes

H = Ek, (3.6)
k

1
Ek = -(Ipk| 2 w _ IkI 2 ). (3.7)

2
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Here Ek is the linear energy in mode k, while w - 1 + k2 is the linear dispersion rela-

tion. In addition to constructing Fourier mode solutions, one may also make a secondary

transformation to study the kinetics of interacting waves

ak Pk - US) kUk (3.8)

In this new basis, the equations of motion become

a
2dk = a H(a, a*), (3.9)

Oak*

where the Hamiltonian, H(ak, a*) also acquires a convenient form:

H = wklak|2. (3.10)
k

With the dynamic equations written in the variables ak, the linear oscillator solutions take

the form ak(t) = Ake-2kt, where the amplitude and phase are contained in the complex

variable Ak. As a result, each wave number oscillates with a negative frequency so that the

Fourier transform of a linear wave is a Dirac J function

'a(W) - ak(t)e-zw dt (3.11)

= AkJ(wk+w). (3.12)

Secondly, the infinite time correlation of any two linear waves, including the case of k = ±1,

vanish:

(akal) = 0. (3.13)

Hence, linear solutions are uncorrelated waves, which oscillate at a single frequency.
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3.2.2 Weakly nonlinear renormalized waves

In the presence of nonlinearity, A > 0, the waves ak no longer decouple into linear oscillators

and therefore no longer conserve the energy Ek. For instance, the wave amplitudes Iak (t) I

do not remain constant but fluctuate from the nonlinear interaction. As a result, we seek

to characterize the nonlinear effect on both the amplitude and phase behavior of the waves

ak. Before proceeding to the case of strongly interacting waves, we first examine the case

of a weak nonlinearity. By weak nonlinearity we mean the maximum amplitude of u is

order 1, while the coupling strength remains small A < 1. Moreover, with the onset of

nonlinearity, especially in the presence of strong interactions, the waves ak no longer exhibit

the linear properties (3.12) and (3.13). We therefore follow the ideas of Gershgorin et al. [34]

and introduce renormalized waves ck in lieu of (3.8). Renormalized waves form a useful basis

since they exhibit characteristics of linear waves. Namely, renormalized waves have vanishing

correlators and approximately oscillate with a single frequency. In analogy with the linear

waves (3.8), renormalized waves are defined through a linear combination of the Fourier

transforms Uk and Pk, however, linear frequencies are altered to renormalized frequencies:

1
Ck = (Pk - 'TCkUk)- (3.14)

The transformation to renormalized waves is canonical (up to a factor of t) provided the yet

to be determined frequencies satisfy Dk > 0 andCWk -= k.

We now examine the evolution of renormalized waves in the presence of a weak nonlin-

earity A < 1 through a perturbation expansion. Specifically, we show that the standard

procedure of choosing renormalized frequencies to eliminate resonant terms yields the same

result as choosing frequencies to enforce a vanishing correlator for waves at ±k wave num-

bers, i.e., (CkC-k). Written in terms of renormalized waves, the dynamic equations for ck
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are

OH(ck,ck) (3.15)
ock

20k = w c , (3.16)
k W

tok = - (1+ -)ck + (1 - Lk)c* k] (3.16)

+ A ( Tklmn 4c*c* c*6k+l+m+n
l,m,L

- 12 cc*ck*-rn_ -
4 cICmCnk1-mn

+ 12cnCmC*6+k-m-]

1
TkImn -

327r(C'kC'l&'mC'n)'

where Tkimn is the series coefficient, and 2 =_ 1 when x = 0 and (2 = 0 otherwise. The

summation is over all integers 1, m,n. As is commonly the case in kinetic theories, wave

behavior is dominated by interacting resonant terms, for instance, those which force the

order-one linear oscillators ck on resonance. The nonlinear term in (3.15) admits only one

such resonance, which comes from the term cncmc* = ICnI2Ck when k = n, m = 1 or k =

m, n = 1. The presence of only one resonant term follows from the fact that the linear

dispersion relation w 1 + k2 is concave up 1106]. For instance, the harmonics generated

by the products c*c*c*,, cic*c*, and cicmcn cannot oscillate with frequency Ak provided Lik

is a concave function of k.

In addition to each resonant term in the series cncmc7*, there is an equivalent term in

cic*,c* containing the variable C* k when n = -k, 1 = m or m = -k, 1 = n. We now remove

both the resonant terms and their equivalent c*k terms from the nonlinear series, and absorb

them into the coefficients of Ck and C*k. We do this so that upon seeking a small amplitude

(A < 1) solution, we may simultaneous handle both the zeroth, 0(1), and first order, O(A),
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corrections to the renormalized frequencies. The dynamic equations then become:

2k= k (t)ck+ hk(t)c*k+ Ark (t), (3.17)

Ak(t) k(1+ k +A(t
hk tk

Ik(t) = 24Z TrkkICm| 2 - l2TkkkkICk 12,

m

rk klmn 4C** CJk+l+m+n
rk (t) Tklrnn [4CI CrC On lm~

l,m,n

- 1
2

cc*c* Ik-_ - 4
cjcmcnLC --kmn

+ 12c.Crnci *+k--n-

Here the prime in rk restricts the summation to exclude all resonant terms having either ck

or their equivalent terms containing C*k. Meanwhile, the time dependent coefficients g(t)

and h(t) are related by

g(t) + hk(t) = Wk. (3.18)

Thus far, equation (3.17) is exact.

We now extract approximate solutions to (3.17), in the limit A < 1, for the initial value

problem:

Ck(O) = Ck. (3.19)

To remain consistent in the small amplitude approximation, we assume the initial field is

small with finite energy. Hence, each Ck < 1 while Ck -+ 0 as k -+ oo. To obtain a solution,

we seek an asymptotic series for ck in powers of A with a single frequency leading term:

Ck~) = Cve~kt + Ac( 1) (t) + A 2c( 2)(t) + ... (3.20)
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In general, even at zeroth order in A, an arbitrary choice of C, will couple solutions cak

together through the coefficients g(t) and h(t). As a result, the proposed ansatz (3.20)

requires the following two consistency conditions on jk:

9k =O, (3.21)

hk 0. (3.22)

The first consistency condition (3.21) comes from the fact that we have chosen ck to oscillate

with frequency Ck. Meanwhile, the second condition (3.22) follows from the fact that our

ansatz has no dependence on the initial value C-k, or equivalently that ck decouples from

C-k. Relation (3.18) however, implies the equivalence of the two conditions (3.21), (3.22).

Therefore, choosing 0 through (3.21) as the ck oscillator single frequency automatically

guarantees (3.22), thereby decoupling the fields ck and c*k. Using equation (3.21) to extract

the expression for &k yields

= (k+ + (O + 0(2), (3.23)

P(0) = 24 Tmkk|C| 2  2T |Ck2. (3.24)

To solve for Dk to O(A2 ), we assume the amplitude in a single mode is much smaller than

the total averaged wave field. Therefore, neglecting the term TkkkkICkI 2 results in

c0- 2 2)

k = k+ 3A(S)+O(A) (3.25)

1+ 3A(S) + k2 + 0(A2). (3.26)

Here we have made use of the fact that po is proportional to the time-averaged value of the
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wave field

12,7

(S(t)) = 2(X, t) dx) (3.27)

=~ (IC-.m|2 +ICm|2). (3.28)

Note that within the framework of the small amplitude ansatz, the approximation (3.25) only

remains valid over time scales O(A- 2 ). As a result, to remain consistent, the time average

taken in (3.27) should be made over, at most, comparable time scales, O(A- 2 ).

With the values of ok solved to O(A), we may substitute c = Cke -*kt into the nonlinear

term r(t) and solve for the first-order contribution to ck(t). Consequently, c( (t) satisfies

the equation

z = c1) + r 0)(t), (3.29)

ck (0) = 0. (3.30)

Here rO) (t) is the nonlinear term r(t) evaluated using c{ Cke-*Wk Equation (3.29)

therefore describes a first-order linear oscillator forced off resonance by r(0 (t). The solution

for c(1 (t) is

4C*C*C*eci+'7j+cj,>t
c{ (t) =ki m n ~CC ~ ~m n Ek+l+m+n

l~rn~n k ±W 1 ±Wm + Wn

12CC;C, e-w++n)t-k-m-n
~~ k - Wl + Wm+ + Wn

4C1Cm Ce-z4cMm+7n)t
- - ~ ~ E 6 k-l -m-n

5k - Dl ~- m - Cn

12CnCCj*ez(l -7m-n)t

9k + Dl-~n -L+k-m -n1

+ De-2 (3.31)

In the solution for c , the prime in the summation indicates that there are no terms

oscillating with frequencies ±Wk. This follows from the fact that we have removed the terms
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in r(t) oscillating at frequencies ±'k. Meanwhile, the constant D, from the homogeneous

term, is chosen to satisfy the initial value cf) (0) = 0. With the asymptotic solution (3.20)

solved to O(A 2), we may calculate the time averaged correlator, (Ckc-k), for waves ±k:

(CkC-k) = CkC-k(e -*2) + ACk(e- cktC ) (3.32)

± AC-k(e-Zkt c()) + 0(A2). (3.33)

Using formula (3.4) with an averaging time of O(A 2) will result in (e-'kt) - O(A 2 ). Mean-

while, the long time average (e- *c(1)) picks out the component of cl with frequency wk.

Since chj)(t) contains no term oscillating at frequency cD, taking a time average over length

O(A- 2) will also tend this term to zero:

(ckck) = 0(A 2). (3.34)

Therefore, to first order in A, choosing the renormalized frequencies Wk to remove the resonant

terms in (3.15) is equivalent to choosing them to enforce a vanishing correlator.

3.2.3 Strongly nonlinear waves

In studying LTE solutions, we are specifically interested in the case of strongly interacting

waves, A > 1. Even in the presence of a strong nonlinearity, one may introduce renormalized

waves defined by (3.14). Extending the properties of linear waves, the new renormalized

frequencies cD are then found by imposing that waves ck and c-k remain uncoupled and their

correlations vanish [34, 35]:

(ckc0 = 0. (3.35)
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If one has a KG solution u(x, t) for some long time interval, substituting the definition of ck

into (3.35) yields an expression for Cjk:

CD2 = .1kF (3.36)
(Iuk|2)

Equation (3.36) provides a useful formula for numerically obtaining the renormalized fre-

quencies. Despite the fact that the renormalized transformation defined by equations (3.14)

and (3.36) is always mathematically possible, there is no guarantee that the waves ck stand

out as a useful coordinate system. The waves ck do however form a useful basis provided the

Fourier modes nk exhibit narrow band single frequency oscillations. When nk does oscillate

with roughly one frequency, the formula (3.36) identifies Wk with the frequency of oscillation.

In the case of the KG equation with a strong u4 interaction, we do in fact find that the waves

Ck form narrow band oscillators with a central frequency Wk. We verify these wave properties

in our numerical experiments, implying renormalized waves are a natural basis to study the

LTE spectra. We demonstrate in our numerical experiments that in the limit A >> 1, the

renormalized frequencies are very well approximated by the dispersion relation

CJ ~ 1 + 2.59A(S) + k2 . (3.37)

Here we refer to 2.59A(S) = (D- W as the mass shift.

In the case of large A, the nonlinear time scale may be estimated by comparing the

size of terms in the KG equation. Specifically, assuming the field u(x, t) is order one, the

time derivative will balance the nonlinear term, utt ~ Au3 , provided that the characteristic

nonlinear timescale ro A-1/2. Note that this estimate only holds for large A, or when A

dominates the linear dispersive term in the KG equation. In our numeric experiments, we find

that LTE solutions exhibit O(A- 1/2 ) as the natural fundamental period, while earlier work

focusing on the analytic development of short time KG solutions [48] further verifies A-1/2

as the strong amplitude time scale. Consequently, we define LTE time averaged quantities
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(A) over many periods of the time scale ro:

1 etI-Ar/2
(A)(t) = lim - A(t') dt'. (3.38)

ATr>> AT t-AT/2

Our numeric experiments try to capture solution properties at large wave numbers, es-

pecially within the exponential decay of the spectrum. We therefore use a pseudospectral

method to maintain high numeric accuracy in both space and time. The pseudospectral

method consists of exact spectral propagation for linear terms, coupled with a Richardson

extrapolation [82] algorithm for the propagation of the nonlinear terms. For smooth solu-

tions, u, the spectral basis ensures high spatial accuracy, while the Richardson extrapolation

guarantees high accuracy in time. Section 3.6 contains a more detailed discussion of the

numerical algorithm.

3.3 The Local Thermodynamic Equilibrium

3.3.1 Equilibrium properties

In our numeric experiments, we study LTE solutions for a wide range of initial conditions.

Specifically, we focus on initial conditions set over a low band of Fourier modes, and vary

both the number and amplitudes of modes excited. In analogy with experiments on the

Fermi-Pasta-Ulam (FPU) model [12, 33, 11], we find that there is a generic transient stage

where energy in the initial modes is redistributed to higher ones. For large nonlinearities,

A > 1, the transient stage appears to occur on a timescale at least as fast as o ~ A-'/2'

Upon redistribution, the energy spectrum settles into an LTE, where a majority of the energy

is shared within a finite band of lower modes. Here the LTE persists for time scales much

longer than To and appears similar in nature to the intermediate metastable state realized

by similar experiments [12, 33, 11] in the FPU lattice.

In a recent work concerning the FPU lattice, [11] the authors show that initial conditions,

specifically those with Fourier components having random phases versus coherent phases,
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can alter the long time behavior of the solutions. Although most of our test cases under

consideration have initial conditions with coherent phases, we also ran experiments with

uniformly distributed random phases. We found that the effect of the phases did not effect

the onset, or characteristics of the LTE.

Since the characteristics of a local thermodynamic equilibrium appear to be robust for

the various initial conditions that we test, we first focus on describing in detail the generic

long time behavior of one solution u(x,t) to equation (3.2), and defer a description of the

general trends for the following subsection.

Rescaling the field u(x, t) -+ A-2u(x, t) effectively sets the coupling constant to unity:

Utt - a -U a. Hence, without loss of generality, we take A - 1 and control the coupling

strength through the initial Fourier amplitudes. For the test case under consideration, we

naturally initialize u(x, 0) via Fourier components 4 to

nk = 0, (3.39)

2.08 0 < |k| < 50
Uk 0 k =- 0, |k| > 50

Although each ak is 0(1), the initial mean squared field amplitude is in fact strong: S = 68.7.

The total energy and momentum are H - 6.7 x 10' and P = 0.

We obtain the renormalized waves and study the KG thermalization in two steps. First,

we evolve the field u(x, t) for a long period of time, i.e., from T = 0 to T 1. We choose T long

enough so that the field amplitudes Ink| complete the initial transient stage and redistribute

their energy into higher modes. More specifically, following [12, 33, 11] one may introduce

M(t) as the number of modes which share most (i.e., over 90%) of the energy. During the

transient stage, the value of M(t) rapidly, over a time scale at least as fast as A-1/2 , increases

to a plateau. We use the onset of a plateau region in M(t), and hence the stable sharing of

4The somewhat odd numerical values in the initial conditions found in equation (3.39), or even table (3.1),
arise as a consequence of normalization factors in the numerical fast Fourier transform. For instance, we
used simple initial values in the numerical codes, however, converting these initial values with the definition
(3.6), introduce extra numerical factors such as v127, resulting in more obscure values (ie. Uk = 2.08).
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Figure 3-1: Spatiotemporal spectrum of renormalized waves taken over the interval (153,230)
for initial data (3.39). The shaded plot shows Iak(w) 12 while solid line corresponds to the
dispersion relation defined by (3.36).

energy between a finite band of low wave number modes, as an indication for an LTE.

Once the field has thermalized, we then further evolve the modes Uk and pk over some

time interval (T1, T2) to obtain a description of the thermodynamic equilibrium state. Specif-

ically, we recast the fields u& and Pk into renormalized waves by obtaining the appropriate

time averaged quantities, (IukI2 ) and (Ip&12 ), followed by Co and ck using equations (3.14)

and (3.36). In agreement with previous studies, we find that waves achieve only a local

thermodynamic equilibrium and both averages and frequencies Ck do depend on the interval

(T1, T2). Despite the fact that the wave equation only achieves a LTE, the LTE does exhibit

generic properties.

To verify that renormalized waves oscillate with approximately one frequency, and that

the frequency is in fact lk, we calculate the spatiotemporal transform of c& over interval times

(T1 , T 2). Figure 3-1 shows the spatiotemporal transform I (w) 12 for an early time interval

T1 = 153, T 2 = 230. Here the choice of times T and T2 is somewhat arbitrary. Indeed we

also obtain similar plots for other time intervals, such as T1 = 767, T2 = 843 or even Ti = 153

and T 2 = 843. To calculate the spatiotemporal transform, we first compute Dk using (3.36)
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Figure 3-2: Power spectrum of renormalized waves |2k(w) 12 calculated over the interval T
(153,230) for initial data (3.39). The waves stay localized around -Dk while the oscillations
around 7k have been completely removed. From right to left, the peaks correspond to
k = 5, 20, 40, 60.

averaged over (T, T2) to obtain ck(t). For each k, we compute the power spectrum |k(w)| 2

We find that the energy in each ' (w) is sharply peaked, with a small amount of background

noise. The background noise can be removed by treating each ck(t) as a stochastic signal, and

averaging multiple power spectra. For instance, to remove the background noise, we divide

the interval (T1 , T2), which contains 25000 data points, into eight partitions. We calculate

the power spectrum of each partition independently, and as shown in figure 3-2, average the

results together. In addition to the spatiotemporal transform, the thick line in figure 3-1 is

the dispersion relation Dk obtained via (3.36). The dispersion relation wk corresponds very

well with the localized magnitude of I'(w) |2, indicating the waves ck effectively oscillate

with frequency -(Dk. The faint line observed at Dk is a small residual of the coupling found

between ck and C*k. Since the plot is on a log shading scale, the coupling effect is in fact

several orders of magnitude smaller than the amplitude found at -Wk. The removal of the
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coupling found between ck and c* k is further verified by the absence of a peak in the power

spectrum at wk seen in figure 3-2.

In addition to numerically computing c7k, we find that, in the case of strong nonlinearities,

the frequencies always satisfy a shifted Klein-Gordon dispersion relation of the form

wk ~ 1 + 2.59A(S) + k2 . (3.40)

Again S is the mean squared averaged field computed over the same time interval (T, T 2)

as Wk. For example, figure 3-7 shows the dispersion relation for several different initial

conditions. Moreover, as a result of the LTE, both the value of S and therefore Ok drift

over long times. Figure 3-3 verifies the relation (3.40) on two separate time intervals, with

(S) = 67.4 on (153,230) and (S) = 60.24 on (767,843). Figure 3-4 also shows a plot of S(t)

highlighting the two averaging intervals. The deviation in (S) between the two intervals

corresponds to a drift of roughly 5% in the smallest frequency CAo.

Since the spatiotemporal transform verifies that the waves ck form narrow band oscillators

centered at frequency Wk, we may introduce the effective energy {35] in Fourier mode k in

analogy with a linear oscillator

12
(Ek) 1 ((Ipk 12) + CD IUk 12)) (3.41)

= j~ 1~&2). (3.42)

Here the definition of the renormalized frequency over a given interval implies the waves on

average satisfy the virial theorem, equally splitting the kinetic and potential energy. The

quantity (pk |2) therefore is a measure of the approximate energy in mode k, independent of

renormalized frequency. Although the energy Ek describes the modal distribution of energy,

one should note that Ek(Ek) is not a conserved quantity and that the values of (Ek) exist

only in an LTE state, and weakly depend on the interval (T1 , T2 ). The energy Ek can also
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Figure 3-3: Frequency drift of renormalized waves. As the average S drifts in time, so do the
renormalized frequencies. The top and bottom curves represent the spectrum of renormalized
waves over the time intervals (153,230) and (767,843), respectively, for initial data (3.39).
The dotted curves show the frequencies obtained by equation (3.36), while the solid lines
represent fits obtained using (3.40). The quantity S is averaged over the same interval used
to calculate the wave spectra.

be related to the renormalized wave amplitudes via

Ek = ((ck|2) + (|c-k12)). (3.43)

Consequently, in the special case when uk = Uk, such as the initial data (3.39), then

Ek = Z'(Ick|2 ) can also be used as a measure of energy in mode k.

In general, over the thermalization stage (0, T1), solutions initialized to lower Fourier

modes leak out into the higher modes. When viewed on a log scale, the energy spectrum

evolves into a flat distribution in the low Fourier modes accompanied by a linear exponential

decay in the high modes. For example, figure 3-5 shows the energy spectrum (Ek) averaged

over the long time interval (152,843). As solutions propagate through time, the spectrum
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Figure 3-4: Plot of the mean field S(t) for initial data (3.39). The dark curve represents a
local time average (S) [over the interval (t - 14, t + 14)], and demonstrates a drift over time.
The double arrows highlight the intervals I1 = (153,230) and 12 = (767,843).

retains a straight exponential decay, however the slope of decay may drift mildly (e.g., 10%)

over time. We also calculate the sum Ek (Ek) ~ 6.8 x 10' which differs from the exact

energy H - 6.7 x 105 by ~ 2.1%. Qualitatively, the spectrum appears very similar to the

one predicted by the Planck blackbody distribution: IckI2 0C (e k - 1)-i. The presence of

a Planck-like spectrum arising from a classical system, such as a system of weakly coupled

oscillators, is also discussed by Carati and Galgani [19]. For our data, the fit is only heuristic

in that we can not simultaneous match the flat, long wave spectrum as well as the short wave

exponential decay with a fixed temperature.

In addition to studying initial conditions (3.39) for N = 2048 modes, we also performed

several convergence tests with varying grid sizes N = 512,1024, and 4096 and different time

steps At. We also found that numeric solutions do not depend on grid spacing provided the

power spectrum remains exponentially suppressed over the integration times. For instance,

N = 4096 with initial (3.39) yields identical solutions to N = 2048. Meanwhile, N =

512 develops an energy cascade into the ultraviolet spectrum, accompanied by the onset of

equipartition of energy. Hence, for the initial conditions (3.39), taking N = 2048 yields a
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consistent solution to the PDE over the integration times 0 < T < 843, while inconsistencies

develop for smaller N < 1024.

3.3.2 Kinetics and fluctuations of the LTE

In addition to the power spectrum and renormalized dispersion relation, we also study the

kinetic behavior of the LTE as well as fluctuations about equilibrium values. Since the

frequency shift tracks the spatial average S, we plot S as a function of time to gain an

understanding of the dispersion relation evolution. Figure 3-4 shows the value S over our

integration time, along with a local time average value of S. We take the local time average

S over intervals long enough for the waves ck to exhibit numerous oscillations. Although

the waves ck appear well defined for any fixed time interval (T, T2), there appears no well

defined equilibrium, or more precisely if even the limit limT j fj' S dt exists. As shown

in figure 3-4, S generally appears to decay, however drifts in time.

To further characterize the nature of the LTE, we examine fluctuations by plotting prob-

ability distributions of the squared field strength S and energy spectrum for different time

intervals. We find that for a sufficiently long time interval, S acquires a Gaussian probability

distribution with varying mean and width. Figure 3-6 shows the probability distribution S,

as well as a Gaussian fit, over the interval (153,230). Although not shown, the interval

(767,843) also exhibits a Gaussian probability distribution with a different mean. Only at

very short time intervals, does S not widen out to a Gaussian.

We also study the probability distributions (PDF) for wave amplitudes or particle num-

bers IckI. The distribution of these variables are related to the energy spectrum since one

can identify (klIckI2 as the energy in mode k. Using the initial conditions (3.39) we plot

the distribution of Ic&12 over the interval (767,843) for different wave numbers. We find

that low wave numbers, k < 200, which achieve equipartition of energy, exhibit a classical

Boltzmann distribution. For example figure 3-10 illustrates the distribution for mode k = 2

along with an exponential fit of the form e- k12. Meanwhile, the exponential distributions

found in wave modes near the natural spectral cutoff, k ~ 200, start to shift their peaks
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Figure 3-5: Energy spectrum of renormalized waves (on log scale), Ek - (pk|2). Spectrum
is qualitatively similar to the distribution derived by Planck, equipartition of energy in the
low modes, exponential decay in the high modes. Data is averaged over the time interval
(153,843) for initial data (3.39).

away from Ic&12 = 0, as seen in figure 3-11. Lastly, there does not appear to be a consistent

distribution of energy at large wave numbers k > 200. Specifically, adjacent modes k and

k + 1 may exhibit very different distributions. Despite the lack of a unifying distribution,

many large wave modes do exhibit a multipeaked distribution. Figures 3-12 and 3-13 show

the amplitude distribution for k = 510 and k = 520, respectively.

3.4 General Trends

In the following section we study numerical solutions for a wide range, roughly 40 trials,

of initial data. In our experiments, we evolve initial data for a fixed time T = 767, after

which we calculate quantities characteristic of the LTE. We test three generic sets of initial

conditions shown in Tables 3.1, 3.2, and 3.3. Specifically, the tables show data for the average
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Figure 3-6: Histogram of mean field S over time interval (153,230) for initial data (3.39).
The mean field S is well fit by a Gaussian distribution with mean 67.4.

(S), the frequency shift cDO2 obtained by a best fit to the renormalized dispersion relation, the

variance of S, the exponential slope in the power spectrum and the classical analog of the

particle number. Here the slope of the power spectrum refers to the slope obtained by a least

squares linear fit to ln(Ek) over the large wave numbers k. Physically, the slope corresponds

to one measure of the inverse temperature 3 = (kbT)-' from a Plank spectrum. In addition,

the particle number is defined by

(N) Z(=ck12). (3.44)
k

We include the values of (N) as they often play a role in quantum mechanics.

In our first test trials, we fix the initial shape u(x, 0) by setting Uk = C a constant over

the first 50 modes (0 < Iki ; 50). Altering the initial constant C varies the nonlinear

wave strength. Phenomenologically, trials for varying coupling constants exhibit behavior
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Figure 3-7: Renormalized dispersion relation for different coupling strengths over time inter-
val (767,843). Initial conditions are taken as a constant over the first 50 modes. The curves
(bottom to top) have initial Fourier amplitudes nk- 0.69, 1.39, 2.08, 2.77. The dotted line
corresponds to the exact renormalized frequencies from (3.36), while the solid line is a fit
with the numerically calculated dispersion relation C&k= 1 + 2.59A(S) + k2 .

identical to the LTE described in the previous section. For instance, figure 3-7 shows the

renormalized dispersion relation at different coupling strengths.

The second set of tests fix the coupling strength A = 1, and varying the initial conditions

so that energy H and momentum P = 0 remain constant. The primary goal is to determine

whether drastically different LTE solutions arise from initial conditions with the same energy

and momentum P, H. Table 3.2 shows LTE trends for initial data Uk = 0.380,0 < IkI < 150,

Uk = 0.648, 0 < Ik <_ 100, and Uk = 2.08, 0 < IkI < 50. The data show that the renormalized

frequencies, mean field strength, and exponential slope vary dramatically over the initial

data.

Lastly, the third set of initial data fixes A = 1 and varies both the initial conditions

nk and Uk so that the total momentum P # 0. The goal in this case is to test whether
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Figure 3-8: Renormalized dispersion relation for initial conditions with fixed energy H
1.8 x 105 and total momentum P = 0. Data is taken over the time interval (767,843).
From bottom to top, the curves correspond to initial data: Uk = 0.380,0 < Iki < 150,
Uk =0.648, 0 < IkI < 100 and uk= 1.38, 0 < ikl < 50.

moving waves alter thermalization phenomenology. In general, the wave field thermalize

into a renormalized wave basis with the characteristic dispersion relation Wk and Planck-like

spectrum. As shown by the data, moving waves exhibit trends identical to stationary ones.

3.5 A Lattice versus a Partial Differential Equation

In the present chapter we have focused on the long time behavior of the Klein-Gordon PDE.

There is however, a long history of numerical science based on the long time behavior of

discrete, finite dimensional, lattices. As a result, in this section we present some background

on the lattice experiments, and contrast them with the numerical solution of a PDE.

In 1965, Fermi, Pasta and Ulam [27] (FPU) performed a numerical experiment to show

that a weak nonlinearity would thermalize a discrete lattice. To their surprise, they discov-
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Table 3.1: Different coupling constants. The first column shows the initial value for Uk over
modes 0 < ki < 50. Averages are taken over the time interval (767,843).

InitialUk H P (S) DO2 Var(S) -Slope (N)

0.69 26607 0 8.9 25.02 1.9 0.035 756
1.39 178502 0 29.3 77.7 4.6 0.023 3860
2.08 671909 0 60.3 154.0 9.9 0.015 10550
2.77 1867200 0 89.5 232.8 10.8 0.011 21175

Table 3.2: Trials with fixed energy H - 1.8 x 105 and momentum P = 0. Initial conditions
are taken as constants for Uk over the first 50,100,150 modes. Averages are taken over the
time interval (767,843).

Num. modes Initial uk (S) IO Var(S) -Slope (N)

50 1.39 29.3 77.7 4.6 0.023 3860
100 0.65 18.1 48.0 2.8 0.017 2450
150 0.38 12.1 33.3 2.2 0.012 1760

Table 3.3: The trials have data of the form Uk = A with Pk =k =Bv/1 +k2i7 , i
for 0 < Ik| < 50. Trials 1 and 2 correspond to amplitudes A = B = 0.69,1.38, respectively.
Trial 3 corresponds to amplitudes A = 1.38, B = 2A = 2.76. Note, we choose pk oc Wk to
mimic the initial conditions one would require for traveling linear waves.

Trial H P (S) L0 Var(S) -Slope I (N)
1 47208 41180 12.2 33.5 1.7 0.021 1218
2 260900 164700 33.9 89.2 4.6 0.016 5047
3 508120 329420 51.1 136.5 7.6 0.015 8664
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Figure 3-9: Renormalized dispersion relation for initial conditions in first 50 modes, with
non-zero total momentum. Data is taken over the interval (767,843). From bottom to top,
the curves correspond to integrals of motion: (H, P) ~ {(4.7 x 104, 4.1 x 104), (2.6 x 105, 1.6 x
105), (5.1 x 105, 3.3 x 10)}.

ered that the lattice did not thermalize to the expected equipartition of energy, but in fact

the energy returned periodically to its initial configuration. In the flurry of work following

FPU, numeric results exposed that the quasiperiodic solutions were in fact dependent on

initial data and nonlinear coupling strength. For sufficiently strong nonlinearities, the FPU

lattice does achieve equipartition of energy [12].

In contrast to the finite dimensional lattice, wave equations contain an infinite number

of modes. In the context of wave thermodynamics, the difficulties with infinitely many

modes has been known for over 100 years, dating back to the Rayleigh-Jeans paradox and

ultraviolet catastrophe. In particular, the assumption of equipartition of energy implies

that the total wave energy diverges for any fixed thermodynamic temperature. Although

this difficulty was resolved by Planck for the problem of radiation, the thermalization of

a partial differential equation still requires one to work with an infinite number of modes.
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Figure 3-10: PDF for renormalized wave at small wave number, (k = 2) |c2 12. Data are taken
over the time interval (767,843) for initial data (3.39). The curve represents an exponential,
Boltzmann distribution.

The partial differential equation (PDE) limit, which roughly speaking takes the number of

discrete lattice points N -+ oo while keeping energy, E and volume V constant, is also

radically different from the thermodynamic limit which takes N -+ oo at the same rate as

the system size V -+ oo. One consequence of this difference is the absence of equipartition.

For instance regularity results [73, 78] suggest the absence of a Rayleigh-Jeans divergence in

classical field theories. Moreover, the finite truncation in any numeric experiment requires

a careful interpretation of the results. For instance, numerically solving a PDE over very

long computational times is mathematically identical to integrating a discrete lattice with

many points. More specifically, by truncating the PDE to a finite lattice with N modes,

nonlinear terms may artificially introduces aliasing effects that remain absent in the PDE.

In the case of u4 nonlinearity, upon discretization, Fourier modes (k, 1, m, n) satisfying the

relation k + 1 = m + n + N strongly interact. These aliasing effects, which are absent
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Figure 3-11: PDF for renormalized wave for mid ranged wave number (k = 209) 1c209 12.
Data are taken over the time interval (767,843) for initial data (3.39). Mode k = 209 is on
the edge of the spectrum between equipartition in the low modes and exponential decay in
the high modes. The decrease in probability at low amplitude shifts the peak to the right.

in the PDE system, provide a mechanism for energy transport from low to high Fourier

modes. As shown by De Luca and Lichtenberg [74], such interactions are responsible for

the equipartition of energy in a lattice. As a result, to distinguish u(x, t) as a solution to

the PDE and not a discrete lattice approximation, one requires that the numerical solutions

converge, in an appropriate norm, to the continuous field as the number of lattice points go

to infinity.

3.6 Numerical Method

In the following section, we describe in detail our numerical method for evolving solutions to

the Klein-Gordon equation. As mentioned in section 3.2, we use a pseudo-spectral method,

which combines a spectral propagation for the linear terms with a Richardson extrapolation
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Figure 3-12: PDF for renormalized wave for large wave number (k = 510) |c510 12. Data are
taken over the time interval (767,843) Higher wave numbers exhibit a variety of behavior.
In the k = 510, wave number, the amplitude jumps around between three peaks.

for the nonlinear ones.

To march equation (3.2) through time, we convert the PDE into an equivalent first-order

system:

Ut - ZL(U) = N(U) (3.45)

where U = (u, w)T, L and N are linear and nonlinear operators respectively.

coordinates for u and w along the characteristics of (3.2) so that L and N are:

L=

N =
0

-AUs3

We take

(3.46)
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large wave number (k = 520) 1c52o12.

Using matrix exponentials, we may integrate the linear term in (3.45) to obtain an expression

for the propagation over a small time h:

(e-'Lt)U = e-*Z'N(U),

U(t + h) =e*tU(t) ± e' e*t-) S[U(s)] ds,

U(t + h) ~ e*hLU(t) + hN[U(t)]. (3.47)

When written in Fourier space, the differential operator e*hL decouples into 2 x 2 matrices

acting on each Fourier component of U. We therefore use Fourier modes and a fast Fourier

transform when evaluating the matrix exponential. Meanwhile, we adapt the Richardson

extrapolation algorithm for propagating ODEs [82], to handle the nonlinear term in (3.47).

The Richardson extrapolation routine is a method for evaluating numerical limits. In

our case, starting with U(t) at time t, we seek to obtain the solution Uh(t + At) at a fixed
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time At later, in the limit h -+ 0. Once we have extrapolated the solution a time step At,

we repeat the process M times to obtain a solution U(T) at time T MAt. To accomplish

the extrapolation over a step At, we truncate our system to N = 2048 spectral modes and

a spatial stencil Ax = 2. We also fix At = 0.5Ax < 1. The limit, limho U(t + At) can

now be thought of as the simultaneous limit of a finite number of variables. Following the

Richardson extrapolation routine, we integrate solutions over a time At to obtain Uh(t+ At)

using successively smaller values of an intermediate step h. For instance, taking ho = At

in equation (3.47) yields a one step Euler approximation Uh0 (t + At). Taking hi = At/2,

then requires 2 evaluations of (3.47) to obtain Uhi (t + At). In general, the evaluation of

Uh(t +At), requires one to divide the time step At into 1 pieces of length h = At/i, followed

by integrating (3.47) 1 times. Provided the nonlinearity in (3.47) is an analytic function, and

the solutions u are smooth, a polynomial extrapolation of the sequence Uh,, for successively

smaller values of hj, will converge with error O(Atr+1). Here r is the number of sampled

values hj, 0 < j < r. In our numerics, we have r = 7, which gives us a relative accuracy of

Au ~ 0(10-12).

Over the PDE integration times, we track numerical errors by estimating the absolute

errors, and recording the two integrals of motion H and P. From the Richardson extrap-

olation routine we obtain an L' error estimate on the propagated solution for each time

step At. Summing the L1 errors at each step then provides an absolute bound on the L1

error between the exact and numeric solutions. As a consistency check, we also calculate

the integrals of motion, and find that they remain constant to within roughly one part in

1012 over each time step At. In the worst test cases, the integrals of motion deviate to one

part in 106 after 3 x 10' time iterations. Meanwhile, the summed L1 error remains bounded

to roughly one order of magnitude less than the error in the integrals of motion. Lastly, to

guarantee the u' nonlinearity does not introduce aliasing effects, we restrict our initial data

so that Fourier amplitudes at wave numbers kma, ~ 600 remain exponentially small over the

entire integration time.
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3.7 Periodic Klein-Gordon Solutions

In the previous sections of this chapter, we evolve Klein-Gordon solutions for initial data

with energy in a large number of Fourier modes, and show that they thermalize into an LTE.

Although these LTE solutions appear to arise from generic initial data, the Klein-Gordon

equation also admits traveling wave, exactly periodic solutions [105]. For instance, initial

data starting on a periodic solution will not thermalize, but will remain periodic for all

time. In this section, we investigate these periodic solutions and extract the large amplitude

limit A >> 1. We show that solutions with spatial period 2-/k oscillate at a frequency

of ~ 0.95 + 1.57A(u 2 )2, ± k2 , where (U2 )2 , is defined below.

Starting with the Klein-Gordon equation

u -&u+ V'(U) = 0, (3.48)
12 A 4V() = U2 + AU, (3.49)
2 4

a periodic, traveling wave solution u, with velocity v, has the form

u(0) u(O + 27r), (3.50)

0 X -vt. (3.51)

Substitution then yields an integrable ODE'

(v2 - 1)u"+ V'(u) = 0, (3.52)

(V2 _ 1)(u) 2 + V(u) = V(Um). (3.53)

Here V(um) is the constant of integration, where un is the maximum amplitude of the field

u. Provided v 2 > 1, the equation (3.53) describes a nonlinear oscillator for the variable u.

Therefore, for a fixed maximum amplitude 'urn, only specific values of v will yield periodic,

u(0 + 27r) = u(O), solutions. Namely, these values of v correspond to solutions u which

5Note that V'(u) = !, while U' du(9)
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oscillate k times over the domain 0 < 0 < 2r. Hence, v must satisfy

UM 2-1/2 du 2w(
4k .V(m (3.54)

o _Vum V(U) v\/V2_i

For brevity, introduce the effective mass

f (U)-1 2 ""n 2-1/2 du (.5
f(um) = j VUnVU (3.55)

7r 0 VV(um) - V(U)

which yields

2 f2 (nm)v2 = 1+ 2) (3.56)

The frequency in time w then becomes

Wk = kv, (3.57)

Wk k +f2(um)/k 2, (3.58)

Wk k2 +f 2 (Um). (3.59)

Thus far, the nonlinear frequency relation (3.59) is general in the sense that one only requires

the potential V(u) to be monotonic and symmetric, V(-u) = V(u), in u. In the original

variables x and t, the kth traveling wave solution to (3.53), Uk(O), is periodic in space

x - x + and time t -+ t+ . For the special case of a u' nonlinear potential, the integral

f(Um) and solution u(9) may be written down explicitly in terms of elliptic functions [3]. As

a result, we may extract the asymptotic behavior for large fields Au2 > 1:

f 2 (um) - 0.7178Aum + 1.0458 + O( ). (3.60)

To compare the frequency shifts for the periodic, traveling wave solutions to those found in

the renormalized waves, we recast the maximum field amplitude um in terms of the square
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averaged field:

127
U2 d6

k [27r/k

27r J0
4k
22r
4k
2ir

u2 dO

Urn dO

-U du0 du
V2 _ 1 -1/2 fUM 2
(2 f 12dp

(3.61)

(3.62)

(3.63)

(3.64)

(3.65)_ A "u
2 dyi

fAm dp.s

where we have used the ODE (3.53) to replace Al with a function of u.

measure defined as

Here dp is the

(3.66)
/V(Um) - V(u)

In the large amplitude limit, the averaged field scales with the peak field amplitude urn

(U2 )27r
2 0.061347 1

0.456947u m + ++ OUA +0A 2 u M (3.67)

Hence, in terms of the averaged squared field (u2 )2,, the frequency shift is

f 2 (Um) 1.5708A(u 2)2, ± 0.9494 + o 1 , (3.68)

W 0.95 + 1.57A(u) 2,,+k 2 . (3.69)

As with the renormalized wave solutions, the periodic solutions Uk(O) exhibit a mass fre-

quency shift proportional to the averaged field A(u2). In addition, like the renormalized

waves, the leading term in the large amplitude shift does not depend on the number of

oscillations k, however, does admit a different leading coefficient of 1.57 as opposed to 2.59.
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3.7.1 Summary

In this chapter, we numerically studied the long time behavior of the classical Klein-Gordon

equation with a strong u4 nonlinear interaction. By introducing a renormalized wave basis,

we showed that the system exhibits characteristics, locally in time, similar to a weakly

nonlinear system. Specifically, the renormalized waves remain uncorrelated and form narrow

band oscillators centered around one frequency. In addition, the renormalized waves, in their

LTE state, achieve a renormalized dispersion relation described by equation (3.40). Here

(3.40) applies to the case of a strong nonlinear coupling strength, but appears qualitatively

similar, with a different constant, to the one found in the weakly nonlinear analysis (3.25).

In addition, the mean field (S), and subsequently the nonlinear dispersion relation may drift

as much as 10% over long times, e.g., timescales T >> cy-. However, the LTE renormalized

dispersion relation (3.40) still holds over any time interval (T1, T2 ).

We also found that fluctuations about the LTE are described by several characteristic

distributions. For strong nonlinearities, the probability distribution of the mean squared

wave field, S, appears as a Gaussian. Meanwhile, for low wave numbers, the amplitude of

the renormalized waves Ick|2 exhibit a Boltzmann distribution. As a result, there is no longer

equipartition of energy throughout the large wave numbers.

In the current study, certain results, such as the exact form of the nonlinear dispersion

relation, depend explicitly on the u 4 potential. It would be interesting to determine whether

similar relations hold for generic potentials.
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Chapter 4

Oscillons with Flat Tops
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4.1 Oscillons in Scalar Fields

In many dispersive wave systems, the presence of a focusing nonlinearity can result in soliton

and breather solutions, or approximate solutions, which remain spatially localized for very

long times. For example, a large number of nonlinear field theories support such localized

solutions. Here, in the context of scalar field theory, the Klein-Gordon equation in the pres-

ence of a A < 0 nonlinearity changes the wave behavior described in chapter 3, by supporting

oscillon solutions. These oscillons, which develop somewhat spontaneously, exist as slowly

radiating, oscillating, but spatially localized waves. As a result, they may drastically change

the thermal behavior described in the previous chapter.

With an eye towards their cosmological implications, in this chapter we investigate oscil-

lons in an expanding universe [6]. After introducing the Klein-Gordon model, in section 4.3

we provide an analytic solution for the resulting one-dimensional oscillons and discuss their

generalization to three dimensions. In section 4.4, we discuss the oscillon stability to long

wavelength perturbations, and in particular, we discuss a new, extended class of oscillons

with flat tops. We show that these flat-topped oscillons, which acquire their shape from a

saturating nonlinearity, are more robust against collapse instabilities in (3+1) dimensions

than their usual counterparts. Meanwhile in section 4.5 we estimate the effects of expansion

on oscillon shapes and lifetimes.

4.2 The Model

We begin with the action for a real scalar field in a d + 1-dimensional, spatially flat, homo-

geneous, expanding universe (h = c = 1):

Sd+1 J(adX)ddt [ (tDP)2 22 (V )2 _ , (4.1)

where
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a(t) is the dimensionless scale factor and A, g > 0. As discussed in chapter one, what is

crucial for the existence of oscillons is

V'( O) - M 2 p < 0,

for some range of the field. The potential [Eq. (4.2)] is the simplest model which captures

the effect we wish to explore, namely, a nonmonotonic relationship between the height and

width and its implication for stability. However, apart from detailed expressions, our results

are general and not restricted to the particular shape of the potential.

We find it convenient to work with dimensionless space-time variables as well as fields.

Using (t, x) -+ m- 1 (t, x) and p -+ mA-1 2 op as well as g -+ (A/m) 2 g the action becomes

Sd+1 = m3-dA-1 (adx)ddt (at )2 (V)2 V() , (4.3)

with

2 4 6

The classical equations of motion are given by

V2
Ot2 p-±H2&+ t~+ V- W ±g~p = 0, (4.4)

where g is the only free parameter in the potential and H = i/a. We will be concentrate

on the case where g > 1. This gives a controlled expansion in powers of g-1/2, which allows

us to derive an analytic form for the profile. Our approach is similar to the small amplitude

expansion, with the important difference that it captures the entire range of amplitudes for

which oscillons exist. Moreover, in our analysis we show that the flat-top oscillons are stable

against small amplitude, long wavelength perturbations on time scales of order g.
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4.3 Oscillon Profile and Frequency

In this section we derive the spatial profile of the oscillons in our model in a 1 + 1- and

3 + 1-dimensional Minkowski universe. We include the effects of expansion in Sec. 4.5. For

simplicity, we begin with the 1 + 1-dimensional case.

4.3.1 Profile and frequency in 1+1 dimensions

The equation of motion is

at2 - + - + -, = 0. (4.5)

To extract the oscillon profile, we introduce the following change of variables:

1
O(t,x)= (r7Y)

t = -,

y X/v)

(4.6)

where

W2 1 - 1e2

Here, a 2 characterizes the change in frequency due to the nonliear potential. We define

<bo = #(0, 0) = Vggo and choose &ep(O, x) = 0,0(0, x) = 0. Note that a and <bo are not

independent of each other. Their relationship will be determined from the requirement that

the solution is periodic in time, smooth at the origin and vanishing at spatial infinity. With

the change of variables (4.6), and collecting powers of g, the equations become

64+#o+ g- [- 2 &24 - - $3 + 5] = 0[g-3/2
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Let us consider solutions of the form

4 (r, y) = 01(r, y) + g 403(r, y) + . (4.8)

Again collecting powers of g, we get

00 1 + 1 = 0,
(4.9)

0,43+ 43 =a 2 4 ,2 41+ 41 41.

The first equation in (4.9) has a solution of the form

01(T, y) = 4(y) cos r. (4.10)

To determine the profile <b(y), we look at the second equation in (4.9). Substituting 1(-r, y)

into this equation, we get

-a2<b+ a2<b+

±
5 1

_16

3V

4

cos3-r

5 j cos 'r,

1
- <b~5 cos 57.

We are looking for solutions that are periodic in r. The term ...]cos r will lead to a term

linearly growing with r. Hence, we must have

02<p - a2<b + <bD3 _%5 = 0. (4.12)

This equation has a first integral, the "conserved energy"

E, = - (,<b)2 + U(4),2
(4.13)

where U(<b) = -ja 2 < ± p2+ < - yb6. If we demand spatially localized solutions, we require

E3, = 0. Furthermore, requiring that the profile be smooth at the origin, we must have
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<Do =; ep

Figure 4-1: The above figure shows a2 which characterizes the change in frequency of oscil-
lation due to the nonlinearities in the potential. The critical ac = V27/160 can be obtained
from the requirement that the nodeless solution is smooth and localized in space. Note that
in 1+1 dimensions, a is monotonic in <0 . This is not the case in 3+1 dimensions. Frequency
is measured in units of the m.

,<b(0) = 0. This immediately yields (also see Fig. 4-1)

a 34)2 _50 (4.14)
8 24

Note that there is a critical value ac = /27/160 (or <bc 9 V9/10) beyond which localized

solutions do not exist. The profile equation becomes

(4))2 = 02(D2 - _4D4 + -<b). (4.15)
8 24

Integrating the above equation yields

<b(y) = <5h , (4.16)
1 + u cosh [2ay]
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where
U = v1 - (a/ac)2, (4.17)

<b~o = <>cv/1- -U.

We have introduced the variable 0 < u < 1 which simplifies the appearance of the equations

and controls the shape of the oscillons through a. We will come back to a more detailed

analysis of this solution, but first we solve for the second order correction to this solution,

1 V 5 V1(D
02403 + #3 = 3 6 _ j cos 3r - 16 cos 5T. (4.18)

The solution with 43 (0, y) = 0,43 (0, y) = 0 is

1 1 1
#3(7, Y) = - (3<b3 _ 445) cos r + 1 (5b5 -4<}3) cos 3r + 384<5 cos 5r. (4.19)

96 128 384

The full solution becomes

#(ry) = 4cosr± (D [r (3 - 4<) cos - (4 5<2) cos 3 1 ± cos . (4.20)

Note that the corrections to #1 are strongly suppressed for g > 1. Even for moderately

large g ~ 5, the factor in the denominator is - 100, making #1 a rather good approximation.

From now on we will mainly concern ourselves with #1.

Reverting back to the original variables (4.6), the solution for a < ac (equivalently,

<bo < 4 is
1 + U (.1, = o 1 ± ch / cos(wt) + O[g-3/ 2], (4.21)

1U + 0: csh[2ax/.,/g]

where
u = y1 - (a/ac)2 ,

(o - - -v/1 - U, (4.22)

S2 = -1 2

Here, wo is the amplitude of the profile at the origin and scales as 1/ .
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Figure 4-2: The above figure shows the spatial profiles of oscillons for different values of the
amplitude at the center. For <Do < <bc = V9/10 we get the usual sech-like profile, which
is consistent with the small amplitude analysis. As <bo approaches 4, the oscillons become
wider with surprisingly flat tops. Unlike the 1 + 1-dimensional case, in 3+1 dimensions, we
approach the flat-top profiles from above. Distances are measured in units of the m-1 .

Let us now investigate the solution for the profile. Figure 4-2 (top left) shows this solution

for different valued of a. Notice that as a approaches ac (equivalently, bo - 4 <}, u -+ 0),

the oscillon profile begin to deviate from the "sech" profile and has a flat top. Given this

solution, one can derive the width of the oscillon as a function of its height. Defining the

width to be the x value where the profile falls by 1/e of its maximum

-- 1 e2(1osh +±u)-1
Xe 12 (1+ )-1/2 cosh-1 . (4.23)

As u -+ 0 we simply have xe ~ /o, which is consistent with the small amplitude analysis

(see Fig. 4-3). Meanwhile, u -+ 1 yields a spatially uniform solution.

We end this subsection by writing down an expression for the energy of these oscillons:

E08 e = 31u tanh- 1  + O[g-3/ 2]. (4.24)EoC PoV3(1 - u) 1+ U _

Note that as a 0 (u -+ 1) we have Eoc ~ 2x//5o whereas for a -+ ac (u -+ 0),

Eoc -+ oo. In the next subsection we extend our results to 3+ 1 dimensions.
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Figure 4-3: The above figure shows the nonmonotonic relationship between the width and
height of oscillons in 1+1 and 3+1 dimensions. Note that as <bo approaches <bc = 9/9/10, the
oscillons become wider with flat tops. Unlike the 1+1-dimensional case, in 3+1 dimensions,
we obtain flat-top profiles when <bo approaches <bc from above. Distances are measured in
units of the m-1 .

4.3.2 Profile and frequency in 3 + 1 dimensions

In this section we extend the results of the previous section to a 3 + 1-dimensional Minkowski

space-time. Although we are unable to obtain an analytic form for the profile, the important

qualitative (and some quantitative) aspects of the solutions can still be understood. In

particular, we derive a critical amplitude and frequency for which the solution becomes

spatially homogeneous and argue that the relationship between the height and width is

nonmonotonic.

The equation of motion (assuming spherical symmetry) is given by

OO p - 02 -O -2,. + & ± - 3 + g ? = 0. (4.25)
r

We can follow the same procedure used in the previous subsection to arrive at the equation
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for the profile

a 2<p +2-0,<>- a2<h + 3bs _ 5o = 0, (4.26)

where p = r/g. This is where we first encounter the difficulty associated with three

dimensions. We can no longer obtain a first integral due to the 2/p(O,<b) term. However, we

can still get a bound on a by requiring that the solutions are spatially localized (see [7] for

an analysis of a similar profile equation in the context of Q-balls). It is convenient to define

an energy E,, which in the absence of the (2/p)&,<> term, is a constant of motion:

1
E, = (O,<b) 2 + U(<}), (4.27)(427

where U(<}) = -ja 2 D2 + (k _ 5<>6. With this definition the equation of motion takes on

an intuitive form
dEp 2= -- (Ob)2 . (4.28)
dp p

This means that as we move away from p = 0, we move from a higher E, trajectory to a lower

one. With the requirement that the solution is "localized" (more specifically, <b oC p-le-"p

as p -+ oo), we need E, -+ 0 as p -+ oo. Requiring that the solution is smooth at p = 0

requires O,<} = 0 at p = 0. This implies that for a localized solution we must have E, > 0.

Equivalently, U(<>o) 2 0, which in turn implies that a < ac = N/27/160. For this critical

value ac, we get a special solution [with 4c(p) = y/9/10], which is homogeneous in space.

For 0 < a < ac we get nonzero spatial derivatives.

For each a in the range 0 < a < ac, only special, discrete values of <}o(n) will yield

solutions that satisfy our requirement <> oc p-'e-cP as p -+ oo. Here n enumerates the

discrete number of nodes for the oscillon. From these, the n = 0 ones are the oscillon profiles

we are looking for. The numerically obtained profiles are shown on the right in Fig. 4-2.

From figure 4-3, it is easy to see that the relationship between the heights and widths

of the oscillons is nonmonotonic. We know that for a < ac (ie. 4o < 4b), the usual small

amplitude expansion yields solutions that have the property that their widths decrease with

increasing amplitude. We also know that for a = ac (<bo = 4c) the width will be infinite.
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Thus, as in the 1 + 1-dimensional scenario, we expect the width to be a nonmonotonic

function of the central amplitude. This is indeed what is seen from the numerical solutions

of the profile equation as shown in Fig. 4-3. Note that the width is a multivalued function of

the amplitude beyond <bo = <bc. Nevertheless, it still approaches the homogeneous solution

via the flat-top profiles. The multivalued relationship between a and <bo is shown in Fig.

4-1.

4.3.3 Radiation

The oscillon solution does not solve the equation of motion exactly. We have ignored terms

of O[g-3 /2 ] as well as outgoing radiation. The problem of calculating the outgoing radiation

in the small amplitude limit (not the flat tops) has been addressed in the literature (see

[92, 30]). Our intention here is to point out that for flat tops, the radiation will still be

small.

As shown in [54], the amplitude of the outgoing radiation can be estimated by the ampli-

tude of the Fourier transform of the oscillon at the radiation wave number k, ~ v/5m (also

see [39]). For small amplitude oscillons, this is exponentially small ~ e-'/ o. Let us estimate

what changes are expected when we move to the flat-top oscillons. As we have seen, already

our solutions have the form,

S(t, X) = 4 (4.29)

Where the function 4(r, y) is independent of g. The Fourier transform of p can be determined

from the Fourier transform of 4 using

p(t, k) = 0(r, V/jk). (4.30)

Now #(t, x) is determined entirely by a. Hence, for any given a, the Fourier transform of

o gets narrower as g is increased. Thus, by increasing g we can make the amplitude at the

radiating wave number as small as we want. Note that even though the Fourier transform of

a flat-top oscillon resembles a "sinc" function, rather than a sech, this is true only for wave
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Figure 4-4: In the above figure we plot N = f <b2dx for the oscillons in 1 + 1 (left) and
3+1 (right) dimensions. The stability of oscillons is determined by the sign of dN/da2 where
a2  g(1_ W2). Note the important difference between the curves in the two cases. While all
oscillons are stable to long wavelength perturbations in 1 + 1 dimensions, this is not the case
in 3+ 1 dimensions. Only those with small frequency (or equivalently, towards the flat-top
regime) are robust. Frequency is measured in units of m.

numbers near zero. Since the flat top oscillons are smooth solutions, their Fourier transforms

still exhibit a rapid asymptotic decay. The argument in 3+1 dimensions will be similar.

4.4 Linear Stability Analysis

In this section we investigate whether oscillons are stable against small, localized perturba-

tions. As discussed in the previous section, the periodic oscillon expansion, formulated in

powers of g-1/2, fails to solve the governing field equations and must expel radiation. In our

stability analysis we ignore the effects of the exponentially suppressed radiation and focus

on perturbing the oscillon profile. The main results of this section are as follows: (i) On

the time scale of order g, 3+ 1-dimensional oscillons with large amplitudes are robust (their

small amplitude counterparts are not) against localized perturbations with spatial variations

comparable to the width of the oscillon. (ii) For small wavelength perturbations (compared

to the width of of the oscillon), instabilities could exist in discrete, extremely narrow bands

in k space.

We now provide the details essential for reaching the above conclusions. As done pre-
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viously, we discuss the 1 + 1-dimensional case first, and then extend the results to 3 + 1

dimensions. Starting with a fixed oscillon profile go.c [see Eq. (4.21)], we linearize about

the oscillon by an arbitrary function x. Provided the field X remains smaller than Yoc, the

linearized dynamics will approximately describe the perturbation. Let

O(tx) = pOsc(rX) + 6 X(tX), (4.31)

where J < g 2 is the amplitude of the perturbation and we keep X ~ 0(1). Note that

for a linear analysis, x must also vanish at infinity so that the perturbation ox remains

smaller than the original oscillon. Therefore, we restrict our analysis to spatially localized

perturbations. The field x then satisfies

Otx - Ox + X - 3y0cX + 5gp' cx = 0. (4.32)

We now wish to determine if all initial conditions X remain bounded, or whether there exists

an unstable initial profile x(O, x). The p2c(t, X), p8 c(t, x) terms act as periodic forcing

functions'. This periodic forcing, somewhat analogous to pumping ones legs back and forth

on a swing, may deposit energy into the field y and consequently excite an instability.

A complete treatment of stability may require one to solve (4.32) for a complete basis

of initial conditions. Because of the spatially dependent oscillon solution, a Fourier analysis

is difficult. With this in mind, we split the set of initial conditions into two groups. The

first with spatial variations comparable to the size of the oscillons and another which varies

on much shorter length scales. In the second case we can approximate the oscillon as a

spatially constant oscillating background. This allows us to carry out a standard Floquet

analysis. Such an analysis reveals the most dangerous instability band at k ~ v/5, with a

width Ak < g-'<b. For large g, this becomes extremely narrow. In addition, we expect the

time scale of these instabilities to be ~ gb4. Nevertheless, one should bear in mind that

the slow spatial variation of the oscillon could still be important.

'Since #c oscillates in time, the problem is essentially one of parametric resonance stability/instability.
We are really diagonalizing the Floquet matrix - which in this case would really be an integral operator.
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Now, let us look at the case where the perturbations vary on length scales comparable to

the width of the oscillon in detail. Note that to leading order, the forcing potential: ~ 2

is (i) O[g- 1 ], (ii) smoothly varying with a natural length xe oc Vg, and (iii) oscillating with

period 1 in the variable r = wt. The first observation implies we may use perturbation

theory and seek an expansion for x in inverse powers of g:

X = Xo +gx1+... (4.33)

In the following analysis we shall work out the linear instabilities to first order in g-1.

However, we must keep in mind that solutions stable to order g-1, may in fact develop

higher order instabilities over longer time scales. Since we are interested in perturbation with

wavelengths comparable to xe, we rescale the length x = Fy. To capture the instability,

however, we introduce two times: the original oscillatory time -r = wt and a slow time

T = g-t 2 . The introduction of T follows from our focus on perturbations which oscillate

near the oscillon frequency. In addition, we require a slow time T to capture variations in

the perturbation. Hence, the field X - X(r, T, y) and the derivative &t becomes

at = war + g Vr, (4.34)

O2 ±g-1[26irOr - a2&2] + 9[g- 2 ]. (4.35)

Upon substitution of Eqs. (4.33), (4.34) and (4.35) in Eq. (4.32) and collecting powers of

g we obtain

&ixo + xo = 0, (4.36)

(2X1 + x1 = -[2a 7 a _- a2  -a 2 -a 3 cos 2 , 2(y) + 5 cos' -rV(y)]Xo. (4.37)

2 One may want to know why T = g-'t provides the important slow time scale. A back of the envelop
calculation is as follows - consider a homogeneous background oscillating at the oscillon frequency. A naive
perturbation series for X in powers of g- 1 exhibits an oscillating term for Xo, and then a term which grows
linearly in t for X1. This means X, becomes the same order as Xo when tg-1 ~ 1. Hence, there is a
characteristic slow time T = tg- 1. If we let Xo be a function of both -r and T, and we choose Xo correctly,
we can ensure that X1 remains small for long times. In a similar fashion, if we consider higher order terms
in the oscillon expansion, there could be additional instabilities excited over time scales g-2, g 3 etc.
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From the zeroth order equation, the most general solution for yo (-r, T, y) is

Xo(T,T,y) = u(T,y)cos-r + v(T,y) sin(r) (4.38)

Here, u(T, y) and v(T, y) are real functions that depend on the slow time T and space y.

Eliminating the secular terms from the right hand-side of the x1 equation, we obtain

20Tu = Lv,

2 0Tv = -Mu,

(4.39)

(4.40)

where the L and M are both Hermitian operators. Explicitly,

L3 5L =_-2 + ae2 _ 3<2 (y) +5 <44(Y),

M = - + a2 _ 9 2(y)

Since Eqs.

+ -<b4(y).

(4.39) and (4.40) are linear, we can separate variables via u(T, y) =

(4.41)

(4.42)

el"Tu(y),

v(T, y) = e2 Tv(y):

Qu = Lv, (4.43)

(4.44)

or equivalently

9 2 U = -LMu,

= -MLv.

(4.45)

(4.46)

(4.47)

Since both u and v are real fields and L and M are real operators, the eigenvalues3 Q2 must

3If they exist.
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also be real. Hence, all exponents Q are either purely real or purely imaginary. Then, oscillon

stability is guaranteed when max(Q2 ) < 0, or equivalently when the largest real eigenvalue

of -ML is negative. Determining the largest real eigenvalue of -ML can be done using the

analysis performed by Vakhitov and Kolokolov [102]. Specifically, they exploit properties

of the operator potentials found in L and M to show that max(Q2 ) < 0 if and only if

dN/da2 > 0. Here, N is the integral over all space:

N = J<b2(Y)dy (4.48)

and a 2 - g(I _ W2 ). From Fig. 4-4, we can see that dN/da2 > 0 for all allowed a in 1 + 1

dimensions. Thus, 1 + 1-dimensional oscillons are stable against small perturbations with

long wavelengths. Note that to order g- 1, N = 2g 1 /2 Ec, in 1 + 1 dimensions (in 3 + 1

dimensions N - 2g-1/ 2EOc.)

The argument of [102] holds for dimensions D = 1, 2,3. The discussion above carries

over to 3+ 1 dimensions through the following identifications: y -+ p and 9 -+ 02 + (2/p)O,
and N = 47r f 4 (p)p 2dp. The result in 3 + 1 dimensions is in sharp contrast with that

in 1 + 1 dimensions (see Fig. 4-4). Unlike the 1 + 1-dimensional result, not all oscillons

are robust against long wavelength perturbations. Only oscillons with large a (equivalently

small frequency or large amplitudes) are robust. This result makes the large amplitude,

flat-topped oscillons in 3 + 1 dimensions particularly interesting.

In the context of Q-balls, N is proportional to the conserved particle number and plays

a role in the stability [69]. A similar interpretation might be possible here, since to leading

order in g-1/ 2, our solution is periodic in time. Finally, we note that the behavior of N in

1 + 1 and 3+1 dimensions can be understood heuristically. In 1 + 1 dimensions, for small a,

the amplitude of the profile at the origin - a whereas the width ~ 1/a. Hence, N ~ a. For

a -+ ac we have increasingly wide oscillons with amplitudes ~ 4 c. Hence, N diverges. Now

for 3+1 dimensions, the behavior at a -+ ac is similar to the 1+1-dimensional case. However,

at small a, due to the different spatial volume factor, we get N - 1/a, therefore implying a

nonmonotonic behavior in N. Based on a numerical analysis in the case of dilatonic scalar
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fields, it was conjectured in [30], that the stability of oscillon like configurations is related to

the slope of the Ec, vs amplitude curve. In the large g limit, Ec, oc N and the amplitude

oc a. Hence, their conjecture is in agreement with our analytic result.

4.4.1 Spectral stability

Here we review the linear stability argument of Vakhitov and Kolokolov[102]. Specifically,

the system

Q2 u= -LMu
(4.49)

2V= -- MLv

where

L = _-2 + ae - <D4)2(y) + <b)4(y) (4.50)

M = - + a - <b2(Y) +2 <b(y) (4.51)

admits no solutions Q2 > 0 when dN/da > 0, for

N = Jb(Y)2dy. (4.52)

Computationally, the result provides a dramatic simplification in determining stability of

the perturbed system. For example, analysis of equation (4.49) requires one to solve an

eigenvalue problem, while the result of [102] reduces the problem to calculating integrals.

Although the proof requires several technical details involving the operators L and M, the

general idea is to relate the signs of max(n 2 ) and dN/da by use of a variational calculation.

The first step in the calculation requires converting equation (4.49) into a variational

problem:

min( 2 ) = min (uL-1|u) (4.53)

(uI >) = 0 (4.54)
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The product (4.53) follows from the observation that Lb = 0. Specifically, since Q2 (<Pju) -_

-(<bILMIu) = 0, then either 02 = 0 or (4u) = 0. Hence, to determine the sign of the

smallest nonzero Q2 , we can restrict ourselves to functions u such that (u|4)) = 0. Now

since L is Hermitian, and 4) is a radial function with zero nodes, it follows that 4) is also the

ground mode of L. Therefore, L is positive definite and invertible on the space of functions

orthogonal to 4). As a result, the product (ulL-'|u) is a well defined norm (squared) on

functions u, and thus by the variational principle min(Q2 ) is equivalent to the right hand

side of equation (4.53).

The second step of the calculation involves showing the sign of the variational product

(4.53) is related to the sign of a simpler product (<bIM-1|<D). This procedure requires two

technical observations concerning the potential in M. Namely, for a large class of potentials,

as shown in section 4.4.2, the radially symmetric modes have exactly one eigenvalue less

than zero, while the first angular eigenvector has eigenvalue zero. To determine the sign

of min(Q2 ), we use the fact that the product (ulL-'Iu) is positive definite, and therefore

without loss of generality, we can replace the denominator in (4.53) with (ulu). The problem

of finding

sign min(Q2) sign min MIu) (4.55)
(Ulu)

(uI4) 0 (4.56)

then becomes equivalent to minimizing (u|Mju) subject to the constraints (ulu) = 1 and

(u<D) = 0. Introducing appropriate Lagrange multipliers A and a we have:

Mu = AV + a- b (4.57)

Taking the inner product (ul to both sides of equation (4.57), shows that min(ulMlu) corre-

sponds to the smallest Lagrange multiplier solution A. To determine the sign of the smallest
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such A, expand both u and <P in an eigenbasis of M:

M4'n AnPn (4.58)

U = dn$n (4.59)
n

4) = cn4n (4.60)
n

A direct substitution of u and <} into (4.57) yields the relation dn = a 'n between coeffi-

cients dn and cn. Lastly, by enforcing the constraint (uI4) = 0 we obtain an equation for

the Lagrange multipliers:

c2
a "- =0 (4.61)

Equation (4.61) admits the solution a = 0, as well as a countable number of A, of which

we are concerned with the sign of Amin. We first show that a = 0 corresponds to stable

perturbations by exploiting properties of the operator M. Specifically, a = 0 implies A and

u are eigenvalues and eigenvectors of M. There are now two cases to consider: u radially

symmetric and u non-radially symmetric. In the former, M contains only one negative

eigenvector corresponding to the ground mode. Hence, this ground eigenvector, having no

nodes, would have a nonzero overlap with 4), and therefore fail to satisfy the constraint

imposed on u. It follows that any radially symmetric u would correspond to eigenvalues

with positive A. In the latter case, every non-symmetric eigenvector has a positive definite

eigenvalue, again implying A > 0. Therefore all a = 0 solutions yield stable perturbations.

For a -/ 0, A must solve:

c2
g(A) - (4.62)

g(A) = 0 (4.63)

Note that every nonsymmetric eigenfunction is orthogonal to the space of radially symmetric
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functions. Hence, every non-symmetric eigenfunction has coefficient cn = 0. In addition,

g(A) varies continuously, and monotonically between the poles at eigenvalues A,. The min-

imum root Amin therefore occurs somewhere between the smallest two (radially symmetric)

eigenvalues A1 < 0 and A2 > 0. Since g(A) varies monotonically, we can relate the sign of g(0)

to the sign of Amin. Specifically, g(0) < 0 implies Amin > 0, while g(0) > 0 yields Amin < 0.

Consequently, we have:

sign((uMIu)mjn) -sign(g(O))

= -sign[E CI]
n

=-sign[ (4 M 1 141)]

The last step of the proof replaces the inverse M-, appearing in the inner product

(<b|M-1|<b), with the derivative -. To obtain the required relation, differentiate the equation

L1 = 0 with respect to a:

M-- <>= 0

da

da

(4.67)

(4.68)

Hence we have,

(RIM-1I4) =
d

lde1 d
2 da(<l' )

(4.69)

(4.70)

Equivalently, the oscillon is stable, with Amin > 0, if and only if:

d
__(<b|<D) > 0 (4.71)
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4.4.2 Some properties of the operator M

Here we verify that the operator M admits a zero eigenvalue for the lowest non-symmetric

angular mode, as well as exactly one negative eigenvalue for the radially symmetric modes.

We work in 3D and begin by noting that the operators

L = -2 20 +a - <b2(p) + b4(p) (4.72)
p 4 8

22 9 25
M -0 2 ,+ a - <b2(p) +. <b(p) (4.73)

are approximately related by derivatives. Specifically, in the case of the non-symmetric

angular mode, we can differentiate the equation L4(p) through by p:

O, (-0 - ± a4b - 3 + < = 0 (4.74)

(- 2 0 + 2+ a - <2 + <4 ,< = 0 (4.75)

M(Y,-1(6, #)O,)= 0 (4.76)

Here Y, 1 (0, #) is the 1 1 spherical harmonic. Since &,<ib contains no nodes, by construc-

tion the function Y, 1"(0, #)Op,< is the lowest non-symmetric angular eigenvector and has

eigenvalue zero.

Next, to verify that M only contains one negative radial eigenvalue, we first note that

the weak amplitude equation, a -+ 0:

_2 2 3
O OO+eo-~ D(p)4, CO (4.77)
p 4

(4.78)

contains exactly one negative eigenvalue4 . The goal now is to show that as alpha continuously

increases, no eigenvalue ever crosses zero. We do so by studying solutions to the nonlinear

4For example, this has been checked numerically.
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equation:

2 33 55
- f -- f + af - f f + f = 0 (4.79)

with initial data

f(0) = s (4.80)

Of(0) = 0 (4.81)

Here a is understood to be a fixed constant so that for each value of s, we obtain a solution

to the differential equation. Moreover, there is a critical s = <bo which yields the zero node

oscillon profile. For other values of s, even ones close to 4, solutions f(p) -+ C as p -+ oo.

In this case C is a fixed point of the differential equation and solves the algebraic equation:

a - 3C2+C4 = 0 (4.82)
4 8

We may now construct a function parameterized by a:

ds fa = f~p)s~eo(4.83)

The function 0,a satisfies the boundary conditions 8O,,(0) = 0, ?Pa 1. In addition,

0f, diverges as y -+ oo since taking s = <bo + 6 yields If,(p) - fe0(p)| -+ C. Lastly, by

differentiating equation (4.79) with respect to s and evaluating at s = <bo, we have:

Mya = 0 (4.84)

Hence, any function # which satisfies the boundary condition O,#(0) = 0 and corresponds to

a zero eigenvalue must diverge as p -+ oo. Therefore, M has no bounded radially symmetric,

zero eigenfunctions. Equivalently M must have exactly one negative eigenvalue for all a.
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4.5 Including Expansion

In this section we consider the effects of expansion on the lifetimes and shapes of oscillons.

We closely follow the procedure provided in [24] for the small amplitude oscillons. Here,

applying their procedure is somewhat subtle since in the limit g > 1, oscillons tend to be

very wide (oc ,F), and the width grows without bound when a -+ 0, ac. Consequently, in

these regimes it is easier to break up the oscillons due to Hubble horizon effects. Nevertheless

we construct approximate solutions when the oscillon width is small compared to the Hubble

horizon.

4.5.1 Including expansion in 1 + 1 dimensions

As before, we begin with 1 + 1 dimensions and generalize to 3+ 1 dimensions. We will work

in static deSitter co-ordinates where the metric is given by

ds2  -(1 - X2 H 2 )dt 2 + (1 - x2 H 2 )-1dx2. (4.85)

Here, H is a constant Hubble parameter 5 . In these co-ordinates, the equation of motion

becomes

(1 - x 2 H_2 )& + 2xH 2  _ (1 _ X2 H 2 )&2p = -V'(p), (4.86)

where (xH) < 1. We will assume that H < 1 and that H = H/g where H is a small

number. The effects of expansion can be ignored when x < H-1. For oscillons with widths

satisfying xe(a) < H-1, the solution to the above equation is well approximated by the

Minkowski space solution. However, in the tail of the oscillon profile we cannot ignore the

effects of expansion. Nevertheless, taking advantage of the exponential decay of the profile

in the tails, we can linearize Eq. (4.86) and obtain a solution using the WKB approximation.

We carry out the change of space-time variables and redefinition of the field as was done

in the nonexpanding case, Eq. (4.6). Again collecting powers of g, we get

sThe assumption of H being constant is for simplicity. The analysis carries over to a time dependent H
as long as the frequency of oscillation w > H.

157



a-0,
"01 0101 2 21J210, OY01 _03 05(4.87)

0 233+ 3 {-a 2 +y 2 2 }&34 -+B# -Ye s .817

In the case of the Minkowski background, we chose an initial condition Dtp(O, x) = 0, which

picked out one of the two linearly independent solutions of the first equation in (4.87).

However, in the expanding universe we need to keep the general solution

41(-, y) 2 e-" + c.c, (4.88)

where <b(y) can be complex and c.c stands for complex conjugate. The "profile" equation is

given by

{2 - (yH) 2 } < - <b - <}I2<p + |<|4< = 0 (4.89)

and includes the effect of expansion through the (yH) 2 term. We now analyze different

regimes as seen in Fig. 4-5. For (yH) 2 < a 2, the equation admits solutions identical to the

nonexpanding case [see Eq. (4.21)]. In the region ye(a) < y < aH-1 , where ye(a) is the

approximate width of the oscillon [Eq. (4.23)], the profile has the form

2((y) + o exp [-ay] ye(a) < y < aH-1. (4.90)

Since this is an exponentially decaying solution, we can ignore the nonlinear terms in the

potential when y > ye(a):

8 <b + {(yH) 2 - a 2 } < 0 ye(a) <Ky. (4.91)

For y > aH-1, the above equation has a WKB solution6 in the form of an outgoing wave:

2a(1+u) [ ra2 j _
<b(y) ~z <0 exp + - Hy2 . (4.92)

t By 41 2

6assumning the WKB condition II/a2 < 1 is satisfied
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0.02

0.01:

x1

Figure 4-5: In an expanding background, if the width is small compared to H-1, the flat
space solution is adequate for distances much less than a( H)-1. For distances larger than
this, but still smaller than H-1, the oscillon feels the expansion, and loses energy in the form
of outgoing waves (see inset in Fig. 4-5). Distance is measured in units of the m-1 .

The amplitude of the outgoing wave was chosen using the WKB connection formula to

match the oscillon profile in Eq. (4.90). In terms of the original variables, we obtain

0(t, x) =Po 1 Ucos!O + 0[-3/2+ u cosh [2ax// ]

2(1 +cu)a
0(t, X) = 90 9 1/2HI'xlu 1bgH o w -

lXI <«c(e/gH)"'

(4.93)

2
a( }~gH)-1 < |x| < H-

where

u = 1 - (a/ac)2,

Po = 1 - , 2

w2 =1-1 2.

Our solution matches that of [24] in the limit a < ac. However, as a gets larger the

coefficient in front of the traveling wave captures the effects of the flat-top solutions. We

will return to the above solution when we discuss the rate of energy loss by oscillons after

considering the effects of expansion in 3 + 1 dimensions.

We end the section by reminding ourselves of the assumptions required for this solution
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to be valid: (i) g > 1, (ii)H < 0[g- 1], and (iii)

xe(a) < a(5H)1 (4.95)

For any H, the solution is not valid when a -+ 0 or ac. Also note that for a given H < 1,

there always exists a g, which violates condition (iii) for all allowed a.

4.5.2 Including expansion in 3 + 1 dimensions

Now, let us include the effects of expansion for the 3 + 1-dimensional cases. The metric in

the static deSitter co-ordinates (assuming spherical symmetry) is given by

ds 2 = -(1 - r 2H 2)dt 2 + (1 - r 2H 2 ) -1dr 2 + r 2dQ2. (4.96)

Following a procedure similar to the one we laid out for the 1 + 1-dimensional case, we get

the profile equation:

{2 _ (pH)2 }4 _ 0 2<--& - - |
a H ~~p P- 4''() 1 (4.97)

where p = r//f. The effect of expansion is included through the (pH) 2 term. For a given

a, let the approximate width of the oscillon be pe(a). In the region pe(a) < p < at-1, the

profile has the form

1
(p) ~ f(a)- exp [-ap]

p
Pe(<bo) < P < a'-1

The lack of an analytic solution, prevents us from specifying f(a). Reverting back to the

original variables, the solution in the spatially oscillatory regime is given by

/212f (a) - -- 2e 49H co - Hr2] a(/F5H)- < r < H-1,

where w2 = I - g-a 2.
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4.5.3 Energy loss due to expansion

In this subsection, we discuss the energy loss suffered by oscillons due to the expanding

background. As before, we start with the 1 + 1-dimensional scenario and then generalize to

3 + 1 dimensions. The energy lost by an oscillon whose width is small compared to H- is

given by
dE"" -TI XX, (4.100)

dt

where TA, is the energy momentum tensor of the scalar field. We have ignored the dependence

of the metric on x. We take X to be in the region sufficiently far away from the center. More

explicitly, we consider X such that

a(V-H)-1 < IXI < H-1. (4.101)

Using Eq. (4.93) in Eq. (4.100), we get (to leading order in HX2 and g-'/ 2 )

dEic 4 3 (1+U)3/2)exp[ a2/2gH] (4.102)
dtI 0 re

In [24], a similar expression was provided in the limit where u -+ 1. Oscillons are known

to lose energy very slowly for a long time and then suddenly disintegrate. Our calculation

cannot capture this disintegration. We therefore take the following as an upper bound on

the lifetime of an oscillon (approximated by the time it take for it to lose most of its energy

due to expansion effects)

dEo-S 8utanh~
T<6 Eoc * - 1 2 exp[ira2/2gH] (4.103)

di Po 3V1 -2(1 + u)

where
u = /1 - (a/ac)2,

gy -(4.104)
0-o- V1 - u,
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Figure 4-6: The above plot shows the time it takes for an oscillon to lose most of its energy
due to the expanding background. The plot assumes an H = 10-3 and g = 10. The lifetime
is sensitive to the combination ~g exp[a2 /(gH)]. Our result is only valid when a is not too
close to 0 or a, = y/27/160, since for these value our assumption re < a( /gH)-1 breaks
down. Note that the lifetime should be interpreted qualitatively, since we are not allowing
for instabilities that lead to the oscillon's abrupt disintegration. Time is measured in units
of m 1 .

The terms in (...) are corrections for the deviation from the sech profile. We plot the

lifetime as a function of the a2 in Fig. 4-6. We should not trust this curve in the limit

a -+ 0, ac, since our assumption of xe(a) < (g/H)- 1 is broken here. Note the scaling with

g: T g exp[a2/(gH)].

A numerical investigation of oscillon lifetimes in a 1 + 1-dimensional expanding back-

ground was carried out in [44]: however, no analytic calculation was provided for the life-

time. Our analytic results seem to be in good qualitative agreement with their paper. Note

that Eosc g - 1/ 2a 2 for small a, which tells us that the lifetime T - exp[Eosc/g 3/ 2 H], is in

agreement with the empirical formula inferred in their paper (also see Fig. 2 in [44]).

A similar calculation can be carried out in 3 + 1 dimensions. The rate of energy loss is

then given by (to leading order in g- 1/2 )

dEoSC 4 _ t2(a)ta et2/(2gH). (4.105)
dt v/g
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Here, we have used Eq. (4.99). The lifetime is then given by

T < N(a) g7r1 2/(2gH)
87rf2(a)a06)

Note that 2E,c(a) - g1/ 2 N(a) up to leading order in powers of g. We plot the approximate

lifetime of an oscillon in a 3+ 1-dimensional scenario in Fig. 4-6. The lifetime is maximized

at a < ac. In plotting the lifetime, the numerically obtained N(a) and f(a) had errors of

about 1 percent. Again, we stress that one should think about the above curve somewhat

qualitatively since higher order instabilities are ignored.

4.6 Summary

In this chapter, we have found that the spatial oscillon profiles can be very different from a

Gaussian, an ansatz often made in the literature. In particular, we derived the nonmonotonic

relationship between the height and the width of the oscillons, and discussed the importance

of this feature for the stability of oscillons. We showed that the flat-topped oscillons are

more stable in three dimensions to long wavelength perturbations as compared to their

usual Gaussian counterparts.

A number of questions related to this chapter require further investigation. Our expres-

sions for lifetime, especially in 3 + 1 dimensions in the flat-top regimes should be checked

with a detailed numerical investigation. The question of the possible small wavelength, nar-

row band instability needs to be resolved rigorously. Recently, [31] discussed oscillons in the

presence of gravity (an oscillaton). It would also be nice to obtain oscillon number density

estimates for a class of physically important potentials that have arisen in the context of

string theory.
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