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Abstract

Airline revenue management entails protecting enough seats for late-booking, high-fare
passengers while still selling seats which would have otherwise gone empty at discounted fares to
earlier-booking customers. In the evolution of revenue management to network origin-
destination control, previous research has shown that revenue gains of some seat optimization
algorithms can be much lower than others. One possible reason is the process by which demand
estimates are generated; namely, forecasting and detruncation. Forecasting is used to estimate
passenger demand based on historical flight data, while detruncation makes projections of what
demand would have been in cases where the historical data has been constrained by a capacity
limitation. This thesis explores the question of the interaction between forecasting methods,
detruncation methods, and seat optimization algorithms on a simulated airline network, using the
Passenger Origin-Destination Simulator (PODS) revenue management simulation tool, which
models a network environment with two competing airlines.

Changes in the forecasting and detruncation methods in combination with the seat
optimization algorithms were tested in order to see what revenue impacts resulted. Additionally,
passenger loads, forecasts, and fare class availability were examined to understand the reasons
behind the observed revenue results. The simulations showed that seat optimizers which had
relatively poor performance using a standard forecasting and detruncation method had substantial
revenue increases when different forecasting and detruncation combinations were implemented.
The results also indicate that the better combination of forecasting and detruncation causes higher
revenues for all seat optimization methods tested, as a better passenger mix is realized due to
higher levels of detruncation and more accurate forecasts. However, the sensitivity of the seat
optimizers to the forecasting and detruncation methods remains mixed. Inferior detruncation (or
forecasting) methods on a network can offset the revenue gains resulting from improvement to
origin-destination control from leg-based control for some seat optimization algorithms.
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Chapter 1

Introduction

1.1 Forecasting and detruncation applied to airline revenue management

Revenue management (more commonly referred to as yield management) has become a subject of

heavy research and has undergone widespread implementation over the past fifteen years by many

of the world's airlines. In an airline context, it symbolizes the desire by an air carrier to obtain the

highest amount of revenue possible from the traveling consumer by enticing them to pay a fare

commensurate with their economic willingness to pay (WTP). In earlier years of government-

regulated air travel in the United States, this was not possible, as ticket prices between origins and

destinations were fixed by the Civil Aeronautics Board. However, with the advent of airline

deregulation in 1978, pioneering firms in the industry have been clever about how they go about

performing such a task--various restrictions are placed on different fare products in order to allow

for price discrimination and better market segmentation. These restrictions usually include (but

are not limited to) provisions such as advance purchase requirements, length of stay requirements,

and refundability restrictions. For example, a leisure passenger flying from Boston to Chicago

may be able to find a non-refundable, 21-day advance purchase round-trip ticket with a Saturday

night minimum stay for as low as $150, while a business passenger purchasing a ticket one day in

advance with no minimum stay restrictions and full refundability may pay as much as $1000 for

travel in the same market.

From the airline's business perspective, they would ideally like to fill the seats on the aircraft with

as many of the high-fare customers as possible (i.e., those with the highest WTPs), and then offer

the remaining empty seats at more discounted fares to attract customers with lower willingness-

to-pay. The primary complication in air travel stems from the fact that the lower one's WTP, the

earlier the reservation tends to be made. So, while airlines will find it less profitable to accept all

low-fare customers initially, turning them all away in hopes of filling the plane with late-booking,



full-fare business customers will also tend to reduce loads and decrease profits (with the exception

of cases with extremely high-demand). The essence of revenue management is therefore twofold.

First, differential pricing, which entails the determination of the set of fare products to be offered

and their associated restrictions; and second, seat inventory control, which entails how many seats

to make available for each of these fare products'. Given that we have a set of fare products and

an established pricing regime, revenue management comes down to the determination of seat

protection limits and capacities to a set of fare classes in order to maximize the potential revenue

of the airline by reserving and selling as many high-fare seats as possible while filling otherwise

empty seats by offering lower-fare tickets with travel restrictions. (As long as the fare or marginal

revenue of a low-fare passenger exceeds the marginal cost of the available empty seat on the

aircraft, then the airline should theoretically be willing to take the passenger). A good and

complete discussion of the principles of revenue management applied to the airline industry can be

found in Belobaba2 , while several other sources also provide detailed discussions; namely, Bodily

and Weatherford3 , Smith4 , Williamson5 , and Wilson.

The goal of any airline practicing some form of revenue management is to attempt to segment the

market demand by economic willingness-to-pay, and then offer a different fare product to each of

these customer segments. To maximize revenue on a single flight leg, an "ideal" combination of

fare class booking limits is determined, based upon projected estimates of the potential demand by

fare class on that flight leg or path and the given pricing structure. Doing this is relatively

straightforward; however, a major obstacle arises when the scope is expanded to consider the

massive hub-and-spoke networks of any large airline where thousands of different O-D market

'Belobaba (1992). The first section of the article gives a brief introduction into how this is done.
2 Belobaba (1987). Chapter 1 analyzes the prices and products offered by airlines in the competitive environment,
Chapter 2 looks at demand from the consumer perspective, and Chapter 3 provides a thorough discussion of the
seat inventory control background and process.
3 Bodily and Weatherford (1992). A general description of perishable-asset revenue management is given along
with a classification of the elements involved in such problems; previous research on some of these elements is also
reviewed.
4 Smith et al. (1992). Component descriptions of yield management and how it was applied at American Airlines
are analyzed.
5 Williamson (1992). Section 2.1 describes the basics of seat inventory control, while Section 2.2 illustrates its
application to an airline network.
6 Wilson (1995). Chapter 1 describes good motivation for practicing revenue management, while Chapter 2 details
different approaches to the problem.



combinations are connected by hundreds of different flight legs and several different fare classes.

In these cases it could be more profitable to carry lower-fare class connecting passengers than

higher-fare class local ones, if the connection passenger's absolute fare value is higher; although if

two local passengers could be accommodated instead of a single connecting passenger, then the

two local passengers will generally contribute more revenue than the single connecting one. This

is the O-D seat inventory control problem, explained in more detail by Belobaba7 . Solutions to

this problem would be evident through network optimization, although there are several obstacles

to achieving this goal, primarily that of the sheer size of the problem, given the large number of

flights and cities served by most major airlines. In fact, Belobaba also gives an example where

more than 2.5 million seat inventory levels can exist for even a medium-sized US airline.

Difficulty therefore arises in trying to efficiently optimize revenues over the entire network, (i.e.,

how many seats should be protected for each fare class on each flight leg or path in the

network?).

As stated earlier, the higher fare-paying customers (primarily business travelers) are usually those

who make reservations much later in the booking process than the lower fare-paying ones

(generally leisure travelers). Therefore, when practicing revenue management, the airline must

make an initial guess as to how many seats to offer to the early-booking, low-fare customers and

how many to reserve for the high-yield latecomers. These booking limits are in fact dynamic, as

they can then be altered as time goes along and bookings come in (i.e., the airline begins to have

actual information about the flight as opposed to just forecasted information), but good initial

estimates are needed to keep from selling out the aircraft early in the process with too many low-

fare passengers and then later turning away high-fare demand. So the revenue management

question ultimately translates to, "How many seats should be made available to each fare class on

each flight at any given point in time prior to departure, in order to maximize expected network

revenues?" It should be noted that such a question is addressed assuming a static schedule, fixed

7 Belobaba (1995). Section 1.2 gives more detailed examples of this problem, illustrating how network revenue
maximization is not necessarily obtained from maximization of each of the flight leg revenues individually.
8 Belobaba (1992). An example illustrating the need for computerized algorithms to solve these problems is given
in the second section of the report.



aircraft capacities, and a given pricing regime, along with an estimate of what the potential

customer demand for travel is in any given O-D market.

In the ideal case, we would like a complete optimization of not only fare class limits, but

simultaneously of schedules, fares, and O-D markets served. However, such a feat, if possible (it

would be extremely difficult to predict competitors' responses to changes by a given airline--so

any such optimization done by an airline would therefore have to make assumptions about

competitive responses), would entail an optimization scheme of billions of equations and decision

variables. So, given that we are constrained to the optimization of fare class booking limits, how

do we determine the market demand upon which our protection limits are based?

This is precisely where methods for forecasting and detruncation play an important role in the

yield management process, as an airline does not have a clear idea on the present day of what the

exact demand for a particular flight will be on some future day. But, to effectively use their

revenue management tools, relatively accurate predictions of demand are necessary. Attempts

must therefore be made to make some conjecture of this future demand, using any information we

already have on similar flights which have already departed and/or demand as of the current day

for similar flights on future days. A forecasting method does just that--it provides us with a

projected demand by fare class for a given flight, based on complete historical observations of

similar flights and incomplete current observations for future flights. Different forecasting

methodologies can be used to obtain such an estimate by transforming this data in different ways,

using some or all of the aforementioned information.

Given that we can use our forecaster to obtain an estimate of demands on different flights, and

given our pricing regime, operating schedules, and aircraft capacities, we should now be able to

obtain a beneficial allocation of seats to the different fare classes for each flight in the system as to

maximize network revenues. However, one other slight complication arises when we consider

these demands for airline flights. Airplane capacities are more or less fixed on a given flight by

aircraft type and schedule rotation constraints. Hence, once a fare class on a future flight

becomes full (i.e., the number of bookings reaches the total number of seats on the aircraft,



assuming no overbooking), the data obtained no longer paints an accurate picture of what the

actual demand would have been for the flight if no capacity restriction had been in place.

Therefore, detruncation of the data adjusts for this by projecting an estimate of what

unconstrained demand would have been based on historical bookings (i.e., what would the

demand have been given no capacity restriction?). Customers making reservations and desiring a

particular ODF (origin, destination, fare class) are only given the best available options; if their

preferences are not met, they are subsequently left to decide if they wish to "sell-up" to a higher

fare class or if they wish to reject all offerings and travel on another carrier. In current airline

practice, this information is not recorded in the airline database, so some projection of it must be

inferred from the data using a statistical detruncation method.

1.2 Motivation

There are two primary reasons for the experiments performed in this thesis. First, prior studies

have shown that the application of different seat optimization algorithms prior to and during the

reservations process can provide revenue gains on the order of 8-10% for an airline in a

competitive market where the competition does not use any form of revenue management, and

even as much as 1-2% in a simulated network situation where both carriers were using some form

of revenue management (see Wilson9 and Leem for a discussion of different yield management

case results on a single leg basis and a network basis, respectively). But most of the prior

simulations have used identical forecasting and detruncation methods for each yield management

algorithm; few, if any, have tested the revenue impacts of changes in forecasting or detruncation

methods in conjunction with different seat optimization cases. Therefore, it is of interest to study

the impacts of changes (by one or both airlines) in these forecasting and detruncation methods in

competitive scenarios under different combinations of yield management methods. This will allow

us to make conclusions about whether the gains from implementation of a better yield

management system can fully be attributed to the seat optimizer itself, or if a forecasting or

detruncation method was possibly hindering or helping the seat optimization algorithm and biasing

the yield management performance results.

9 Wilson (1995). Section 5.1 tests the model of two identical competing carriers (only the seat optimizer can be
changed) serving one isolated O-D market, each with one daily departure.
1 Lee (1998). Section 4.1 provides motivation, setup, and results for network-based O-D control methods.



Second, of previous research which has tested different forecasting and detruncation methods,

little has been applied in combination with seat optimization routines to a large network scenario.

Skwarek" analyzed and examined changes in the forecasting and detruncation methods on a

single flight leg; however, more effort was concentrated on analyzing the relative performance of

the methods themselves in combination with a single seat optimization routine. The simulation

runs performed were for two competing airlines in a single O-D market case, where one airline

had the flexibility of changing the forecasting or detruncation algorithm, but no tests were

performed to analyze the impacts of variation in the seat optimization algorithm. In the domestic

US airline industry; however, a much more complex network structure exists, where several hub-

and-spoke networks are joined by numerous connecting hub airports (each generally operated by

an individual air carrier). This gives passengers the ability to fly from various origins to various

destinations, usually by making a connection through one of these hub cities. And despite the fact

that most major US airlines use some sort of seat optimization routine in their practice of yield

management, the methods are by no means uniform across carriers. Also of interest, therefore, is

a simulation of such network conditions, where a variety of changes are possible for each input

parameter, to better simulate the real-world industry. From this, conclusions can also be made as

to which forecasting/detruncation methods perform best in combination with the different seat

optimization routines tested.

Why study the impacts of different forecasting methods, slight as they may be? There are several

inherent problems with inaccurate demand forecasts, which will inevitably lead to less-than-

optimal seat allocations and network revenues, for two primary reasons. First, an underprediction

of high-yield passengers results in the underprotection of high-fare class seats and therefore

revenues become diluted by excessive numbers of low-fare customers who book reservations

early and end up displacing their higher-fare counterparts. Second, an overprediction of demand

can cause protection of too many seats for high-fare passengers, resulting in low-fare passengers

being turned away early in the booking process, while seats reserved for the late-booking, higher-

fare passengers end up going empty as the expected demand does not materialize. Either way,

" Skwarek (1997).



some portion of potential revenues are not realized, thereby highlighting the need for methods

producing as precise of a forecast as possible.

1.3 Objective of thesis

Based upon the above examples, the primary objective of this thesis is therefore to study the

impacts and revenue effects of different forecasting method choices and different detruncation

algorithms as applied to a simulated airline network in a revenue management context. That is,

the Passenger Origin-Destination Simulator (PODS), developed at Boeing 2 , will be used to

simulate a variety of these different combinations in conjunction with different seat optimization

algorithms. The primary purpose of this thesis is not to explore the details and relative

advantages and disadvantages of a particular forecasting methodology (see Wickham13 and

Skwarek 4 for discussions of forecasting methodology and their applications to a simulated airline

network) nor to compare a particular methodology's predictions with the actual realized demands,

as this is very difficult to measure in the airline world.

The reasoning behind this difficulty stems from the interdependence of fare class demands.

Although an airline will have an exact count at the time of departure of the number of passengers

on a flight leg (and they can even obtain the individual numbers from different flight paths if

desired), the capacity restrictions in place might have caused potential demand to be spilled to

other airlines or resulted in sell-up to a higher fare class by a passenger. Hence, the "feedback"

effect makes measurement of actual demand difficult--the lower our forecasts are for a given

ODF, the fewer seats are allocated, and the more likely passengers are to be spilled; however, if

passengers are likely to be spilled, then the forecast was probably too low. The problem in

obtaining actual demands should be apparent. Therefore, more emphasis will be placed on the

12 Hopperstad (1997). A very brief description of PODS version 6 (primarily the same as version 7, which will be
used in this thesis) is provided; system architecture is described, along with forecasting and seat optimization
combinations.
13 Wickham (1995). The application of different forecasting methods applied to airline bookings was tested;
Chapter 3 details the models tested, Chapter 4 explains the background and procedure, while Chapter 5 presents
and analyzes the results.
14 Skwarek (1997). Section 3.1 provides a review of former approaches to airline forecasting while Section 5.2
details the different methods to be tested and Section 6.1 provides results from those forecasting tests.



analysis of the merits and weaknesses of and interaction between commonly used forecasting,

detruncation, and seat optimization methods available in yield management algorithms.

This thesis basically attempts to expound on previous research involving the PODS simulation;

allowing changes in both forecasting and detruncation methods while testing different seat

optimizers under a more real-world network scenario, with six individual spoke cities, two

connecting airport hubs, and two competing airlines. There are then two ultimate goals. First, a

robust set of simulated airline network results will be generated which endeavor to pinpoint the

reasons why different seat optimization systems perform differently under different forecasting

and/or detruncation methods. Second, "best-case" combinations of algorithms will be obtained to

determine the most advantageous network revenue management practices for the airline under a

given set of circumstances. Both of these will be done based upon analysis of different

performance measures, such as system revenues, passenger loads by path/leg, fare class closure

rates, and forecasted remaining demands by time frame. The first of these provides a good overall

measure of relative performance among the yield management methods, while the other three give

more insight into why the revenue trends are occurring.

1.4 Structure of thesis

The first chapter of the thesis provides a brief introduction to the revenue management problem

for an airline, along with motivation for testing and using different combinations of forecasting

and/or detruncation methods available in the simulation. Small illustrations of how forecasting is

used in airline revenue management and why it is important is also presented, along with the basic

objectives of the thesis. Finally, yield management-related terminology to be used throughout the

thesis is defined.

The second chapter gives insight into the inner workings of the different forecasting and

detruncation methods to be tested, with complete descriptions of the different methods tested in

the PODS simulations and how they are used by PODS. Brief descriptions of the seat

optimization routines are provided, with descriptions of the interaction these methods have with

the different yield management methods presented.



The third chapter then provides a brief description of the PODS simulator and its characteristics,

along with descriptions of the airline network used in the simulation runs and details of what is to

be expected for variations in the PODS input parameters such as demand factor changes and

competitor airline parameter changes. Differences arising from the network case used here and

the single-leg case used in previous research are discussed, and several output performance

metrics are described.

The fourth chapter provides a complete analysis of different combinations of forecaster,

detruncation routine, and seat optimization algorithm. Different base cases are used, and results

subsequently compared in a variety of manners to determine the relative advantages and

disadvantages of each particular method or combination of methods. Section 4.1 analyzes the

resultant impacts for Airline A against base case yield management done by Airline B under

different combinations of forecasting and detruncation methods. Section 4.2 looks at the impacts

of "competitive scenarios," where both airlines either match the seat optimization method or have

full flexibility in changing their forecasting, detruncation, and seat optimization algorithm.

Furthermore, a synopsis of which forecasting/detruncation method perform best with a given seat

optimization algorithm is given. Section 4.3 analyzes the relative revenue results from changes in

one of the parameters in a particular detruncation routine to determine the sensitivity of the

parameter. Finally, Section 4.4 explains the factors contributing to the resultant revenue increases

or decreases, and possible reasons for why various results were obtained will also be analyzed.

Additionally, results will be compared with any previous ones (i.e., from earlier PODS versions),

and reasons behind any similarities or differences will be explained.

The fifth and final chapter provides a brief review of the thesis methodology along with a general

summary of results. Highlights of the thesis objectives are analyzed--that is, whether forecasting

and detruncation act as a catalyst within some of the seat optimizers, and what the best overall

combinations of forecaster, detruncator, and seat optimizer are. Finally, questions still

unanswered by this research are posed, from which possible or interesting directions for new

research are given.



1.5 General nomenclature

Various terminology specific to airlines and yield management will be used throughout this thesis;

provided in Table 1.1 below are definitions of some of the recurring terms and notation which will

be used in subsequent chapters.

Term Definition

PODS Passenger Origin-Destination Simulator, the simulation tool used
in the experiments

Revenue management The allocation of seats on one or more flight paths to passengers
based on fare class limitations, expected demands, etc.

Path Flight or flights which will provide travel from origin to destination
O-D Origin and destination path
Fare class Classification signifying fare category paid by passenger
ODF Designation of origin/destination/fare class

Bookings Reservations accepted by the airline
Time Frame Time period between seat optimizations during which passenger
(Booking Interval) bookings are accepted
Overbooking Permission of bookings in excess of aircraft capacity to help

account for no-shows
Fare class closure Occurrence when the number of bookings in a fare class reaches

its booking limit and no further bookings are accepted

Seat optimizer Algorithm for determining booking limits by fare class
Forecaster Method by which demand projections are made for path/fare

classes which do not yet have complete booking information

Detruncator Method by which flights whose path/fare class bookings reached
capacity are adjusted to gain a prediction of demand had there
been no capacity restriction

Demand factor Ratio of the average realized demand to the aircraft capacity
Booking curve General profile by which passengers of a specific type book their

reservations
System revenue Total revenue for all flight legs flown by the airline
Passenger pickup Number of incremental passenger bookings for a fare class in a

specific time frame

Table 1.1: Revenue management/PODS nomenclature

These will provide a framework for much of the discussion and analysis in the ensuing chapters of

this thesis, as different forecasting and detruncation methods are tested and analyzed in

combination with several seat optimization routines. Chapter 2 provides a background of the

various methods which will be tested.



Chapter 2

Forecasting/Detruncation Methods Explained

Before the results of the simulations carried out using PODS are presented and discussed, it is

helpful to gain a better understanding of how the internal algorithms operate within the PODS

system. This chapter will therefore explain the inner workings of the different forecasting and

detruncation methods which will be tested in the subsequent chapters. First, two different

forecasting methods tested in the PODS simulations are presented--the pickup forecaster and the

regression forecaster. Second, two different detruncation algorithms available in the simulation

are discussed--booking curve detruncation and projection detruncation. Finally, as this thesis is a

study of the passenger effects and revenue impacts of changes in these forecasting/detruncation

approaches under different yield management algorithms, a brief introduction to the different

types of yield management will be given, and attempts will be made at explaining the subsequent

interaction which occurs between the seat optimizer and the forecasting and detruncation routines

it uses.

2.1 Forecasting methods

A forecast can be defined as "a quantitative estimate (or set of estimates) about the likelihood of

future events which is developed on the basis of past and current information"." Forecasting in

the airline industry can be done on a macro-level, for example, the domestic US passenger traffic

on an airline's route network in the upcoming year; the other extreme being that of forecasts

made on a micro-level, for example, the number of Q-class passengers in a given O-D market for

a given particular flight. Forecasting specifically applied to the airline revenue management

problem entails obtaining an accurate estimate of the passenger demand based upon passenger

trends on flights in the past and present. This demand can still be forecast on different levels; for

example on a flight leg level, on a fare class level, or on an ODF level. In this thesis we will

'" Pindyck & Rubenfeld, Chapter 8.



mainly concern ourselves with this third category--that of forecasting the expected number of

passengers by leg or O-D market and fare class. Since there is no single best method for

producing a "correct" forecast, various algorithms have been developed to predict the desired

forecasted values (in our case, passenger demands) with good accuracy.

But one may ask where and why forecasting is necessary in the network airline revenue

management problem. The methods used by the different seat optimization routines discussed

below all require demand forecasts by fare class on future flights, in order to determine how many

seats to protect for each fare class at every iteration of the optimization process (these forecasts

may be on a flight leg basis or a path basis in each fare class, depending on the forecasting

routine)'6 . Such a forecasting process is repeated at regular intervals during the booking process

leading up to the flight' 7 . As information on the current flight is obtained (i.e., actual bookings

for the forecasted flight itself), the demand forecasts are revised to incorporate this new

information. Thus, in order to reduce diversion and subsequent revenue dilution by protecting too

many or too few seats for a given fare class, as accurate of a forecast as possible is desired at each

instance where seat allocations are reoptimized.

Explained below are two of these different forecasting algorithms used in the PODS simulations;

each one using different amounts of available information in various ways to produce passenger

demand forecasts. It should be noted that the relative accuracy of the different forecasting

methods available to us in the simulations is not being tested; instead, the relative merits of each

method as applied to the airline network revenue management problem will be analyzed. Hence,

we are not necessarily concerned with the precision with which our forecasts aim to predict the

demand (although this is, in theory, very important in attempting to achieve the goal of revenue

maximization), but rather with the effects on an airline's system revenue under different

forecasting methods in a variety of different competitive scenarios. Furthermore, the

compatibility of these forecasting methods with each of the different seat optimizers available to

us in the simulation is also of interest.

16 In the ensuing discussion, simply "flight" will be used to refer to a fare class on either a path or a leg; whether it
is a path fare class or a leg fare class depends on the seat optimization routine implemented.
17 In the PODS simulation, there are 16 such intervals, or time frames.



2.1.] Pickup forecasting

Pickup forecasting is one level of detail higher than simple time series forecasting. A time series

forecast in airline demand forecasting would simply be a weighted or unweighted mean of final

departure bookings on a set of similar flights. The pickup forecaster goes one step further by

including more information and averaging not just the final bookings for a flight, but actually the

number of passengers picked up in the intervals preceding departure (i.e., the average incremental

bookings received in each time interval before departure). The passenger demand forecast is

made based upon complete booking information for previous flights, available in the historical

database. This forecast could be made on a macro-level flight basis, but in our simulation it will

be done on a more micro-level fare class basis, in which passenger demands are being

disaggregated and forecasted by individual fare class (or virtual fare class, depending on which

seat optimizer is being used--see Section 2.3 for discussions in this regard) and path or flight leg

(depending on the seat optimization routine chosen). The reader should refer to Wickham18 or

Skwarek'9 for additional explanations describing the classical pickup forecaster.

To best illustrate the method of pickup forecasting, a small example is helpful. Let us examine the

case that we are currently at some point in the booking process (here, at the beginning of Day 8,

indicated by the dark line), for which we desire a forecast of demand for a particular fare class on

a given flight on Day 9 (see Figure 2.1). Available to us from the airline database are the

passenger bookings by booking interval for all flights which have already departed in addition to

flights with incomplete booking profiles (these values are represented as the area to the left of the

vertical line in Figure 2.1), although the pickup forecaster disregards the incomplete booking data

from yet-to-depart flights20. For simplicity in explanation of this example, we will only consider

the pickup in the last two booking intervals for each flight and the demand for only a single fare

class, although these numbers can easily be extended to as many booking intervals and fare classes

as desired in practical applications.

18 Wickham (1995). Section 3.2 describes the different forecasting models tested, with Section 3.2.3 explicitly
explaining the classical pickup forecaster.
19 Skwarek (1996), Section 5.2.2.
2( Other forecasting routines have been developed to take into account this information--see L'Heureux (1986).



The pickup model proceeds by taking simple numerical averages (which can be weighted if

desired) of the incremental demands in the nth booking interval before the flight departure for a

certain number t of previous flights.

Time
Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7 Day 8 Day 9 Day 10 Day 11 Pickup i-2--i

Flight

2 low%> B X2 A- X22

4 Xr &t o X y

5 .6~ sa u a

6 .Average(A,B,C,D)

Known data Forecasted data
Present day

Xs= Xe,2 + average(A,B,C,D)

Figure 2.1: Pickup forecasting illustrated

Now, let us take the case where a forecast of demand at the end of the booking process is desired

for Flight 6 (departing on Day 9). To determine this, the value for average pickup from time

frame i-2 to time frame i is needed; it is obtained by averaging the pickup values corresponding to

these time frames (i.e., the difference between the number of bookings in the medium-shaded

blocks and the lightly-shaded blocks in Figure 2.1) for the t previous flights (four, in our

example). Therefore, the values given in the blocks labeled A, B, C, and D are the pickup values

for each flight, while the average is indicated in the same block for Flight 6. Now a final time

frame forecast can be made for Flight 6 simply by adding this expected pickup average to the data

value we already have for bookings already accrued as of time frame i-2 for Flight 6; thereby

forecasting a demand of X6,i which is equal to X6,-2 plus the average pickup, as shown in the

bottom of Figure 2.1.

In essence, the pickup model can be generalized and represented by Equation 2.1 (the notation

corresponds to that used in Figure 2.1). Equation 2.1 is a generalized formula which can be used



even if time-weighted averages are desired (e.g., more weight given to more recent flights); if all

observations are to be weighted equally, then all values of Wj can be set to Wj = 1.

XM I W= * (X, - X,,1 _ + XMI,_, (2.1)

where XM,i = total bookings after interval i for flight M

M = flight on which forecast is desired

n = number of time frames over which pickup is calculated

t = number of flights upon which forecast is based

j = flight index of flights upon which forecast is based

W,= weighting value applied to individual flights (if desired)

The value of Xm,i, is just the number of forecasted bookings accumulated between the desired

time frames i-n and i; it should not be confused with the number of cumulative bookings Xm,i on

the flight of interest (cumulative bookings can be found by adding XM,i.n to the actual bookings in

the preceding interval). Usually, data storage by the airline will be of the cumulative bookings on

a given flight, but pickup can easily be deduced from this information by simple subtraction.

Therefore, once the forecasted values of XM,i are obtained by computing the pickup between the

last time frame for which we have actual data and the desired departure day for each flight in

which a forecast is needed, mean departure day demands are then available for each flight. These

values can then be used by the seat optimization routine to make seat allocation decisions or bid

price calculations.

It should be noted that several simplifications and assumptions have been made in the process of

obtaining the forecast, most of which could be corrected for if the assumptions were relaxed.

First, we are assuming that all flights with complete booking information (i.e., those flights which

have already departed) behaved in the same manner and can be considered as "similar" to the

flight of interest. In the airline world, this usually entails comparisons of flights occurring on the

same day of the week, as demand by day tends to follow a pattern of non-uniformity (e.g.,



Mondays and Fridays generally experience higher demand than Wednesdays or Saturdays).

Second, demand for air travel is highly subject to seasonal fluctuations, especially when this

demand is disaggregated by fare class. Although an argument can be made for the fact that

business travel has lower variance throughout the course of a year, empirical evidence for leisure

travel definitely points to travel peaks and troughs (the peaks typically occurring during the

summer months and the holiday season with the troughs occurring during the late fall and early

spring). Therefore we must be selective in which historical information is to be used; taking into

account too many prior flights may cross such seasonal boundaries, but the fewer data points

upon which the forecast is based, the less reliable it will be.

To account for these factors, the PODS simulation was designed as a stationary process, with no

flight trends by day of week or seasonality issues. Therefore, all flights can be considered to

follow similar trends with respect to the assumptions outlined above. More specifically, the

forecasting routine in the PODS simulation uses data from 26 previous flights in making

forecasting calculations, judgmentally chosen to strike a good balance between the number of

flights used for information (i.e., the larger the sample, the better the predictions) and how

reflective they are of the current trends (i.e., too many flights in the real world would result in a

forecast based on data that is not up-to-date with demand for the flight of interest).

Another forecasting method similar to the classical pickup model could alternatively be used;

namely the advanced pickup model. This model combines not only information we have about

flights which have departed (the medium-shaded blocks in Figure 2.1), but also about flights yet

to depart which have some booking information available (i.e., any information available to the

left of the line representing the present day in Figure 2.1. The origin of this advanced pickup

model in terms of application to the airline revenue management problem can be traced back to

L'Heureux at Canadian Pacific; the method is also described by Skwarek.

2 L'Heureux (1986) describes the theory behind both the classical pickup forecasting method and the advanced
pickup forecaster, which builds upon the classical one by incorporating data from flights which have not yet
departed.
22 Skwarek (1995), Section 3.1.2.1 also describes and illustrates the data used by the advanced pickup model.



According to L'Heureux, there are both advantages and disadvantages of using such an advanced

pickup forecaster over the classical pickup routine (where only flights with complete booking

information are used as presented above). The classical forecaster as presented above has relative

weaknesses in that it is influenced more by a single high-demand (or low-demand) flight during

the booking period and it does not reflect seasonality trends well as data from more recent flights

(the ones with incomplete booking profiles) is disregarded, whereas the advanced forecaster does

a better job of accounting for this. On the other hand, it is less susceptible to periods of high or

low booking activity. However, given that the trials in PODS are stationary processes, the

classical pickup forecaster performs adequately, and was therefore used as the "base case"

forecasting method choice.

2.1.2 Regression forecasting

In the previous section, a methodology for analyzing the expected demand by using historical

information of flights which have already departed was presented. In this section, a different

approach is taken in determining a forecast of the demand in a particular fare class; namely,

regression forecasting. This forecasting approach is simply what its name indicates--a least-

squares regression of demand by fare class for the flight of interest based on bookings received in

that fare class as of some previous time frame. Further description of the regression forecaster is

also given by Wickham 23.

Again, to illustrate the method, the same example case from Section 2.1.1 will be used. Let us

assume we are still trying to obtain a demand forecast for the same flight (Flight 6) on Day 9.

Again, only one fare class will be used along with only the two booking intervals prior to the

flight for simplicity; both of these limitations could again be extended as needed. All of the same

historical information available to us previously remains identical, and in fact, the same historical

information will be used in this method as in the previous one. However, we are now interested

in a simple linear regression model relating the final bookings with which a flight departed to the

total accumulated bookings at some point in time prior to the day of departure. Figure 2.2

graphically illustrates this information.

23 Wickham (1995), Section 3.2.2.
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Figure 2.2: Regression forecasting illustrated

Here, a simple ordinary least-squares regression is performed using data from completed flights

only, in order to obtain coefficients for the independent variables representing accumulated

bookings at some specific time frame during the booking process. Therefore, in our example the

medium-shaded blocks are the dependent variables (final time frame bookings for the flight), while

the lightly-shaded blocks are the independent variables (bookings for the flight in some

intermediate time frame). Once a linear regression is performed, coefficients relating these two

variables are obtained; namely, a and p, which are just the slope and intercept. Once this

equation is obtained, forecasts can be made for any flight on which we have completed booking

information two intervals before departure. The regression method of forecasting can also be

represented in mathematical form by either Equation 2.2 or Equation 2.3.

XM, = Xn + p, - XMi_ + E.

XM, -XM,_, =Y, + 68n * XMI,_ + Vf

(2.2)

(2.3)

Know data



where Xm,i = total bookings after interval i for flight M

M = flight on which forecast is desired

n = number of time frames over which pickup is calculated

ayT = coefficient on pickup variable for interval i

PnSb = intercept terms

En,Vn = error terms

Equation 2.2 states that total bookings on the day of departure for a fare class is just a function of

the bookings received a particular time frame prior to departure. (Note that this can also be

expressed as Equation 2.3, where the pickup value between these intervals, Xm,i - XM,i-n, is

represented as a function of the bookings received a particular time frame prior to departure).

Hence, ordinary least squares regression produces coefficients a, and Pn; then substituting the

known bookings in the previous time frame into the above equation produces a forecast of Xm,i.

This differs somewhat from the pickup method in Section 2.1.1, but tends to be slightly more

accurate because total bookings on day of departure is highly correlated with the bookings for

that flight on some day before departure. In fact, it can be observed that pickup forecasting as

illustrated in Section 2.1.1 is just a simplified form of regression forecasting with one less degree

of freedom, in that the coefficient P is set equal to 1 and the coefficient a is equal to the average

pickup for the prior flights being examined. However, despite the slight forecasting improvement

in many instances, regression forecasting will be more suspect to error in flights with very high or

very low demand.

2.2 Detruncation methods

Detruncation is a necessary procedure when we are trying to project demand estimates or demand

distributions from historical data which has been restricted by some capacity constraint. Basically,

in order for our seat optimization algorithms to operate correctly, we need to know the mean

demand (and its variance) for a given fare class on a given path or flight leg (this again depends on

which seat optimizer is used). However, the implementation of a capacity restriction on any given

path or leg fare class does not allow us to directly infer passenger demand in cases where this

capacity constraint is reached. That is, further passenger requests are being turned away--



passenger requests which should theoretically be considered in the demand estimate. Therefore,

detruncation is a method by which an adjusted estimate is obtained by modifying the capacity-

constrained data upon which the projection is based. In the airline revenue management case,

detruncation lends itself to use on flights where the aircraft capacity becomes a constraining factor

and thereby limits the demand accommodated by the flight or fare class.

As an example, let us assume we have an aircraft of capacity C; for which we know historically

that some of the time the achieved demand is less than the aircraft capacity (bookings < C), while

the rest of the time the demand for the flight exceeds this capacity (bookings = C, # refused

requests > 0). The former case poses no need for detruncation, as all potential demand is

accommodated; as will be seen later, such observations form the basis for adjusting the capacity-

constrained data. If the latter case is encountered, however, and the flight sells out because

business travel demand was higher than expected and we did not protect enough seats for the

high-fare passengers (i.e., there were leisure passengers who were taking some of these seats

away), we have erred in our seat optimization and missed out on potential revenue by allowing

low-fare passengers to take seats which could have been filled by higher-fare ones. (Note that if

the capacity constraint was reached because leisure demand was too high, the results should not

be dramatically affected, as we should still see the optimal number of seats protected for higher

fare classes--there will just be a shortage of seats offered at the lowest fare class).

As can be seen, some method of adjusting our demand predictions to account for the capacity

restriction is necessary. But upon what do we base the estimate of potential market demand? If it

is based completely on all prior flights without somehow accounting for those in which the fare

class of interest sold out, the predicted total market demand will always be underestimated to

some degree, since we are neglecting to account for the refused requests in the demand

projection. On the other hand, if we simply do not count those flights in which the fare class of

interest sold out and use only flights with demand less than capacity to make our estimate, we will

again underestimate the demand, as none of the high-demand observations will be used, and our

estimates will only be based on the low-demand instances (additionally, the sample size from

which we are drawing our data may become very small if the demand is generally high and closed



fare classes are a common occurrence). Therefore, to avoid these pitfalls which are detrimental to

the goal of revenue maximization, a detruncation method is used to adjust the demand estimate

for the capacity constraint. All historical observances can then be used, provided that we correct

for those observances (i.e., fare classes on flight legs or paths) constrained by capacity by

detruncating (unconstraining) them to gain estimates of what the unconstrained demand would

have been (i.e., demand with no capacity restriction). As in forecasting, there are numerous ways

to go about this task. Discussed next are two of these algorithms used in the PODS simulation,

both of which will be tested in Chapter 4.

Figure 2.3 below provides a good illustration of the need for detruncation in a case with capacity

restriction. The distribution shown is of the number of passengers desiring a particular fare class

on a given flight leg or path--this is assumed to be normally distributed. Given that we have no

capacity restriction, the mean demand and its variance can be easily inferred from the graph--they

are labeled as gu and Y.
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Figure 2.3: Demand distribution for all demand

However, a slight complication arises when a capacity restriction is placed on a fare class, as our

seat optimization routines do with the fare classes they are optimizing. Also shown in Figure 2.3

is a capacity restriction C, represented by the solid vertical line. Observations to the right of this

line are only recorded as values of C in the airline's historical database, although the true demand



is somewhat higher. Therefore, the estimated average of our observations will come out lower, at

g1, if we do not somehow account for this restriction. It should be noted that this fare class

capacity restriction C is dynamically determined and can be adjusted in each booking interval,

(i.e., each time the seat optimization routine is run), but regardless, some restriction is always

chosen as a capacity limit.

As mentioned before, two cases can occur for a fare class on any given flight: (1) the realized

demand does not reach the capacity constraint; and (2) the realized demand is equal to the

capacity constraint. In the former case, we can directly infer the mean demand and its variance

from the distribution as described earlier, after which the forecasting routine can then be

implemented. It is in the latter case that direct inference of R and a cannot be done and

detruncation must therefore be used. The reader is referred to Skwarek , in which he tested

scenarios of an airline using no detruncation algorithm while one was used by the competitor;

even at a demand factor of 0.9, the revenue impacts of the absence of such a system were greater

than 3.5%. And when the demand factor was increased to 1.2, the impacts were altogether

obvious, as more than a 50% revenue difference between the competitors was present. As stated,

not detruncating the historical observations will cause low estimates of demand, and therefore not

enough high fare class seats will be protected. To compound the effect, the competing airline

who performs some sort of detruncation will protect more seats for the high-fare class passengers,

thereby diverting the excess low-fare class demand to the competitor without the strict capacity

limits on the lowest fare classes. Such results indicate the importance to the yield management

system of the ability to adjust the demand predictions by unconstraining them for good revenue

performance; Sections 2.2.1 and 2.2.2 discuss two of the different ways in which this is accounted

for by the PODS system.

24 Skwarek (1995), Sections 5.3.1 and 6.2.1. These simulations were done for the single-leg, two-competitor case;
we would expect these effects to be even more pronounced for the network case of PODS 7b.



2.2.1 Booking curve detruncation

The first method to be discussed for detruncating the demand data and producing an adjusted

forecast is booking curve detruncation (see Wickham5 for detailed development of the method).

Booking curve detruncation is a relatively straightforward process by which theoretical passenger

booking curves are used to project demands of what the demand forecast would be if the

observed data were not limited by the capacity constraint. Since the airline database contains

booking information by fare class and time frame (as was the case in the forecasting discussions of

Sections 2.1.1 and 2.1.2), a representative booking curve can be generated for each fare class and

flight of interest by analyzing the passenger pickup in each interval.

The detruncation algorithm then proceeds by first estimating the booking curve for all

unconstrained observations of fare classes on flights (i.e., all instances where the fare class did not

close). The next step is then to calculate the ratio of bookings in each given booking interval i to

the number of bookings in the preceding interval i-I for a given fare class on a flight. This is done

by averaging the total bookings in period i for all flights which did not close and dividing by the

average of total bookings in period i-I on the same flight, for all combinations of periods i and i-I

(see Equation 2.4 below). Doing this on a fare class and flight-specific basis for each unclosed

flight will yield the average pickup ratios from interval i-I to interval i (see Figure 2.4 for a

graphic representation of these calculations). Equation 2.4 represents this pickup ratio for a

particular fare class from booking interval i-1 to i.

Mu
I Xji

R (2.4)

j=1

25 Wickham (1995), Section 4.2.3. The process of booking curve detruncation is described as a tool for
unconstraining data on closed flights (note that the multiplier values used are the inverses of those presented here).



where Rij-;

Mi

= average booking curve multiplier from interval i-1 to i

= total bookings in interval i for flight j
= flight index of unclosed flights
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Figure 2.4: Booking curve multipliers

Once this series of ratios Rij-. is known for each successive pair of booking intervals i and i-1,

these values just need to be applied to the flight observations containing fare classes which closed

at some point prior to departure. We know in which booking interval closure occurs for each of

these flights, so the number of bookings in this interval (which is equal to the fare class capacity)

just needs to be transformed by multiplying by the product of multipliers for all future intervals,

obtained as values Riji1 for each flight j from Equation 2.4. This transformation then yields the

theoretical demand which would have occurred had no capacity restriction been in place on the

fare class. So assume that for the flight of interest j, the fare class demand reached capacity in

interval k. To obtain the unconstrained fare class demand for the departure, the transformation

performed is represented by Equation 2.5 below.

D

XMcD = (XMCk) - I R i'i_,
i=k+1

(2.5)



where Ri,iI = booking curve multiplier from interval i-1 to i (calculated in Equation 2.4)

XMC,K= bookings on closed flight Me at booking interval k (interval where closure

occurred)

XMc,D= unconstrained departure day demand on closed flight Me (had no closure occurred)

It should be noted that the product of the booking curve multipliers in Equation 2.5 is just the

expected pickup ratio from the closure interval to departure. The above procedure can also be

shown graphically, using the information from Equations 2.4 and 2.5 (see Figure 2.5 below). The

average multipliers obtained from Equation 2.4 are shown in the first row; in the second row are

the projected values by time frame for a flight j which closed in interval k; and in the third row are

just the corresponding references to these values (i.e., their nomenclature from Figure 2.4).

Average multipliers a = RA,-2 b = RL-2 c =Ri,i d = Ri.D
Closed flight j aXa-bc a- b c-d

Detruncated valuesXX.X
Know data Calculated data

Figure 2.5: Booking curve multiplier transformations

Given this demand unconstraining procedure, we now have the mean demand values by fare class

for flights on which the fare class capacity limitation was reached, as well as for those on which

the fare class remained open. Based upon this information, better demand predictions can then be

made by the forecasting algorithms in order to help the seat optimizer come up with more optimal

seat allocations and capacity limits by fare class, thereby enhancing the revenue performance of

the overall yield management system.

2.2.2 Projection detruncation

Booking curve detruncation does an adequate job of adjusting the desired data, but it relies on the

need for tedious calculation of the ratio of pickup between every adjacent pair of booking

intervals in order to compute the correct multipliers for the closed observations. Projection



detruncation, developed by Hopperstad', is an alternative method which uses a more

straightforward probabilistic approach to unconstraining the fare class demand. To begin with,

assume we are at some point t in the booking process, and let us separate our historical flight and

fare class observations as before into two groups--those which reached the capacity limit and

those which did not. The mean g and variance a of the pickup from time t until departure are

again simply calculated using the unclosed observations only. Again, we will assume a normal

distribution for the booking requests on these flights, so with the calculated values of g and a, the

distribution of the curve can be drawn. Given this distribution (which is assumed to be normal),

we next draw a line corresponding to the capacity restriction; illustrated in Figure 2.6.
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Figure 2.6: Constrained demand distribution for projection detruncation

The basis of projection detruncation relies on the fact that we are assuming that the conditional

probability that we underestimate the unconstrained demand for a flight and fare class is a

constant value (conditional on the fact that closure did occur for that particular flight and fare

class). Simply put, this means that for the subset of observations in which fare class closure

occurred (i.e., demand was larger than the capacity), there is a fixed percentage of those

observations where the actual realized demand was, in fact, even higher than what we had been

projecting. Fare class closure occurring puts us to the right of the capacity line in Figure 2.6, in

shaded area A or B. Underestimating the demand for these observances corresponds to area B,

26 Hopperstad (1997).



hence, the ratio t is just the ratio of area B to the shaded areas A and B. Using probability theory,

the value of T can also be illustrated with Equation 2.6.

B (2.6)
A+B

where t = conditional probability that unconstrained demand was underestimated

given that closure did occur

A+B = probability that demand > capacity (from Figure 2.6)

B = probability of underestimating unconstrained demand (from Figure 2.6)

Once this value of r is determined and substituted into Equation 2.6, a unique solution of the

quantity B can be found, since the area A+B becomes a known quantity when the capacity

restriction of C is implemented. Finally, given that we now have a value for the area B (i.e., the

probability of underestimating the unconstrained demand), our projected detruncation value of

demand (i.e., g and Y) can then be determined (also labeled in Figure 2.6). These newly obtained

values for g and a are then used as input and the process is repeated until convergence of the g

and a values below some specified tolerance occurs. Therefore, the projection scheme determines

a probabilistic distribution of the demand, and then infers the unconstrained demand given the

constrained demand and the conditional probability explained above. Similar to the case of

booking curve detruncation, better demand predictions can then be made by the forecasting

algorithms, as better estimates of the actual demand are available. Based on initial empirical

evidence, a value of r = 0.15 was used, which provides a rather high adjustment to the projected

values (i.e., 15% of the time the actual demand was higher than what was predicted). Several

simulations were run to test the sensitivity of projection forecasting to the r parameter, but it was

found that under a wide variety of demand factors and yield management systems, changes in the

value of r had little effect on overall revenue performance (see Section 4.3 for more discussion).



2.3 Interaction with yield management methods

When attempting to optimize network revenues, a yield management system will first use a

detruncation method to unconstrain (if necessary) any previously observed data as described

above, from which the forecasting algorithm then uses these demand values as inputs to determine

what the projected demand actually is in a given fare class on a given flight leg or flight path.

From this, we have a good demand estimate for each fare class on a flight leg/path in a given O-D

market, for which the seat optimizer can then be used to allocate the optimal number of seats by

flight leg/path and fare class. This iterative process takes place at the beginning of each time

frame during the booking process; it is therefore appropriate to consider the interaction of these

forecasting and detruncation methods with the yield management systems. That is, how do the

combinations of methods presented above interact with the seat optimizers themselves within each

of the yield management methods? This is primarily the scope of Chapter 4. However, presented

here is a brief discussion of the third integral part of the yield management system--the seat

optimization; that is, how do we determine how many seats should be assigned to each of the

different fare classes in the reservation system?

2.3.1 Brief descriptions of seat optimizers used

Five different seat optimizers will be tested in the PODS simulation, for which a brief description

of each is provided here. The goal of this section is simply to give insight into the different

methodologies by which these seat optimizers operate for an airline network, with Sections 2.3.2

and 2.3.3 discussing the interaction between them and the forecasting/detruncation methods

described above. Detailed functionality descriptions of each seat optimization routine will not be

provided; the reader is directed to Wei's thesis27 in which a brief analysis of each of these various

methods was performed.

Basically, the airline revenue management problem comes down to a simple linear program;

maximize revenues (i.e., the product of passengers and fare for all O-D markets) subject to

aircraft capacity and market demand constraints. This can be expressed in the form of Equations

2.7-2.9).

27 Wei (1997). Chapter 2 gives detailed examples of each of the seat optimizers presented here.



max Pj -X (2.7)

s.t. Xij demandij (for all O-D markets i-j) (2.8)

Xk capacityk (for all flight legs k) (2.9)

where Pij = fare offered in market i-j

Xij = passengers carried in market i-j

Xk = passengers carried on leg k

Initial examination of this problem would tend to point to a network optimization scheme, where

network revenues can be maximized (Equation 2.7) given the demand and capacity constraints

from Equations 2.8 and 2.9. While theoretically correct, this proves to be very difficult to

implement in real-world airline situations, for two primary reasons. First, the size of the problem

becomes a constraining factor--for the network structure of a typical major US airline the solution

time could be on the order of hours or even days. This does not lend itself to frequent

reoptimization, something that would be necessary to continue to ensure revenue maximization

during the booking process as actual demand is received. Second, data storage by the airlines has

traditionally not been done on an ODF basis, but rather on a leg basis. Therefore, major

implementation costs are required to change the system, or large-scale data transformation needs

to be done to rectify the data; both of which require major investment. Therefore, the seat

optimization schemes described in the following subsections have been developed to maximize the

potential revenue while keeping implementation cost to a minimum (which does not necessarily

correspond to full revenue maximization).

For a simple network example, let us examine the (oversimplified) situation in Figure 2.7, where

there are three cities (A, B, and H), with one of them (city H) serving as a connecting hub.



YAB,BAB,MAB,QAB

YAH,BAH,MAH,QAH YHB,BHB,MHB,QHB

A * 0H B

Figure 2.7: Graphical depiction of simplified network

The airline will operate service as one flight over each of the two legs (A-H and H-B), while there

are three distinct O-D markets for passenger travel (A-H, H-B, A-B), along with four separate

fare classes offered (Y,B,M,Q) in each of the three O-D markets. The highest (i.e., most

expensive) fare class is Y, while Q is the deep discount coach fare. In essence, the optimization of

the linear program above comes down to determining how many seats should be reserved for each

fare class on each leg or path based upon our projections of ODF demand, with nested protection

limits (i.e., seats reserved for a fare class available to that fare class as well as any classes above it)

thereby determined for each fare class.

Seat Optimizer Estimation Control

EMSRb
VEMSRb

HBP
DAVN
Netbid

leg leg
leg leg
leg leg/path

path leg

Table 2.1: Demand estimation/control28

Demand estimation and control can either be performed on a leg basis or a path basis depending

on the choice of seat optimization routine; Table 2.1 above shows how each seat optimization

routine discussed below estimates demand and controls seat allocation (on either a leg or path

basis). The methodologies for doing so are numerous; several of them will be explained in the

subsections below.

28 Hopperstad (1997).



2.3.1.1 Expected marginal seat revenue (EMSRb)

The EMSRb (expected marginal seat revenue) yield management system is the first seat optimizer

presented here; it is based upon the original EMSR model developed by Belobaba29 ; this original

EMSR model was later modified into the EMSRb model by Belobaba30 . As with all seat

optimizers outlined in this thesis, the basic goal is to determine the optimal fare class protection

limits (i.e., how many seats to reserve for each higher fare class) or the optimal bid prices (i.e., the

cutoff price for which passengers are accepted if their fares exceed it) in order to maximize system

revenues. Using EMSRb, the first step is to determine the probability that the next passenger

booking on a leg (e.g., A-H or H-B in Figure 2.7) will occur in a given fare class. This is done

using probability theory and the known quantities of mean demand and its variance by fare class,

based on historical observations and our generated forecasts. Once we know this probability for

all fare classes, a corresponding expected revenue value of filling the seat with this passenger

(given our pricing structure) can be determined. We then protect a seat in the highest fare class

for which this expected marginal seat revenue is greater than the fare level in the next lowest fare

class; the top-down aggregation of this process will thereby produce nested protection limits for

each fare class.

Y $700 $800 $1,200
B $550 $600 $1,000
M $400 $400 $800

Q $200 $250 $400

Table 2.2: Hypothetical fare class table

The EMSRb yield management algorithm operates on a flight leg basis; that is, each leg is

optimized individually, based on demand distributions for the flight leg itself (irrespective of

passenger O-D markets). In the simple network case for only a single connecting O-D market

29 Belobaba (1987), Chapter 5 describes the mathematical foundations of the EMSR model, while Chapter 7
analyzes the testing and simulation of the model.
N Belobaba (1992). A new EMSR heuristic was added to compute the joint protection levels for the higher fare
classes in the EMSRb optimizer, as the simple EMSR optimizer's nested booking limits could be sub-optimal for
lower fare classes as only one demand density at a time was being considered.



(i.e., which contains two distinct local O-D markets in addition to a connecting one as in Figure

2.7), this is done by considering each leg fare class individually in the calculations, with demand-

weighted averages of the local and connecting traffic used to compute the adjusted fares in each

fare class. Following this, the optimal booking limits by fare class for each leg are then computed.

Hence, for travel in a connecting market, seats must be available in the given fare class on both

legs of the flight. What this method fails to account for is the fare differences which can occur in

different O-D markets when a network is being optimized. Looking at the hypothetical fare table

in Table 2.2, a local market whose Y-class fare is $700 but whose Y-class is closed is turning

away potential Y-class customers on the long-haul connecting flight whose Y-class fare may be

$1200. Additionally, a local market Q-class customer may pay $200 and thereby cause a $400 Q-
fare connecting customer to be spilled. In essence, more seats may possibly be protected for the

lower-fare local market demand which does not end up materializing if demand is low on some

legs, while long-haul connection passengers are simultaneously turned away. One attempt to

correct this problem is addressed by the next seat optimization routine presented below.

2.3.1.2 "Greedy" virtual nesting (VEMSRb)

The VEMSRb (virtual class expected marginal seat revenue) yield management system uses the

same basis as the EMSRb system for calculating the booking class seat protection values;

however, it uses "virtual" fare classes for the seat assignment process as a way of adding a degree

of freedom to try to correct the problem presented at the end of Section 2.3.1.1. Originally

developed at American Airlines", the optimization is carried out in identical fashion as for

EMSRb; only here a set of virtual fare class "buckets" is judgmentally chosen and used, based on

the magnitude of the fare in a given class. A possible example of virtual fare class divisions from

the hypothetical example in Section 2.3.1.1 is given in Table 2.3.

31 Smith et al. (1992). Virtual nesting, or the process of clustering ODFs into groups of virtual buckets, is
described with a small example of how it was implemented at American Airlines.



Y1 $1,000+ YAB, BAB
Y2 $800+ YHB, MAB
Y3 $600+ YAH, BHB
Y4 $400+ BAH, MAH, MHB, QAB

Y5 $200+ QAH, QHB

Table 2.3: Fare class table

Therefore, individual leg optimizations are not done strictly by existing fare class as in EMSRb,

but rather by each leg's fare class "mapping" to some virtual fare class based on the relative

magnitude of its fare level (there may be up to as many virtual buckets as ODFs on all flight legs).

The advantage of using virtual bucketing is that hundreds of ODFs can be aggregated into a more

manageable number of buckets. Also, doing this thereby favors the more expensive, long-haul

flights, since a decidedly lower fare class on a connecting flight may be equivalent to the top fare

class of one of the local O-D markets (e.g., the $800 M-class fare in the connecting market A-B is

mapped to the same virtual bucket as the $800 Y-class fare in local market H-B). Similar to

before, for travel in a connecting market, seats must be available in the given virtual bucket on

both legs of the flight. One problem with such an algorithm (that favors the longer-haul flights) is

that if demand is high on various legs, it could be more profitable to carry two local passengers
32rather than a single connecting passenger . In essence, no passenger displacement costs are

calculated; a modification for this is attempted in the following three seat optimization routines.

2.3.1.3 Heuristic bid price (HBP)

The heuristic bid price (HBP) yield management system, like the EMSRb and VEMSRb ones,

also operates on a leg basis; in fact, the theoretical protection limit calculations are still performed

identically as before. However, instead of calculating seat protection limits by leg/path and fare

class (as done in EMSRb, VEMSRb, and DAVN), this approach operates on the principle of

calculating bid prices and comparing the passenger fares in the decision as to whether to accept or

32 Belobaba and Hopperstad (1997). VEMSRb methodology was shown to perform inadequately (revenues
decreased by more than 0.8%) at a high demand factor (DF 1.2), even when the competition was using a simple
fare class (i.e., EMSRb) approach. This stems from the fact that VEMSRb favors connecting passengers at high
demand factors, thereby spilling high yield local passengers to the competition.



reject their request. This method was developed by Belobaba"3 ; in it a bid price is calculated for

each leg in order to determine the network contribution of the passenger's origin-destination

combination by accounting for their downline displacement cost. The bid price is equal to the

expected marginal seat revenue (EMSR)34 of the last seat in inventory on that leg for the local

passenger, while the bid price for the connecting passenger is this value plus the product of the

percentages of local passengers on both connecting legs multiplied by the EMSR of the other leg

(for the two-leg case, these values are given by Equations 2.10 and 2.11).

Leg 1: BPI = EMSRI + d-EMSR 2  (2.10)

Leg 2: BP 2 = EMSR 2 + d-EMSRi (2.11)

where BPi = calculated connecting passenger bid price for leg i

EMSRi= expected marginal seat revenue on leg i

d = product of percentages of local passengers on both legs35

To determine whether or not to accept passenger requests, a simple comparison is performed and

passengers are accepted if the fare they desire is greater than the bid price on their leg (for local

passengers), or if the desired fare is greater than each individual leg's calculated bid price for all

traversed legs (for connecting passengers). This method is advantageous in that it does not

require network optimization but does account for downline displacement impact of connecting

passengers; so incremental revenue can be gained with minimal implementation cost 3 6.

Additionally, fewer local passengers tend to be rejected than in the "greedy" case of VEMSRb, as

the bid prices account for passenger displacement costs. However, one main disadvantage to this

and any bid price control scheme is that of the lack of seat protection control. Because passenger

3 Belobaba (1998). Instead of simply comparing the EMSRs on a leg or combination of legs to determine seat
protection, the leg-based heuristic approach compares the EMSR from a passenger less the cost of the possible
displacement of other passengers by that passenger.
34 See Belobaba (1987), Belobaba (1992), or Wei (1997) for calculation of EMSR.
35 The value d can also be thought of in another way; namely, as the probability of displacing a local passenger on
each of the two flight legs. If we are assuming a 50-50 split between local and connection passengers on each
flight, the value of d is simply 0.50 x 0.50 = 0.25.
36 Belobaba (1994). Dynamic virtual bucketing, static virtual nesting, and stratified buckets can all be applied to
the EMSR heuristic, although in PODS only static virtual nesting is tested, as the implementation cost of the other
methods is substantially higher.



acceptance/rejection is simply compared with a fare, there is no limit on the number of passengers

which may be accepted between recalculations of the bid prices. As for the HBP seat optimizer,

Belobaba estimates that the gains achieved by such heuristic O-D control amount to nearly half of

the possible revenue gains from the best network O-D control37 . Hence, the next two methods

presented aim for improvement upon the HBP results by using a network optimization scheme.

2.3.1.4 Displacement adjusted virtual nesting (DAVN)

The displacement adjusted virtual nesting (DAVN) yield management system operates on the

principle of solving the revenue maximization linear program (illustrated in Section 2.3.1) to

determine the shadow prices for each leg in the network (shadow prices are defined as the

expected revenue increase from relaxation of the capacity restriction by one unit). Next, pseudo

fares which take into account passenger displacement costs are computed for each leg. For local

passengers the pseudo fare is just their desired fare on the leg, while for connecting passengers,

the pseudo fare for a given leg is the total fare less the shadow price on the other leg traversed

(see Equations 2.12-2.15 below) 38 . Hence, for two connecting legs i and j, we have the following

equations.

Leg i: Local pax: PFL = Fare on leg i (2.12)

Connecting pax: PF'c = (Fare on leg i) - (Shadow price on leg j) (2.13)

Leg i: Local pax: PFL = Fare on leg j (2.14)

Connecting pax: PF'c = (Fare on leg j) - (Shadow price on leg i) (2.15)

where PF("i)(uc) = pseudo fare for local/connecting passenger on leg i/j

Once these pseudo fares are known, virtual buckets are used as in VEMSRb, but now they are

chosen and reallocated based on the calculated pseudo fares (as opposed to the actual fares),

3 Belobaba (1994).
38 These pseudo fares can be reoptimized as often as desired, although the default used in the PODS simulations is

to perform reoptimization only once at the start of the booking process.



thereby allowing simulation of the network displacement costs 39 . This type of seat optimization

procedure has been shown to perform very well (see Belobaba and Hopperstad40 and Wei?), and

it is beneficial in that it also accounts for the connection passenger displacement costs on a

network basis (as opposed to by flight legs) 4 2 . However, performing network optimization is

extremely time-consuming, especially with the number of cities in real airline networks, and good

forecasting on an ODF basis is much more difficult, as forecasted demand averages tend to be

very small with large variance for any particular ODF (see Williamson 43 for discussion).

2.3.1.5 Network bid price (Netbid)

Similar to the displacement adjusted virtual nesting procedure described in the previous section,

the network bid price (Netbid) seat optimization algorithm is another optimization routine which

keeps historical data and predicts demand forecasts on an ODF basis. However, it uses a bid

price approach to compare passenger fares as did the HBP method (Section 2.3.1.3), rather than

calculate seat protection limits as DAVN does. It also solves the network linear program (Section

2.3.1) as before, to determine each leg's shadow price 44. However, in this case, passenger

acceptance/rejection is determined by a simple comparison of the passenger's desired fare and the

corresponding leg shadow prices. Local passengers should be accepted if their fare is greater than

the shadow price on that leg, while connecting passengers should be accepted if their fare is

greater than the sum of the shadow prices on all legs traversed. Although this is a relatively

simple optimization scheme to implement and it performs well in many cases, it also encounters

the same time and data complexities that DAVN does; namely, the difficulty of making forecasts

on an ODF basis and the difficulty of performing frequent network optimization (the bid prices

39 The virtual buckets can be disaggregated as discretely as having leg-specific virtual buckets, although the default
used in this thesis is to have a single network-wide set of virtual buckets based on the calculated pseudo fares.40 Belobaba and Hopperstad (1997). DAVN was shown to increase revenues by more than 1.75% at DF 1.0 against
a leg fare class (EMSRb) seat optimizer used by the competition; and even a 0.5% increase was experienced at DF
1.0 when both competitors chose DAVN as the seat optimization routine.
41 Wei (1997), Section 4.3.4. The DAVN seat optimizer in the simulations run provided revenue increases on the
order of 0.8%-1.3% under the medium and high demand factor cases (DF 1.0 and 1.2, respectively).
42 It should be noted that although DAVN performs seat inventory control on a leg basis, the forecasts are obtained
by path.
43 Williamson (1992), Section 4.2.2. This is the "small numbers" problem inherent in ODF forecasting.
44 See Simpson (1989) for a small example where the network shadow prices are determined.



must be updated frequently45 to avoid revenue dilution since no booking limits are in place). The

reader can refer to Williamson4 6 or Swan4 7 for a more detail on the network bid price approach.

2.3.2 Forecasting and detruncation for Yield management methods

The seat optimization routines discussed above are implemented in the overall yield management

process once we are at the stage where booking limits (i.e., seat protection values) or bid prices

are needed for each fare class on each path/leg in the airline network. Once a specified seat

optimization routine has been chosen, independent choices are made with regard to the

forecasting and detruncation methods by which the demand projections will be made and upon

which the seat optimizer will base its calculations.

The detruncation routine answers the question of how to account for closed flights/paths/fare

classes in estimating demand, while the forecasting algorithm attempts to predict how many

passengers are expected in each path/fare class. In the forecasting process, there are two time

variables; the time of the booking and the time of consumption (i.e., day of flight) 48. This is what

makes airline revenue management forecasting an intricate task--the consumption of air travel

does not take place immediately following purchase. Hence, for a given day of consumption (i.e.,

flight) predictions of the forecasted demands by fare class must be made. Finally, the seat

optimization algorithm then decides how many seats should then be protected for each path/fare

class, based on the other information. The sequence of these algorithms is illustrated in Figure

2.8.

45 Reoptimizations after every 10 bookings will be used in the PODS simulations tested, although we would ideally
like to reoptimize the bid prices after every booking.
46 Williamson (1992). Section 4.2.3 provides a more detailed description of the deterministic network bid price
application.
47 Swan (1994). In this presentation, the origins of bid pricing are presented, along with a small example of its
methodology.
48 As eluded to by Wickham in Section 1.5.1.



FORECASTING --------------

MODEL

.......................------- O bking ]
AT OPTIMIZATION

Figure 2.8: Sequence of model interaction

The process illustrated in Figure 2.8 above is followed immediately after the beginning of each

time frame (or reoptinization). Both closed and unclosed flight information from the HDB are

used as inputs to the detruncation model. In essence, the trends observed on the unclosed flights

are used to project similar trends for the intervals following closure on flights in which closure

occurred at some point prior to departure. Once the demand has been detruncated for all closed

flights, the forecasting routine then incorporates this historical information along with the current

booking information for the flight being forecast to project a departure day estimate of demand.

(It should be noted that neither of the two forecasting algorithms tested in this thesis use

information from other flights which have not yet departed, although the advanced pickup

forecaster alluded to does). Next, if desired, an overbooking algorithm is applied to the projected

departure day estimates of demand to account for the expected rate of no-shows (since no no-

shows are being used in the PODS simulations, no overbooking need be done). Finally, these

estimates of demand for each fare class on the specified flight are given as input to the seat

optimizer, from which seat allocations or bid prices by fare class are computed. The next chapter

details the background of the PODS simulator in which these algorithms are used.



Chapter 3

The PODS Model

PODS is an acronym for Passenger Origin-Destination Simulator, a complex passenger choice and

yield management competitive simulation model developed at Boeing 49. It evolved from the

Boeing Decision Window Model5 , another simulation developed at Boeing to model passenger

choice in an airline market, given schedules, airline characteristics, and a variety of other factors.

While the Decision Window Model models passenger preferences for flights based on frequency

and airline "image" disparities, it omits two important variables; namely, the fare (or set of fares)

offered in the market and the capacity restrictions for the aircraft (or on the fare classes

themselves). The PODS model has these added enhancements built in, and while an integral part

of the simulation replicates the passenger choice routine of the Decision Window Model, PODS is

also is capable of simulating competitive yield management practiced by one or more of the

hypothetical airline competitors.

When PODS was originally developed, it was able to simulate a single flight leg (i.e., one O-D

market), from which the competitive impacts of yield management implementation could be

analyzed. Since then it has been expanded to simulate a typical airline network of spoke cities

interconnected by hub airports, in which the hypothetical competitors have not only a wide variety

of choices for their yield management system but also one in which lower-level inputs such as

forecasting methodologies can be altered. Furthermore, the network structure of PODS allows

for passenger choice among paths and fare classes; in essence, the ODF demands are not

independent but rather interrelated. The ensuing discussion will therefore present a general

overview of the current PODS model, the process by which the simulation is performed, along

with some of the input parameters for the methodology (the reader can again be referred to

49 See Hopperstad (1996) for a full-scale description of PODS version 6.
50 See Boeing's "Decision Window Path Preference Methodology Time Mode" description.



Wilson' or Skwarek52 for more detailed discussions about the intricacies of the simulator itself).

3.1 A brief description of PODS

The primary goal of the PODS model in this research is to give the user the ability to analyze

competitive effects of yield management for an airline network, accomplished by running the

PODS simulation model with a specific set of input parameters. Within any of these individual

simulations, specific nomenclature is adopted and will be explained here. A basic schematic of the

general PODS architecture is presented below in Figure 3.1.

PASSENGER
DECISION

MODEL

Path/Class
Availability

Path/Class
Bookings/Cancellati

REVENUE
MANAGEMENT

,OPTIMIZER

ons
Current Future

Bookings Bookings

FORECASTER
(+DETRUNCATOR)

Historical
Update Bookings

DSTORICAL
BOOKING
DATABASE

Figure 3.1: PODS basic schematic diagram"

In a macro-level sense, PODS is composed of four main components interconnected by three

main feedback loops, as illustrated in Figure 3.1. First, there is the interaction between the

51 Wilson (1995). In Chapter 3, Wilson gives detailed descriptions of the PODS system architecture, demand
generation, and passenger assignment.
52 Skwarek (1997). Skwarek also provides similar descriptions in Chapter 4, but with a heavier emphasis on its
relevance to forecasting and detruncation aspects.
5 Hopperstad (1997).



passenger decision model and the revenue management optimizer (seat optimizer), in which path

and class availability are used as inputs in determining passenger decisions within the passenger

decision model, while passenger assignments and cancellations are fed into the seat optimizer to

be used during the subsequent optimization of seat allocations. Meanwhile, the seat optimizer has

interaction with the forecaster (and detruncator); current bookings obtained from passenger

assignment/cancellation are input into the forecasting routine to aid the estimation of future

demand, while expected future bookings are given as output from the forecasting routine to the

seat optimizer so that better seat protection or bid price decisions can be made. Finally, the

interaction between the forecasting routine and the historical database is evident in that once the

current bookings are fed into the forecaster, they are also used to update the historical database

with the current information. At the same time, it is also these values of historical bookings that

are used by the forecasting routine to project demand estimates. This macro-level interaction

occurs in a systematic manner for each PODS case and trial; this will be described next (refer to

Figure 3.2).

Simulations in PODS are run by cases; within each case, a specific combination of forecasting,

detruncation, and seat optimization routine is specified for each competing airline (other

parameters are also included--see Tables 3.2-3.4 in Section 3.3 for a complete listing). A case

therefore contains the set of parameter inputs being tested under the simulation, the final output of

which will provide the user with an idea of the revenue and passenger load impacts under these

input conditions. Each case consists of 20 distinct trials; within any particular trial, there are 600

samples, where a given sample corresponds to one set of flight departures (since each market

only contains one departure or connection possibility per day, one sample also corresponds to one

day). We see therefore that a total of 12,000 samples are run, as we have 20 separate trials of

600 samples each. This disaggregation is done simply to reduce (by virtually eliminating) the

correlation among the samples, as each sample is dependent on the existing conditions of the one

immediately preceding. Running all 12,000 samples together would cause even the final one to be

affected (albeit minimally) by the first, while separating them into distinct groups permits us to

overcome this correlation problem. The grouping choice of 600 is used so that enough samples

will still be run to have an outcome with a sufficient number of steady-state data points for



statistical comparison .

During the simulation process, the first 200 of the 600 observations (flights) within each trial are

discarded in order to remove any initial condition effects, since the ODF demands for the

historical booking database within each airline's yield management system are estimated and input

at the beginning of each trial and will therefore not have taken into account any previous flight

information at that point. (The initial database is just a collection of best "guesses" for flight

forecasts based on the inputted passenger booking curves, but these "guesses" are not based on

any complete or known flight information). Hence, the accuracy of the initial samples is subject

to high variance and randomness, since no steady-state period will have been reached (i.e., the

period where the initial conditions have no effect). However, as time goes on and more samples

are accumulated, actual flight information is entered into the database--this information then

serves as historical data upon which more accurate flight forecasts for the next sample can be

made. Results from earlier simulations have indicated that 200 discarded trials is sufficient to

allow the seat optimization and forecasting routines to equilibrate so that the initial conditions

have negligible effect.

In order to run the yield management simulations, realistic passenger booking data and airline

network data are necessary. PODS generates this passenger demand using Boeing's Decision

Window Model concept5 5 . In generating the passenger demand, the Decision Window Model

performs three crucial steps. First, a decision window is modeled--this is a time window within

which the passenger is willing to travel. Second, given this time window, the possible paths for

the passenger are generated, where a path is the flight or flight sequence that will take the

passenger from their origin to their destination. Finally, given the feasible paths which correspond

to the passenger's decision window, the first-choice path preference is systematically generated,

using factors such as airline image and path quality (i.e., number of stops, connections, etc.). This

first-choice path is based on a probabilistic calculation of each of the feasible paths from the third

sa Lee (1998). Section 3.1.2 illustrates several cases which were tested; the best one was chosen to be that in which
the revenue disparity was the smallest between the two airlines when they each used identical input algorithms.
ss Refer to the Boeing Decision Window synopsis for the factors which are considered in each of the three
following steps and the internal calculation mechanism.



step. Once these passenger demands are established by O-D market, stochastic booking

processes are followed for each passenger type to simulate actual demand; while on the supply

side, seat allocations are optimized to generate the maximum possible revenue from the expected

incoming demand. As described above, PODS runs simulation cases in a series of 20 trials--for

any single PODS trial (i.e., sequence of flight departures for each leg flown), a specific process by

which passenger demands are generated and booking limits are set is followed by the simulation

routine for each departing flight, graphically illustrated by Figure 3.2 below.

Generate demandG

y market, pax type cre estimates

(enerate time frame demand Update database from
by market, pax type prior observationsg

During time T _ Prior to time
firame . .. . -- \frame

Figure 3.2: PODS flow chart for a single trial56

56 Adapted from Hopperstad (1996).



To begin with, an initial historical demand database is constructed, since no previous flight

information exists at the beginning of a trial from which one can be generated. This is done by

making initial demand projections by market and passenger type based on the booking curves

initially given as input to the system. The simulation then proceeds for each sample of interest,

simultaneously performing both supply and demand functions; on the supply side, demands are

forecasted and seats allocated accordingly by fare class; and on the demand side, passenger loads

(i.e., market demands) based upon simulated passenger choice are generated for each flight as

time passes.

For each flight of interest within a trial there are a number of time frames during which the PODS

simulation performs various functions. First, the seat optimization routine is invoked at the

beginning of each time frame to determine the seat protection limits and/or bid prices. This is

done in two main steps--by making demand projections using the forecasting (and, if necessary,

detruncation) algorithms chosen for the particular case (these forecasts are based on the most

recent data available in the historical database), and then by setting protection limits by path/leg

and fare class based on these forecasted values. Next, passenger bookings/cancellations are

spread randomly throughout the entire time frame; passengers are accepted or rejected from a

given ODF based on passenger choice as discussed above. Finally, the historical database is

updated with these newly acquired passenger values at the end of each time frame, after which the

simulation process then loops back to the beginning of the time frame loop for the next

subsequent time frame (as illustrated in Figure 3.2).

Once these processes are completed for all time frames on all paths or flight legs (depending on

the seat optimization routine used), the supply-demand routine is exited and actual flight data is

available; repetition of this process for each sample produces data from which total system

revenues and loads by leg or market are computed for the entire trial. This process is then.

repeated for each new trial, and upon completion of the 20 trials, simple numerical averages are

calculated for the system revenues and loads--these are averages of the 8,000 samples used (20

trials x 400 samples per trial) and are the revenue and passenger load values used in the analyses

in Chapter 4.



3.2 Airline network used in simulations

Initial tests using the PODS model5 7 were originally done by simulating a single-route case of two

competing airlines serving one origin-destination city pair, where leg-based seat optimization

methods could be used and passenger choice effects could be examined and tested. The benefits

of implementing a yield management seat inventory control mechanism on such a configuration

(as opposed to not using one) were shown by Wilson58 ; while Skwarek59 analyzed and detailed the

additional effects of forecasting and/or detruncation method changes under a similar one-leg

configuration (although simultaneous seat optimization method changes were not analyzed).

Since then, however, the simulation capabilities of PODS have been expanded in order to more

accurately model a real-world competitive scenario. Lee60 has used this new setup to extend

Wilson's study of the benefits of yield management to such a network case, modeling several

competitive seat optimization changes by airlines on a network basis. This thesis will also use a

similar network scenario which more accurately models an airline's entire network system to gain

a better understanding of the contribution of forecasting or detruncation to the revenue increases

which were obtained under simulations using different seat optimization algorithms, as well as the

resultant consequences of the interaction of forecasting and detruncation routines with the

different seat optimization methods.

The network layout of the updated version of PODS used in this thesis is described here, and can

be referenced in Figure 3.3 below. The network itself is composed of six spoke cities, in addition

to two airport hub cities; each hub serving as the focal point for connections of flight legs for one

of two competing carriers. Such a setup models the airline trends which currently exist in the

domestic US, where a variety of routings in any given O-D market pair are possible through the

hub airport of any of a number of carriers. A good example occurring in the domestic US is

evident on transcontinental travel--a passenger originating in Boston or New York bound for San

57 PODS version 7b is used for all simulations in this thesis; older versions were used in previous research.
58 Wilson (1995).
59 Skwarek (1997).
60 Lee (1998). Section 4.1 describes the network O-D based control tested, as opposed to the leg-based control
done in the Wilson study.



Diego or San Francisco will have many path choices, depending on which connection hub will be

traversed en route (this choice is a function of the airline chosen). Among the six spoke cities and

two hubs in the simulated network, 54 different O-D markets can be constructed, interconnected

by 24 separate flight legs (12 on each airline)--any combination of two of the eight cities (i.e., six

spokes, two hubs) is possible as an O-D city pair with the exception of travel from one hub to the

other (in the simulation, neither airline provides service to the competing airline's hub city).

On the demand side, two passenger types are considered--business and leisure. This is in contrast

to disaggregating demand by individual fare class in a market, which would require the (more

unrealistic) assumption of independent demands by fare class. This is one aspect which

distinguishes the PODS simulation from other traditional models; while other simulations tend to

assume independent demands by ODF, the PODS formulation generates demand correlated across

passenger types and markets. Hence, by dividing the demand into business and leisure categories

we can better model the actual airline world in addition to allowing for the possibility of sell-up61 .

----... Hub H, .-

- -- -- .-j Hub H2
500 mi. .. 1000 mi.

500 mi- 2000 mi.
* distances indicated are from city to either hub

Figure 3.3: Spatial layout of PODS network

The spatial layout of the network itself (illustrated above in Figure 3.3) has also been designed to

model a commonly occurring domestic US layout as best as possible. Of the six different leg

distances from city to hub, two long-haul (one 2000-mile, one 1500-mile), two medium-haul

61 Sell-up is the occurrence where a passenger for whom the desired fare class on a path is not available decides to
purchase a higher fare class product for the same path.



(1000-mile), and two short-haul (500-mile) leg distances exist--this combination was chosen

primarily because most major US domestic carriers offer a variety of short-haul and long-haul legs

originating or terminating at their hubs. Furthermore, aircraft capacities on each leg have been

chosen to be 100 seats, but such a determination is arbitrary since the demand itself in each O-D

market can be scaled.

Finally, the demands on the legs were set in a systematic manner (although these demands are

stochastic, an average and a standard deviation need to be set in the simulation). The

methodology by which this was done has the short-haul legs and paths having the highest

demands, while the longest-haul ones have the lowest demands (see Table 3.1 below).

Leg: Hub Leg Distance Leg Load Local Pax
to/from city (mi.) (pax) (%)

A 500 140 46%
B 500 125 40%
C 1000 110 41%
D 1000 90 39%
E 1500 75 33%
F 2000 60 33%

Table 3.1: PODS leg demands

The reasoning behind this approach is that higher demand on short-haul legs accentuates the need

to perform O-D yield management, since the short-haul legs tend to have the lowest fares

(especially in these scenarios, where a distance-based pricing scheme was used), and this is where

demand "bottlenecks" tend to occur. Therefore, both facets of the O-D seat inventory control

problem discussed in Section 1.1 become readily apparent. First, the tradeoff between accepting a

lower fare class connecting passenger whose absolute revenue value is higher than that of a higher

fare class local passenger is more uncertain. If the demand were highest on the longest-haul legs,

the short-haul legs would no longer be creating these "bottlenecks" and we would usually

accommodate most of the higher-fare connecting passengers. Second, the tradeoff between

acceptance of two lower-fare customers whose combined revenue is higher than that of one long-

haul, high-fare customer comes into play. If the highest demands were set to be in the longest 0-



D markets, then the yield management system would again undoubtedly favor the long-haul

customer and the revenue benefits of implementation would be less pronounced. It should also be

noted that while the percentage of local passengers varies from 33% to 46%, the highest instances

of local passengers are on the shortest-haul legs, for the same reasons as discussed above.

3.3 Other PODS input parameters

Aside from the various fixed market parameters described above, several other inputs are

available within the PODS simulation and are described here (a complete listing is shown in

Tables 3.2-3.4). Default values for system-level inputs which are constant in all simulations are

listed next to the input parameters for informational purposes.

PODS version 7b Syste-Level Input Parameters

e Number of airlines (2)
e Number of markets (54)
" Number of fare classes (4)
" Number of booking curves (2)
" Number of observations used in forecaster (26)
" Number of total samples (days) (600)
e Number of legs (24)
e Number of passenger types (2)
e Number of restriction categories (3)
" Number of time frames (16)
e Number of samples burned (200)
" Number of trials (20)
" System k-factor (0.1)

" Is passenger's first choice the only choice? (No)
" Elasticity multiplier (by pax type)
" Cancellation penalty ($0)
e No-show rate (0%)
e Leg fare calculation formula (for leg-based YM)
e Attributed cost k-factor (0.3)
" Time frame reoptimization days (see Figure 3.4)
e Primary, secondary z-factor (by pax type)
" Cumulative booking probability by time frame
" Cancellation rate (0%)
" Last time frame where fare classes are available
e Passenger type k-factor (0.4)

Table 3.2: PODS version 7b system-level input parameters
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" Seat optimization (YM) method (see Section 2.3)

" Forecasting method (see Section 2.1)
e Detruncation method (see Section 2.2)
" For projection detruncation, # iterations
e For projection detruncation, minimum number of
unclosed observations
" For projection detruncation, quitting criteria
e For projection detruncation, tau value
" Sigma scaling for booking capacity

e For HBP/Netbid, number of bookings between
availability processor executions
" For HBP/Netbid, is the forecast believed?
" For DAVN, displacement method
" For DAVN, virtual class revision scheme
* Number of virtual classes + boundaries

" Theft/standard nesting used
" Bid price scaling, calculation constant
" Probability of sell-up

Table 3.3: PODS version 7b airline input parameters



* Market k-factor e Base fare in market
" Capacity on each leg 9 Market demand
" Distance of each leg e Percent of business passengers in market (by pax type)
e Mean schedule tolerance e Preferred airline probability in market
e Time of day curve * Fares by market/fare class (i.e., ODF)
" Number of paths in market 9 Path departure/arrival time
e Distance of market 9 Path quality index
" Market delta-T 9 Number of legs traversed by path
e Denied boarding penalty

Table 3.4: PODS version 7b market-level input parameters

First, the number of observations used from the historical database in projecting demand estimates

is 26 (i.e., the 26 most recent flight observations). This number is sufficiently large to ensure that

single observations that are unusually high or low will not have a pronounced effect on the

forecasts; and as PODS has been developed to model a stationary process in which seasonality

and other airline demand trends are disregarded, such effects need not be considered or adjusted

for. Second, for a given flight, there are 16 time frames (booking intervals), occurring at semi-

regularly spaced periods; at the beginning of each time frame is when the seat

optimization/allocation routine is performed. In our experiments, from 63 days before departure

until 35 days before departure, booking limits are updated weekly, so the length of the first 5 time

frames is 7 days. Then, from 35 days before departure until 7 days before departure, booking

limits are updated bi-weekly, hence, the length of the next 8 time frames is 3.5 days (in the

graphical representation below integers are used for ease of illustration, so one 3-day interval and

one 4-day interval occur in each week). Finally, in the last week before departure (i.e., 7 days

before departure until 1 day before departure), booking limits are recalculated every 2 days, so the

length of the last 3 time frames is 2 days. A graphical depiction of the time frames is shown in

Figure 3.4.

I I 1 I I I I I I I I 1 1 1 1 1

63 56 49 42 35 32 28 25 21 18 14 11 7 5 3 1 Dep.

Days before departure

Figure 3.4: Time frame intervals for a flight departure in PODS



Third, the fare classes themselves are also able to be specified, but for consistency in our set of

simulation cases, 4 distinct fare classes will be used (labeled Y, B, M, and Q). The fare

magnitudes offered in these fare classes vary by O-D market and although in normal airline

practice fares are assigned completely on an O-D market basis, in PODS they have been set to

have some correlation to the distance traveled. A base set of fares offered is $800, $400, $300,

$200 for Y-, B-, M-, and Q-class, respectively; this being for the 2000-mile O-D market. Fares

for other O-D markets are then assigned with the Q-class "base" fare being multiplied by a ratio of

1.6 for each doubling of distance (or multiplied by 1/1.6 for each halving of distance), while the

relative ratios of the Y-, B-, and M-class fares to the Q-class fare remain constant at 4, 2, and 1.5,

respectively. The complete fare schedule for the network is illustrated in Table 3.5 below.

O-D Market Distance (mi.)
500 1000 1500 2000 2500 3000 3500 4000

Y $320 $500 $660 $800 $920 $1020 $1205 $1280
B $160 $250 $330 $400 $460 $510 $602.5 $640

M $120 $187.5 $247.5 $300 $345 $382.5 $451.88 $480
Q $80 $125 $165 $200 $230 $255 $301.25 $320

Table 3.5: PODS version 7bfare schedule

The individual fare products within any given O-D market are differentiated in that there are up to

three different restriction categories imposed on each fare product, as passengers inherently assign

some corresponding dollar value to each restriction. The fare classes and their associated

restriction categories are detailed in Table 3.6 below (restrictions on a fare product are shown as

shaded blocks).

Y --none-- --none-- --none-- yes
B 7 days --none-- yes
M 14 days .. es

Q21 day s.i

Table 3.6: Ticket restriction categories



With some of the seat optimization routines (namely, VEMSRb, DAVN, and HBP), a virtual fare

class bucket arrangement is necessary (virtual buckets are described in Section 2.3.1.2). Within

PODS, such an arrangement has been set to be comprised of 6 virtual fare classes, where each

ODF on each leg maps into one of the associated virtual fare classes. The fare divisions among

the six virtual buckets are shown below in Table 3.7 (these are for the VEMSRb and HBP seat

optimization algorithms; DAVN makes virtual bucket divisions based on the calculated pseudo

fares--see Section 2.3.1.4).

Y1 < $1300
Y2 < $700
Y3 < $420
Y4 < $310
Y5 < $215
Y6 < $140

Table 3.7 Virtual fare class boundaries for VEMSRb, HBP

With the virtual classes, the fare disparities among the different fare classes in the individual O-D

markets are accounted for by the groupings which occur. For example, combining Table 3.5 and

Table 3.7 it can be seen that both the Y-class fare for the 500-mile market and the Q-class fare for

the 4000-mile market map into the same virtual bucket (Y3)! Methods using virtual classes are

therefore attempting to distinguish seat availability by fare class value rather than by fare class

designation.

There are also a variety of other input parameter effects which are able to be tested in the PODS

routine, but will not be explored in this thesis. Some of these include no-show percentages (i.e.,

the percent of passengers who reserve but do not show up for the flight), overbookings (i.e., the

margin by which excess bookings are taken on a flight in order to account for expected no-

shows), and denied boardings (i.e., when flights are overbooked but no-shows are lower than

expected, some fraction of passengers are denied boarding, either voluntarily or involuntarily, on

the given flight). Others include inputs of the demand variability in the system or in a market; for

example k-factors, by which the standard deviation of demand for a flight sample is proportional



to its mean, or z-factors, for which the variance of the demand random variable is proportional to

its mean.

In addition to the many fixed parameter inputs which have been described so far, there are also a

number of input parameters which will be changed within different simulations. The first three

were discussed previously in Chapter 2. First, there are five choices for the actual seat optimizer

itself, described briefly in Section 2.3.1. Second, the forecasting routine will be varied; these

variations are described in Section 2.1. Third, variations in the detruncation method will also be

tested; these are described in Section 2.2. Other input parameters to be varied within the scope of

this thesis are discussed in the subsections below.

3.3.1 Demand factor changes

One of the input parameters which will be varied within this thesis is that of demand factor.

Although the demand generated in PODS is stochastic, the demand factor is defined as the ratio

of the average realized demand to the aircraft capacity (which was set to equal 100). Hence, a

demand factor of 1.0 means that demand, on average, will be equal to 100 passengers, while a

demand factor of 1.2 means that demand will be 120 passengers on average. The testing of

demand variations is of interest to see how the system revenues are impacted not only by

forecasting, detruncation, and seat optimization changes, but also whether these results are

uniform under higher or lower demand scenarios.

We would expect that under low demand scenarios there should not be as much variation of the

network revenue or loads, simply because seat optimization limits are rarely being pushed to

capacity by demand and therefore fewer passengers are being spilled, so the resultant effect of

implementation of a less effective forecasting routine or seat optimization algorithm will be less

pronounced. However, under high demand scenarios these effects should be accentuated, since

the opposite case is occurring; fare class capacity is often being reached, so booking limit

"decisions" are constantly being made by the seat optimizer as to whether or not to spill high-fare

or low-fare customers. Because of this, more accurate or effective forecasting measures will be

essential to better revenue performance. In simulation experiments run in this thesis, three



different demand factor parameter values will be used: 0.8, 1.0, and 1.2. A demand factor of 0.8

simulates a low-demand scenario as explained above, while a demand factor of 1.0 simulates an

average demand scenario and a demand factor of 1.2 simulates a high-demand scenario. These

demand factors chosen correspond roughly to average system load factors of 70%, 78%, and

83%, respectively, which are rather plausible results based on general airline industry estimates.

3.3.2 Competitor airline parameter changes

In contrast to the studies referenced earlier, the version of PODS being used in this thesis (version

7b) has the capability of permitting not only parameter changes for the airline of interest, but also

for the competing airline. That is, effects of different combinations of forecasting method,

detruncation method, and seat optimization routine for the competing airline can be tested. The

first group of results examined (Section 4.1) will analyze forecasting, detruncation, and seat

optimization changes by the airline of interest versus a common set of parameters where the

competing airline is using EMSRb seat optimization (see Section 2.3.1.1) with pickup forecasting

and booking curve detruncation. This is a realistic scenario, as the EMSRb seat optimizer is a

commonly-used technology at many airlines both in the domestic US and internationally (pickup

forecasting and booking curve detruncation can also be thought of as the "base case" choices for

these methods). Therefore, the resultant impacts to the airline being studied (i.e., not the

competition) against these scenarios are of importance, as they can be readily applied to realistic

situations in the industry.

However, also of interest are scenarios in which the competition has a different, more advanced

yield management algorithm, so insight can be gained into what impacts come about from

forecasting or seat optimization changes by the airline being studied. That is, we are interested

not only in competitive situations where the airline being studied has taken the yield management

initiative, but also in a myriad of possibilities where the competition has also implemented a more

advanced set of yield management tools (a case which occurs among the larger airlines in the US

industry). This allows us to move toward achieving the second goal of the thesis; namely,

determining which combinations for the airline of interest are most beneficial for a wide variety of

scenarios under which the competition operates.



3.4 Network vs. single-leK optimization

So far, related previous PODS studies have concentrated on the revenue effects of two airlines

competing on a single leg only. However, this thesis will extend this notion to the network case,

where two airlines compete over a network of cities connected by a hub airport. In the single-

market case of two competitors serving one origin and one destination, seat optimization routines

are looking simply at the marginal benefits and costs of additional passengers in a given fare class

on the route; even so, Wilson6 2 has shown that implementation of an EMSRb seat optimizer can

result in revenue gains on the order of 8-10% over the option of using first-come, first-served

booking (i.e., no capacity restrictions on the fare classes), while the corresponding loss to the

carrier who retains the first-come, first-served approach is on the order of 2%. Other scenarios

such as those with a dominant carrier and a weaker carrier--where one carrier offered more daily

flights than the other--were tested, for which the revenue difference was much more disparate (on

the order of 25%). However, in all simulations performed here, equal prices, frequencies, and

image factors for both carriers will be assumed.

When the yield management concept is extended to the multiple-origin, multiple-destination

network case with not only leg-based seat optimization routines but also more advanced O-D seat

optimizer choices available (i.e., those which consider factors such as downline displacement costs

of passengers and the effects of local vs. connecting passengers), the implementation of a yield

management system should also be expected to provide moderate revenue gains. However, a

good question arises as to how much of the enhanced revenue comes about due to actual

implementation of the seat optimizer, and how much can be attributed to the

forecasting/detruncation method used in the simulation. Skwarek estimated that in the symmetric

single-leg cases examined by Wilson63, the proportion of revenue increase attributable to the seat

optimizer itself is on the order of 65% (the other 35% resulting from a better detruncation

method)6 4. In the multiple-leg case, it is also of interest to see whether revenue increases due to

62 Wilson (1995). Section 5.1 analyzes symmetric two-path scenarios where one or both carriers can implement
the EMSRb seat optimizer or use the traditional first-come, first-serve option.
63 Wilson (1995).
64 Skwarek (1997), Section 7.2.2.



the implementation of improved O-D seat optimizers of about 0.5-2% found by Lee6 1 (note that

this is over a base case of EMSRb as opposed to first-come, first-served as was done in Wilson's

single-leg case) are attributable to forecasting or detruncation improvements in the same ratio as

before.

3.5 PODS output to be examined

When the yield management simulations are being run, some method of comparison needs to be

defined to allow for consistent measurement of the relative performance of different combinations

of forecaster, seat optimizer, etc. There are primarily four measures by which such performance

will be measured: (1) overall network revenue; (2) passenger leg loads; (3) fare class closures;

and (4) forecasted remaining demands.

First, overall network (system) revenue is just the average network revenue over the 20 trials,

with the network revenue for each trial being the sum over all O-D markets of the products of

each O-D passenger in that market and their corresponding fare. It is a good measure of the

general performance for the airline as a whole, especially because in reality, forecasting or seat

optimization systems such as those being tested are implemented by an airline on a system-wide

basis (and not usually in just a certain market or on a certain flight leg). Additionally, total system

revenue provides an average, unbiased measure of the network performance of the quantity we

are looking to maximize (i.e., revenues).

Second, passenger loads grouped by flight leg is a measure which provides more insight into why

revenues may have increased or decreased, as trends such as more high-fare or low-fare

passengers being taken on or spilled can be seen directly. For example, system revenues may

increase, but for two completely different reasons--one possibility being a better seat protection

algorithm in which total loads are lower but more high-yield passengers are taken (whose

incremental revenue contribution more than offsets the revenue lost by the low-yield passengers

no longer taken), another being that overall loads are higher as individual loads in each of the

65 Lee (1998). In Section 4.1.3, values in this range were obtained for the different seat optimization methods at a
demand factor of 1.0 under three different network scenarios (i.e., 4 spoke cities with 1 common hub, 4 spoke cities

with 2 decoupled hubs, and 6 spoke cities with 2 decoupled hubs).



different fare classes are higher. Therefore, examination of the passenger leg loads provides a

better understanding of the direct impact on the revenue increase or decrease seen by the first

performance measure discussed.

Third, fare class closures will be used to analyze the relative availability of the different fare

classes on average. For any given ODF, the time frame in which the fare class closed can be

determined (this is the point during the booking process after which any additional passenger

requests are spilled); the more available an ODF, the higher passenger loads we would expect,

which can be either good or bad depending on whether it is for a high or low fare class and how

large the potential demand is for the other fare classes is.

Finally, forecasted remaining demands are insightful in that they are the driving force behind what

influences the fare class closures, passenger loads, and system revenues. Higher forecasts for an

ODF will generally lead to higher protection limits, more fare class availability, and therefore

higher loads for that particular ODF. As indicated, such performance measures are useful in

attempting to explain the different phenomena which can result from variations in any of the

PODS input parameters--these measures will next be discussed in the context of actual simulation

runs in Chapter 4.



Chapter 4

Analysis of Forecasting/Detruncation
Method Changes

While the first three chapters have provided a background on forecasting and detruncation

algorithms (as well as yield management in general) along with descriptions of the different

methods for such algorithms employed by the PODS simulation and the functionality of the PODS

system itself, this chapter concentrates on the testing and analysis of different cases of forecasting,

detruncation, and seat optimization within the yield management framework of PODS. This is

done to provide insight into the relative advantages and disadvantages of each particular method

or combination of methods. In all tests performed, PODS version 7b was used; details of which

were described in Chapter 3.

First, base case yield management routines will be analyzed, in which Airline A changes only the

seat optimizer while base case yield management is used by Airline B (i.e., the forecaster,

detruncator, and seat optimizer are held constant at the base case) 66. Comparisons will then be

made between these base cases and those in which Airline A has the ability to change any of these

parameters (i.e., the forecaster, detruncator, and seat optimizer will be varied by Airline A yet will

still be held constant at the base case by Airline B). Second, the impacts of "competitive

scenarios" will be studied--these are situations in which both airlines match each other's seat

optimization algorithm but employ different forecasting/detruncation method combinations.

Third, alternative yield management base case combinations (i.e., those where seat optimizers

other than EMSRb are used by Airline B) with variations in forecasting and detruncation method

by either one or both airlines will be investigated, in order to determine the relative

competitiveness of different combinations of methods within the yield management context. The

66 The airline whose results are of interest will heretofore be referred to as "Airline A", while "Airline B" will be
used in reference to the competing airline.



subsequent section analyzes changes in the parameter T, used in the projection detruncation

algorithm, to determine whether such changes alter the results observed in the preceding sections.

The final section looks to explain the factors contributing to the resultant revenue increases or

decreases seen in the preceding sections, along with a synopsis of which forecasting/detruncation

methods perform best given a particular seat optimization algorithm. Comparisons will also be

made with earlier studies, and reasons behind any similarities or differences will be explained.

Although the primary criterion for measuring the relative performance of the forecasting and

detruncation methods in this thesis will be overall system revenues67 as it provides a good macro-

level measure of the revenue values obtained by the system, others will also be used. Namely,

passenger loads (both actual and forecasted) and fare class closures will be examined to determine

the relative performance of the methods and the reasons for any differences; additionally,

comparisons will be made with similar studies under earlier PODS versions where appropriate.

While the PODS output gives absolute network revenue values, the relative percent increase in

revenue as compared to some base case set of methodologies is of interest, and will always be

computed relative to a base case of pickup forecasting and booking curve detruncation, with a

given seat optimization method. Lastly, a final note is made about the nomenclature which

follows in the subsequent sections. For simplicity on the graphs, the forecasting and detruncation

combinations are abbreviated as follows: PU = pickup forecasting, R = regression forecasting,
BC = booking curve detruncation, and P = projection detruncation.

4.1 Impacts against base case vield management

A good starting point for analysis of different forecasting and detruncation schemes in the PODS

simulation is that of scenarios which compare results when changes are made by one airline

competitor while the other uses a static "base case" combination of forecaster, detruncator, and

seat optimizer. This allows a controlled experiment in which the direct impacts of changes in

these methods can be isolated and analyzed by varying the forecasting/detruncation method.

Revenue results can be examined, along with passenger loads, forecasts, and even fare class

closure times. In the ensuing discussion, results will be primarily of interest for the airline

67 System revenues as calculated are the airline's network revenues averaged over the 20 trials.



implementing forecasting, detruncation, and seat optimization changes, designated as Airline A.

Airline A will therefore have a choice among the various combinations of forecasting,

detruncation, and seat optimization methodologies as presented in Chapter 2. Airline B will be

designated as the competing airline; it will initially use a base case combination of EMSRb seat

optimization methodology with pickup forecasting and booking curve detruncation 8 .

Furthermore, relative comparisons will be made against either the full base case scenario (i.e.,

both airlines using EMSRb with pickup forecasting and booking curve detruncation), or a

modified base case, in which Airline A is using pickup forecasting and booking curve detruncation

along with a different seat optimization routine (Airline B still using EMSRb with pickup

forecasting and booking curve detruncation).

What do we expect from the base case results? Among the seat optimization methods, we would

expect that EMSRb performs the worst, as its seat protection calculations are based solely on fare

classes by flight leg, with no distinction between fare classes in high- and low-fare markets, and

no consideration for passenger displacement costs. VEMSRb attempts to correct for the former

problem by grouping the ODFs into virtual fare buckets, but it still does not account for passenger

displacement costs and should therefore perform better than EMSRb, but worse than Netbid,

DAVN, or HBP. These last three methods all attempt to adjust for these problems and should

theoretically perform better than either EMSRb or VEMSRb in all cases. As to the relative

rankings among these three methods, that is yet to be determined (Section 4.1.1), as are the

effects of changing the forecasting and detruncation routine in conjunction with the seat

optimization algorithms (Section 4.1.2).

4.1.1 Base case forecasting and detruncation

The base case forecasting and detruncation results are important in that until now, all yield

management simulations of a multiple-leg network run under PODS have assumed a base case of

pickup forecasting and booking curve detruncation. Therefore, such results detail what has been

previously determined about the relative performance of the various seat optimization routines

68 EMSRb is the most basic of the seat optimization routines tested, and it is currently used by many airlines
worldwide in revenue management applications. Most current airline applications of this EMSRb methodology (as
well as other seat optimizers) use simple pickup forecasting and booking curve detruncation.



tested in earlier versions of PODS. Hence, a good starting point is a reproduction of similar

results obtained by Lee69, which illustrate the relative performance of the various seat

optimization routines tested (forecasting and detruncation were always held at the base case of

pickup and booking curve, respectively). Table 4.1 below shows the network revenues by seat

optimization routine for Airline A under each of three different demand factors, along with the

absolute increase over the base case revenues under EMSRb. It can be seen that for all demand

factors tested, all seat optimizer changes from the base case of EMSRb produce revenue

increases, and DAVN performs the best by providing the largest revenue gain.

Table 4.1: Total system revenues for Airline A

To gain more intuitive insight into the relative performance of the seat optimization routines and

to furthermore be able to draw comparisons across demand factors, relative percentages can be

computed between the revenue values listed in Table 4.1. In Figure 4.1, a percent revenue

increase is shown, where this percent increase is compared to the base case of Airline A using

EMSRb seat optimization with the default forecasting and detruncation routines (i.e., pickup and

booking curve, respectively). Note that Airline B is still using this same base case in all scenarios;

that is, only the seat optimization routine of Airline A is being varied under each demand factor.

69 Lee (1998). Refer to Section 4.1.3, although it should be noted that PODS version 6 was used for Lee's results.

Airline A System Revenue
Incr. over Incr. over Incr. over

Seat Optimizer DF 0.8 EMSRb DF 1.0 EMSRb DF 1.2 EMSRb
EMSRb 189,813 --- 226,954 -- 259,762 ---

VEMSRb 191,115 +1302 230,529 +3575 263,265 +3503
Netbid 190,076 +263 228,871 +1917 262,526 +2764
DAVN 191,365 +1552 232,231 +5277 266,801 +7039
HBP 191,016 +1203 231,414 +4460 266,292 +6530



Airline A: Revenue Performance of Seat Optimization Routines
(vs. base case of BSRb + pickup forecasting + booking curve detruncation)
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Figure 4.1: Revenue performance of seat optimization routines for Airline A

Basically, from Figure 4.1 above, we can make inferences about the performance of these

alternate seat optimization algorithms relative to the EMSRb base case and to one another. It can

be seen that under all demand factors, DAVN results in the highest percentage gain compared to

the base case, while Netbid produces the lowest gain (although it still has higher revenues than

EMSRb). Additionally, as the demand is higher (demand factor increases), the relative gains from

improvement of the seat optimizer also increase, from an average of 0.57% in the DF 0.8 case to

averages of 1.68% and 1.91% in the DF 1.0 and DF 1.2 cases, respectively. This is to be

expected, since higher demand only accentuates the benefit of O-D yield management, as more

passengers (and consequently, higher-fare passengers) are willing to travel and there is greater

revenue benefit from distinguishing between O-D paths and fare classes. When the demand is low

as in the DF 0.8 case, the seat protection limits are rarely being reached (or the bid prices are too

low), and little traffic is therefore being turned away; in essence, the yield management is not

functioning to its potential. However, it is interesting to note that even in the low demand case



(DF 0.8), there are still some benefits resulting from implementation of a "better" seat

optimization routine when the competitor airline remains with the base case scenario.

In terms of the relative performance of the seat optimization routines themselves, several items

are noteworthy. In the case of low demand (DF 0.8), VEMSRb, DAVN, and HBP all perform

about equally, with revenue gains of 0.63-0.82% over EMSRb, while Netbid is substantially

lower, at only 0.14% above EMSRb. For DFs 1.0 and 1.2, we see that DAVN performs best

relative to the base case (Figure 4.1) and in overall system revenues (Table 4.1), while HBP

remains rather competitive with DAVN, underperforming it by only about 0.2-0.3% in each case.

VEMSRb places next on the list, performing relatively well in the moderate demand case, but

being outperformed as the demand factor is increased to 1.2. This is in accord with the theory

that VEMSRb does not perform as well as demand increases; since such a "greedy" scheme

favors the longer-haul itineraries, these longer-haul passengers are accepted, despite the fact that

higher revenue could result from carrying two local passengers (given that the demand is rather

high) instead of a single connection passenger. Finally, Netbid provides the lowest relative

revenue percentage gain; in fact, DAVN's percentage gains outdo those of Netbid by a factor of

approximately 2.5! This is a somewhat surprising result, as one would expect that Netbid should

perform almost as well as DAVN or HBP, since it is accounting for passenger displacement costs

as the other methods do. Investigations into why this occurs will be one of the major topics of the

next section. More detailed analysis of these results are provided by Lee7 4.

Several basic conclusions which form the basis for later comparisons in this thesis can be drawn

from these preliminary results. First, the percentage revenue increase for Airline A of moving

from EMSRb to one of the other seat optimization routines (even using base case forecasting and

detruncation) when the competitor uses a complete base case (i.e., EMSRb, pickup, and booking

curve) are on the order of 1.5% in the medium demand case. Second, under the base case

forecasting and detruncation methods for the demand factors analyzed, Netbid performs rather

poorly, while DAVN (and HBP) perform very well in terms of revenue. The poor performance of

70 Lee (1998), Section 4.1.3. Netbid was initially found to have very poor performance on the very small four-city
(with one common hub) network, as the gap between bid prices was too large to have a good passenger mix. The
six-city results provided a small improvement, although Netbid's relative performance was still quite poor.



Netbid is in contrast to what was expected; intuition would lead us to believe that Netbid

outperform VEMSRb and be on par with the other methods that account for passenger

displacement costs (DAVN, HBP). Finally, the trends among the rest of the methods (with the

exception of Netbid) do follow what was expected, as discussed above in Section 4.1.

4.1.2 Forecasting and detruncation changes by a single competitor

As seen in Section 4.1.1 above, our initial hypothesis about the relative performance of the seat

optimization methods was mostly correct, with the exception of explaining the poor performance

of Netbid. A good question therefore arises in the analysis of why Netbid's performance is

substantially lower than the other methods with which it should be competitive. Several

conjectures have been put forth in this regard in attempting to explain these results--the fact that

Netbid is solving a deterministic linear program rather than a probabilistic one, the small size of

the network on which it is being tested, and the incompatibility of the forecasting and/or

detruncation method. The latter possibility--that the base case forecasting and detruncation

routines used are not as effective in providing the required demand inputs to Netbid's seat

optimization routine--will be examined in depth in this section. This will be done by examining

the general trends occurring when forecasting and detruncation methods are changed by Airline

A, while the competing airline still uses the same base case as in the preceding section (doing so

allows the effects of the forecaster and detruncator to be isolated).

4.1.2.1 System revenues

As in Section 4.1.1, system revenues will first be compared to analyze the general trends among

the combinations of seat optimizer, forecaster, and detruncator tested. Figure 4.2 presents the

percent increase in system revenues resulting from changes in the seat optimization routine and

forecasting/detruncation method combination for Airline A at a demand factor of 1.0, where the

percentage gains are compared to the base case system revenues for Airline A using EMSRb with

pickup forecasting and booking curve detruncation.
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Airline A: Revenue Increase Resulting from Yield Management Changes at DF 1.0
(vs. base case of EMSRb + pickup forecasting + booking curve detruncation)
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Figure 4.2: Revenue increases from yield management changes at DF 1.0

Two clear inferences can be made from this graph. First, the relative trends of forecasting and

detruncation combination are evident, regardless of the choice of seat optimization routine. That

is, the "base case" combination of pickup forecasting and booking curve detruncation performs

worst, while regression forecasting and booking detruncation perform slightly better, pickup

forecasting and projection detruncation are even better, and regression forecasting and projection

detruncation provide the largest increase over the base case7 1 . The relative magnitudes of these

percentage revenue gains depend on the choice of seat optimization. DAVN provides gains of

roughly 2.5% when booking curve detruncation is used, HBP follows second with gains of

approximately 2.25%. Of interest are the relatively small increases for Netbid of around 1.0%--

only outperforming the very small gains achieved with EMSRb. However, under projection

detruncation the percent increase in revenues are much higher, with Netbid performing best at

more than a 3.0% gain. DAVN and HBP have comparable performance in this scenario, at about

2.75% and 3.0%, respectively.

71 Only for DAVN with pickup forecasting and projection detruncation is this trend violated.



Second, the volatility of the seat optimization routines with respect to the forecasting and

detruncation method combination is evident. The EMSRb, VEMSRb, and HBP seat optimization

routines are moderately affected by forecasting and detruncation changes (on the order of a

1.25% difference between the maximum and minimum values--see Table 4.2); DAVN is minimally

affected (0.64% difference), and Netbid is highly volatile (2.43% difference). Revenue

performance also followed similar relative trends in the DF 0.8 and the DF 1.2 cases.

Netbid's revenue performance was far below what was expected when the base case forecaster

and detruncator were used in Section 4.1.1; however, it exceeds all other seat optimization

algorithm choices when the combination of pickup forecasting and projection detruncation or

regression forecasting and projection detruncation is implemented. It therefore appears that the

driving force behind Netbid's revenue disparity is the choice of detruncation method. Simple

booking curve detruncation, while performing adequately for other seat optimizer choices, does

not perform well for Netbid; however, when projection detruncation is chosen, Netbid's

performance falls into line with the other similar seat optimization methods. Similar trends were

also seen in the DF 0.8 and DF 1.2 cases, illustrated in Figures 4.3 and 4.4, although one can see

that the percent revenue increases definitely become larger with increases in demand factor.

Table 4.2 illustrates these trends for the different demand factors tested. The first category of

data is the largest percentage difference between the various forecasting and detruncation method

combinations, under each of the different seat optimization algorithms. Such a comparison

provides information about the volatility of the seat optimizer with respect to the combination of

forecasting and detruncation changes--the larger this percentage, the more sensitive the seat

optimizer is to the forecasting and detruncation methods. The shaded blocks are the values for

Netbid under the different demand factors; as it can be seen, Netbid's variance is quite high

relative to the other seat optimization methods (more than double any other seat optimization

method, with the exception of VEMSRb in the high demand case). It should also be noted that

DAVN is the most robust method, as the variance is only on the order of 0.6%, regardless of the

demand factor.



Airline A: Revenue Increase Resulting from Yield Management Changes at DF 0.8
(vs. base case of EASib + pickup forecasting + booking curve detruncation)
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Figure 4.3: Revenue increases from yield management changes at DF 0.8

Airline A: Revenue Increase Resulting from Yield Management Changes at DF 1.2
(vs. base case of EMSRb + pickup forecasting + booking curve detruncation)
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Figure 4.4: Revenue increases from yield management changes at DF 1.2
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DF

All Combinations 0.8
Max - Min 1.0

1.2

Avg. Increase from 0.8
Forecasting Change 1.0

1.2

Avg. Increase from 0.8
Detruncation Change 1.0

1.2

Seat Optimization
EMSRb VEMSRb Netbid DAVN HBF

0.47% 0.62%. 23% 0.56% 0.70%
1.12% 1.21/ 2.4% 0.64% 1.27%
1.38% 2.41% 2:,7$% 0.62% 1.38%
0.34% 0.30% 0.37% 0.25% 0.32%

0.48% 0.47% 0.38% 0.38% 0.44%
0.56% 0.44% 0.30% 0.48% 0.56%

0.13% 0.33/ . 0.38%
0.64% 0.74% 205 0.83%
0.82% 1.97% 2,49 0.83%

Table 4.2: Relative percentage changes among forecasting/de truncation combinations

The second category of data in Table 4.2 is the average percent change in revenues resulting from

a change in the forecasting method from pickup to regression (averaged over the two

detruncation methods). This comparison details the sensitivity of the seat optimization routines to

the forecasting method alone. Here, we see that only slight increases result in all cases (the

maximum increase is only 0.56%), indicating that large impacts are not felt by the seat

optimization routines when their forecasting method is changed. The data above also allows us to

infer that although the two forecasting routines do not produce widely disparate results,

regression forecasting does indeed provide slightly higher revenues relative to pickup forecasting

in all cases.

The third and final category of data in Table 4.2 is the average percent change in revenues

resulting from a change in the detruncation method from booking curve to projection (averaged

over the two forecasting methods); this provides insight into the volatility of the seat optimization

routines to the detruncation method alone. Unlike the small changes in forecasting method, we

see here that changing the detruncation method to projection from booking curve has varying

impacts, depending on the seat optimizer choice. The shaded blocks depict the percentage gains

due to a change from booking curve to projection detruncation for Netbid (lightly shaded) and

DAVN (darkly shaded); for Netbid they are quite high (a change of 2.0-2.5% for DFs 1.0 and

1.2), while for DAVN they are rather low (only about a 0.3% change or less). The other seat

optimization algorithms experience moderate increases of approximately the same magnitude as



the increases due to forecasting changes; all are less than 1.0% with the exception of VEMSRb in

the DF 1.2 case.

Another set of comparisons can be made using the same revenue data as before, where the data is

transformed in a different way. This is done by still examining percentage revenue increases, but

this time comparing them to a base case of the same seat optimizer using pickup forecasting and

booking curve detruncation (e.g., Netbid with regression and projection would be compared to a

base case of Netbid with pickup and booking curve). What this allows is an interpretation of the

revenue gains due solely to the change in the forecasting and detruncation method under each seat

optimization algorithm, as opposed to the gains resulting from the particular combination of

methods.

Airline A: Revenue increase Resulting from Forecasting/Detruncation Changes at DF 1.0
(vs. base case of same seat optimizer + pickup + booking curve detruncation)
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Figure 4.5: Revenue increasesfromforecasting/detruncation changes

The average percentage gains using a base case of the same seat optimizer with pickup

forecasting and projection detruncation are presented in Figure 4.5 above. For a change to

regression and booking curve, a 0.45% average revenue increase is experienced; a change to



pickup and projection causes an average increase of 0.92%; and a change to regression and

projection results in a 1.32% average increase. These values confirm the same relative

performance as compared with the full base case of EMSRb, pickup forecasting, and booking

curve detruncation examined earlier. Also corroborating the same results as the full base case are

the relative performances of Netbid and DAVN. It can be seen that Netbid under projection

detruncation has revenue percentage increases of 2.13% and 2.41% for pickup and regression

forecasting, respectively--much higher than any of the other methods. On the other hand,

DAVN's percentage increases are somewhat lower than average; this is due to the good

performance of DAVN under the base case (i.e., DAVN with pickup forecasting and booking

curve detruncation performed quite well; hence, the changes in detruncation method will have

much less pronounced impacts compared to such a base case).

What do all these results tell us? Basically, we can conclude several things. A relative ranking of

the varying forecasting and detruncation combinations was obtained, pointing to the fact that

regression and projection is the best combination, while pickup and booking curve generated the

lowest revenues for all seat optimizers tested. The revenue gains from a detruncation change are

larger than those from a forecasting method change, although this is highly dependent on the

choice of seat optimizer. In terms of the seat optimizers themselves, DAVN is a very robust

method and performs rather well in all forecasting and detruncation combinations, while the other

seat optimization algorithms are more sensitive to the forecasting and detruncation routines.

Netbid is the most volatile; its performance appears to be quite sensitive to the choice of

detruncation method. Booking curve detruncation appears to be a relatively ineffective method

for Netbid, while projection detruncation causes it to perform best of all seat optimizers tested.

4.1.2.2 Actual leg loads

In addition to analyzing the overall system revenue to see how network revenues change for each

airline given a certain combination of forecasting/detruncation method as compared with some

base case set of methodologies as done in Section 4.1.2.1, further insight may be gained into why

such results may occur by analyzing other outputs of the simulation. Therefore, this section

attempts to look more into the inner workings of why the system revenue differences occur by



examining the flight leg passenger loads. For example, system revenues may increase for two

completely different reasons: (1) passenger loads generally increase on flight legs, or (2)

passenger loads generally decrease but a better passenger mix is obtained (i.e., more higher-fare

passengers and fewer lower fare passengers) on a large number of flight legs.

When examining the passenger load results, we wish to see how the different forecasting and

detruncation combinations perform under the different seat optimization methods; and while

system revenues are given for the network as a whole, passenger load analysis must be broken

down either on a flight leg basis or a path basis. Figure 4.6 uses the flight leg approach in

examining load changes by fare class. Shown are the average leg load changes72 for Airline A for

the particular fare class, expressed as the increase/decrease from a base case of pickup forecasting

and booking curve detruncation at a demand factor of 1.0. Of each grouping of three columns in

the graph, the leftmost group represents the Y-class loads, while the rightmost represents the Q-
class loads; these are given for each of the seat optimizers tested.

Average Leg Load Changes at DF 1.0
(Y-, 0-class averages from pickup +booking curve to regression +projection)
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Figure 4.6: Y-, Q-class passenger load changes from forecasting/detruncation changes

72 Averaged over all 12 flight legs of the network for the airline of interest.



Several conclusions can be deduced from the above graph. First, the passenger load changes for

any particular forecasting/detruncation combination are again highly dependent on the choice of

seat optimization routine (as was to be expected given the revenue results in Section 4.1.2.1).

While the passenger load changes are almost uniform among seat optimizers when regression

forecasting and booking curve detruncation is used, much larger changes occur when the

detruncation method is changed to projection. In fact, Netbid has the largest magnitude of load

change under projection detruncation, EMSRb has the smallest magnitude of change, and the

other three methods have similar changes, of a magnitude in between that of EMSRb and Netbid.

And for all seat optimizers, the trend is for Y-class bookings to increase when changing from the

base case, while Q-class bookings decrease at a factor of about two times as large as the Y-class

increases in bookings.

Second, the magnitude of the load changes is also dependent on the forecasting/detruncation

inputs. A change from pickup to regression forecasting, using either of the two detruncation

methods (illustrated by the dark-shaded blocks for booking curve detruncation and the difference

between the white blocks and the medium-shaded blocks for projection detruncation in Figure

4.6), causes load changes on a much lower scale than a change in the detruncation method

(represented as the medium-shaded blocks for pickup forecasting and the difference between the

dark-shaded blocks and the white blocks for regression forecasting in Figure 4.6).

Y-class passenger load changes Seat Optimizer
EMSRb VEMSRb Netbid DAVN HBP

Switch forecast 0.29 0.23 0.28 0.20 0.27
DF 0.8 Switch detruncation 0.22 0.41 0.85 0.53 0.47

Ratio (Detrunc/Fcst) 0.8 1.7 3.0 2.6 1.7
Switch forecast 0.43 0.39 0.34 0.30 0.48

DF 1.0 Switch detruncation 0.92 1.61 3.07 1.60 1.61
Ratio (Detrunc/Fcst) 2.1 4.1 9.0 5.3 3.4

Switch forecast 0.58 0.30 0.12 0.26 0.56
DF 1.2 Switch detruncation 1.63 3.48 5.23 2.78 3.20

Ratio (Detrunc/Fcst) 2.8 11.8 44.3 10.8 5.7

Table 4.3: Y-class passenger load changes for forecasting/detruncation changes



Tables 4.3 and 4.4 detail the average passenger load changes by seat optimization routine from

switching the forecasting method (from pickup to regression) and switching the detruncation

method (from booking curve to projection) while holding the other method constant under the

three different demand factors.

0-class passenger load changes Seat Optimizer
EMSRb VEMSRb Netbid DAVN HBP

Switch forecast -0.22 -0.29 -0.36 -0.23 -0.41
DF 0.8 Switch detruncation -1.04 -1.55 -2.36 -2.03 -1.86

Ratio (Detrunc/Fcst) 4.7 5.3 6.6 9.0 4.5

Switch forecast 0.77 -0.15 -0.27 0.04 -0.30
DF 1.0 Switch detruncation -4.46 -5.07 -7.58 -5.21 -6.17

Ratio (Detrunc/Fcst) -5.8 34.3 28.3 -135.9 20.9
Switch forecast 2.35 0.60 0.26 0.44 0.25

DF 1.2 Switch detruncation -5.79 -9.03 -12.90 -7.68 -8.76
Ratio (Detrunc/Fcst) -2.5 -15.1 -49.1 -17.4 -35.5

Table 4.4: Q-class passenger load changes for forecasting/detruncation changes

As can be seen in the tables above, the opposite effects generally occur for Q- and Y-class. In the

Y-class case, the average passenger load increase per flight leg varies from 0.1 to 0.6 passengers

due to a change in the forecasting method to regression forecasting, regardless of the demand

factor. However, a change to projection detruncation results in average Y-class passenger load

increases of anywhere from 1.7 to more than 10 times greater (average passenger load increases

per flight leg as high as 5.23 in the Netbid case at DF 1.2). In fact, only EMSRb at DF 0.8 has a

detruncation/forecasting impact ratio less than 1.0, pointing to the fact that Y-class loads are

much more affected by detruncation changes than forecasting changes. Additionally, as the

demand factor is increased to 1.0 and 1.2, it can be seen that the passenger load changes for

Netbid are of a much larger magnitude than those occurring under the other seat optimization

routines, indicating the volatility of Netbid's passenger loads to the forecasting and detruncation

methods.

In the Q-class case, the opposite effect occurs under demand factors 0.8 and 1.0; namely,

passenger loads decrease when the forecasting method is changed to regression, but on a lower

magnitude than the decreases experienced under the switch of the detruncation method to



projection7 3 . This trend is accentuated under DF 1.0; however, once the demand factor is

increased to 1.2, we begin to see average Q-class leg loads increasing under all seat optimization

methods as the forecasting method is changed to regression, and it is only the change to

projection detruncation under which passenger loads decrease!

Third, the increase in network revenues resulting from implementation of projection detruncation

seen in Section 4.1.2.1 appears to occur despite lower total loads, as Y-class loads generally

increase with a factor of only about 1/2 to 1/3 of the Q-class load decrease in these cases (see

Figure 4.6). This is also evident in Table 4.5 below, which compares the system average load

factor (ALF) under the possible combinations of forecaster, detruncator, and seat optimizer.

Forecasting+detruncation methoo EMSRb VEMSRb Netbid DAVN HBP
Pickup+Booking Curve 67.40 68.18 68.5 68.06 68.26

DF 0.8 Regression+Booking Curve 67.29 68.07 8,17 67.94 68.09
Regression+Projection 66.70 67.06 66.51 66.95

Pickup+Projection 66.82 67.20 66.61 67.19
Pickup+Booking Curve 75.78

DF 1.0 Regression+Booking Curve 76.33
Regression+Projection 73.80

Pickup+Projection 73.72
Pickup+Booking Curve 79.99

DF 1.2 Regression+Booking Curve 81.42
Regression+Projection 77.38

Pickup+Projection 76.92

85.21
85.79

78.30 79.12
E 78.44 79.01

75.48 74.19 75.06
75.51 74.09 75.31

83.93 85.14
74~ 84.48 85.43

79.36 77.62 78.93
78.96 77.24 78.92

Table 4.5: Average leg load factors for forecasting/detruncation changes

Note that in all cases, a change from booking curve detruncation to projection detruncation

results in a decrease in load factor; however, for Netbid, this drop is most pronounced (from 80 to

75 under DF 1.0 and from 87 to 79 under DF 1.2). In fact, a comparison of the load factors

under the different seat optimization routines for any case of forecasting, detruncation, and

demand factor shows that Netbid is highest of the range when booking curve detruncation is used,

while it is in line with the others when projection detruncation is used (VEMSRb consequently

has the highest ALF when projection detruncation is used--the shaded blocks in Table 4.5

7 Even at DF 0.8 the detruncation/forecasting ratio is always greater than 4.5.



represent the seat optimizer with the highest ALF). Therefore, Netbid's poor performance under

booking curve detruncation can be seen primarily a result of loads being too high due to low-fare

(i.e., Q-class) passengers (see Figure 4.7 below). In the opposite case, DAVN performs well

under booking curve detruncation since it is still able to restrict the number of Q-class passengers

accepted during the booking process. Again referring to Figure 4.7, it is evident that while Netbid

performs comparably with DAVN under projection detruncation, under booking curve

detruncation Netbid's Y-class loads are a bit lower and the Q-class loads are substantially higher,

resulting in a worse passenger mix and lower overall revenues.

Airline A: Average Passenger Loads for All Legs at DF 1.0
(Y- and 0-class for Netbid & DAVN)
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Figure 4.7: Average passenger loads for Netbid, DAVN

Lastly, as shown by the revenue results from Section 4.1.2.1, the forecasting/detruncation

scenario producing the highest revenue for all seat optimizers occurred when projection

detruncation was used, with the best case being the combination of regression forecasting and

projection detruncation. Consequently, this is the scenario where the load changes have the



largest magnitude. What can therefore be inferred is that implementation of projection

detruncation results in demand predictions which cause a better allocation of seats to the

individual fare classes than under booking curve detruncation, thereby resulting in higher Y-class

loads whose revenue more than offsets the revenue loss from spilled Q-class customers. Put

another way, booking curve detruncation appears to cause too many seats to be allowed to be

filled by lower-fare customers which could have otherwise been taken by higher-fare passengers,

especially in the Netbid case. But why does this discrepancy exist? One reason deals with that of

Netbid's seat inventory control--it uses bid prices where other methods implement seat allocation

limits. With seat allocation limits, excess low-fare bookings (due to higher demand than

predicted) can be mitigated to some extent by the booking limits. With bid prices, no booking

limits are in place; so all fare requests exceeding the bid price will be accepted (no matter how

many requests are received)--this will continue until the next subsequent reoptimization of the

booking limits. Hence the importance of frequent reoptimization with such seat inventory control.

Airline A: Average Leg Load Changes by Fare Class at DF 1.0
(from pickup+booking curve to regression +projection for short-haul legs)
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Figure 4.8: Leg load changes by fare class in short-haul markets at DF 1.0



As many different comparisons can be made among all the different input parameters, some

selectivity must be used to illustrate the most important results. Based on the above analysis, the

most interesting cases (and the most insightful) are those comparing the base case of pickup

forecasting and booking curve detruncation to the "best case" of regression forecasting and

projection detruncation. The next set of passenger load figures (Figures 4.8 and 4.9) therefore

compares the load changes in going from the base case of pickup forecasting and booking curve

detruncation to regression forecasting and projection detruncation only, broken down by fare

class at the two higher demand factors (DF 1.0 and DF 1.2).

Airline A: Average Leg Load Changes by Fare Class at DF 1.2
(from pickup +booking curve to regression+projection for short-haul legs)
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Figure 4.9: Leg load changes by fare class in short-haul markets at DF 1.2

The values shown in these graphs are the average passenger loads occurring on all short-haul

(500-mile) legs (i.e., those with the highest demand). From this, two conclusions can be drawn.

First, the B- and the M-class load changes are minuscule compared with those in Y- and Q-class

for all seat optimization methods. This is mainly due to the fact that passenger bookings in these

classes are much lower than bookings in Y- and Q-class, resulting from the so-called "bathtub



effect 74 ." Second, the load changes in the high demand factor cases are greatest, while those in

the lower demand factor cases are smallest (the same Y-axis scale is used for all three cases to

emphasize this point). This conforms with what is expected, as higher demand should produce

higher changes in loads; therefore, although a better seat allocation is seen on all legs with the

regression and projection combination, it is most pronounced on those with highest demand (i.e.,

DF 1.2). If this were not the case, we could conclude that the base case combination of methods

was already doing an excellent job of obtaining the best passenger mix of fare classes.

The question may arise as to why only leg loads were analyzed in this section and path loads

omitted. This is because in the PODS simulator, path (i.e., O-D) loads are less insightful than leg

loads, as different markets are favored by different methods. That is, while a long-haul path may

show the largest load increases for VEMSRb (refer to Section 2.3.1.2 for discussion), other

shorter-haul paths may have larger increases for other seat optimization methods under the same

set of algorithms. Therefore, the passenger load analysis by flight leg has provided good insight

into some of the forces driving the revenue results obtained in the simulations. However, the next

item of interest is that of the fare class closures, which themselves drive the passenger choice and

path availability components and thereby the passenger loads and overall system revenues.

4.1.2.3 Fare class closures

In addition to the passenger loads resulting from the different forecasting, detruncation, and seat

optimization combinations, another useful measure is the average time of fare class closure. For

any given ODF, the average time frame in which the fare class closed can be determined (i.e., the

point in time after which no additional bookings can be accepted). Figure 4.10 shows these fare

class closure times for a single-leg path (from the hub of Airline A to a spoke city) at DF 1.0. The

path analyzed was a short-haul, 500-mile path, with rather high demand.

The darker the shaded region, the more fare classes are open (i.e., all fare classes are available in

the black regions, while only Y-class is open in the white regions). Again, only the

74 The "bathtub effect" is the PODS phenomenon that Y- and Q-class bookings are of relatively larger magnitude

than their B- and M-class counterparts. This is primarily due to the perceived cost of the fares to business/leisure

passengers based on the relative disutilities of the different restrictions.



regression/projection combination was compared against the pickup/booking curve method. For

the Q-class fares, it can be seen that under regression/projection, the fare classes are closed for all

methods which employ a virtual fare class scheme (i.e., VEMSRb, DAVN, and HBP), and even

under pickup/booking curve only a couple of virtual bucketing methods result in Q-class fares

being open, albeit minimally). For M-class, virtually the same situation exists (in both cases

because the Q- and M-class fares occupy the lowest virtual bucket, for which very few seats are

allocated given such a medium-demand scenario). In the non-virtual class schemes (i.e., EMSRb

and Netbid), we see that while Q- and M-class fares are open for some amount of time, they close

much sooner in the regression/projection case than in the base case of pickup/booking curve.

Average Fare Class Availability at DF 1.0
Hub-to-spoke (1-leg) path
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Figure 4.10: Average fare class closure times for a hub-to-spoke path at DF 1.0

It is rather in B-class and Y-class where dramatic changes become evident under different

forecasting routines. Under regression/projection, the B-class fares always close earlier than

under pickup/booking curve; this difference is substantial for all seat optimizations except

EMSRb. Although passenger load analysis has indicated that B-class loads are much lower than

their Y-class counterparts, the day (or time frame) of B-class closure is important in that once it
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closes, only Y-class fares are available. Examination of Figure 4.10 shows that in all cases of

regression/projection except for EMSRb, only Y-class fares are available after day 20 (the fourth

time frame), and even as early as day 3 (the second time frame) in the Netbid case. As for the Y-

class fares, most of them close near the end -of the booking process regardless of forecast

method/detruncation method/seat optimizer choice, meaning that the Y-class fares were usually

available for most of the process. Bringing this into the context of relative revenue performance,

we can see that Netbid's high revenues under regression/projection can probably be attributed to

the fact that the Q- and M-class fares are never available on this path and that only the Y-class

fares are open to passengers for most of the booking process, due to higher bid prices for the

lower fare classes. In all other forecasting/detruncation and seat optimization combinations for

the same path, passengers often have Q- and M-class available, with the option of B-class being

available for a much more significant portion of the booking process.

Average Fare Class Availability at DF 1.0
Spoke-to-spoke (2-leg) path
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Figure 4.11: Average fare class closure times for a spoke-to-spoke path at DF 1.0
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Figure 4.11 presents similar data as in Figure 4.10, but this time for a path traversing two legs

(i.e., connecting two spoke cities through a hub), rather than a single-leg one. Here the path

analyzed was a 1000-mile spoke city to spoke city path with moderately high demand, although

not as high as in the first case, as the PODS system inputs were defined to have local demand

higher than connecting demand (see Section 3.2).

Many of the same trends are evident for the spoke-to-spoke path as for the hub-to-spoke path,

although here we see that for seat optimizers using a virtual bucketing scheme, M-class and even

Q-class fares are available at some time frames (this is to be expected since in the single-leg case

from before, the Q-class fares are -generally lower in price than the Q-class fares present in these

two-leg O-D markets, and are therefore assigned to the lowest virtual bucket, which ends up

receiving few or no seat allocations). Again, the difference between Q-, M-, and B-class closure

is very pronounced when changing from pickup/booking curve to regression/projection, especially

in the Netbid case. Also similar to the single-leg case, Netbid's good performance probably

results from only having the Q- and M-class fares completely closed, with only Y-class fares

available for most of the booking period despite the lower demand situation as compared with the

hub-to-spoke path (DAVN's equally high revenue in this case can be accounted for similarly). In

fact, part of DAVN's robustness can be seen in that it has the earliest fare class closures of all the

seat optimization methods in the pickup/booking curve case.

Finally, Figure 4.12 also presents similar data as Figure 4.10, but here it is for a demand factor of

0.8 (on the same one-leg hub-to-spoke path). This is of interest because we would expect that

such lower demand cases would cause later average fare class closures, which in fact can be seen.

One main difference from the DF 1.0 case is that the Q-classes are open for substantially more

time than in the DF 1.0 case, meaning that in the low-demand scenarios, more seats are allocated

to this lowest path fare class under the base case forecaster and detruncator. For all cases of O-D

seat optimizer, it can still be seen that the regression/projection combination advances the fare

class closure time substantially, causing Q- and M-class fares to close rather early in the booking

process.
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Figure 4.12: Average fare class closure times for a hub-to-spoke path at DF 0.8

Basically, what can be concluded from the fare class closure analysis is that employing the

combination of regression/projection causes the Q-, M-, and B-class fares to close earlier than in

the pickup/booking curve case. And under a medium-demand (DF 1.0) scenario, there is

evidently enough extra Y-class demand to offset the loss of lower fare class demand by the earlier

closing of these lower fare classes, resulting in higher Y-class loads and higher system revenues.

4.1.2.4 Forecasted demands

The analysis in the previous three sections has shown that revenues under Netbid are quite

sensitive to the forecasting and detruncation inputs. Therefore, another item of interest is that of

the driving force behind what influences the fare class closures, passenger loads, and system

revenues; namely, forecasted remaining passengers. Analysis of these values can also provide

insight into such phenomena as why booking curve detruncation performs poorly with Netbid.



Although our primary concern is with overall system revenues, these revenue values are driven by

passenger loads, as explained above in the passenger load analysis section. However, the

passenger loads themselves are indirectly influenced (to an extent) by another factor--forecasted

remaining demands. That is, the forecasted remaining demand for a given ODF helps determine

what booking limits or bid prices are set for the ODF; if these are set too low, high-fare

passengers may be spilled as an insufficient number of seats will be protected, and loads will likely

decrease (in lower-demand cases) or remain about the same as these seats are filled with lower-

fare passengers (in higher-demand cases).

Presented next are graphical depictions of the forecasting profiles under the different seat

optimization methods and forecasting/detruncation combinations. First, for the seat optimization

methods not using virtual bucketing (i.e., EMSRb and Netbid), Figures 4.13 and 4.14 show the

average forecasted remaining passengers by fare class and time frame (averaged over the 20

trials).

Short-Haul Leg Forecasts by Time Frame at DF 1.0
(By fare class for EMSRb)

70

60 1 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - --

-4 Y: R+P

$ 50 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Y: PU+BC

--.-- B: R+P
40 - -\- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - B: PU+BC

S 30 - - - - - - - - - - - - - - - -- - - - - - - - - - - - - - - - - - - - - - : +

-.-.-........ M: PU+BC

9) 20 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -0a : R+P0
- -- Q: pU-IBC

CMJ CY) LO CO r- CO 0 0 CMJ c~~ O C

Time Frame

Figure 4.13: Short-haul leg forecasts by time frame for EMSRb



As can be seen, the relative magnitudes of the B- and M-class forecasts and passenger bookings

are much lower than their Y- and Q-class counterparts; hence, the differences obtained by

initiating a forecasting or detruncation method change are much smaller. It should also be noted

that while forecasts for EMSRb are obtained on a flight leg basis (as EMSRb uses leg-based

control), Netbid uses path control in its seat optimization algorithm. Therefore, to make valid

comparisons, all paths traversing a leg were summed to gain an equivalent leg forecast, which can

subsequently be compared with the leg forecast made in the EMSRb case. In the examples that

follow, a leg from the hub of Airline A to spoke city A was used, for which all paths traversing

this leg were summed in the Netbid case.

Figure 4.13 illustrates the forecasting profiles for a representative short-haul, high-demand leg

when EMSRb is the choice of seat optimization method, while Figure 4.14 details the same data

but for Netbid as the seat optimization choice.

Short-Haul Leg Forecasts by Time Frame at DF 1.0
(By fare class for Netbid)
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Figure 4.14: Short-haul path forecasts by time frame for Netbid

When the combination of regression forecasting and projection detruncation is used, the forecasts

tend to always be higher in Y-class (as well as B- and M-class), but how much higher these



forecasts are differs by seat optimization method. With Netbid, implementation of

regression/projection causes Y-class forecasts to be about 50% higher than the base case on

average, while under EMSRb the same change only increases them by about 10-15% over the

base case of pickup forecasting/booking curve detruncation. On the other hand, the same

forecasting/detruncation change to regression/projection causes Q-class forecasted bookings to

go up by about 20-30% in the Netbid case, while in the EMSRb case, this change actually causes

lower forecasts for the first few time frames than in the base case! This could be due to the fact

that the pickup/booking curve combination just overestimated initial Q-class demand in the

EMSRb case--from which it took several time frames for forecasts and bookings to equilibrate.

In essence, it appears that Netbid is performing better in terms of revenue because projection

detruncation causes higher forecasts in the higher fare classes; and this demand ends up

materializing. If it did not materialize, we would expect that Netbid would perform worse as seats

in higher fare classes would be protected and then go empty, while at the same time lower fare

class passengers would be spilled. What can therefore be inferred is that Netbid performs worse

than EMSRb when the forecasts are too low, since lower forecasts induce lower bid prices on the

network paths, as passenger displacement costs are lower. On the other hand, EMSRb

technology sets booking limits for the fare classes based on the forecasts. And while a lower

forecasted demand will cause lower fare class limits, these limits cannot be exceeded by the

demand, whereas with Netbid, there is no capacity limitation on the bid prices and any demand

whose fare is greater than this bid price will be accommodated. Furthermore, as we saw that

Netbid's fare classes were closed more often, which requires more need for detruncation, thereby

giving detruncation a larger overall impact.

A hypothetical example helps illustrate this point. Assume that we have one flight leg with an

aircraft capacity of 10, two fare classes (call them Y and Q), each with demand of 10, and fares of

$400 in the Y-class and $100 in the Q-class. In the case of low forecasted demands (say 5 in each

class), the EMSRb seat optimization routine should reserve 5 seats for the Y-class and therefore

allocate the remaining 5 seats to the Q-class; and let us assume that the Netbid routine sets the bid

price of the leg to be $90. Using EMSRb, we would experience 5 Q-class bookings followed by 5



Y-class bookings with resultant revenues of $2,500, while with Netbid all 10 Q-class passengers

would be accepted since the $100 fare is greater than the bid price and would thereby displace the

Y-class customers, resulting in total revenues of $1,000. Therefore, it can be seen that Netbid's

lack of capacity restrictions can have adverse consequences if the forecasts are inaccurate and

low, and while although not beneficial for EMSRb either, the adverse effects are mitigated to the

extent that there is a limiting capacity in place.

Short-Haul Leg Forecasts by Time Frame at DF 1.0
(Y-class for BASb & Netbid)
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Figure 4.15: Forecasted Y-class demands by time frame for EMSRb, Netbid

Furthermore, Figure 4.15 above makes a simple comparison between EMSRb and Netbid and

shows for just the Y-class how the forecasted remaining demands perform under these two seat

optimization methods with the two combinations of forecaster and detruncator. Under the

pickup/booking curve combination, both EMSRb and Netbid have similar forecasts, while under

regression/projection the Netbid forecast increases substantially more than the EMSRb forecast

does, lending support to the theory that Netbid performs best under a forecasting/detruncation

combination that makes higher forecasted remaining demands in the highest fare classes.



Next, the seat optimization methods using virtual fare classes (i.e., VEMSRb, DAVN, and HBP)

were compared. Such comparisons are less insightful, however, since a Y-class fare in a short-

haul market can map into the same virtual bucket as an M- or even a Q-class fare in a long-haul

market, given the various fare characteristics of the different O-D markets. Hence, conclusions

about trends among the different fare classes are difficult to infer, although comparisons can still

be made between the different scenarios of forecasting and detruncation method combinations.

Shown below in Figure 4.16 is such a comparison--the percentage increases for the forecasted

loads by virtual fare bucket, from which it can be seen that on average, forecasts made under the

regression/projection combination are approximately 25-30% higher for each of the three seat

optimization methods employing virtual fare buckets.

Short-Haul Virtual Bucket Percentage Increases in Forecasts at DF 1.0
(for regresson +projection over pickup +booking curve)
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Figure 4.16: Virtual class percentage increases for a short-haul leg forecast

Based on the above discussion, what can be concluded? Because all the seat optimization

algorithms implemented use top-down seat protection, the forecasts with the largest impacts on

path (and system) revenues will be those in the highest fare class for a particular ODF (Y-class for
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non-virtual class seat optimization, the virtual class to which the Y-class fare maps to for virtual

class seat optimization), followed by those in the next lowest fare class, with the lowest fare class

forecasts only determining seat protection for the lowest fare class, if any seats remain which can

be protected. So the best performance combination will be the one that most accurately predicts

the demand in the highest fare class. We have already postulated that the detruncation scheme

has a far more influential impact on our demand forecasts; and based on the empirical evidence

presented above, we can conclude that among our detruncation options, the booking curve

method just produces too low of a forecast, affecting any seat optimizer that is sensitive to

underpredictions of demand.

In conclusion, analysis of the actual loads by time frame, the fare class closure results, and the

forecasted passenger loads and by departure (both on a leg basis and a path basis), has provided

some explanation about the reasons why different system revenue values under different

combinations of seat optimizer, forecasting routine, and detruncation method were occurring (see

Section 4.1.2.1). From the load analysis combined with our revenue results, we have determined

that the choice of detruncation method has a much larger impact on both loads and system

revenues. Furthermore, as projection detruncation is responsible for much of the load changes

seen under the different methods; the combination of regression forecasting and projection

detruncation produces the largest difference with respect to the base case of pickup forecasting

and booking curve detruncation; subsequent analysis will therefore be concentrated upon those

changes.

Additionally, in terms of revenue performance, we have seen that in general, revenues increase

when projection detruncation is employed, while passenger loads decrease. However, this

decrease is a result of Q-class loads decreasing more rapidly than a corresponding increase in Y-

class loads (it is this increase that is mainly responsible for the large revenue gain). Furthermore,

these loads are directly influenced by the time frames in which fare class closure occurs--the

method combinations with higher Y-class loads (and hence, revenues) correlate with those

methods in which the lower fare classes close earlier in the booking process.
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4.2 Impacts of competitive scenarios

Section 4.1 has provided us with a good analysis of the results occurring when Airline A changes

its forecasting or detruncation method in combination with its seat optimization routine.

However, in all cases analyzed, Airline B was held constant using a fixed base case of EMSRb

seat optimization technology with pickup forecasting and booking curve detruncation. Therefore,

this section will allow more freedom on the input level by comparing the relative performances of

forecasting and detruncation routines in competitive scenarios--that is, those in which both airlines

have some degree of flexibility in their choice of forecaster and detruncator. Section 4.2.1 will

examine cases where both airlines are constrained to using the same seat optimization method. In

essence, what will be obtained is a category of results which measure the relative performances of

the forecasting and detruncation methods for head-to-head competition under each of the five

specific seat optimizers. Section 4.2.2 will then analyze base cases where a seat optimization

routine other than EMSRb is used by the competitor--that is, full flexibility in forecaster,

detruncator, and seat optimizer choice is given to both airlines. Finally, Section 4.2.3 will present

a synopsis of the best combinations of results. Total system revenue will again be used as a metric

for comparing the performance, as the trends for passenger loads, forecasts, and fare class

closures are similar to what was discovered and presented in Section 4.1.

4.2.1 Seat optimization method changes by both competitors

In the scenarios analyzed in Section 4.1, Airline B used a base case of EMSRb with pickup

forecasting and booking curve detruncation, and therefore Airline A's forecasting, detruncation,

and seat optimization methods were always competing against this scenario, which was seen to be

the least revenue-beneficial of all of the combinations under all demand factors. Although such an

analysis was important in recognizing and isolating the relative trends among the methods, the

revenue results and gains for Airline A were being inflated to some degree by the fact that the

competition was always subjected to an "inferior" combination of methods. Therefore, Table 4.6

below details the percent increase in revenue over the base case of EMSRb with pickup and

booking curve75 at a demand factor of 1.0, when both airlines use the seat optimization method

7 The percent increase in revenue due solely to the forecasting/detruncation method can still be computed simply
by taking the desired value in the table and subtracting the value in the first row (e.g., for the 2.47% revenue
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listed in the top of the table (Airline B will still be using the base case of pickup forecasting and

booking curve detruncation). Table 4.7 presents the same information for a demand factor of 0.8.

Airline A
Forecast/Detruncation
Pickup/Booking Curve
Regression/Booking Curve
Regression/Projection
Pickup/Projection

EMSRb VEMSRb

0.40%
1.12%
0.55%

0.50%
0.93%
1.48%
1.05%

Netbid
0.15%
0.65%

DAVN HBP
0.60%
0.99%

1.15% 1.68%
0.88% 1.28%

Table 4.6: Percent revenue increases for identical seat optimization methods at DF 1.0

Airline A
Forecast/Detruncation
Pickup/Booking Curve
Regression/Booking Curve
Regression/Projection
Pickup/Projection

EMSRb VEMSRb Netbid

0.35%
0.47%
0.15%

0.09%
0.41%
0.60%
0.36%

-0.15%
0 34%

DAVN HBP

W 10.08%
0.42%

0.53% 0.63%
0.37% 0.40%

Table 4.7: Percent revenue increases for identical seat optimization methods at DF 0.8

The tables above highlight several important points. First, the same relative trends seen in Section

4.1 still hold here. That is, Netbid performs best when projection detruncation is used, while

DAVN is the best seat optimizer under booking curve detruncation (the shaded blocks represent

the highest revenue value for the forecasting/detruncation combination). Furthermore, HBP can

be considered a very "consistent" seat optimizer, in that it outperforms DAVN in the projection

detruncation cases by more than it is outperformed in the booking curve detruncation ones.

Second, it is evident that the revenue increases were due in some part to the better seat

optimization routines and not completely to the fact that the competition was using the least

beneficial combination of methods. This can be more clearly illustrated by Figure 4.17.

increase with Netbid/regression/projection, 0.15% is due to Netbid alone, while 2.47 - 0.15 = 2.32% is due to the
better forecasting and detruncation combination).



Airline A: Revenue Performance of Similar Seat Optimizers at DF 1.0
(Airline B with same seat optimization+pickup+booking curve)
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Figure 4.17: Revenue performance of similar seat optimizers for both competitors

Upon examination of the graph, it can be seen that while the percentage increases in revenue due

to both competitors changing their seat optimization routine only (illustrated by the black

columns) are much smaller than the gains obtained by Airline A when it changes its

forecasting/detruncation inputs (illustrated by the areas above the black columns). Additionally,

while the percentage increase is almost uniform by seat optimization method in changing to

regression/booking curve (depicted by the darkly-shaded blocks), one can see that when

projection detruncation is implemented, the percentage gains under Netbid are much higher than

average; those under DAVN are much lower (represented by the white and lightly-shaded blocks).

This reiterates the fact about the robustness of DAVN and the volatility of Netbid to

forecasting/detruncation inputs, even when the competition is also using an equivalent seat

optimization method.
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4.2.2 Alternative yield management base cases

While Section 4.1 detailed the analysis of changes by Airline A against a fixed base case of

methodologies used by Airline B and Section 4.2.1 described cases in which both airlines used the

same seat optimization method (but Airline B still had a fixed base case of pickup forecasting and

booking curve detruncation), this section expands into the cases where all combinations of

forecasting, detruncation, and seat optimization are possible for both airlines. What this provides

is a representation of the simulated characteristics of various scenarios of head-to-head

competition. It is useful in that one can deduce the best set of inputs to use for a particular

airline, given the methodological inputs of the competing airline; in addition to a set of results

indicating the best performance cases to use overall, given that the competition is using one or

more characteristic methodologies.

There are numerous possible cases of different combinations of forecaster, detruncator, and seat

optimizer which can be compared for the two airlines; however, these cases can be simplified into

five major categories--one for each of the different seat optimization methods used by the

competition (Airline B). Within each of these five categories, there are still numerous head-to-

head cases which occur (depending on the forecasting and detruncation method choices for both

airlines as well as the seat optimization algorithm chosen by Airline A). Hence, the following

discussion will provide some insight into the trends observed under different scenarios when it is

known which seat optimizer is being used by the competition. From this, a preferred set of inputs

can be inferred for Airline A based on the PODS simulation results.

For the scenario where the competing airline chooses VEMSRb seat optimization technology,

revenues are still only moderately affected by forecasting/detruncation method changes, although

to a higher degree than with EMSRb technology. Similar to before, if the competition will be

using VEMSRb, Airline A should again choose Netbid if they will be using projection

detruncation, and DAVN if booking curve detruncation will be used.

As has been shown earlier, Netbid's success is highly dependent on the choice of the combination

of forecasting/detruncation method; changing the detruncation method to projection for Airline B
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has the same expected effect if it is implementing Netbid. Such cases result in moderate decreases

in revenue for Airline A (except when Airline A also uses projection detruncation, which then

causes slight revenue increases for both airlines). In addition to the usual case of Netbid

performing best when projection detruncation is used by Airline A and DAVN otherwise, we see

that HBP is also a good candidate for competing against a carrier using Netbid with projection

detruncation.

The DAVN seat optimizer has been shown to be a highly robust choice; when it is implemented

by the competition, revenue gains for Airline A are either sharply decreased or often negative,

depending on its combination of forecaster/detruncator. In the cases where revenue gains do

occur, the forecast/detruncation method changes produce gains which are generally less than

0.5%, mainly because of DAVN's good overall performance and the subsequent lack of gains due

to "competitor feedback" (as discussed later in Section 4.4.2). As in the Netbid case, HBP is also

an effective tool for competing against an airline using DAVN.

An interesting note should be made about the HBP seat optimization method--while it never ranks

first as a method choice under any situation (only DAVN and Netbid do), it does however

perform very consistently. That is, while DAVN performs best under booking curve detruncation

and Netbid under projection detruncation, HBP is not that far behind either one, and it performs

moderately better than either of those seat optimization methods under the inferior choice of the

two detruncation methods (i.e., booking curve detruncation).

The final step in the analysis is that of fully competitive scenarios, where both Airlines A and B

have the ability to vary any of their forecasting, detruncation, or seat optimization methodologies.

Illustrated in Tables 4.8 and 4.9 are just two examples of the myriad of different combinations

possible between the two airlines--the examples shown are those for which the competitor (Airline

B) is using one of the "best" combinations of methodologies. The first, in Table 4.8, shows the

revenue percentage increases (or decreases) from a base case of DAVN with pickup forecasting

and booking curve detruncation, for both Airlines A and B in the case where Airline B is using

DAVN with regression forecasting and projection detruncation.
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Airline A Seat Optimizer
Forecast/Detruncation EMSRb VEMSRb Netbid DAVN HBF

PU+BC -2.13% -0.74% -1.22% ----- -0.40%
Airline A R+BC -1.77% -0.29% -0.79% -0.08%

R+P -1.21%
PU+P -1.71% -0.12% -0.07%
PU+BC 1.80% 0.34% 1.07% 0.00% 0.27%

Airline B R+BC 1.83% 0.26% 1.03% -0.03% 0.26%
R+P 1.14% -0.33% -0.20% -0.27% -0.54%
PU+P 1.29% -0.25% -0.19% -0.25% -0.48%

Table 4.8: Revenue percentage gains vs. Airline B using DAVN/regression/projection

We have seen that DAVN performs rather well in all cases, especially those with regression

forecasting and projection detruncation. Therefore, when the competition is using such a yield

management combination, it can be seen that the revenue gains for Airline A are much lower in

magnitude, especially when the inferior forecasting and detruncation methods are used (positive

revenue gains over the base case are shaded). For example, we can see that no positive revenue

gains for Airline A can be achieved with the base case of pickup forecasting and booking curve

detruncation, and for regression forecasting with booking curve detruncation the only positive

revenue increases are obtained with DAVN. It is only with projection detruncation (and more

specifically the regression/projection combination) that positive revenues can be achieved for the

other seat optimizers such as Netbid and HBP. In Table 4.9 we again see the revenue percentage

increases (or decreases) from a base case of Netbid with pickup forecasting and booking curve

detruncation, for both Airlines A and B in the case where Airline B is using Netbid with

regression forecasting and projection detruncation (as this was the "best" case of methodologies).

Airline A Seat Optimizer
Forecast/Detruncation EMSRb VEMSRb Netbid DAVN HBF

PU+BC -2.15% -0.66% -1.22% ----- -1.20%
Airline A R+BC -1.81% -0.24% -0.81% -1.27%

R+P -1.27%
PU+P -1.74% -0.11% -0.05%
PU+BC 1.74% 0.23% 0.95% 0.00% 0.67%

Airline B R+BC 1.78% 0.15% 0.91% -0.05% 0.87%
R+P 1.05% -0.41% -0.29% -0.27% -0.54%
PU+P 1.18% -0.33% -0.29% -0.23% -0.40%

Table 4.9: Revenue percentage gains vs. Airline B using Netbid/regression/projection
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Here similar trends to Table 4.8 are seen, in which negative revenue gains are obtained by Airline

A under booking curve detruncation, while small revenue gains can be achieved with projection

detruncation. Basically, this synopsis illustrates that when the competition implements one of the

"best" yield management combinations, positive revenue gains can be achieved mainly by

improving the detruncation method on the different O-D seat optimizers, where the magnitude of

these gains varies by seat optimization method (note that no case of forecaster/detruncator yields

positive revenue gains for Airline A if it uses EMSRb in such a case).

4.2.3 Best forecasting/detruncation method for seat optimization methods

Another approach to the analysis of the relative performance of the seat optimization routines can

also be taken in order to answer the question of how large the revenue gains are for each method

if the "best" case of forecaster and detruncator is always being used. Figure 4.18 answers this

exact question at three different demand factors by showing the percent revenue gain achieved by

Airline A over a base case of EMSRb with regression forecasting and projection detruncation.

Airline A: Relative Performance of O-D Seat Optimization Routines in the "Best" Case
(vs. base case of BASRb + regresson forecasting + projection detruncation)

2.50%

2.00%

1.50%
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Figure 4.18: Revenue performance of O-D seat optimization routines in the "best" case
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We can see that at the demand factor of 1.0, the gains exceed 1.5% in all cases of seat optimizer,

and they are almost 2.5% (with the exception of DAVN) under a demand factor of 1.2. What this

basically illustrates is that although our earlier results showed the revenue gains from the seat

optimizers to be partially due to the less desirable forecasting and detruncation methods, even

when the "best" case of forecaster and detruncator is implemented as the base case, significant

revenue gain can still be achieved by implementation of O-D seat inventory control methods.

In terms of answering the question about the "best" set of algorithms, cases for which Airline B is

using EMSRb have already been analyzed in Sections 4.1 and 4.2. Given that the competition

(Airline B) is using EMSRb, Airline A's best choice has been shown to be Netbid when projection

detruncation is used by Airline A, and DAVN when booking curve detruncation is chosen. These

results reproduce themselves for all other options of forecasting and detruncation method when

Airline B uses EMSRb seat optimization, and in fact, for all combinations of algorithm for either

airline. Only the magnitude of the revenue gain/loss depends on the combination of the

methodologies for the two airlines (refer to Appendix A.2 for the charts illustrating the revenue

performances under all different combinations).

The best choices of forecasting and detruncation based on the analysis from Section 4.2.2 can also

be presented for the airline of interest (Airline A) given its choice of seat optimization method.

For Airline A using a given seat optimizer, its best combinations of forecaster and detruncation

method are shown in Table 4.10 below.

EMSRb regression/projection ---

VEMSRb regression/projection Any combination but pickup/booking curve

Netbid regression/projection* Do not use booking curve detruncation
DAVN regression*/(proj. or b.c.) Pickup ok vs. EMSRb, VEMSRb, Netbid

HBP regression/projection Any combination but pickup/booking curve

* indicates this appears to be the more important factor for revenue gains

Table 4.10: "Best" combinations offorecasting/detruncation methods
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Another examination of the analysis can be taken in which the best choice for the seat optimizer

can be determined given a selected set of forecasting/detruncation method inputs. Therefore, if

Airline A will be using a given forecasting/detruncation combination, their optimal choice for a

seat optimizer is given in Table 4.11 below.

Pickup/booking curve DAVN ---

Regression/booking curve DAVN HBP second, VEMSRb third
Regression/projection Netbid (HBP ok) DAVN/VEMSRb slightly lower

but still very good
Pickup/projection Netbid (HBP ok) DAVN/VEMSRb slightly lower

but still very good

Table 4.11: "Best" choices of seat optimization routines

In a general sense, it is evident that the combination of regression forecasting and projection

detruncation consistently yields the highest revenue regardless of the seat optimization routine

selected. However, if such a combination is not able to be implemented, the next best course of

action can be taken based on the simulation results summarized in the preceding tables.

4.3 Changes in the 'rparameter

In addition to an analysis of the passenger and revenue effects of forecasting/detruncation method

combinations, another study was performed where the parameter of T in the PODS input file was

changed. Recalling from Section 2.2.2, t is the user-defined guess for the percent of time by

which we underestimate the demand given that a particular flight closed, and is illustrated and

defined by Figure 4.19. Until now, an initial x value of 0.15 has been used in all PODS 7b

simulations; therefore, the purpose of this section is to analyze the results of changes in this

parameter to ascertain the appropriateness of this value, and also to determine the sensitivity of

the revenue results to the t parameter.
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Figure 4.19: Constrained demand distribution for projection detruncation

Again, from Section 2.2.2 and Figure 4.19 above, t is defmed as the ratio of the shaded area B

(i.e., demand is greater than what we projected) to the combined areas A+B (i.e., demand is

greater than capacity on all closed observations). Hence, a r value of 0.15 means that for the

closed observations, our estimate of the projected demand was lower than the actual demand

value 15% of the time. Establishing this mark along with the known capacity mark, the normal

distribution permits us to thereby infer the projected demand, (labeled in Figure 4.19), for all

given flights.

In simulations testing the sensitivity of projection detruncation to the r parameter, T was varied

from an initial level of 0.15 to 0.25 and 0.3576. The obtained results indicate that changing T from

0.15 to 0.25 or 0.35 affects system revenue performance differently under different seat

optimizers, although the effect is limited. For example, with Airline B using the combination of

EMSRb with pickup forecasting and booking curve detruncation (i.e., the full "base case"

scenario), Airline A experienced a slight decrease in revenue both for T = 0.25 and for x = 0.35

when either EMSRb or VEMSRb was used. However, only minimal changes were encountered

using any of the other seat optimization methods (i.e., Netbid, DAVN, and HBP). These results

can be seen in Figure 4.20, where the combinations of regression/projection and pickup/projection

were the tested methods of forecasting/detruncation for Airline A. The maximum change in

76 r = 0.15 had been used in all previous simulations.
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revenues due to variation of the parameter c from 0.15 to 0.35 (i.e., the maximum variation

between any set of grouped data columns) was 0.6% or less, with the exception of EMSRb,

which had variation on the order of 1.3-1.4%.

Airline A: Projection Detruncation with Tau = 0.15, 0.25, 0.35 at DF 1.0
(vs. Airline B with EM SRb+pickup+booking curve)

.0 "a z C
a: :8 >Z
U) V

Seat Optim ization
Reg ress; ion +Projection

UO Ci)

Method

*Tau=0.15
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N Tau=0.35

Pickup+Projection

Figure 4.20: Effect of r with Airline B using booking curve detruncation

Airline A: Projection Detruncation with Tau = 0.15, 0.25, 0.35 at DF 1.0
(vs. Airline B using EMSRb+pickup+projection)
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Figure 4.21: Effect of 'r with Airline B using projection detruncation
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The aforementioned results compared the effect of changes in r for Airline A only, as Airline B

was using booking curve detruncation. If we therefore change Airline B's methodology to

EMSRb with pickup forecasting and projection detruncation--so that both airlines' projection

detruncation methods are now sensitive to changes in r--a new set of results is obtained, shown in

Figure 4.21.

Here we see that EMSRb and VEMSRb are not as sensitive to changes in t, while Netbid,

DAVN, and HBP appear to be slightly more impacted by them (Netbid appears to have the largest

sensitivity to changes in u). This most likely explanation for this is because Airline B is now using

projection detruncation, which causes their revenue to increase compared to what was

experienced under booking curve detruncation; some of this improvement comes at the expense

of Airline A's revenue (note that the absolute revenue values are lower in Figure 4.21 than in

Figure 4.20). Hence, in the former case, Airline B was not using projection detruncation so

Airline A was capturing higher revenues, regardless of the choice of the t value (i.e., the t value

was not as important because Airline A had a superior detruncation method to begin with).

However, in the latter case of a more competitive situation (i.e., both airlines using projection

detruncation), such changes in t will now have larger impacts on network revenues. This is

corroborated by the fact that the seat optimization routines which perform well under projection

detruncation (i.e., Netbid, DAVN, and HBP) are those in which a slight revenue increase is seen

for increasing t in the latter case (Figure 4.21). In any case, the magnitude of the variation

induced by changes in the t parameter from 0.15 to 0.35 is still on the order of 0.5%, with the

exception of DAVN, for which it barely exceeds 1.0%.

4.4 Factors contributing to revenue increases

The final section of this chapter incorporates the trends observed in the preceding sections to

provide some explanation for the factors behind the increases in revenues observed. More

specifically, we have seen that regression forecasting generally results in higher revenues, as does

implementation of projection detruncation. These revenue increases have resulted from a better

passenger mix due to better fare class protection and higher forecasted demand. However, the



reasons why the regression forecasting and projection detruncation algorithms cause higher

forecasts of demand have not been analyzed. Therefore, the purpose of the following subsections

is to lend insight into the performance of the different forecasting, detruncation, and seat

optimization method themselves.

4.4.1 Explanation of forecasting/detruncation method performance

Although both regression forecasting and projection detruncation have resulted in overall system

revenue increases, the gains from a change to projection detruncation have been much larger than

those from a change to regression forecasting. This is explained by comparing the forecasts of the

different methods. In essence, the regression forecaster is more similar to its pickup counterpart

in forecasted demands than the projection detruncator is to its booking curve counterpart (see

Sections 4.1.2.2 and 4.1.2.4 for discussions of passenger loads and forecasted demands,

respectively).

Another question can be asked as to why regression forecasting outperforms pickup forecasting.

Regression forecasting should theoretically perform better than simple pickup forecasting, as

pickup forecasting is just a constrained form of regression forecasting, as explained in Section

2.1.2. Allowing an extra degree of freedom by allowing the slope coefficient to vary should help

make a more accurate forecast.

A third question can be asked comparing the detruncation methods--why does projection

detruncation outperform booking curve detruncation? Projection detruncation was seen to

perform better than booking curve detruncation with each of the seat optimization routines,

primarily due to the fact that higher forecasted demands were realized. But why is this the case?

It is inherent in the way in which booking curve detruncation unconstrains the demand--for the

periods in which a fare class is closed, the trends on unclosed flight observations are applied to

this period of the closed flights. However, the simple fact that a flight was unclosed means that

demand was lower than projected, and therefore, the booking curve multiplier ratios are only truly

reflective of these lower-demand flights and are probably too low to be applied to flights with

high demand (i.e., those that closed at some point in the booking process). Application of these
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ratios to the higher-demand flights generally results in extrapolations of the booking data which

produce forecasts that are too low. Projection detruncation addresses this problem by using a

demand distribution and projecting demand on closed flight observations based on an assumption

of how often we underpredict the actual demand. This is done by estimating an average demand

which incorporates both closed and unclosed flights until this mean value exhibits convergence.

Furthermore, another complicating factor of the actual accuracy of the detruncation routines is the

number of times which detruncation is actually performed. As demand becomes higher, fare

classes tend to close more often, and therefore more detruncation needs to be done. So a method

which tends to underpredict demand as it unconstrains it (as booking curve detruncation does)

will thereby need to perform detruncation more frequently as the demand becomes higher.

4.4.2 Explanation of seat optimization algorithm performance

As for the seat optimization algorithms themselves, we have seen that most have performed in the

network case according to our initial hypotheses, with the exception of Netbid. The EMSRb

algorithm should theoretically have the lowest performance, since it is allocating seats on a leg

basis simply by fare class designation, with no adjustment for fare class value or passenger

displacement costs. VEMSRb is an improvement on this and should therefore perform better as it

is accounting for fare class value in determining which itineraries to accept/reject, but since no

displacement costs are being calculated, it is still "greedy" and not aptly suited for implementation

on an O-D network.

DAVN and HBP, on the other hand, were the methods which resulted in the most consistent

overall performance. HBP performs well in that it accounts for passenger displacement costs

using a bid price scheme with EMSR technology. It compares the EMSRs of each leg of the

itinerary while also accounting for the fact that a local customer may be displaced on either of

these legs. DAVN does well because it is a method which ranks itineraries by fare class value,

while also accounting for passenger displacement costs by calculating pseudo fares derived from

shadow prices (something that VEMSRb fails to do). Hence, it too is a "greedy" scheme (but not

overly "greedy"), as passenger displacement costs are accounted for.
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Upon the initial results of Netbid's poor performance under the base case forecaster and

detruncator, possible reasons for its poor performance were put forth; namely, that it was unable

to perform well on such a small network, that solving the deterministic linear program was not

optimal, and that the forecasting and detruncation methods being used were not compatible with

the seat optimizer itself. This third reason has been examined within the scope of the thesis, and it

has been found that such reasoning was correct--Netbid performs poorly when the forecasted

demands are too low. Why is this? The answer lies in the way in which Netbid controls seat

inventory--it does this using a bid price scheme, with which the control is not as tight (refer to

Section 4.1.2.4 for an example). Hence, while the current simulation still has Netbid solving a

deterministic linear program on a small network, revenue gains commensurate with (and

exceeding) those achieved with other O-D seat inventory control methods were able to be

obtained with a better choice of forecaster and detruncator.

A final reason for the better revenue performance of the forecasting and detruncation methods is

that of competitive feedback effects within the PODS simulator. While most traditional

simulators model the airline booking process with independent demands by fare class and for each

carrier, the PODS model has full passenger choice of path and carrier, as explained in Section 3.1.

Competitive feedback effects therefore play a large role in accentuating the revenue gains or

losses under a variety of yield management methods. For instance, if Airline A's combination of

forecaster, detruncator, and seat optimization algorithm is superior to that of Airline B, we would

expect the revenues for Airline A to increase more drastically due the interaction between the two

competitors. That is, if the yield management system for Airline A can do a better job of rejecting

low-fare Q-class demand and protecting seats for the high-fare Y-class demand (assuming this

demand materializes), it will tend to spill a larger number of Q-class passengers. Given that

Airline B has a yield management system which is less able to reject such customers, it will in turn

fail to reject many of these requests and thereby fill more of its aircraft with a lower-revenue

passenger mix. And since we know that the lower-fare customers generally tend to book

reservations earliest in the process, acceptance of too many of these customers by Airline B will

subsequently cause spill of higher fare customers later in the booking process--customers which

are then spilled to Airline A and become extra Y-class demand (for which seats will have been
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protected). High acceptance of such passengers may then cause Airline A's Y-class to close

down more often, for which the detruncation algorithm will further increase its subsequent

demand forecasts, and this cycle will then be repeated.

4.4.3 Comparison of results with prior findings

Up to this point, few studies have examined the relative impact of O-D seat inventory control

methods under different forecasting and detruncation methods, so direct comparisons cannot be

made. However, a selected number of papers have been written comparing the performance of

forecasting (and detruncation) methods, of which three have results from which interesting

comparisons to this research can be drawn.

First, Williamson7 7 examined different network seat inventory control models (some of which

were tested here), and tested their performance relative to simple EMSRb seat optimization. The

primary item of note is the performance of Netbid--it resulted in relatively little revenue gain over

the EMSR algorithm, except at very high load factors. Second, Wickham78 compared several

different forecasting models and measured their accuracy, using actual airline data. Notable

results were that pickup forecasting generally outperformed regression except in the highest

booking classes (this is contrary to what was found in this thesis). However, the simulator used

by Wickham had no competitive feedback effects present, which could change the relative

performance of these methods. Furthermore, a general positive bias was found in almost all

forecasting methods, meaning that the forecasted values were higher than the actual demands.

Since forecast accuracy is not able to be measured under a correlated demand situation as in

PODS, no similar comparison with actual demands can be done. However, it was indeed seen

that there was a positive bias of the regression forecaster and the projection detruncator relative

to the base case methodologies of pickup forecasting and booking curve detruncation,

respectively (i.e., the regression and projection methods always produced higher forecasts).

77 Williamson (1992), see Section 6.1.3.
7 Wickham (1995). Section 4.4 and Chapter 5 provide general summaries of the results.
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Finally, Skwarek 79 tested forecasting and detruncation impacts on the PODS simulator itself,

although these tests were done for the single-leg case with only EMSRb seat inventory control

technology. For the forecasting methods tested, he found that regression forecasting

outperformed pickup, except in the highest-demand cases (directly the opposite effect seen by

Wickham!); the lower-demand cases match with what was found in this thesis. In terms of

detruncation results, Skwarek found that projection and booking curve performed about the same,

except at the highest demand factors, in which the higher unconstraining demand on closed flights

caused much higher revenue for projection detruncation. This phenomenon was accentuated in

the PODS results in this thesis when both detruncation methods were tested in combination with

the O-D seat optimizers.

Basically, this chapter has presented the general results of the PODS simulations tested and

analyzed in regards to forecasting and detruncation impacts in combination with the seat

optimizers. And while we have seen that while previous results and conclusions about the seat

optimizers are still valid, these results may change due to different forecasting/detruncation

methods, given the volatility of the different yield management algorithms to such inputs. The

observed trends remained more or less the same regardless of the competitive response of the

competitor, and best-case scenarios of methodologies for different competitive situations were

presented. A general summary of the findings is the primary focus of the next chapter.

7 Skwarek (1996), see Sections 7.2.1 and 7.2.2.
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Chapter 5

Conclusions

The fifth and final chapter of this thesis provides a review of its objectives along with a summary

of the results obtained in the PODS simulations performed. Finally, questions still unanswered by

this research are posed, from which possible or interesting directions for new research emerge.

5.1 Review of thesis objectives

The preceding chapters of this thesis have focused on a variety of different methods for

forecasting and detruncation as applied to airline revenue management using the PODS simulator

developed at Boeing. The first chapter provided a brief introduction to revenue management and

its forecasting and detruncation components, while the second chapter discussed in detail the

different forecasting and detruncation methods tested, along with shorter descriptions of the seat

optimization routines tested in this latest version of PODS. The third chapter then provided a

description of the PODS simulator and its inputs, from overall market-level inputs (e.g., the route

network structure) to airline-specific inputs (e.g., the choice of forecasting methodology); and

output performance metrics were also discussed. The fourth chapter then explored the impacts

resulting from variations in combinations of the PODS inputs; primarily those of forecasting,

detruncation, and seat optimization methodology under three different demand factors.

As discussed, there were two basic objectives for the experiments undertaken. The first was to

expand previous PODS-related research to a network scenario (here, six individual spoke cities,

two connecting airport hubs, and two competing airlines) and analyze the effects of different

forecasting and detruncation algorithms in the yield management context. These results could

then be compared with earlier revenue management simulations in order to determine the sources

of gains from yield management system improvement (i.e., from the seat optimization algorithm

itself or rather the choice of forecaster/detruncator). The second was to simulate a more real-
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world network scenario, where each competitor has the ability to vary its choice of seat

optimization, forecasting, and detruncation method, and to thereby determine which

forecasting/detruncation methods perform best in combination with the different seat optimization

routines tested.

From these objectives came two primary goals: (1) to obtain a set of simulated airline network

results highlighting the differences among combinations of forecaster, detruncator, and seat

optimizer while gaining insight into why different seat optimization systems perform differently

under the different methods, and (2) to find a "best-case" combination of algorithms to determine

the best network revenue management options under a variety of different competitive scenarios.

These goals were achieved based upon various analyses of different output performance

measures; namely, system revenues, passenger loads, fare class closure rates, and forecasted

demands.

5.2 Summary of findings and general results

The objectives described above were achieved by first analyzing scenarios in which the airline of

interest had the ability to vary its forecasting and detruncation algorithms while the competing

airline was held to a base case set of algorithms, and later moving to scenarios where both airlines

were free to vary their forecasting, detruncation, and seat optimization methods.

Initially, system revenue values for Airline A were analyzed to gain insight into the relative overall

performance of the various combinations of methods. Previously obtained PODS network results

with a base case of pickup forecasting and booking curve detruncation at a demand factor of 1.0

were reproduced80 , and subsequent comparisons made between this base case and other yield

management scenarios with different combinations of algorithms. Such results showed that while

two of the four O-D seat inventory control methods tested (i.e., DAVN and HBP) performed

rather well by having system revenue gains on the order of 2.0-2.5% over the base case, the

Netbid seat optimizer ended up with rather disappointing revenue percentage gains at less than

1.0% over the same base case.

80 Lee (1998). Refer to Section 4.1.3 for results.
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Changes were then implemented in the forecasting and detruncation methods for the airline of

interest, to see whether the relative ranking of O-D methods remained consistent at a demand

factor of 1.0 (recall that Airline B was still using EMSRb with pickup forecasting and booking

curve detruncation). While the DAVN and HBP revenue gains over the base case remained

relatively the same (still in the range of 2.5-3.0%), indicating little sensitivity to the choice of

forecasting or detruncation methodology; the gains for Netbid were seen to increase drastically in

the cases where projection detruncation was implemented (to more than 3.0% over the base case).

Hence, Netbid became the method with the highest simulated revenue, given the same set of

competitive conditions when projection detruncation was used, while it had been performing quite

poorly when booking curve detruncation was used.

One could ask whether these gains were being inflated by the fact that the base case was always

using the least revenue-beneficial EMSRb seat optimization. Therefore, further analysis

compared the results to a. base case of pickup and booking curve using the same seat optimizer at

a demand factor of 1.0, under which it was seen that a change to regression forecasting from

pickup increased revenues by about 0.5%, regardless of the seat optimization method. However,

the change from booking curve to projection detruncation results in increases of approximately

0.5-1.0% except for Netbid, which saw gains as high as 2.0%.

From these analyses, conclusions were drawn about the "robustness" of the various methods

tested. It was seen that DAVN is a robust method, and HBP performs rather consistently also.

However, Netbid is quite susceptible to the choice of detruncation method; poor performance

resulted from the use of booking curve detruncation while excellent performance occurred when

projection detruncation was used. The overall best choice for forecasting and detruncation was

regression/projection, regardless of the seat optimization method, while the best choice for seat

optimization was Netbid if projection detruncation was used and DAVN when booking curve

detruncation was chosen.

Flight leg passenger loads broken down by fare class were also analyzed to see what changes took
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place under the different forecasting and detruncation methods, and to provide insight into the

revenue results summarized above. In the base case scenario of pickup forecasting and booking

curve detruncation, it was seen that Netbid's leg load factors were appreciably higher than those

under the other seat optimization routines, primarily due to extra Q-class (low-fare) passengers.

However, once the forecasting and detruncation methods were changed, passenger load changes

also occurred. In changing the forecaster from pickup to regression, the leg load changes were

minimal under both booking curve and projection detruncation. But when the detruncator was

changed from booking curve to projection (under either pickup or regression forecasting), the

changes in the passenger leg loads were more pronounced. The Y-class (high-fare) loads

increased, while the Q-class (low-fare) loads decreased at 2-3 times the magnitude, resulting in

overall lower total leg loads (the B- and M-class loads were relatively small and changes in them

were negligible). These effects were most pronounced for Netbid. Hence, the higher revenues

seen were generally a result of a better passenger mix due to increased rejection of lower fare

passengers and more seat protection for higher-fare customers, as will be discussed next.

Because the driving force of passenger loads is fare class closures, these were subsequently

examined. It was seen that the regression/projection combination caused earlier fare class

closures than the pickup/booking curve combination for all cases of seat optimization. In fact,

with the regression/projection combination, only Y-class fares became available for a large portion

of the booking process on a sampled high demand leg, while the lowest classes (M, Q) were

almost always closed under best method combinations (at least in the higher demand scenarios).

Therefore, this forecasting/detruncation combination is able to reject lower fare classes better than

the pickup/booking curve combination.

To wrap up the base case analysis, the forecasted remaining demands were examined for the cases

of pickup/booking curve and regression/projection. While difficult to interpret for seat

optimization methods using virtual classes (as different ODFs map to different virtual buckets),

EMSRb and Netbid showed pronounced differences between the two combinations. With

regression/projection, forecasts were higher in all fare classes, although those in Y- and Q-class

were much larger than those in B- and M-class. It should be noted that the forecasts in the
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highest fare class are the most important and have the largest influence on revenues, as top-down

seat protection is used and seats protected accordingly. So larger Y-class forecasts will produce

higher revenues if the extra protected seats can be filled (i.e., if there is enough demand). In the

simulations here, it is seen that pickup/booking curve produced forecasts which were too low.

When these forecasts were increased by using regression/projection, the demand was sufficient to

fill the extra protected seats, resulting in a better passenger mix and higher system revenues.

All of the above results were in scenarios where Airline B was fixed using its base case of EMSRb

with pickup forecasting and booking curve detruncation. Additional tests where the two

competitors have the same seat optimizer were done, although the trends appeared similar; that is,

most of the revenue gain still comes from a better forecasting/detruncation combination, with

Netbid having the most pronounced increase of the different seat optimizers. When full flexibility

and choice of forecasting, detruncation, and seat optimization algorithm was given to both

competitors, the relative rankings still held. Regression/projection was always the best

combination, regardless of seat optimization choice or competitive situation; otherwise, the choice

of seat optimizer should be made according to the detruncation method used. Netbid performs

very well with projection detruncation, although DAVN and HBP do only slightly worse, while

DAVN and HBP are the best choices if booking curve detruncation is to be used. Lastly, reasons

behind the performance of the different methods themselves were put forth.

5.3 Unanswered questions

Although this thesis has presented a rather comprehensive set of network simulation results from

PODS which relate forecasting and detruncation impacts to airline network revenue management,

there are still a number of questions of interest yet unanswered by the analysis of results presented

in Chapter 4. Some of these are discussed below.

First, what were the actual passenger demands by flight leg or market? In practice, this is

impossible to determine, given that we are modeling correlated demands with passenger path

choice, as the demand by ODF is itself a function of the path availability. However, knowing the

actual demands would allow for comparison with the forecasted demands from which



determinations could then be made as to which forecasting method was most accurate under the

different seat optimizers and why. That is, are the revenues highest for a given forecasting

method because those forecasts were the most accurate, or rather because they were favorably

overpredicted or underpredicted (i.e., maybe it is better to consistently overpredict/underpredict

demand under certain demand conditions)?

Second, what were the actual values determined by each individual forecasting and detruncation

algorithm and how did these values compare across methods? Knowing this would allow a

relative comparison of the methods themselves and would lend some insight into the results

building upon the first question above; namely, the reasoning behind why revenues were higher.

The relatively good performance of projection detruncation could have resulted from too little or

too much detruncation, or instead because booking curve detruncation produced results that were

just too low.

Third, would the results change in other network cases; for example, larger networks? The

PODS simulation here was performed for a network with six spoke cities, although a six-city

network could still produce strikingly different results than one that encompasses hundreds of

cities, as seen in the domestic US industry. Of interest, therefore, would be to see whether yield

management methods perform differently when size of network is a consideration. Furthermore,

what effects result when the demands are spread randomly over the network, as opposed to the

judgmental manner in which demand was set for this simulation8 ?

Finally, what effects appear from the use of other yield management methods which were not

currently available in PODS, and how do these perform? Two examples are presented by Wei--

the non-greedy heuristic bid price model and the convergent EMSR model 2. The former can be

thought of as a combination of DAVN and HBP, in which pseudo fares are calculated as in

DAVN and then used to solve for the EMSR values, after which the bid prices are calculated

using these EMSR heuristics as in HBP, while the latter tries to come up with a better allocation

81 Demand could also be assigned randomly to legs throughout the network rather than setting the short-haul legs
to have the highest a priori demand.
82 Wei (1997). Sections 3.1 and 3.2 describe each of these two methods.
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of the passenger's fare across the legs they traverse before making the EMSR calculations as in

the EMSRb method8 3. The effects of implementation of these methods or other ones not tested

here and their interaction with the different forecasting and detruncation routines would also be of

interest.

5.4 New research directions

The questions left unanswered by this research, discussed above in Section 5.3, lead the reader to

ponder new directions for future research in this area. Hence, several new research questions

which might be of interest are discussed below.

First, what is the actual effect of larger networks, as discussed above? Are the PODS results

similar in these cases or do they differ? Preliminary tests84 have been performed in PODS on a

ten-city network, although no complete testing of the forecasting and detruncation routines under

such a scenario has been done as of yet. Second, the possibility of using other

forecasting/detruncation methods in PODS is of interest, especially that of the efficient

forecaster 5 . Questions of interest would be those detailing how it compares with the methods

tested in this thesis. A third direction for future research could also be that of testing other seat

optimization methods (e.g., the convergent EMSR model), as discussed in Section 5.3. Again of

interest would be their relative performance in combination with the forecasting/detruncation

methods used. Fourth, changes or improvements in the forecasting, detruncation, and seat

optimization methods themselves could be studied. One example occurs in projection

detruncation, where the parameter t is manually chosen and is constant for all paths. However,

the methodology could be modified to have t be determined on a path basis as a function of the

booking curve and the time frame in which the path fare class closed. Fifth, modified networks

which allow for flights between the hub airports or have more than two competitors/hubs are also

of interest. The former scenario gives multiple path alternatives to what was classified as local

demand (i.e., those passengers traveling from hub to spoke or vice versa who previously had only

83 Also see Bratu (1998) for more detailed discussion on the convergent EMSR method applied at an O-D level.
84 Lee (1998). Similar relative trends as presented in this thesis have been seen in initial cases run under the ten-
city network, although Netbid's poor performance is not as pronounced as in the six-city case.
85 Refer to Skwarek (1996), Section 5.2.3 for a description of the efficient forecaster.
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one path choice), while the latter would show whether revenue gains were of the same magnitude

as the number of path choices increases for each ODF combination. Sixth, more than one

connecting bank can be used. In the current PODS formulation, only a single flight departure was

used in each market, whereas multiple connecting banks allow a time-dependent component of

path choice to occur. Finally, booking cancellations and no-shows can be permitted and the

overbooking concept can be implemented, to more closely model a real-world network case. All

of these can be studied not only in terms of the seat optimization routines, but also in terms of

their interaction with the forecasting and detruncation algorithms presented.

Such research questions as those above can be tested under the current PODS methodology,

given some implementation changes and input variations. However, a more broad direction for

future research would be one that moves a step closer toward complete optimization of the airline

supply problem (i.e., provide interactive optimization of schedules, yield management, and fares).

However, with current technology this proves extremely difficult, due to several considerations.

First, the sheer size of the problem and the associated billions of decision variables and equations

would render the problem too large to be solved in a reasonable amount of time on a repeated

basis. Even if this were possible, the competitive response is very difficult to predict, hence, any

"optimal" scenario would be assuming a set of fixed competitive characteristics (or responses).

Furthermore, the many constraints such as fleet considerations, airport restrictions, etc. only make

the task more complex. Despite these difficulties, two research directions which could be brought

to fruition in the near future are those of flexible pricing and ODF grouping. Flexible pricing

means the pricing regime used by an airline is incorporated and solved along with the seat

allocation problem. Instead of having a fixed pricing structure, fares are optimized simultaneously

with seat allocations given knowledge of future demands, rendering the pricing structure itself

dependent on the expected ODF demand. ODF groupings6 can be used to combat the "small

numbers" problem so that ODF forecasts used during seat optimization are more reliable and

more accurate. An example of this would be to group distinct O-D markets which possess similar

characteristics, while another case would entail aggregation of different flights by time (i.e., one se

of booking limits could be established for two or more consecutive flights). Such research

86 Williamson (1992). Section 4.3 discusses aggregation of ODFs.
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directions would provide the next improvements in ODF forecasting, which would hopefully

continue to be beneficial to revenues.

In any case, large advances have been made over the past couple of decades in the airline supply

problem, with implementations such as yield management (first leg and now O-D based), fleet

assignment, and crew scheduling saving millions of dollars for many major airlines worldwide.

Continued research on a model such as PODS can only assist in further removing inefficiencies by

which airlines are constrained today.
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Appendix A

A.1: PODS airline revenue results vs. competitor with pickup forecasting,
booking curve detruncation, and EMSRb seat optimization, at demand
factors 0.8, 1.0, and 1.2

A.2: PODS airline revenue results vs. all competitor possibilities at demand
factor 1.0
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A.1: PODS airline revenue results vs. competitor with pickup forecasting, booking
curve detruncation, and EMSRb seat optimization, at demand factors 0.8, 1.0, and 1.2

--- Airline A---
Forecast Detruncation

Pickup
Pickup
Pickup
Pickup
Pickup

DF Seat Optimizer
EMSRb
VEMSRb

Netbid
DAVN
HBP

EMSRb
VEMSRb

Netbid
DAVN
HBP

EMSRb
VEMSRb

Netbid
DAVN
HBP

EMSRb
VEMSRb

Netbid
DAVN
HBP

EMSRb
VEMSRb

Netbid
DAVN
HBP

EMSRb
VEMSRb

Netbid
DAVN
HBP

EMSRb
VEMSRb

Netbid
DAVN
HBP

EMSRb
VEMSRb

Netbid
DAVN
HBP

EMSRb
VEMSRb

Netbid
DAVN
HBP

EMSRb
VEMSRb

Netbid
DAVN
HBP

EMSRb
VEMSRb

Netbid
DAVN
HBP

EMSRb
VEMSRb

Netbid
DAVN
HBP

Pickup Book Curve
Pickup Book. Curve
Pickup Book. Curve
Pickup Book. Curve
Pickup Book Curve

Reg
Reg
Reg
Reg.
Reg.

Reg
Reg
Reg
Reg
Reg

Pickup
Pickup
Pickup
Pickup
Pickup

Book. Curve
Book. Curve
Book. Curve
Book Curve
Book. Curve

Proj
Proj
P roj.
Proj.
Proj.

Proj
Proj
Proj.
Proj
Proj

Reg.
Reg.
Reg.
Reg.
Reg.

Reg
Reg.
Reg.
Reg.
Reg.

Pickup
Pickup
Pickup
Pickup
Pickup

Pickup
Pickup
Pickup
Pickup
Pickup

Reg.
Reg.
Reg.
Reg.
Reg.

Reg
Reg
Reg.
Reg.
Reg.

Pickup
Pickup
Pickup
Pickup
Pickup

% Increase
Revenues compared to EMSRb

runcation Airline A Airline B Airline A Airline B

Book. Curve
Book. Curve
Book. Curve
Book. Curve
Book. Curve

Book. Curve
Book. Curve
Book. Curve
Book. Curve
Book. Curve

Proj.
Proj.
Proj.
Proj.
Proj

Proj.
Proj.
Proj.
Proj.
Proj

Book Curve
Book. Curve
Book. Curve
Book Curve
Book. Curve

Book. Curve
Book. Curve
Book. Curve
Book. Curve
Book. Curve

Proj.
Proj.
Proj.
Proj.
Proj.

Proj
Proj
Proj
Proj.
Proj.

--- Airline B---
Seat Optimizer Forecast Det

EMSRb Pickup Bo
EMSRb Pickup Bo
EMSRb Pickup Bo
EMSRb Pickup Bo
EMSRb Pickup Bo

EMSRb Pickup Bo
EMSRb Pickup Bo
EMSRb Pickup Bo
EMSRb Pickup Bo
EMSRb Pickup Bo

EMSRb Pickup Bo
EMSRb Pickup Bo
EMSRb Pickup Bo
EMSRb Pickup Bo
EMSRb Pickup Bo

EMSRb Pickup Bo
EMSRb Pickup Bo
EMSRb Pickup Bo
EMSRb Pickup Bo
EMSRb Pickup Bo

EMSRb Pickup Bo
EMSRb Pickup Bo
EMSRb Pickup Bo
EMSRb Pickup Bo
EMSRb Pickup Bo

EMSRb Pickup Bo
EMSRb Pickup B
EMSRb Pickup B
EMSRb Pickup Bc
EMSRb Pickup BC

EMSRb Pickup B
EMSRb Pickup B
EMSRb Pickup B
EMSRb Pickup B
EMSRb Pickup B

228,210
232,250
233.744
233,023
233,279

259,762
263,265
262,526
266,801
266,292

260,626
263,980
262,950
268,247
267,634

263.348
269,526
269,760
268,407
269,887

261,299
267,946
268,631
267,344
268,345

226,042
223,783
223,591
223,602
223,358

260,029
258,375
260,088
257.353
257,339

260,915
258,449
260,520
257,149
257,330

258.928
255,793
256,571
257,300
255,857

258,877
256,050
256,544
257,219
255.926

0.69%
0.14%
0.82%
0.63%

-0.58%
-0.28%

-0.64%
-0.53%

0.55% -0 40%
2.33% -1.40%
2.99% -148%
2.67% -1.48%
2.79% -1.58%

1.35%
1.06%
2.71%
2.51%

033%
1.62%
1.23%
3 27%
3 03%

1.38%
3.76%
3.85%
3 33%
3.90%

-0.64%
0.02%
-1.03%
-1 03%

0.34%
-061%
0.19%
-1 11%
-1.04%

-0 42%
-1 63%
-1 33%
-1.05%
-1.60%

059% -044%
3 15% -1 53%
3.41% -1 34%
2.92% -1.08%
330% -158%
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ok. Curve
ok. Curve
ok. Curve
ok. Curve
ok. Curve

ok. Curve
ok. Curve
ok. Curve
ok. Curve
ok. Curve

ok. Curve
ok. Curve
ok. Curve
ok. Curve
ok. Curve

ok. Curve
ok. Curve
ok. Curve
ok. Curve
ok. Curve

ok Curve
ok. Curve
ok. Curve
ok. Curve
ok. Curve

ook. Curve
ok. Curve
ook. Curve
ook Curve
ok Curve

o0k Curve
ok Curve
ook Curve
ook. Curve
ook Curve

EMSRb
EMSRb
EMSRb
EMSRb
EMSRb

EMSRb
EMSRb
EMSRb
EMSRb
EMSRb

EMSRb
EMSRb
EMSRb
EMSRb
EMSRb

EMSRb
EMSRb
EMSRb
EMSRb
EMSRb

EMSRb
EMSRb
EMSRb
EMSRb
EMSRb

189,813
191,115
190,076
191,365
191,016

190,482
191,733
191,013
191,938
191,707

190,703
192,295
192,406
192,423
192,342

190,098
191,789
191,939
192,065
191,811

226,954
230,529
228,871
232,231
231,414

227,859
231,647
229,955
233,311
232,400

229,494
233,276
234,378
233,687
234,287

189,703
188,610
189,174
188,497
188,698

189,556
188,405
188,853
188,317
188,503

189,386
187,972
188,067
187,907
188,083

189,525
188,133
188,145
187,973
188,206

226,952
224,804
226,112
224,225
224,686

227,191
224,580
225,959
224,048
224,561

225,959
223,588
223,602
223,591
223,251

-0.08%
-0.68%
-0.45%
-0.73%
-0.63%

-0.17%
-0.91%
-0.86%
-0.95%
-0.85%

-0.09%
-0.83%
-0.82%
-0.91%
-0.79%

-0.95%
-0.37%
-1.20%
-1.00%

0.11%
-1.05%
-0.44%
-1 28%
-1.05%

-0 44%
-1.48%
-1.48%
-148%
-1.63%

0.35%
1.01%
0.63%
1.12%
1.00%

0.47%
1.31%
1.37%
1.38%
1.33%

0 15%
1.04%
1.12%
1.19%
1.05%

1.58%
084%
233%
1 97%

040%
2.07%
1.32%
2 80%
240%

1.12%
2.79%
3.27%
297%
323%

Pickup
Pickup
Pickup
Pickup
Pickup

Pickup
Pickup
Pickup
Pickup
Pickup

Pickup
Pickup
Pickup
Pickup
Pickup

Pickup
Pickup
Pickup
Pickup
Pickup

Pickup
Pickup
Pickup
Pickup
Pickup

Book. Curve
Book. Curve
Book. Curve
Book. Curve
Book Curve

Book Curve
Book Curve
Book Curve
Book. Curve
Book. Curve

Book Curve
Book. Curve
Book. Curve
Book. Curve
Book. Curve

Book. Curve
Book. Curve
Book. Curve
Book. Curve
Book Curve

Book. Curve
Book Curve
Book. Curve
Book. Curve
Book. Curve



A.2: PODS airline revenue results vs. all competitor possibilities at demand factor 1.0

% Increase
--- Airline A - - Airine B - Revenues compared to EMSRb

DF Seat Optimizer Forecast Detruncation Seat Optimizer Forecast Detruncation Airline A Airline B Airline A Airline B
1.0 EMSRb Pickup Book. Curve EMSRb Pickup Book. Curve 226,954 226,952 ---
1.0 VEMSRb Pickup Book. Curve EMSRb Pickup Book. Curve 230,529 224,804 1.58% -0.95%
1.0 Netbid Pickup Book. Curve EMSRb Pickup Book. Curve 228,871 226,112 0.84% -0.37%
1.0 DAVN Pickup Book. Curve EMSRb Pickup Book. Curve 232,231 224,225 2.33% -1.20%
1.0 HBP Pickup Book. Curve EMSRb Pickup Book. Curve 231,414 224,686 1.97% -1.00%

1.0 EMSRb Reg. Book. Curve EMSRb Pickup Book. Curve 227,859 227,191 0.40% 0.11%
1.0 VEMSRb Reg. Book. Curve EMSRb Pickup Book. Curve 231,647 224,580 2.07% -1.05%
1.0 Netbid Reg. Book. Curve EMSRb Pickup Book. Curve 229,955 225,959 1.32% -0.44%
1.0 DAVN Reg. Book. Curve EMSRb Pickup Book. Curve 233,311 224,048 2.80% -1.28%
1.0 HBP Reg. Book. Curve EMSRb Pickup Book. Curve 232,400 224,561 2.40% -1.05%

1.0 EMSRb Reg. Proj. EMSRb Pickup Book. Curve 229,494 225,959 1.12% -0.44%
1.0 VEMSRb Reg. Proj. EMSRb Pickup Book. Curve 233,276 223,588 2.79% -1.48%
1.0 Netbid Reg. Proj. EMSRb Pickup Book. Curve 234,378 223,602 3.27% -1.48%
1.0 DAVN Reg. Proj. EMSRb Pickup Book. Curve 233,687 223,591 2.97% -1.48%
1.0 HBP Reg. Proj. EMSRb Pickup Book. Curve 234,287 223,251 3.23% -1.63%

1 0 EMSRb Pickup Proj. EMSRb Pickup Book. Curve 228,210 226,042 0.55% -0.40%
1.0 VEMSRb ,Pickup Proj. EMSRb Pickup Book. Curve 232,250 223,783 2.33% -1.40%
1.0 Netbid Pickup Proj. EMSRb Pickup Book. Curve 233,744 223,591 2.99% -1.48%
1.0 DAVN Pickup Proj. EMSRb Pickup Book. Curve 233,023 223,602 2.67% -1.48%
1.0 HBP Pickup Proj. EMSRb Pickup Book. Curve 233,279 223,358 2.79% -1.58%

1.0 EMSRb Pickup Book. Curve EMSRb Reg. Book. Curve 227.191 227,859 0.10% 0.40%
1.0 VEMSRb Pickup Book. Curve EMSRb Reg. Book. Curve 230,425 225,800 1.53% -0.51%
1.0 Netbid Pickup Book. Curve EMSRb Reg. Book. Curve 228,913 227,191 0.86% 0.11%
1.0 DAVN Pickup Book Curve EMSRb Reg. Book. Curve 232,230 225,128 2.32% -0.80%
1.0 HBP Pickup Book. Curve EMSRb Reg. Book. Curve 229,065 226,845 0.93% -0.05%

1.0 EMSRb Reg Book. Curve EMSRb Reg. Book. Curve 228,136 228,089 0.52% 0.50%
1.0 VEMSRb Reg. Book. Curve EMSRb Reg. Book. Curve 231,669 225.501 2.06% -0.64%
1.0 Netbid Reg. Book. Curve EMSRb Reg. Book. Curve 230,009 226,969 1.35% 0.01%
1.0 DAVN Reg. Book. Curve EMSRb Reg. Book. Curve 233,364 224,959 2.82% -0.88%
1.0 HBP Reg. Book. Curve EMSRb Reg. Book. Curve 232,470 225,486 2.43% -0.65%

1 0 EMSRb Reg Proj EMSRb Reg. Book. Curve 229,803 226,724 1.26% -0.10%
1 0 VEMSRb Reg. Proj. EMSRb Reg. Book. Curve 233,338 224,403 2.81% -1.12%
1.0 Netbid Reg. Proj. EMSRb Reg. Book. Curve 234,478 224,391 3.32% -1.13%
1 0 DAVN Reg. Proj. EMSRb Reg. Book. Curve 233,766 224,423 3.00% -1.11%
1.0 HBP Reg. Proj. EMSRb Reg Book. Curve 234,416 224,005 3.29% -1.30%

1.0 EMSRb Pickup Proj. EMSRb Reg. Book. Curve 228,467 226,834 0.67% -0.05%
1.0 VEMSRb Pickup Proj. EMSRb Reg. Book. Curve 232,271 224,623 2.34% -1.03%
1.0 Netbid Pickup Proj. EMSRb Reg. Book. Curve 233,816 224,393 3.02% -1.13%
1.0 DAVN Pickup Proj. EMSRb Reg. Book. Curve 233,112 224,423 2.71% -1.11%
1.0 HBP Pickup Proj. EMSRb Reg. Book. Curve 233,392 224,119 2.84% -1.25%

1.0 EMSRb Pickup Book. Curve EMSRb Reg. Proj. 225,959 229,494 -0.44% 1.12%
1.0 VEMSRb Pickup Book. Curve EMSRb Reg. Proj. 229,691 227.163 1.21% 0.09%
1.0 Netbid Pickup Book. Curve EMSRb Reg. Proj. 228,429 228,581 0.65% 0.72%
1.0 DAVN Pickup Book Curve EMSRb Reg. Proj. 231,317 226,538 1.92% -0.18%
1.0 HBP Pickup Book. Curve EMSRb Reg. Proj. 228,336 228,119 0.61% 0.51%

1.0 EMSRb Reg. Book. Curve EMSRb Reg. Proj. 226,724 229,803 -0.10% 1.26%
1.0 VEMSRb Reg. Book. Curve EMSRb Reg. Proj. 230,696 226,897 1.65% -0.02%
1.0 Netbid Reg. Book. Curve EMSRb Reg. Proj. 229,436 228,423 1.09% 0.65%
1.0 DAVN Reg. Book. Curve EMSRb Reg. Proj. 232,327 226,338 2.37% -0.27%
1.0 HBP Reg. Book. Curve EMSRb Reg. Proj. 228,096 228,489 0.50% 0.68%

1.0 EMSRb Reg. Proj. EMSRb Reg. Proj. 227,977 227,956 0.45% 0.44%
1.0 VEMSRb Reg. Proj. EMSRb Reg. Proj. 232,029 225,500 2.24% -0.64%
1.0 Netbid Reg. Proj. EMSRb Reg. Proj. 232,780 225.626 2.57% -0.58%
1 0 DAVN Reg. Proj. EMSRb Reg. Proj. 232,172 225,695 2.30% -0.55%
1.0 HBP Reg Proj. EMSRb Reg. Proj. 232,824 225,243 2.59% -0.75%
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Pickup
Pickup
Pickup
Pickup
Pickup

Proj.
Proj.
Proj.
Proj.
Proj.

EMSRb
VEMSRb

Netbid
DAVN
HBP

EMSRb
VEMSRb

Netbid
DAVN
HBP

EMSRb
VEMSRb

Netbid
DAVN
HBP

EMSRb
VEMSRb

Netbid
DAVN
HBP

EMSRb
VEMSRb

Netbid
DAVN
HBP

Reg.
Reg.
Reg.
Reg.
Reg.

Pickup
Pickup
Pickup
Pickup
Pickup

Proj.
Proj.
Proj.
Proj.
Proj.

Proj.
Proj.
Proj.
Proj.
Proj.

EMSRb
EMSRb
EMSRb
EMSRb
EMSRb

EMSRb
EMSRb
EMSRb
EMSRb
EMSRb

EMSRb
EMSRb
EMSRb
EMSRb
EMSRb

EMSRb
EMSRb
EMSRb
EMSRb
EMSRb

EMSRb
EMSRb
EMSRb
EMSRb
EMSRb

Reg
Reg.
Reg.
Reg.
Reg.

Pickup
Pickup
Pickup
Pickup
Pickup

Pickup
Pickup
Pickup
Pickup
Pickup

Pickup
Pickup
Pickup
Pickup
Pickup

Pickup
Pickup
Pickup
Pickup
Pickup

Proj.
Proj.
Proj.
Proj.
Proj.

Proj.
Proj.
Proj.
Proj.
Proj.

Proj.
Proj.
Proj.
Proj.
Proj.

Proj.
Proj.
Proj.
Proj.
Proj.

Proj.
Proj.
Proj.
Proj.
Proj.

226,821 228,257 -0.06%
231,121 225,783 1.84%
232,214 225,662 2.32%
231,549 225,736 2.02%
232,169 225,631 2.30%

226,042 228,210 -0.40%
229,871 225,932 1.29%
228,527 227,225 0.69%
231,526 225,289 2.01%
228,458 226,856 0.66%

226,834 228,467 -0.05%
230,904 225,688 1.74%
229,524 227,090 1.13%
232,543 225,092 2.46%
228,178 227,202 0.54%

228,257 226,821 0.57%
232,320 224,386 2.36%
233,086 224,545 2.70%
232,507 224,568 2.45%
233,118 224,142 2.72%

227,061 226,975 0.05%
231,440 224,606 1.98%
232,565 224,505 2.47%
231,875 224,621 2.17%
232,249 224,306 2.33%

---- Airline A---- ---- Airline B---
DF Seat Optimizer Forecast Detruncation Seat Optimizer Forecast Detruncation Airline A Airline B Airline A Airline B

EMSRb
VEMSRb

Netbid
DAVN
HBP

EMSRb
VEMSRb

Netbid
DAVN
HBP

EMSRb
VEMSRb

Netbid
DAVN
HBP

EMSRb
VEMSRb

Netbid
DAVN
HBP

EMSRb
VEMSRb

Netbid
DAVN
HBP

EMSRb
VEMSRb

Netbid
DAVN
HBP

Pkup
Pkup
Pkup
Pkup
Pkup

Reg.
Reg.
Reg
Reg.
Reg

Reg.
Reg.
Reg.
Reg.
Reg.

Pkup
Pkup
Pkup
Pkup
Pkup

Pkup
Pkup
Pkup
Pkup
Pkup

Reg.
Reg.
Reg.
Reg.
Reg.

Book Curve
Book Curve
Book Curve
Book Curve
Book Curve

Book Curve
Book Curve
Book Curve
Book Curve
Book Curve

Proj.
Proj.
Proj.
Proj.
Proj.

Proj.
Proj.
Proj.
Proj.
Proj.

Book Curve
Book Curve
Book Curve
Book Curve
Book Curve

Book Curve
Book Curve
Book Curve
Book Curve
Book Curve

VEMSRb
VEMSRb
VEMSRb
VEMSRb
VEMSRb

VEMSRb
VEMSRb
VEMSRb
VEMSRb
VEMSRb

VEMSRb
VEMSRb
VEMSRb
VEMSRb
VEMSRb

VEMSRb
VEMSRb
VEMSRb
VEMSRb
VEMSRb

VEMSRb
VEMSRb
VEMSRb
VEMSRb
VEMSRb

VEMSRb
VEMSRb
VEMSRb
VEMSRb
VEMSRb

Pkup
Pkup
Pkup
Pkup
Pkup

Pkup
Pkup
Pkup
Pkup
Pkup

Pkup
Pkup
Pkup
Pkup
Pkup

Pkup
Pkup
Pkup
Pkup
Pkup

Reg.
Reg.
Reg.
Reg.
Reg.

Reg.
Reg.
Reg.
Reg.
Reg.

Book Curve
Book Curve
Book Curve
Book Curve
Book Curve

Book Curve
Book Curve
Book Curve
Book Curve
Book Curve

Book Curve
Book Curve
Book Curve
Book Curve
Book Curve

Book Curve
Book Curve
Book Curve
Book Curve
Book Curve

Book Curve
Book Curve
Book Curve
Book Curve
Book Curve

Book Curve
Book Curve
Book Curve
Book Curve
Book Curve

224,877 230,425 -1.40%
228,079 227,964
225,898 229,238 -0.96%
229,119 227,460 0.46%
228,217 227,845 0.06%

225,800 230,425 -1.00%
229,069 227,792 0 43%
227,087 229,031 -0.43%
230,137 227,331 0.90%
229,067 227,781 0.43%

227,163 229,691 -0.40%
230,306 226,982 0.98%
230,890 227,022 1.23%
230,331 226,776 0.99%
230,856 226,660 1.22%

225,932 229,871 -0.94%
229,331 227,146 0.55%
230,286 226,919 0.97%
229,689 226,754 0.71%
229,902 226,749 0.80%

224,580 231,647 -1.53%
227,792 229,069 -0.13%
225,762 230,478 -1.02%
228,948 228,509 0.38%
227,996 229,008 -0.04%

225,501 231,669 -1.13%
228,876 228,829 0.35%
226,999 230,198 -0.47%
230,012 228,355 0.85%
228,917 228,881 0.37%
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Pickup Book. Curve
Pickup Book. Curve
Pickup Book. Curve
Pickup Book. Curve
Pickup Book. Curve

Reg. Book. Curve
Reg. Book. Curve
Reg. Book. Curve
Reg. Book. Curve
Reg. Book. Curve

0.58%
-0.52%
-0.57%
-0.54%
-0.58%

0.55%
-0.45%
0.12%
-0.73%
-0.04%

0.67%
-0.56%
0.06%
-0.82%
0.11%

-0.06%
-1.13%
-1.06%
-1.05%
-1.24%

0.01%
-1 03%
-1.08%
-1.03%
-1.17%

% Increase
Revenues compared to VEMSRb

1.08%

0.56%
-0.22%
-0.05%

1.08%
-0.08%
0.47%
-0.28%
-0.08%

0.76%
-0.43%
-0.41%
-0.52%
-0.57%

0.84%
-0.36%
-0.46%
-0.53%
-0.53%

1.62%
0.48%
1.10%
0.24%
0.46%

1.63%
0.38%
0.98%
0.17%
0.40%



1.0 EMSRb Reg. Proj. VEMSRb Reg. Book Curve 226,897 230,696 -0.52% 1.20%
1.0 VEMSRb Reg. Proj. VEMSRb Reg. Book Curve 230,086 227,940 0.88% -0.01%
1.0 Netbid Reg. Proj. VEMSRb Reg. Book Curve 230,714 227,978 1.16% 0.01%
1.0 DAVN Reg. Proj. VEMSRb Reg. Book Curve 230,156 227,791 0.91% -0.08%
1.0 HBP Reg. Proj. VEMSRb Reg. Book Curve 230,683 227,618 1.14% -0.15%

1.0 EMSRb Pkup Proj. VEMSRb Reg. Book Curve 225,688 230,904 -1.05% 1.29%
1.0 VEMSRb Pkup Proj. VEMSRb Reg. Book Curve 229,115 228,109 0.45% 0.06%
1.0 Netbid Pkup Proj. VEMSRb Reg. Book Curve 230.121 227,918 0.90% -0.02%
1.0 DAVN Pkup Proj. VEMSRb Reg. Book Curve 229,500 227,811 0.62% -0.07%
1.0 HBP Pkup Proj. VEMSRb Reg. Book Curve 229,733 227,721 0.73% -0.11%

1.0 EMSRb Pkup Book Curve VEMSRb Reg. Proj. 223,588 233,276 -1.97% 2.33%
1.0 VEMSRb Pkup Book Curve VEMSRb Reg. Proj. 226,982 230,306 -0.48% 1.03%
1.0 Netbid Pkup Book Curve VEMSRb Reg. Proj. 225,326 231,863 -1.21% 1.71%
1.0 DAVN Pkup Book Curve VEMSRb Reg. Proj. 228,041 229,801 -0.02% 0.81%
1.0 HBP Pkup Book Curve VEMSRb Reg. Proj. 227,304 230,219 -0.34% 0.99%

1.0 EMSRb Reg Book Curve VEMSRb Reg. Proj. 224,403 233,338 -1.61% 2.36%
1.0 VEMSRb Reg. Book Curve VEMSRb Reg. Proj. 227,940 230,086 -0.06% 0.93%
1.0 Netbid Reg. Book Curve VEMSRb Reg. Proj. 226,427 231,645 -0.72% 1.61%
1.0 DAVN Reg. Book Curve VEMSRb Reg. Proj. 229,033 229,624 0.42% 0.73%
1 0 HBP Reg. Book Curve VEMSRb Reg. Proj 228,069 230,122 0.00% 0.95%

1.0 EMSRb Reg. Proj. VEMSRb Reg. Proj. 225,500 232,029 -1.13% 1.78%
1.0 VEMSRb Reg Proj VEMSRb Reg. Proj. 228,953 228,920 0.38% 0.42%
1.0 Netbid Reg. Proj. VEMSRb Reg. Proj. 229,431 229,172 0.59% 0.53%
1.0 DAVN Reg. Proj. VEMSRb Reg. Proj. 228,792 229,102 0.31% 0.50%
1.0 HBP Reg Proj. VEMSRb Reg. Proj. 229,425 228,751 0.59% 0.35%

1.0 EMSRb Pkup Proj. VEMSRb Reg. Proj. 224.386 232,320 -1.62% 1.91%
1.0 VEMSRb Pkup Proj. VEMSRb Reg. Proj. 228,019 229,173 -0.03% 0.53%
1.0 Netbid Pkup Proj. VEMSRb Reg Proj. 228,815 229,164 0.32% 0.53%
1.0 DAVN Pkup Proj. VEMSRb Reg. Proj. 228,110 229,154 0.01% 0.52%
1 0 HBP Pkup Proj VEMSRb Reg. Proj. 228,537 228,935 0.20% 0.43%

1.0 EMSRb Pkup Book Curve VEMSRb Pkup Proj. 223,783 232,250 -1.88% 1.88%
1.0 VEMSRb Pkup Book Curve VEMSRb Pkup Proj. 227,146 229,331 -0.41% 0.60%
1.0 Netbid Pkup Book Curve VEMSRb Pkup Proj. 225,389 230,768 -1.18% 1.23%
1 0 DAVN Pkup Book Curve VEMSRb Pkup Proj. 228,203 228,824 0.05% 0.38%
1.0 HBP Pkup Book Curve VEMSRb Pkup Proj 227,407 229,263 -0.29% 0.57%

1.0 EMSRb Reg. Book Curve VEMSRb Pkup Proj. 224,623 232,271 -1.52% 1.89%
1.0 VEMSRb Reg. Book Curve VEMSRb Pkup Proj. 228,109 229,115 0.01% 0.50%

1.0 Netbid Reg. Book Curve VEMSRb Pkup Proj 226,479 230.569 -0.70% 1.14%

1 0 DAVN Reg. Book Curve VEMSRb Pkup Proj. 229,150 228,675 0.47% 0.31%
1.0 HBP Reg. Book Curve VEMSRb Pkup Proj. 228,152 229,177 0.03% 0.53%

1.0 EMSRb Reg. Proj. VEMSRb Pkup Proj. 225,783 231,121 -1.01% 1.38%
1.0 VEMSRb Reg Proj. VEMSRb Pkup Proj. 229,173 228,019 0.48% 0.02%
1.0 Netbid Reg. Proj. VEMSRb Pkup Proj. 229,612 228,284 0.67% 0.14%
1.0 DAVN Reg Proj. VEMSRb Pkup Proj. 228,972 228,185 0.39% 0.10%
1.0 HBP Reg. Proj. VEMSRb Pkup Proj. 229,622 227,874 0.68% -0.04%

1.0 EMSRb Pkup Proj. VEMSRb Pkup Proj. 224,606 231,440 -1.52% 1.52%
1.0 VEMSRb Pkup Proj. VEMSRb Pkup Proj. 228,310 228,175 0.10% 0.09%
1.0 Netbid Pkup Proj. VEMSRb Pkup Proj. 229,075 228,258 0.44% 0.13%
1.0 DAVN Pkup Proj. VEMSRb Pkup Proj. 228,388 228,217 0.14% 0.11%
1.0 HBP Pkup Proj VEMSRb Pkup Proj. 228,802 227,988 0.32% 0.01%

% Increase
---- Airline A----- --- Airline B-- Revenues compared to Netbid

DF Seat Optimizer Forecast Detruncation Seat Optimizer Forecast Detruncation Airline A Airline B Airline A Airline B
1.0 EMSRb Pkup Book Curve Netbid Pkup Book Curve 226,151 228,849 -0.50% 0.73%
1.0 VEMSRb Pkup Book Curve Netbid Pkup Book Curve 229,303 225,856 0.88% -0.58%
1 0 Netbid Pkup Book Curve Netbid Pkup Book Curve 227,292 227,183 -----
1.0 DAVN Pkup Book Curve Netbid Pkup Book Curve 230,771 225,585 1.53% -0.70%
1.0 HBP Pkup Book Curve Netbid Pkup Book Curve 229,795 225,803 1.10% -0.61%



Reg. Book Curve
Reg. Book Curve
Reg. Book Curve
Reg. Book Curve
Reg Book Curve
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Proj.
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Proj.
Proj.
Proj.
Proj.
Proj.

Pkup Book Curve
Pkup Book Curve
Pkup Book Curve
Pkup Book Curve
Pkup Book Curve

Reg. Book Curve
Reg. Book Curve
Reg. Book Curve
Reg. Book Curve
Reg. Book Curve

Reg.
Reg.
Reg.
Reg
Reg.

Pkup
Pkup
Pkup
Pkup
Pkup

Proj.
Proj.
Proj.
Proj.
Proj.

Proj.
Proj.
Proj.
Proj.
Proj

Pkup Book Curve
Pkup Book Curve
Pkup Book Curve
Pkup Book Curve
Pkup Book Curve

Reg. Book Curve
Reg. Book Curve
Reg Book Curve
Reg. Book Curve
Reg. Book Curve

Reg.
Reg.
Reg.
Reg.
Reg.

Pkup
Pkup
Pkup
Pkup
Pkup

Proj.
Proj.
Proj.
Proj.
Proj.

Proj.
Proj.
Proj.
Proj.
Proj.

Reg.
Reg.
Reg.
Reg.
Reg.

Pkup
Pkup
Pkup
Pkup
Pkup

Netbid
Netbid
Netbid
Netbid
Netbid

Netbid
Netbid
Netbid
Netbid
Netbid

Netbid
Netbid
Netbid
Netbid
Netbid

Netbid
Netbid
Netbid
Netbid
Netbid

Netbid
Netbid
Netbid
Netbid
Netbid

Netbid
Netbid
Netbid
Netbid
Netbid

Netbid
Netbid
Netbid
Netbid
Netbid

Netbid
Netbid
Netbid
Netbid
Netbid

Netbid
Netbid
Netbid
Netbid
Netbid

Netbid
Netbid
Netbid
Netbid
Netbid

Netbid
Netbid
Netbid
Netbid
Netbid

Pkup
Pkup
Pkup
Pkup
Pkup

Pkup
Pkup
Pkup
Pkup
Pkup

Pkup
Pkup
Pkup
Pkup
Pkup

Reg.
Reg.
Reg.
Reg.
Reg

Reg.
Reg
Reg.
Reg.
Reg.

Reg.
Reg.
Reg.
Reg
Reg.

Reg.
Reg.
Reg.
Reg.
Reg

Reg.
Reg
Reg.
Reg.
Reg.

Reg.
Reg
Reg.
Reg.
Reg.

Reg.
Reg.
Reg.
Reg.
Reg.

Reg.
Reg.
Reg.
Reg.
Reg.

Book Curve
Book Curve
Book Curve
Book Curve
Book Curve

Book Curve
Book Curve
Book Curve
Book Curve
Book Curve

Book Curve
Book Curve
Book Curve
Book Curve
Book Curve

Book Curve
Book Curve
Book Curve
Book Curve
Book Curve

Book Curve
Book Curve
Book Curve
Book Curve
Book Curve

Book Curve
Book Curve
Book Curve
Book Curve
Book Curve

Book Curve
Book Curve
Book Curve
Book Curve
Book Curve

Proj.
Proj.
Proj.
Proj.
Proj.

Proj.
Proj.
Proj.
Proj.
Proj.

Proj.
Proj.
Proj.
Proj.
Proj.

Proj.
Proj.
Proj.
Proj.
Proj.

132

227,191 228,913 -0.04% 0.76%
230,478 225,762 1.40% -0.63%
228,422 227,161 0.50% -0.01%
231,820 225,602 1.99% -0.70%
230,786 225,883 1.54% -0.57%

228,581 228,429 0.57% 0.55%
231,863 225,326 2.01% -0.82%
232,562 225,735 2.32% -0.64%
232,015 225,668 2.08% -0.67%
232,652 225,104 2.36% -0.92%

227,225 228,527 -0.03% 0.59%
230,768 225,389 1.53% -0.79%
231,894 225,662 2.02% -0.67%
231,339 225,577 1.78% -0.71%
231,561 225,064 1.88% -0.93%

225,959 229,955 -0.59% 1.22%
229,031 227,087 0.77% -0.04%
227,161 228,422 -0.06% 0.55%
230,602 226,645 1.46% -0.24%
227,571 227,809 0.12% 0.28%

226,969 230,009 -0.14% 1.24%
230,198 226,999 1.28% -0.08%
228,390 228,327 0.48% 0.50%
231,711 226,660 1.94% -0.23%
230,671 227,019 1.49% -0.07%

228,423 229,436 0.50% 0.99%
231,645 226,427 1.92% -0.33%
232,475 226,684 2.28% -0.22%
231,930 226,655 2.04% -0.23%
232,523 226,140 2.30% -0.46%

227,090 229,524 -0.09% 1.03%
230,569 226,479 1.44% -0.31%
231,827 226,626 2.00% -0.25%
231,194 226,644 1.72% -0.24%
231,517 226,012 1.86% -0.52%

223,602 234,378 -1.62% 3.17%
227,022 230,890 -0.12% 1.63%
225,735 232,562 -0.69% 237%
228,525 230,368 0.54% 1.40%
225,774 231,913 -0.67% 2.08%

224,391 234,478 -1.28% 3.21%
227,978 230,714 0.30% 1.55%
226,684 232,475 -0.27% 2.33%
229,465 230,245 0.96% 1.35%
225,632 232,371 -0.73% 2.28%

225,626 232,780 -0.73% 2.46%
229,172 229,431 0.83% 0.99%
229,766 229,696 1.09% 1.11%
229,102 229,745 0.80% 1.13%
229,688 229,121 1.05% 0.85%

224,545 233,086 -1.21% 2.60%
228,284 229,612 0.44% 1.07%
229,193 229,710 0.84% 1.11%
228,413 229,849 0.49% 1.17%
229,098 229,439 0.79% 0.99%



1.0 EMSRb Pkup Book Curve Netbid Pkup Proj. 223,591 233,744 -1.63% 2.89%
1.0 VEMSRb Pkup Book Curve Netbid Pkup Proj. 226,919 230,286 -0.16% 1.37%
1.0 Netbid Pkup Book Curve Netbid Pkup Proj. 225,662 231,894 -0.72% 2.07%
1.0 DAVN Pkup Book Curve Netbid Pkup Proj. 228,492 229,677 0.53% 1.10%
1.0 HBP Pkup Book Curve Netbid Pkup Proj. 225,674 231,306 -0.71% 1.81%

1.0 EMSRb Reg. Book Curve Netbid Pkup Proj. 224,393 233,816 -1.28% 2.92%
1.0 VEMSRb Reg. Book Curve Netbid Pkup Proj. 227,918 230,121 0.28% 1.29%
1.0 Netbid Reg. Book Curve Netbid Pkup Proj. 226,626 231.827 -0.29% 2.04%
1.0 DAVN Reg. Book Curve Netbid Pkup Proj. 229,445 229,574 0.95% 1.05%
1.0 HBP Reg. Book Curve Netbid Pkup Proj. 225,598 231,673 -0.75% 1.98%

1.0 EMSRb Reg. Proj. Netbid Pkup Proj. 225,662 232,214 -0.72% 2.21%
1.0 VEMSRb Reg. Proj. Netbid Pkup Proj. 229,164 228,815 0.82% 0.72%
1.0 Netbid Reg. Proj. Netbid Pkup Proj. 229,710 229,193 1.06% 0.86%
1.0 DAVN Reg. Proj. Netbid Pkup Proj. 229,115 229,124 0.80% 0.85%
1.0 HBP Reg. Proj. Netbid Pkup Proj. 229,702 228,578 1.06% 0.61%

1.0 EMSRb Pkup Proj. Netbid Pkup Proj. 224,505 232,565 -1.23% 2.37%
1.0 VEMSRb Pkup Proj. Netbid Pkup Proj. 228,258 229,075 0.43% 0.83%
1.0 Netbid Pkup Proj. Netbid Pkup Proj. 229,135 229,115 0.81% 0.85%
1.0 DAVN Pkup Proj. Netbid Pkup Proj. 228,522 229,145 0.54% 0.86%
1.0 HBP Pkup Proj. Netbid Pkup Proj. 228,927 228,583 0.72% 0.62%

% Increase
---- Airline A--- - Airline B- Revenues compared to DAVN

DF Seat Optimizer Forecast Detruncation Seat Optimizer Forecast Detruncation Airline A Airline B Airline A Airline B

1.0 EMSRb Pkup Book Curve DAVN Pkup Book Curve 224,219 232,201 -1.99% 1.52%
1.0 VEMSRb Pkup Book Curve DAVN Pkup Book Curve 227,514 229,080 -0.55% 0.16%
1.0 Netbid Pkup Book Curve DAVN Pkup Book Curve 225,605 230,688 -1.38% 0.86%
1.0 DAVN Pkup Book Curve DAVN Pkup Book Curve 228,761 228,725
1.0 HBP Pkup Book Curve DAVN Pkup Book Curve 227,884 229,085 -0.38% 0.16%

1.0 EMSRb Reg Book Curve DAVN Pkup Book Curve 225,128 232,230 -1.59% 1.53%
1.0 VEMSRb Reg. Book Curve DAVN Pkup Book Curve 228,509 228,948 -0.11% 0.10%
1.0 Netbid Reg. Book Curve DAVN Pkup Book Curve 226,645 230,602 -0.92% 0.82%
1.0 DAVN Reg. Book Curve DAVN Pkup Book Curve 229,743 228,680 0.43% -0.02%
1.0 HBP Reg. Book Curve DAVN Pkup Book Curve 228,679 229,102 -0.04% 0.16%

1.0 EMSRb Reg Proj. DAVN Pkup Book Curve 226,538 231,317 -0.97% 1.13%
1.0 VEMSRb Reg. Proj. DAVN Pkup Book Curve 229,801 228,041 0.45% -0.30%
1.0 Netbid Reg Proj. DAVN Pkup Book Curve 230,368 228,525 0.70% -0.09%
1.0 DAVN Reg. Proj. DAVN Pkup Book Curve 229,556 228,464 0.35% -0.11%
1 0 HBP Reg. Proj. DAVN Pkup Book Curve 230,277 227,993 0.66% -0.32%

1.0 EMSRb Pkup Proj. DAVN Pkup Book Curve 225,289 231,526 -1.52% 1.22%
1.0 VEMSRb Pkup Proj. DAVN Pkup Book Curve 228,824 228,203 0.03% -0.23%
1.0 Netbid Pkup Proj. DAVN Pkup Book Curve 229,677 228,492 0.40% -0.10%
1.0 DAVN Pkup Proj. DAVN Pkup Book Curve 228,958 228,454 0.09% -0.12%
1.0 HBP Pkup Proj. DAVN Pkup Book Curve 229,369 228,020 0.27% -0.31%

1 0 EMSRb Pkup Book Curve DAVN Reg. Book Curve 224,048 233,311 -2.06% 2.01%
1.0 VEMSRb Pkup Book Curve DAVN Reg. Book Curve 227,331 230,137 -0.63% 0.62%
1.0 Netbid Pkup Book Curve DAVN Reg. Book Curve 225,602 231,820 -1.38% 1.35%
1.0 DAVN Pkup Book Curve DAVN Reg. Book Curve 228,680 229,743 -0.04% 0.45%
1.0 HBP Pkup Book Curve DAVN Reg. Book Curve 227,672 230,202 -0.48% 0.65%

1.0 EMSRb Reg. Book Curve DAVN Reg. Book Curve 224,959 233,364 -1.66% 2.03%
1.0 VEMSRb Reg. Book Curve DAVN Reg. Book Curve 228,355 230,012 -0.18% 0.56%
1.0 Netbid Reg. Book Curve DAVN Reg. Book Curve 226,660 231,711 -0.92% 1.31%
1.0 DAVN Reg. Book Curve DAVN Reg Book Curve 229,674 229,671 0.40% 0.41%
1.0 HBP Reg. Book Curve DAVN Reg. Book Curve 228,600 230,139 -0.07% 0.62%

1.0 EMSRb Reg. Proj. DAVN Reg. Book Curve 226,338 232,327 -1.06% 1.57%
1.0 VEMSRb Reg. Proj. DAVN Reg. Book Curve 229.624 229,033 0.36% 0.13%
1.0 Netbid Reg. Proj. DAVN Reg. Book Curve 230,245 229,465 0.65% 0.32%
1.0 DAVN Reg. Proj. DAVN Reg. Book Curve 229,489 229,433 0.32% 0.31%
1.0 HBP Reg Proj. DAVN Reg. Book Curve 230,171 228,937 0.62% 0.09%
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1.0 EMSRb Pkup Proj. DAVN Reg. Book Curve 225,092 232,543 -1.60% 1.67%
1.0 VEMSRb Pkup Proj. DAVN Reg. Book Curve 228,675 229,150 -0.04% 0.19%
1.0 Netbid Pkup Proj. DAVN Reg. Book Curve 229,574 229,445 0.36% 0.31%
1.0 DAVN Pkup Proj. DAVN Reg. Book Curve 228,835 229,427 0.03% 0.31%
1.0 HBP Pkup Proj. DAVN Reg. Book Curve 229,250 228,997 0.21% 0.12%

1.0 EMSRb Pkup Book Curve DAVN Reg. Proj. 223,591 233,687 -2.26% 2.17%
1.0 VEMSRb Pkup Book Curve DAVN Reg. Proj. 226,776 230,331 -0.87% 0.70%
1.0 Netbid Pkup Book Curve DAVN Reg. Proj. 225,668 232,015 -1.35% 1.44%
1.0 DAVN Pkup Book Curve DAVN Reg. Proj. 228,464 229,556 -0.13% 0.36%
1.0 HBP Pkup Book Curve DAVN Reg. Proj. 227,557 230,175 -0.53% 0.63%

1.0 EMSRb Reg. Book Curve DAVN Reg. Proj. 224,423 233,766 -1.90% 2.20%
1.0 VEMSRb Reg. Book Curve DAVN Reg. Proj. 227,791 230,156 -0.42% 0.63%
1.0 Netbid Reg. Book Curve DAVN Reg. Proj. 226,655 231,930 -0.92% 1.40%
1.0 DAVN Reg. Book Curve DAVN Reg. Proj. 229,433 229,489 0.29% 0.33%
1.0 HBP Reg. Book Curve DAVN Reg. Proj. 228,288 230,146 -0.21% 0.62%

1.0 EMSRb Reg. Proj. DAVN Reg. Proj. 225,695 232,172 -1.34% 1.51%
1.0 VEMSRb Reg. Proj. DAVN Reg. Proj. 229,102 228,792 0.15% 0.03%
1.0 Netbid Reg. Proj. DAVN Reg Proj. 229,745 229,102 0.43% 0.16%
1 0 DAVN Reg Proj. DAVN Reg. Proj. 228,979 228,946 0.10% 0 10%
1.0 HBP Reg. Proj. DAVN Reg. Proj. 229,666 228,311 0.40% -0.18%

1.0 EMSRb Pkup Proj. DAVN Reg. Proj. 224,568 232,507 -1.83% 1.65%
1.0 VEMSRb Pkup Proj. DAVN Reg. Proj. 228,185 228,972 -0.25% 0.11%
1.0 Netbid Pkup Proj. DAVN Reg. Proj. 229,124 229,115 0.16% 0.17%
1.0 DAVN Pkup Proj. DAVN Reg. Proj. 228,301 228,984 -020% 0.11%
1.0 HBP Pkup Proj. DAVN Reg Proj. 228,849 228,461 0.04% -0.12%

1.0 EMSRb Pkup Book Curve DAVN Pkup Proj 223,602 233,023 -226% 1.88%
1.0 VEMSRb Pkup Book Curve DAVN Pkup Proj 226,754 229,689 -0.88% 0.42%
1.0 Netbid Pkup Book Curve DAVN Pkup Proj. 225,577 231,339 -1.39% 1.14%
1.0 DAVN Pkup Book Curve DAVN Pkup Proj. 228,454 228,958 -0.13% 0.10%
1.0 HBP Pkup Book Curve DAVN Pkup Proj. 227,523 229,502 -0.54% 0.34%

1.0 EMSRb Reg. Book Curve DAVN Pkup Proj. 224,423 233,112 -1.90% 1.92%
1.0 VEMSRb Reg. Book Curve DAVN Pkup Proj. 227,811 229,500 -0.42% 0.34%
1.0 Netbid Reg. Book Curve DAVN Pkup Proj. 226,644 231,194 -0.93% 1.08%
1 0 DAVN Reg. Book Curve DAVN Pkup Proj. 229,427 228,835 029% 0 05%
1.0 HBP Reg Book Curve DAVN Pkup Proj. 228,233 229,526 -0.23% 0.35%

1.0 EMSRb Reg. Proj. DAVN Pkup Proj. 225,736 231,549 -1.32% 1.23%
1.0 VEMSRb Reg. Proj. DAVN Pkup Proj. 229,154 228,110 0.17% -0.27%
1 0 Netbid Reg. Proj. DAVN Pkup Proj. 229,849 228,413 048% -0.14%
1 0 DAVN Reg. Proj. DAVN Pkup Proj. 228,984 228,301 0.10% -0.19%
1.0 HBP Reg. Proj. DAVN Pkup Proj. 229,732 227,674 0.42% -046%

1.0 EMSRb Pkup Proj. DAVN Pkup Proj. 224,621 231,875 -1.81% 1.38%
1.0 VEMSRb Pkup Proj. DAVN Pkup Proj. 228,217 228,388 -0.24% -0.15%
1.0 Netbid Pkup Proj. DAVN Pkup Proj. 229,145 228.522 0.17% -0.09%
1.0 DAVN Pkup Proj. DAVN Pkup Proj. 228,381 228,272 -0.17% -0 20%
1.0 HBP Pkup Proj. DAVN Pkup Proj. 228,922 227,718 0.07% -0.44%

% increase
---- Airline A--- ---- Airline B- Revenues compared to HP

DF Seat Optimizer Forecast Detruncation Seat Optimizer Forecast Detruncation Airline A Airline B Airline A Airline B
1.0 EMSRb Pkup Book Curve HBP Pkup Book Curve 225,810 229,101 -1.09% 0.38%
1.0 VEMSRb Pkup Book Curve HBP Pkup Book Curve 227,919 228,157 -0.17% -0.03%
1.0 Netbid Pkup Book Curve HBP Pkup Book Curve 226,521 227,787 -0.78% -0.19%
1.0 DAVN Pkup Book Curve HBP Pkup Book Curve 229,195 227,750 0.39% -0.21%
1.0 HBP Pkup Book Curve HBP Pkup Book Curve 228,305 228,226 .1% .0
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1.0 EMSRb Reg. Book Curve HBP Pkup Book Curve 226,845 229,065 -0.64% 0.37%
1.0 VEMSRb Reg. Book Curve HBP Pkup Book Curve 229,008 227,996 0.31% -0.10%
1.0 Netbid Reg. Book Curve HBP Pkup Book Curve 227,809 227,571 -0.22% -0.29%
1.0 DAVN Reg. Book Curve HBP Pkup Book Curve 230,202 227,672 0.83% -0.24%
1.0 HBP Reg. Book Curve HBP Pkup Book Curve 229,203 228,225 0.39% 0.00%

1.0 EMSRb Reg. Proj. HBP Pkup Book Curve 228,119 228,336 -0.08% 0.05%
1.0 VEMSRb Reg. Proj. HBP Pkup Book Curve 230,219 227,304 0.84% -0.40%
1.0 Netbid Reg. Proj. HBP Pkup Book Curve 231,913 225,774 1.58% -1.07%
1.0 DAVN Reg. Proj. HBP Pkup Book Curve 230,175 227,557 0.82% -0.29%
1.0 HBP Reg. Proj. HBP Pkup Book Curve 230,765 227,244 1.08% -0.43%

1.0 EMSRb Pkup Proj. HBP Pkup Book Curve 226,856 228,458 -0.63% 0.10%
1.0 VEMSRb Pkup Proj. HBP Pkup Book Curve 229,263 227,407 0.42% -0.36%
1.0 Netbid Pkup Proj. HBP Pkup Book Curve 231,306 225,674 1.31% -1.12%

1.0 DAVN Pkup Proj. HBP Pkup Book Curve 229,502 227,523 0.52% -0.31%
1.0 HBP Pkup Proj. HBP Pkup Book Curve 229,848 227,221 0.68% -0.44%

1.0 EMSRb Pkup Book Curve HBP Reg. Book Curve 224,561 232,400 -1.64% 1.83%
1.0 VEMSRb Pkup Book Curve HBP Reg. Book Curve 227,781 229,067 -0.23% 0.37%
1.0 Netbid Pkup Book Curve HBP Reg Book Curve 225,883 230,786 -1.06% 1.12%

1.0 DAVN Pkup Book Curve HBP Reg. Book Curve 229,102 228,679 0.35% 0.20%
1.0 HBP Pkup Book Curve HBP Reg. Book Curve 228,225 229,203 -0.04% 0.43%

1.0 EMSRb Reg. Book Curve HBP Reg. Book Curve 225,486 232,470 -1.23% 1.86%
1.0 VEMSRb Reg Book Curve HBP Reg. Book Curve 228,881 228,917 0.25% 0.30%
1.0 Netbid Reg Book Curve HBP Reg. Book Curve 227,019 230,671 -0.56% 1.07%
1.0 DAVN Reg. Book Curve HBP Reg. Book Curve 230,139 228,600 0.80% 0.16%
1.0 HBP Reg. Book Curve HBP Reg. Book Curve 229,178 229,177 0.38% 0.42%

1.0 EMSRb Reg. Proj. HBP Reg. Book Curve 228,489 228,096 0.08% -0.06%
1.0 VEMSRb Reg Proj. HBP Reg. Book Curve 230,122 228,069 0.80% -0.07%
1.0 Netbid Reg. Proj. HBP Reg. Book Curve 232,371 225,632 1.78% -1.14%

1.0 DAVN Reg. Proj. HBP Reg. Book Curve 230,146 228,288 0.81% 0.03%
1.0 HBP Reg Proj. HBP Reg Book Curve 230,728 227,993 1.06% -0.10%

1.0 EMSRb Pkup Proj HBP Reg. Book Curve 227,202 228,178 -0.48% -0.02%

1.0 VEMSRb Pkup Proj. HBP Reg. Book Curve 229,177 228,152 0.38% -0.03%
1.0 Netbid Pkup Proj. HBP Reg. Book Curve 231,673 225,598 1.48% -1.15%
1.0 DAVN Pkup Proj. HBP Reg. Book Curve 229,526 228,233 0.53% 0.00%
1.0 HBP Pkup Proj. HBP Reg. Book Curve 229,815 227,985 0.66% -0.11%

1 0 EMSRb Pkup Book Curve HBP Reg. Proj. 223,251 234,287 -2.21% 2.66%
1.0 VEMSRb Pkup Book Curve HBP Reg. Proj. 226,660 230,856 -0.72% 1.15%
1.0 Netbid Pkup Book Curve HBP Reg. Proj. 225,104 232,652 -1.40% 1.94%

1.0 DAVN Pkup Book Curve HBP Reg. Proj. 227,993 230,277 -0.14% 0.90%
1 0 HBP Pkup Book Curve HBP Reg. Proj. 227,244 230,765 -0.46% 1.11%

1.0 EMSRb Reg. Book Curve HBP Reg. Proj. 224,005 234,416 -1.88% 2.71%
1.0 VEMSRb Reg. Book Curve HBP Reg. Proj. 227,618 230,683 -0.30% 1.08%
1.0 Netbid Reg. Book Curve HBP Reg. Proj. 226,140 232,523 -0.95% 1.88%
1.0 DAVN Reg. Book Curve HBP Reg. Proj. 228,937 230,171 0.28% 0.85%
1.0 HBP Reg. Book Curve HBP Reg. Proj. 227,993 230,728 -0.14% 1.10%

1.0 EMSRb Reg. Proj. HBP Reg. Proj. 225,243 232,824 -1.34% 2.01%
1.0 VEMSRb Reg. Proj. HBP Reg. Proj. 228,751 229,425 0.20% 0.53%
1.0 Netbid Reg. Proj. HBP Reg. Proj. 229,121 229,688 0.36% 0.64%

1.0 DAVN Reg. Proj. HBP Reg. Proj. 228,311 229,666 0.00% 0.63%
1.0 HBP Reg. Proj. HBP Reg. Proj. 229,149 229,129 0.37% 0.40%

1.0 EMSRb Pkup Proj. HBP Reg. Proj. 224,142 233,118 -1.82% 2.14%

1.0 VEMSRb Pkup Proj. HBP Reg. Proj. 227,874 229,622 -0.19% 0.61%

1.0 Netbid Pkup Proj. HBP Reg. Proj. 228,578 229,702 0.12% 0.65%

1.0 DAVN Pkup Proj. HBP Reg. Proj. 227,674 229,732 -0.28% 0.66%
1.0 HBP Pkup Proj. HBP Reg. Proj. 228,305 229,269 0.00% 0.46%
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1.0 EMSRb Pkup Book Curve HBP Pkup Proj. 223,358 233,279 -2.17% 2.21%
1.0 VEMSRb Pkup Book Curve HBP Pkup Proj. 226,749 229,902 -0.68% 0.73%
1.0 Netbid Pkup Book Curve HBP Pkup Proj. 225,064 231,561 -1.42% 1.46%
1.0 DAVN Pkup Book Curve HBP Pkup Proj. 228,020 229,369 -0.12% 0.50%
1.0 HBP Pkup Book Curve HBP Pkup Proj. 227,221 229,848 -0.47% 0.71%

1.0 EMSRb Reg. Book Curve HBP Pkup Proj. 224,119 233,392 -1.83% 2.26%
1.0 VEMSRb Reg. Book Curve HBP Pkup Proj. 227,721 229,733 -0.26% 0.66%
1.0 Netbid Reg. Book Curve HBP Pkup Proj. 226,012 231,517 -1.00% 1.44%
1.0 DAVN Reg. Book Curve HBP Pkup Proj. 228,997 229,250 0.30% 0.45%
1.0 HBP Reg. Book Curve HBP Pkup Proj. 227,985 229,815 -0.14% 0.70%

1.0 EMSRb Reg. Proj. HBP Pkup Proj. 225,631 232,169 -1.17% 1.73%
1.0 VEMSRb Reg. Proj. HBP Pkup Proj. 228,935 228,537 0.28% 0.14%
1.0 Netbid Reg. Proj. HBP Pkup Proj. 229,439 229,098 0.50% 0.38%
1.0 DAVN Reg. Proj. HBP Pkup Proj. 228,461 228,849 0.07% 0.27%
1.0 HBP Reg. Proj. HBP Pkup Proj. 229,269 228,305 0.42% 0.03%

1.0 EMSRb Pkup Proj. HBP Pkup Proj. 224,306 232,249 -1.75% 1.76%
1.0 VEMSRb Pkup Proj. HBP Pkup Proj. 227,988 228,802 -0.14% 0.25%
1.0 Netbid Pkup Proj. HBP Pkup Proj. 228,583 228,927 0.12% 0.31%
1.0 DAVN Pkup Proj. HBP Pkup Proj. 227,718 228,922 -0.26% 0.30%
1.0 HBP Pkup Proj. HBP Pkup Proj. 228,487 228,356 0.08% 0 06%
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