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ABSTRACT

Airlines are constantly faced with operational problems which develop from severe weather

patterns and unexpected aircraft or personnel failures. However, very little research has

been done on the problem of addressing the impact of irregular operations, and developing

potential decision systems which could aid in aircraft re-scheduling. The primary goal of

this research project has been to develop and validate algorithms, procedures and new

methodologies to be used to reschedule planned activities (flights) in the event of irregular

operations in large scale scheduled transportation systems, such as airline networks.

A mathematical formulation of the Airline Schedule Recovery Problem is given, along with a

decision framework which is used to develop efficient solution methodologies. These

heuristic procedures and algorithms have been developed for potential use in a

comprehensive real-time decision support systems (DSS), incorporating several aspects of

the tactical operations of the transport system. These include yield management, vehicle

routing, maintenance scheduling, and crew scheduling. The heuristic procedures developed

will enable the carrier to recover from an irregular operation and maintain an efficient

schedule for the remainder of a given resolution horizon.

The algorithms are validated using real-world operational data from a major US domestic

carrier, and data from an international carrier based in the Asia Pacific region. A

comprehensive case study was conducted on historical operational data to compare the

output of the algorithms to what actually occurred at the airline operation control center in

the aftermath of an irregularity. Some of the issues considered include the percentage of

flights delayed, percentage of flights cancelled, and the overall loss in operating revenue.

From these analyses, it was possible to assess the potential benefits of such algorithms on

the operations of an airline.
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Title: Professor Emeritus, Department of Aeronautics and Astronautics
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Chapter 1

Introduction

1.1 Overview

Airlines are constantly faced with operational problems which develop from severe weather

patterns and unexpected aircraft or airport failures. A significant amount of computational

time and effort is invested in developing efficient operational schedules for airlines which

are impacted by these irregular events. Over the last decade, airlines have become more

concerned with developing an optimal flight schedule, with very little slack left in the system

to accommodate for any form of variation from the optimal solution. However, very little

research has been done on the problem of addressing the impact of irregular operations, and

developing potential decision support systems which could aid in short term aircraft

rescheduling.

The primary objective of this research was to develop algorithms, procedures and new

solution methodologies to be used to reschedule planned activities (flights) in the event of

irregular operations in large scale scheduled airline systems. These heuristic procedures and

algorithms would be developed for use in a comprehensive real-time decision support

systems (DSS), incorporating several aspects of the tactical operations of the transport

system. These include yield management, vehicle routing, maintenance scheduling, and crew

scheduling. The heuristic procedures will enable the carrier to recover from an irregular

operation and maintain an efficient schedule for the remainder of a given rotation period.



Having been exposed to issues relevant to the problem of irregular operations, the author is

confident that these procedures when developed and implemented, will have a substantial

impact on future airline system operations.

The development of an airline's published flight schedule is one of the most important

aspects of its strategic planning. Significant efforts are made to ensure that the airline has

plans which efficiently make use of its resources in order to maximize revenue or operating

profits. The overall schedule planning process depends on an extensive array of

information, and it starts several months ahead of the actual operation of a given flight.

The process of deciding which aircraft type is assigned to a given flight is called the fleet

assignment problem, and the process of assigning a specific aircraft or "tail number" to a

given flight is known as the aircraft rotation/routing problem. This is necessary as aircraft

must rotate through the planned maintenance services available at limited number of

locations in the network.

Throughout the course of daily operations, the airline is often faced with situations that may

result in substantial variations from its planned operations, and then is required to make

real-time decisions that can have a significant impact on the overall operations of the airline

over the rest of the day, or next few days. These irregular operations impact all aspects of

the airline's operations, but are most detrimental to the schedules for basic resources such as

aircraft and flight crews. The cause of the irregularity may range from severe weather to

aircraft breakdowns, and it may result in the need to reschedule flight services, and reroute

aircraft and crews. These actions cause flight delays and cancellations, which affect

passenger services.

Irregular operations impact will also have an effect on the aircraft maintenance routing

decision process, and the scheduling of maintenance resources. The ability of the airline to
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recover from such unexpected irregularities will depend on its ability to effectively make use

of operational information that is readily available throughout the airline's computer

databases. The decision maker will be trying to assign operational (available) aircraft to the

most valuable flights, while meeting maintenance requirements of all operational aircraft.

1.2 Motivation

Currently, the resolution of flight irregularities is primarily a manually driven decision

process, wherein the airline controller assesses all the available information, and makes an

informed decision about the airline's operations. In general, this decision process is

sufficient to solve the existing irregularity; however, it may have a significant impact on

other future activities which were not considered by the controller. The ability of a

computer based decision support system to consider all relevant activities should have great

benefit to the overall resolution process. It is important to underscore the role of the airline

controller in the decision making process, as it is only with extensive experience in the

Airline Operations Control Center, that the controller can effectively deal with resolving

irregularities.

For a typical airline, approximately ten percent (10%) of its scheduled revenue flights are

affected by irregularities, with a large percentage being caused by severe weather conditions

and the associated loss of airport capacity. In an article published in the New York Times

[January 21, 1997], it was noted that the financial impact of irregularities on the daily

operations on a single major US domestic carrier can exceed $440 million per annum in lost

revenue, crew overtime pay, and passenger hospitality costs. During the late spring of 1995,

a severe hailstorm over Dallas-Fort Worth resulted in the damage of nearly one hundred

aircraft parked at the airport terminals [Aviation Week; May 8, 1995]. In fact, eighty of

these damaged aircraft belonged to American Airlines, accounting for nearly nine percent of
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its total fleet. In the immediate aftermath of this irregularity, American had to cancel almost

ten percent of its scheduled flights, and needed almost an entire month to return to normal

operations.

In January of 1996, it was estimated that a single snow storm "The Blizzard of '96" costs

the US airline industry between $50 - $100 million [Aviation Week; January 15, 1996]. On a

daily basis, airlines have to cope with reduced fleet size, as a result of aircraft breakdowns,

as well as external factors such as ATC flow management restrictions, which affect the

planned operations of the carrier. It is important to point out that the causes of airline

irregularities are not limited to severe weather patterns during the winter season. Based on

data obtained from the US Department of Transportation, it was established that poor

weather conditions were cited as the largest causes of irregularities in the airline system over

the course of the entire year, as reported by the airlines themselves.

In recent years, airlines have invested significantly in the development of their Operations

Control Centers, with extensive infrastructure improvements in communications channels,

and new computer architectures which promote the free flow of information throughout the

entire airline company. The presence of these centralized decision centers have allowed

airline controllers to make better decisions regarding the carrier's operations, based on up-

to-date and accurate information from numerous divisions within the airline, available to

them on state-of-the-art information systems. But the existence of robust and efficient

decision support tools to help airline controllers in the decision process is not apparent.

The development of such methodology is warranted, as airlines will gain financially from the

availability of such decision tools.

1.3 The Airline Schedule Recovery Problem
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1.3.1 Problem Statement

Throughout the course of daily operations, an airline is faced with the potential of

deviations in the planned flight schedule as a result of various unexpected events. The

impact of these deviations on the three primary airline operational schedules (Flight

Services, Crew Rotations, and Aircraft Rotations) will vary, depending on the specific

irregularity, and the flexibility and robustness of the original schedules. As discussed in

Grandeau [33], any changes which may occur to the three airline system schedules are often

defined as "operational deviations". Deviations that do not cause significant rerouting

problems are defined here as "time deviations", and deviations that lead to rerouting of

airline resources are referred to as "irregular operations".

Time deviations are defined as any variation from the original scheduled times in any of the

system schedules, and often result from minor delays in the air traffic control (ATC) system.

One of the main causes of time deviations is the variation in wind patterns, which affect the

overall airborne time of a given flight. They usually do not have a large negative impact on

the airline's flight operations, but simply reflect small changes in the arrival and departure

times during normal daily operations. Time deviations are distinguished from irregular

operations since they do not generally require any aircraft or crew reassignment decisions.

However, there may be rescheduling of gates and other ground resources.

An "irregular operation" is defined as the aftermath of unexpected events which have a

significant impact on the carrier's schedule. This often results from poor weather patterns

and the resulting severe delays in ATC operations, airport closures, aircraft breakdowns,

lack of adequate flight personnel (cockpit and cabin crew), problems in ground handling and

support services, and/or equipment failures. Irregular operations generally result in aircraft

rescheduling and rerouting, with the added impact of flight delays and cancellations. In
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addition, aircraft rescheduling will have an impact on the scheduling of maintenance

resources for the carrier.

On a daily basis, airlines operating hub and spoke operations suffer from irregularities,

which can have a significant impact on their profitability and ability to compete effectively.

In fact, many carriers now see the need to address the problem of irregular operations as one

issue necessary to maximize operating profit, by reducing additional operating expenses

and loss of revenues, which result from such irregularities. However, robust decision

support systems for the purpose of rescheduling operational aircraft do not readily exist,

and very little research has been done on the topic to date. At the majority of airline

operation centers throughout the world, irregular operations are dealt with manually, with a

heavier reliance on the human controller and his past experience, and his knowledge of

available spare aircraft and other resources such as terminal gates, regulations, and

maintenance schedules. Given the complexity of the Airline Schedule Recovery Problem, the

need for real-time decision making tools to assist in the event of irregular airline operations

is therefore apparent.

There are several questions that have to be considered when trying to solve the problem of

irregular airline operations. These include:

" How should flight schedules and aircraft rotations be revised in the aftermath of

irregular airline operations?

" What flights should be cancelled to minimize the loss of profit, based on available

resources and the actual number of passengers on-board a given flight?

* Is it possible to carry out the revised flight schedule with the available number of flight

crews?

* How does one develop new crew rotations in the aftermath of irregular operations?

IntroductionPage 22



* How will the revised flight schedule and corresponding aircraft rotations affect the

scheduled maintenance program of the airline?

The availability of high-performance workstations, which are already in use in the strategic

stage of airline planning will play a significant role in tactical planning. The use of these

computers would give the airline controller the ability to incorporate demand and revenue

data from the airline's computer reservation and yield management systems, and to interact

with maintenance scheduling, crew scheduling, and other elements of airline operations.

Historically, little interaction exists during the tactical phase of operations between the

various operational divisions (maintenance, fleet assignment, yield management, etc.), and

the presence of irregular operations only adds to the problem. This has changed somewhat

with the advent of the development of the centralized Airline Operations Control Center

(AOCC). It should be possible to develop a decision support system whose primary goal

would be to regain the strategic schedule of the airline within a given time period, minimizing

the overall impact of cancellations and delays on profitability, and on the operational

schedules. This can be called the Airline Schedule Recovery Problem (ASRP) and is the

focus of this research.

The most severely impacted aspects of the planning process are fleet assignment and

subsequent aircraft routing. Although these problems are generally developed

independently in the strategic planning stage, the need to reschedule aircraft operations in

real-time after an irregularity, causes both fleet assignment and routing to be considered

concurrently. The utilization of a decision support system to solve ASRP, should provide

significant benefit to the airline, and potentially to the traveller (through significant reduced

flight delays, and/or cancellations).
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1.3.2 Model Development and Solution Approach

In order to develop effective decision support tools to assist airline controllers in the

resolution of irregularities, it is imperative for the researcher to establish a thorough

understanding of the daily operations of the Airline Operations Control Center, and the role

it plays in the airline operational activities. In addition, it is necessary to identify the

operational requirements of any tool which will be developed and deployed in the AOCC.

It is essential to incorporate the experience of the airline controller in the decision process,

thereby dictating an interactive tool. Trade-offs have to been made in this and future

research initiatives between the level of automation in the decision process versus flexibility,

and the ability of the controller to guide the decision process.

Although the overall goal of the decision process is to fully resolve any irregularities, the

shear size of the airline network often dictates that the underlying problem has to be

decomposed and considered in different phases. Decisions about rerouting aircraft will be

affected by the availability of eligible flight crews at each station, as well as adequate

ground resources to process aircraft and passengers at a station. Conversely, the allocation

of these support services will be driven by the revised aircraft schedule. It was established

in the early phases of this research, that the problem of resolving irregular airline operations

would have to be addressed through a phased or sequential approach.

The basic decision that has to be made is the reassignment of aircraft to flights, within the

constraints of crew availability, the number of landing slots at a given station, and the level

of station resources. Primarily, the aircraft have to be reassigned to flights based on revenue

data, while meeting maintenance requirements. Secondarily, issues such as the availability

of flight crews, landing slots, and in some cases, limited ground resources and passenger

flow requirements are considered. The allocation of crews, landing slots and ground
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resources is done after the primary aircraft reassignment problem has been solved, and if

necessary, there then would be an iterative process implemented to improve upon the

primary aircraft routing decision.

Based on discussions with airline controllers at major US carriers, it was established that

one of the most important operational requirements of any decision support tool is the

ability to provide real-time decision making. Throughout the course of this research project,

this requirement was thus placed at the forefront of the design process. However, several

other requirements were incorporated into the development of the solution methodology.

These include the ability to consider switching between different types of aircraft in the

fleet, crew scheduling considerations, and to make trade-offs between delaying and

cancelling a given flight using a single decision model.

1.4 Overview of the Airline Operations Control Center (AOCC)

Airline operational planning is generally handled in two phases, strategic and tactical.

Strategic planning is concerned with creating a flight schedule of services to be offered to

passengers (called the Schedule of Services), and is established by the Commercial/

Marketing department. The Operations group then generates the Nominal Operational

Schedule (NOS) for the airline's generic resources such aircraft rotations and crew rotations.

It subsequently schedules specific airline resources by assigning tail numbers, and individual

crew members to a given flight. This second step creates the Resource Operational Schedule

(ROS), and constitutes the resource allocation phase of the total scheduling process. The

resource allocation steps are carried out by various airline groups. The reader is referred to

Grandeau [33, 34] for a more comprehensive discussion of the overall airline scheduling

process.
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Given these resource schedules, the tactical side of the Operations group is responsible for

the final stage of the scheduling process: Execution Scheduling. Execution scheduling is the

process of executing the system resource schedules on a daily basis. This involves three

main activities: executing the pre-planned schedules, updating the schedules for minor

operational deviations, and rerouting for irregular operations. The tactical operations of a

regular scheduled air carrier are usually under the 24 hour/day control of a central

organization often referred to in generic terms as the Airline Operational Control Center

(AOCC), although it may have a different name at each airline.

This section presents a brief summary of a typical AOCC, outlining its organization,

primary activities within the airline, and operational facilities. The facilities and personnel

of a particular AOCC will vary considerably depending on the type and size of the airline.

AOCC centers can range from a single controller/dispatcher on duty to several dispatchers

and hundreds of other personnel handling flights throughout the carrier's entire global

network. During the process of operation control, the AOCC is supported by the

Maintenance Operations Control Center (MOCC) which controls airline maintenance

activities, and by various Station Operations Control Centers (SOCC) which control station

resources (gates, refuelers, catering, ramp handling, and passenger handling facilities).

Operations Control Centers are usually linked to the Aeronautical Radio Inc. (ARINC) and

the Societe International Telecommunications Aeronautiques (SITA) networks to send and

receive teletype/telex messages. Communications with maintenance and engineering,

customer service, and airport services are maintained to facilitate prompt contact with the

appropriate personnel. Teletype, telex, facsimile, telephone, leased lines, and public data

networks combine to provide an effective medium for collecting information and

communicating revised operational plans developed by the AOCC center. In some cases,

the AOCC has communications systems connected to VHF, HF and Satcom radio links, air
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traffic control centers, and other relevant locations, allowing them to effectively gather and

disseminate information instantaneously.

1.4.1 Functional Groups Within the AOCC

The AOCC is organized into three functional groups, each with a distinct responsibility

within the schedule execution process. These are: 1) the Airline Controllers, 2) On-line

Support, and 3) Off-line Support; as shown in Figure 1-1. The airline Operation Controllers

are responsible for maintaining the current operational version of all the system resource

schedules (crew, aircraft and flight), and for the management of irregular operations. The

final operational decisions are made by one (or more) Operation Controller(s). The

operation controllers at larger US airlines may have a dedicated airline Air Traffic Control

(ATC) coordinator, to deal with Air Traffic Flow management advisories from the ATC

system.

They are assisted by four types of on-line support personnel: the flight dispatch group, the

crew dispatch group, MOCC, and SOCC. The Flight Dispatch group is responsible for flight

planning, flight dispatch and enroute flight following. The Crew Operations group is

responsible for tracking individual crew members as they move through the airline's route

network, for maintaining up to date status for all crew members, and for calling in reserve

crews as required. The airline controllers, flight and crew dispatch groups are usually

located together in the AOCC. The later two support groups, the MOCC and the several

SOCC's are usually not physically located at the central AOCC.

Ancillary off-line services such as the maintenance of the navigation database, meterology,

and operations engineering (or flight technical services) are usually located at the operations

control center, and serve to provide supporting resources for all AOCC personnel. In
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addition, the crisis center which manages activities after an accident or incident is often an

integrated part of the Airline's Operational Control Center.

1.4.2 Information Flow within the AOCC

The airline Operation Controllers are the center of the airline operation control process.

They are the sole operational group within the AOCC with the authority and responsibility

to resolve problems that develop during the course of both regular and irregular operations.

Airline Operation Controllers receive information from every facet of the airline during

operations, through established information channels as represented in Figure 1-1. From

these inputs, the Controllers maintain an updated version of the airline system resource

schedules which includes delays, irregular routings for aircraft and crews, and additional

flights. These can be called the "Current Operational Schedules " (COS). As the focal point

in the AOCC for flight and schedule management, controllers interact with key personnel

and divisions.

During normal operations, Dispatchers are responsible for the successful release of a flight,

depending on maintenance issues (deferred minimum equipment list [MEL] or configuration

deviation list [CDL] items), aircraft restrictions (such as noise), the availability of required

operational support (fuel, gates, ground power, airport facilities) at the departure,

destination and alternate airports. During irregular operations and emergencies, the

Dispatcher will inform the Operations Controller of the problem, and their role is to handle

the additional coordination that such situations demand. If the airline is experiencing

irregularities, the Operation Controllers have to devise modified
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operational schedules on a very short notice. The Current Operational Schedule is the plan

that the airline will follow in order to return to the Nominal Schedule of Services. These

modified schedules are disseminated to the relevant airline divisions, and stations of the

system.

1.5 Thesis Outline

In the next chapter, there is a discussion of the primary causes of irregularities and resulting

flight delays and cancellations at major hub airports in the US domestic market, derived

from information obtained from the US Department of Transportation. A review of existing

decision support tools and solution methodologies currently in use at airline operations

control centers of major US domestic carriers and an international carrier is presented,

outlining the major characteristics of these systems. An extensive literature review of airline

operations is given, summarizing research that has been done on the topic of irregular airline

operations, as well as work on other closely related research topics.

In the first phase of the research program, the overall structure of the problem was defined,

and a large-scale mathematical model was formulated to represent the decision process for

aircraft rerouting. Based on discussions with airline controllers, potential solution

methodologies were investigated, and the underlying operational requirements and

capabilities of candidate decision procedures were established. In the second phase, a

series of algorithms were developed to solve the established problem based on concepts of

network flow theory and mathematical programming theory. These solution procedures

have been developed and implemented in an UNIX operating system environment using the

C++ programming language.
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In Chapter 3, the mathematical formulation of the airline schedule recovery problem is

presented, outlining the decomposition of this highly complex problem. The primary

problem considered is the reassignment of aircraft to scheduled flights in the aftermath of

irregularities. Based on this output, the residual airline network and associated revised

schedule map, are used as the basis to assign crews, terminal gates, ATC landing slots, and

for solving the passenger reaccommodation problem. Each resulting sub-problem is outlined

with a representative formulation of the problem.

Chapter 4 outlines the underlying mathematical programming theory and network flow

theory which were used to develop the solution methodologies and procedures. This

includes a brief overview of the implicit column generation procedure, and a review of a

constrained shortest path algorithm, and a constrained minimum cost flow algorithm. In

Chapter 5, the solution procedures developed are discussed, incorporating concepts

presented in Chapter 4.

In the final phase of the research project, operational data from a US domestic carrier and

an international carrier have been used to validate the algorithms, and establish the

potential limitations of the solution methodology as a result of memory limitations and CPU

processing capabilities. A comprehensive case study was conducted on historical

operational data to compare the output of the algorithms to what actually occurred at the

airline operation control center in the aftermath of an irregularity. From this analysis, it was

possible to determine the potential benefits of such algorithms on the operations of an

airline.

Chapter 6 presents the results of the case studies used to demonstrate the algorithms and

solution procedures developed during the course of the research project. Several design

parameters and implementation issues were considered including the effect of the size of the
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airline schedule map on the solution time of each algorithm. In particular, the case study

considered the effects of several operational constraints, the number and positioning of

delay arcs, passenger recapture rate, and minimum aircraft turn time. These affected the

quality of the solution as measured by operating profit, flight coverage (percentage of flights

delayed, and percentage of flights cancelled) and the overall solution time of each algorithm.

Chapter 7 summarizes the major contributions of this dissertation, and discusses the results

of the case study and their implications to future research initiatives on the topic of irregular

airline operations.

1.6 Contributions of the Thesis

The Airline Schedule Recovery Problem (ASRP) developed in this dissertation provides a

comprehensive framework that addresses how airlines can efficiently reassign operational

aircraft to scheduled revenue flights in the aftermath of irregularities. The mathematical

formulation of the problem enables flight delays and cancellations to be considered

simultaneously, i.e., in the same decision model. The algorithms and solution methodologies

developed in this dissertation have successfully demonstrated that it is possible to develop

efficient procedures for flight rescheduling.
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Chapter 2

Irregular Airline Operations

2.1 Introduction

In order to effectively model any physical system, it is imperative for the researcher to

develop a thorough understanding of the underlying problem being considered, as well as all

the major factors that may affect the system. In the initial stages of the research, a

comprehensive review of flight delays in the US domestic airline system was conducted in

an effort to accomplish this task. In addition, field trips were made to existing airline

operations control centers to further help establish the state-of-the-practice procedures for

dealing with irregularities. The reader is referred to the Appendices for a more detailed

description of the survey questionnaire used on these field trips. In this chapter, a summary

of the major findings of the delay study and a survey of current AOCC are given as a

preamble to developing the decision model, and subsequent algorithms.

The daily operations of regularly scheduled airline carriers are prone to unexpected

irregularities which develop from several factors ranging from severe weather conditions to

the unavailability of eligible flight crew. In many cases, these factors can have a significant

impact on an airline's operations, resulting in substantial deviation from the planned

schedule of services. Since 1993, the US Department of Transportation has recorded

information on flight delays throughout the domestic air travel market. The Air Traffic

Operating Management System (ATOMS) database system contains the number of



scheduled flights delayed more than fifteen minutes by cause of delay (e.g. weather, and air

traffic control volume) and by airport. Flights which arrive within fifteen minutes of the

scheduled arrival time are considered "on-time" by the DOT.

As part of the research effort, data from the ATOMS database has been used to assess the

primary causes of flight delays at major hub airports in the US domestic system, as

categorized by the DOT. The major findings of the analysis will be influenced by the way in

which the data is collected, as it is the responsibility of the reporting airport to assign the

delay cause to each scheduled flight when necessary. The following list summarizes the

major categories of irregularities as established by the ATOMS program. They are:

* Weather - Wind, fog, thunderstorm, low cloud ceiling

* Equipment - Air traffic radar/computer outage

* Runway - Unavailable because of construction, surface repair, disabled aircraft

* Volume - Aircraft movement rate exceeds capacity of the airport at a given time

* Other -Anything excluding weather, volume, runway, and equipment

The airports considered in the study were hub complexes for the six largest US major

passenger carriers (American AA, United UA, Delta DL, Continental CO, USAirways US,

and Northwest NW).

Several important observations were made during the course of reviewing, and analysing the

delay data obtained from the US Department of Transportation. The main points are listed

below:

* Loss of capacity due to severe weather and traffic volume account for 93% of flight

delays at hub airports.

* There is a marginal correlation between the overall level of aircraft movement at an

airport and the level of flight delay experienced.
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* The level of flight delay at an airport is affected by its geographical location, and the

resulting meteorological conditions.

* The variation in the level of flight delay at a given station is closely related to the

seasonal weather changes.

* The level of hub activity at an airport can have an impact on the level of flight delay.

* In the majority of the airports studied, the highest percentages of delays were

experienced in January and July of a given year.

2.2 Implications for Algorithm Development

It is evident from the empirical study that the majority of flight delays result from severe

weather conditions. The ability of a given aircraft routing to absorb any delays is minimal,

as most routings have been optimally determined, with very little slack time built into the

flight sequence. Thus, a delay in flights early in the day may course continuing lateness

unless the airline pro-actively rescheduled its resources. In order to effectively deal with

irregularities, it is thus apparent that a system-wide approach should be applied to the

problem, if one hopes to efficiently resolve airline irregularities. However, current practice

generally takes a localized approach in dealing with irregularities. In the next section, a

review of existing solution procedures and decision support tools used by the AOCC is

given to highlight the need for more efficient methodologies to deal with abnormal

operations.

2.3 Review of Existing Information Systems and Decision Support Tools

The overall impact of irregularities on the daily operations of an airline will depend on the

level of precautionary measures the carrier has built into its schedules to deal with typical

irregularities. Many carriers have developed extensive resolution procedures which are

generally implemented manually in the aftermath of irregularities, with little if any
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dependence on automated decision support systems. Decisions regarding future

operational schedules and actual operations of the airline are made based on forecasted

and often out-dated data and information, and this can have a significant effect on the

value of the decision process. In some cases, the airline may decide to delay or even cancel

flights, only to find out that these actions were unnecessary for the resolution of

irregularities in the network.

Airlines have identified the need to improve the processes which assist airline controllers in

the real-time operations of the carrier. They have invested heavily in state-of-the-art,

Airline Operations Control Centers (AOCC), sometimes referred to as system operations

control centers, which gather an extensive array of operational information and data.

However, very little effort has been placed in developing solution procedures and

methodologies which could complement the decision making capabilities of experienced

airline controllers. In order to appreciate the need for such systems, the following is a

summary of some of the resolution procedures and decision support systems, currently in

use at Airline Operation Control Centers of major US domestic carriers, and an

international carrier based in Asia.

United Airlines [10] has developed and deployed the "System Operations Advisor" (SOA),

a real-time decision support system for use at its AOCC (which they refer to as the

Operations Control Center [OCC]) to increase the effectiveness of its operational decisions.

The SOA system consists of three primary components: the Status Monitor, the Delay and

Swap Advisor, and the Delay or Cancellation Advisor. The purpose of the Status Monitor

subsystem is to alert the airline controller of potential irregularities such as delays and

cancellations through a graphical user interface. The interface provides mechanisms to

launch tools such as the Delay and Swap Advisor for developing solutions to existing

operational problems. The Delay or Cancellation Advisor can then be deployed in order to
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determine potential resolution procedures to problems which have developed from

irregularities in the airline's network. It is important to note that decisions regarding delays

and cancellations of scheduled flights are made independently of each other in this current

system.

The AOCC at American Airlines is called the System Operations Control center (SOC), and

relies on an array of decision support tools to make informed decisions about the operations

of the carrier. The airline's primary goal in the aftermath of irregularities is to return to the

operational schedule as soon as possible, regardless of its impact to potential revenues. The

controllers consider the number of passengers booked on a given flight segment instead of

the actual value of the flight. In resolving irregularities, the airline controllers subjectively

incorporate passenger flow issues such as connectivity, goodwill, and volume of traffic, into

the decision process.

The airline has identified crew scheduling as the important parameter in the resolution of

irregularities in the network, and consequently, most aircraft substitutions are done within a

given fleet. In the aftermath of an irregularity, the carrier first establishes a reduced flight

schedule, and then figures out how to implement this schedule. It takes into consideration

such issues as critical departure times, mission compatibility, and system balance in the

daily flight cycle. American Airlines describes mission compatibility as any decision which

minimizes downstream effects in schedule variation, and provides a feasible resolution in a

timely fashion. Decisions are generally made to initially delay flights, and then if necessary

determine flight cancellations.

Delta Air Lines recently opened its new operations control centre in Atlanta, responsible for

monitoring weather, flight schedules and maintenance problems that may develop during the

course of normal operations. The airline makes use of readily available operation data to
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fine tune its flight schedules to accommodate for prevailing weather conditions. It is

apparent however, that most of the decision making regarding flight delays and

cancellations at Delta is manually executed, with little if any reliance on automated decision

support systems. The airline is currently in the process of developing such software,

including a program named the Inconvenienced Passenger Rebooking System, which allows

the airline to notify passengers of cancellations or delays and aid in passenger flow

recommendations. In addition, they are reportedly in the middle of developing software to

assist in the redeployment of flight crews in the aftermath of irregularities.

In recent years, many airlines have come to rely extensively on pre-emptive decision making,

developing flight cancellation plans which are implemented long before an airport or region

is actually impacted by severe weather conditions. At Continental Airlines, they have

developed a resolution procedure referred to as the Severe Weather Action Plan, which is

used to minimize the number of aircraft and crews remaining in a geographical region

forecasted to have bad weather conditions. The airline controllers believe that such

preemptive actions are beneficial to the carrier, as it makes schedule recovery easier, and

greatly facilitates restarting normal operations. However, they may in fact compromise

revenue operations, which could have occurred without the influence of the prevailing

irregularities. Continental recently opened its new operations control centre, similar to those

existing at American, United and Delta airlines.

Northwest Airlines is currently in the process of developing decision support systems for

use in the carrier's operations control center. In the interim, the airline has developed and

implemented several alternative aircraft "thinning" procedures that incorporate both

operational and economic factors in the decision making process. "Thinning of flights" is

defined as the response to irregular operations, based on forecasted adverse weather

conditions that are expected to reduce the operational capacity of airports in the given
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region. The thinning process is designed to match operations with the level of reduced

airport capacity, while ensuring that net revenue contributions are maximized, as well as

minimizing customer inconvenience, and disruptions to crew and maintenance scheduling.

The overall guidelines for thinning operations are to recover safely, and efficiently to normal

operations as soon as physically possible, in the aftermath of the irregularity. Similar to

Continental Airlines, it is Northwest's policy to pre-cancel flights in preparation for the

reduced operational capacity.

At Garuda Indonesia, the AOCC is referred to as Operations Movement Control (EM), and

it serves as the core of Garuda's operations. The primary information system is the

Resource Management Operations Control (ROC) system, which is used for monitoring the

actual operations of every Garuda flight. The airline's Nominal Operations Schedule which

is generated by Operations Planning (EP) using the Airline Resource Planner (ARP) is

electronically transferred (via floppy disk) to the ROC system. However, there is no direct

line connection between to the two computer systems.

Actual operational data in the form of a departure message from each airport station is

transmitted via SITA telex, and automatically entered into the Resource Operations Control

ROC database/graphical display system. The departure message includes information on

actual arrival time at station, aircraft type, aircraft's next destination, departure time,

estimated arrival time, delay status, passenger count, cargo, mail, captain in command, and

fuel uplift data. The departure messages are stored for each flight leg in a centralized

operations database in DBase 3 format. This data can be accessed and analyzed using the

database management system Paradox. Any additional changes or modifications in flight

schedules such as charter flights, special flights, etc. are manually entered into the ROC

system via keyboard. A hard copy output of the flight schedules from the ARP program

Page 41Irregular Airline Operations



(prepared by EP) is used as a back-up to computer systems, as well as to manually record

changes in the schedule in the event of an irregular operation.

At the Operations Control facility, four micro-computers serve as a platform for the ROC

monitoring system. One computer acts as a dedicated server, with the remaining three units

providing display capabilities and limited operational access to the stored data. The

ARP/ROC systems have been in use at Garuda since 1990. Before that all operations were

manual. In addition, Operations Control has access to the reservation system ARGA and

the departure control system DCS database via a separate computer terminal. The

information is used during irregular operations, to determine the impact of cancellations on

revenue (manually).

2.4 Literature Review

Mathaisel [8] reports on the development of a decision support system for AOCC which

integrates computer science and operations research techniques. The application integrates

real-time flight following, aircraft routing, maintenance, crew management, gate assignment

and flight planning with dynamic aircraft rescheduling and fleet rerouting algorithms for

irregular operations. As discussed by the author, the algorithms help airline controllers

optimally reroute aircraft, crews and passengers when operational problems disrupt the

execution of the schedule plan. The system includes a real-time, interactive, graphical

aircraft routing displays; a rule system which provides warnings of constraint violations

and usual conditions; and the ability to generate what-if solution scenarios. The integrated

system is demonstrated by simulating a disruption to a planned schedule and by using one

of the available tools, a network flow algorithm, to determine optimal rerouting alternatives.

The problem of irregular airline operations has only been recently considered in research

projects conducted by Dusan Teodorovic, et al. and in work done by the Research and
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Development Department of United Airlines. Teodorovic and Gubernic [13] discuss the

problem of minimizing overall passenger delays in the aftermath of a schedule perturbation.

They attempt to determine the least expensive set of aircraft routings and schedule plan

using a branch and bound procedure. Their methodology is based on the assumption that

all the aircraft in the fleet have the same capacity, and they only considered a marginally

sized fleet of three aircraft operating a total of eight scheduled flights. Teodorovic [14]

presents research on the reliability of airline scheduling as it relates to meteorological

conditions, the ability to identify an indicator for quantifying the adaptability of such airline

schedules to weather conditions, and an overview of a potential solution procedure. The

author outlines this heuristic algorithm for minimizing the number of aircraft required to

accommodate a given traffic volume, while ensuring that aircraft are assigned to only one

flight within a given time period.

Teodorovic and Stojkovic [11] discuss a greedy heuristic algorithm for solving a

lexicographic optimization problem which considers aircraft scheduling and routing in a new

daily schedule while minimizing the total number of cancelled flights in the network. The

algorithm developed is based on dynamic programming, and is characterized by a

sequential approach to solving the problem as flights are assigned to aircraft in sequences.

The solutions obtained using this methodology are highly sensitive to the decision matrix,

and the ranking of the various objective functions. The model does not consider the impact

of crew scheduling in the aircraft scheduling process. Teodorovic and Stojkovic [12] outline

a model for operational daily airline scheduling which incorporates all operational

constraints, and is used to reduce airline schedule perturbations. Their heuristic model

based on the FIFO principle and a sequential approach based on dynamic programming, is

developed to facilitate and incorporate the work and experience of the dispatcher in the

decision process regarding traffic management. The model developed is used to determine
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the aircraft rotations, as well as the crew rotations, while minimizing the number of

cancelled flights.

The Research and Development Department at United Airlines has conducted several

projects on the topic of irregular airline operations, and has presented material on its efforts

at annual symposiums of AGIFORS (Airline Group of the International Federation of

Operations Research Societies). The work at United is part of the development of a

comprehensive decision support system for use in the carrier's operations control centre.

Jarrah, et al. [4] present an overview of a decision support framework for airline flight

cancellations and delays at United Airlines. Their underlying solution methodology is based

on network flow theory, as the models cast some of the problems faced by flight controllers

while dealing with irregularities into minimum-cost network flow problems.

Jarrah's paper outlines two separate network flow models which provide solutions in the

form of a set of flight delays (the delay model) or a set of flight cancellations (the

cancellation model), while allowing for aircraft swapping among flights and the utilization

of spare aircraft. The models assume that a disutility can be assigned to each flight in order

to reflect the lost revenue if the flight is cancelled, and that the disutility of delaying each

flight is assessable. Both models are solved using Busacker-Gowen's dual algorithm for the

minimum cost flow problem in which the shortest path is solved repeatedly to achieve the

necessary flow in the network. The network models presented are solved independently of

each other, and does not take into consideration crew and aircraft maintenance constraints.

This solution framework is deficient in that it does not allow for a trade-off between

cancelling and delaying a given flight in a single decision process. In addition, the solution

methodology does not allow for potential substitution of aircraft with varying capacity, and

operational capabilities.
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Yan and Yang [15] develop a decision support framework for handling schedule

perturbations which incorporates concepts published by United Airlines. The framework is

based on a basic schedule perturbation model constructed as a dynamic network (time-

space network) from which several perturbed network models are established for scheduling

following irregularities. The authors formulate both pure network flow problems which are

solved using a network simplex algorithm, and network flow problem with side constraints,

which are solved using Lagrangian relaxation with subgradient methods. They outline the

basic schedule perturbation model which is designed to minimize the schedule-perturbed

period after an incident, while maximizing profitability. In addition, they consider the

effects of flight cancellations, flight delays and ferry flights as solution alternatives in the

decision process. The framework is designed to aid airlines in handling schedule

perturbations caused by aircraft breakdowns, and assumes scenarios with only one broken

down aircraft and a single fleet type. In addition, the models do not incorporate aircraft

maintenance and crew constraints in the formulation.

Cao and Kanafani [2] discuss a real-time decision support tool for the integration of airline

flight cancellations and delays. This research is an extension of the work of Jarrah [4], using

many of the concepts presented and discussed in Jarrah's paper. The authors present a

quadratic 0-1 programming model for the integrated decision problem, which maximizes

operating profit while taking into consideration both delay costs and penalties for flight

cancellations. They discuss special properties of the Flight Operations Decision Problem

(FODP) model which are exploited to develop a specialized algorithm to solve the problem

in real-time. The model considers the airport network as a complete system, and traces the

effect of delay and aircraft reassignment from one station to the next. The authors consider

as an extension to their base model, issues of ferrying surplus aircraft and multiple aircraft

type swapping capabilities. In a subsequent article, Cao and Kanafani [3] present an
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effective algorithm to solve the FODP model and discuss computational experiments with a

continuous mathematical problem, derived from the 0-1 quadratic problem. In the case

studies presented, aircraft ferrying, crew scheduling and airport capacity constraints are

ignored in the solution procedure.

Arguello et. al [1] present a time-band optimization model for reconstructing aircraft

routings in response to groundings and delays experienced in daily operations. This model

is constructed by transforming the aircraft routing problem into a time-based network in

which the time horizon is discretized, resulting in an integral minimum cost network flow

problem with side constraints. The authors outline conditions in which exact solutions are

attainable, and discuss the complexity of the problem relative to the size of the underlying

airline network. In addition, they present computational results for a marginally sized case

study of a single fleet of 27 similar aircraft, serving a network of 30 stations with 162

flights. The problem is initially solved as a relaxed linear programming problem, and if

necessary a mixed integer problem, based on the underlying structure of the transformed

network, is solved.

The ability of an airline to recover from severe weather conditions and resulting irregularities

will depend on its interaction with the air traffic control (ATC) system. Under such

conditions, ATC typically imposes restrictions on aircraft movements at affected airports

and implements what is generally referred to as a slot allocation scheme, as well as ground-

delay programs. The response of the airline to these imposed conditions will be based on

available data in the system operations control center. The guidelines governing such slot

substitutions have been recently changed to help accommodate the operating needs of

carriers in the ATC system. Most of the published literature on the topic of slot allocation

has been rendered obsolete, as changes to the substitution guidelines have now significantly

altered recovery procedures in use at AOCC.
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The problem of crew reassignment (crew recovery) in the aftermath of irregular airline

operations has been considered by researchers at the Logistics Institute of the Georgia

Institute of Technology. Lettovsky et al. [5] have developed a mathematical programming

based solution methodology which uses an integer programming model to optimally re-

assign crews to flight segments. In a presentation given at the INFORMS meeting in the fall

of 1995, one of the researchers outlined a model which reassigns crews to flight legs, while

minimizing the additional cost and operational difficulties to the airline. The solution

strategy initially identifies a set of eligible crews, whose original assigned unflown flight

segments are used to form new crew pairings which are then reassigned to individual crew

members through a set covering problem.

During the normal operations of a carrier, situations often develop wherein modifications

have to be made to the existing schedule plan. In addition, due to the inherent variation in

passenger demand over the course of the week, airlines find it necessary to adjust their daily

flight schedules to adequately meet demand. This will result in the need to make minor

modifications to aircraft routings and possibly fleet assignments. Talluri [48] describes an

algorithm for making aircraft swaps that will not affect the equipment type composition

overnighting at various stations throughout the airline's network. The algorithm repeatedly

calls a shortest-path algorithm, and the performance of the swapping algorithm is a

reflection of the availability of very fast shortest path algorithms. He also outlines the

application of the swapping procedure in the airline schedule development process.

Given a predetermined flight schedule, the fleet assignment problem is to determine which

aircraft type is assigned to a given flight segment in the carrier's network. The aircraft

routing problem is traditionally solved after the successful completion of the fleet

assignment problem. It involves the allocation of candidate flight segments to a specific

aircraft tail number within a given sub-fleet of the airline. The process of aircraft routing has
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traditionally been a manual activity at airlines, but in recent years, researchers have

developed solution procedures that can be applied to the problem.

In all the published literature dealing with irregular airline operations, there is an underlying

assumption that the fleet assignment problem is solved before considering the aircraft re-

routing problem. There has been extensive work done on the topics of fleet assignment,

aircraft routing and crew scheduling [16 - 53]. In recent years, there has been a trend

towards addressing hybrid airline problems such as the combination of the aircraft

assignment and routing problem, and the combined fleet assignment and crew scheduling

problem. Researchers have started to explore these so-called hybrid strategic planning

problems, combining different phases of the airline planning process, which have been

traditionally considered in sequential order. However, these hybrid problems have been

considered only for the strategic phase of the airline planning process.

One such problem is that of the combined aircraft fleeting and routing problem. Barnhart et.

al [18] discuss a model and solution approach to solve simultaneously the fleet assignment

and aircraft routing problems. The authors state that the methodology incorporates costs

associated with aircraft connections, and complicating constraints (such as maintenance

requirements, and aircraft utilization restrictions) which are usually ignored in traditional

fleet assignment solution procedures. The model is string-based and a branch and price

solution approach is used to solve the problem. This hybrid solution procedure combines the

standard integer programming IP solution technique of branch and bound, and explicit

column generation. As described by the authors, a string is a sequence of connected flights

that begins and ends at a maintenance station, satisfies flow balance, and meets the

required maintenance constraints. The methodology is validated using operational data

from a long-haul carrier.
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Soumis et. al [44] present a model for large-scale aircraft routing and scheduling problems

which incorporates passenger flow issues. The solution methodology proposed is a heuristic

adaptation of the Frank-Wolfe algorithm for an integer problem with a special structure.

The procedure involves solving alternatively the aircraft routing problem, and the passenger

assignment problem until a prescribed criterion is satisfied. The authors discuss the

technique used to transfer information from the passenger flow problem to the aircraft

routing problem.

Throughout the course of daily operations, airlines face a major operational problem in

assigning aircraft capacity to flight schedules to meet fluctuating market demands. Berge

and Hopperstad [19] discuss the Demand Driven Dispatch (D3) operating concept that

attempts to address this problem. Utilizing up-to-date and more accurate demand forecast

for each scheduled departure, aircraft are dynamically assigned to flights in order to better

meet anticipated passenger demand. The solution procedure requires the frequent solution

of large aircraft assignment problems, which are formulated as multi-commodity network

flow problems, and solved with heuristic algorithms. The authors outline case studies of

actual airline systems in which increases in passenger loads are achieved, along with

reductions in operating costs, resulting in a net improvement in operating profit. From a

conceptual standpoint, the potential may exist to conduct aircraft swapping with multiple

aircraft types (different crew rating). Some of the concepts used in Boeing's Demand Driven

Dispatch methodology can be used as a foundation for incorporating the issue of dynamic

aircraft assignment in the resolution of flight schedules in the aftermath of irregular

operations.
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"A voice in my head..

me the road is long, it

. keep talking to me. . . It tells

tells me I must be strong, grow

with the pain and strife, Today is the start of the rest of

your life"

Edwin Yearwood
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Chapter 3

The Airline Schedule Recovery Problem

3.1 Discussion of the Airline Schedule Map

The overall framework of the mathematical model of the airline recovery problem is based

on a time-space network called a "Schedule Map" which represents the published daily

schedule of the airline's network (Simpson [42]). The Schedule Map (SM) outlines the

relationship between activities and events over space and time, and should be considered as

a fundamental graphical representation of the airline's operations. A representative

diagram of such a Schedule Map is shown in Figure 3-1. The SM is drawn using vertical

timelines, located over a horizontal space representing given stations. Each event (arrival or

departure) at a given station is represented by a node for a specific time and location

coordinate.

Each flight is represented by a "flight arc" which connects the corresponding nodes at the

origin and destination of the scheduled flight. Additional flight arcs may exist in the

network to represent potential delay alternatives for each flight during the resolution

procedure. These arcs are referred to as "delay arcs" and are automatically generated

based on parameter settings, prior to the implementation of the solution algorithms.

"Ground arcs" in the network connect chronologically successive pairs of event nodes at a

given station. These arcs are necessary in order to describe the flow of aircraft through the

network and for the application of network flow algorithms. "Maintenance arcs"
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Figure 3-1 Schedule Map Representation
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in the network represent the time period of a given aircraft undergoing a planned or

unplanned maintenance check within the prescribed resolution horizon. The Resolution

Horizon "H", is defined as the total time required to return the airline's operational

schedule back to the originally planned schedule. The duration of H will depend on the

overall dimensions of the recovery problem, incorporating issues such as the number of

aircraft in the fleet, the average length of haul of each flight, and the number of scheduled

flights being considered.

The development of the Airline Schedule Recovery Problem (ASRP) based on the schedule

map allows the use of efficient tree-searching algorithms to quickly solve the underlying

subproblem of finding the best possible aircraft routing, subject to one or more operating

constraints. Based on concepts from network flow theory and linear programming theory,

algorithms have been developed that can be used to solve the airline recovery problem in a

real-time environment. In Chapter 4, a brief summary of these underlying theories will be

discussed, since it relates to the development of the solution methodology. In addition, a

more detailed description of the schedule map will be given in Chapter 5, incorporating

certain aspects of the solution procedures.

3.2 Mathematical Formulation of ASRP

3.2.1 Sub-Problem: Rerouting Aircraft

In the Airline Schedule Recovery Problem, a path-based formulation was developed in

which the decision variable corresponds to the assignment of a specific aircraft tail number

to a predetermined sequence of flights; i.e., a particular path in the Schedule Map.

However, a specific aircraft would not be considered for a given sequence of flights unless it

meets its maintenance requirements; that is, it must be delivered to a maintenance location

within the remaining legal flying time. This forms the basic subproblem which must be
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solved quickly and easily. The approach to solving this subproblem relies on specialized

tree-searching algorithms to generate the feasible sequence of flights. These include a

modified version of the out-of-kilter algorithm for constrained minimum cost flow, and a

constrained shortest path multi-labelling algorithm to solve the "constrained optimal path

problem" which optimizes airline profitability.

In creating these optimal flight sequences, each tree-searching algorithm always incorporates

maintenance constraints that limit the eligibility of a specific aircraft tail number and its

ability to cover a given flight segment. In addtion the maintenance constraint, several other

operational constraints can be incorporated into the tree-searching algorithm such as

restrictions on aircraft range, the ability to fly over water, and the level of anticipated

passenger spill for assigning a given aircraft to a specific flight segment. In its current form,

the sub-problem considered in this research does not explicitly incorporate these additional

factors. However, the necessary mechanism for including such factors have already been

designed into the solution procedure.

3.2.2 The Main Problem: ASRP

The complete model must solve the problem of aircraft reassignment for all operational

aircraft in the fleet. It can be best described as a hybrid of the traditionally defined fleet

assignment problem and the aircraft routing/rotation problem. The following terms are

defined prior to the statement of the complete model:

Indices

F set of all flights ij

F(j,k) subset of flights that can be assigned to aircraft k at station j
F(i,p) subset of flights departing from station i in time period p

F(j,p) subset of flights arriving at station j in time period p
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N

N(k)

K

K(t)

K(i, p)

K(t, i, p)

Parameters

Dij

fij

rij

tij

Cijk

Cijo

MjtT

ACjtT

SLOTSjp

GATESjp

CREWStip

CAPk

TIMEk

CYCLEk

aijn

Cnk

Sij

set of all feasible flight sequences for all aircraft in the fleet

subset of all feasible sequence of flights for aircraft k

set of all aircraft k in the fleet

subset of aircraft of type t in the fleet

subset of aircraft scheduled to arrive at station i in time period p

subset of aircraft of type t, scheduled to arrive at station i, in time period p

actual passenger demand for flight (i,j)

average fare per passenger on flight (ij)

goodwill value per passenger on flight (ij)

flight time for flight segment (ij)

operating cost of assigning aircraft k to flight (ij)

cost of cancelling flight (ij)

maintenance resource capacity for aircraft type t at station j at time T

number of aircraft type t required at station j at time T

number of landing slots available at station j during period p

number of terminal gates available at station j during period p

number of crews for aircraft type t, available at station i during period p

seating capacity of aircraft k

legal flight time remaining on aircraft k before maintenance is required

maximum number of flight cycles permitted on aircraft k

equals one if flight sequence n contains flight segment (ij)

cost of assigning flight sequence n to aircraft k

amount of spilled passengers from flight (i,j)
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The decision variables involved are:

Xnk = 1 if flight sequence n is assigned to aircraft k, 0 otherwise

Yij = 1 if flight (i,j) is cancelled, 0 otherwise

The model can be expressed as:

Objective Function

min 1 : CnNXnk +

nIEN kEK

x C,,Yi
(I,J)EF

where;

Ck = I IC,
1] E nt

+ r,,S,, - min( D,,, CAPk] - f, Vk

subject to:

1) flight covering

Xnk + Yrj = 1Vij e F
nEN keK

2) aircraft covering

1 Xnk
nEN

5 1Vk e K

3) aircraft utilization
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Ya I ti aXnk TIMEkVk

nEN (i,j)

4) leg based demand covering

I I ax, - CAPk
nEN kEK

- Xnk + S Y - D11 Ovij, S 1

and further, subject to additional "auxiliary" operational constraints:

Al) crew availability

CREWS,,,Vt, i, p

A2)

I I I a in- Xnk
kEK(t,t,p) nEN yEF(i,p)

ATC slot allocation

SLOTSJpvj, PI Y, I ay - Xnk
kEK(Jp) IEN yeF(I,p)

A3) Gate allocation

- I I I at' - Xnk
kXK'(i,p) neN yeF(i,p)

A4) Aircraft Balance

a p . Xnk ACTVj, Vt
neN keK(t) yJEF{J,p)

Maintenance resource allocation

> 0

Xnk
I I I a,,,

kreK~j,p) nEN yr=F(I,p)

< GATES j, p
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a - Xnk MVj, Vt
neN kEK(t) iJEF(j,p)

Over all the potential flight sequences (and scheduled flights implicitly), the objective

function sums the costs associated with reassigning flights to operational aircraft within the

confines of the available resources. These cost coefficients include aircraft direct operating

costs, predetermined passenger revenue spill costs, and operating revenue. Operating

revenue is determined based on the actual passenger loads for each scheduled flight, and

incorporates the impact of schedule delays in terms of recapture, passenger retention, and

lost passenger goodwill. Spill costs account for the impact of spilling passengers on a given

flight. Direct operating costs include fuel, cockpit crew costs, direct maintenance and

ownership costs, accounting for all costs that are generally allocated against the actual

flying time of the aircraft.

The flight covering constraint sums over all candidate flight sequences and has a right hand

side coefficient of one, to ensure that each flight is either covered (i.e. flown) by one aircraft

at a given time, or is cancelled. The coefficients a, for each flight sequence are determined

from the solution of the aircraft rerouting subproblem, and have value one if the given flight

"ij" is part of the candidate sequence of flights denoted by "n".

The aircraft covering constraint sums over all flight sequences to ensure that each aircraft is

assigned to no more than one sequence at a given time. The aircraft utilization constraint

ensures that for each aircraft, the potential sequence of flights does not exceed the number

of available flight time left on the aircraft before scheduled maintenance. The leg based

demand constraint accounts for the accommodation of passengers on each flight segment.

This constraint also serves as a definition of passenger spill in the model. These constraints

on aircraft utilization and passenger demand covering are not considered in the solution of
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the main ASRP problem, as they are implicited considered in the solution of the underlying

subproblem of aircraft rerouting.

In addition, there are five auxiliary operational constraints that have been considered for the

complete ASRP. These include constraints on crew availability, ATC slot allocation, gate

allocation, maintenance resource allocation, and aircraft balance at the end of the Resolution

Horizon H. The crew availability constraint ensures that the number of outbound flights at

a given station within a given time period does not exceed the number of crews available at

the station. The ATC slot allocation constraint limits the number of arriving flights to an

airport with a given period, based on restrictions provided by the ATC system. The gate

allocation constraint limits the number of operational aircraft at the terminal based on the

maximum number of gates available at the given airport. It is likely to be satisfied by the

original Flight Service Schedule if all gates are available, but now arriving flights may be

delayed.

Similarly, the maintenance resource allocation constraint ensures that the number of aircraft

assigned to a given maintenance station (overnight) does not exceed the capacity of that

station. The aircraft balance constraint ensures that the aircraft at each station at the end

of the Resolution Horizon, corresponds to the number of aircraft "positioned" in the current

maintenance routing plan.

It is important to point out that these auxiliary constraints are best described as soft

constraints, since ideally, the actual value of the right hand side coefficients should be

ideally determined interactively during the solution process by the airline operation

controllers.

3.3 Problem Decomposition and Auxiliary Problems

Page 61The Airline Schedule Recovery Problem



Each of these auxiliary constraints could lead to its own sub-problem for the reassignment

of the given resource to each operational flight. The actual scheduled flights considered in

each sub-problem would depend on the outcome of the primary Airline Schedule Recovery

Problem. Significant research work has been done by other practitioners (see references [16]

through [53]) on the topics of slot allocation, crew scheduling and recovery, and on the

general topic of resource allocation.

The envisioned subproblems of this mathematical formulation would share many of the

characteristics of decision models and corresponding solution methodologies developed in

the various independent research initiatives. The overall framework of the decision model is

outlined in Figure 3-2. The primary focus of this dissertation is to develop the formulation

of the airline recovery problem with an emphasis on the aircraft rescheduling aspect of the

problem.
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ATC Slot Allocation Problem
- assign arriving aircraft to landing slots
at each station in a given time period

Crew Recovery Problem
- reassign available crews to flights in the
residual airline schedule map

Gate Allocation Problem
- reassign aircraft (flights) to gates at each

station in the network

Passenger Flow Problem
- determine passenger O/D paths based

on the residual airline network

Figure 3-2 Decomposition of the Airline Schedule Recovery Problem

3.3.1 ATC Slot Allocation Problem

Aircraft Re-Routing Problem

- constraints on flight covering, aircraft covering, aircraft
utilization, passenger demand

- auxiliary constraints on crews, slots, gates, aircraft balance,
maintenance resource allocation
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The ability of US domestic carriers to freely assign individual flights to prescribed landing

slots under an ATC ground delay program is an underlying assumption in the overall airline

recovery problem formulation. As such, each flight has a certain value associated with it,

and the assignment of flights to slots can be modelled using the classical transportation

assignment problem. The following model is a representative formulation of the slot

allocation problem. Under a typical operating situation, several airport stations would be

affected by ATC slot restrictions, and the assignment problem would incorporate each

airport in the decision process. More elaborate decision models for this problem and an

extensive overview on the slot allocation problem can be found in Carlson [22].

This model solves the problem of slot allocation for all operational flights in the airline's

network. It can be expressed as:

min I I CftXft
fEF(j,t) teT

subject to;

I Xt = 1j , t
teT(1)

X Xit SLOTS,,Vj, t
fEF(j,t)

where;

XN equal to one if flight f is assigned to slot t at station j, 0 otherwise

F set of all operational flights

T(j) set of all landing slots at station j
F(j,t) subset of flights arriving at station j that can be assigned to time slot t
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Cft cost of assigning flight f to landing slot t at station j

SLOTtJ number of arrivals possible at station j at time t

The cost parameter would reflect the value of a given flight to the airline based on issues

such as the total passenger delay time, or the total operating costs. The actual form of this

coefficient could be adjusted by the airline controller. The first constraint ensures that each

flight is assigned to only one landing slot time, and the second places a limit on the number

of flights assigned to slots at a given time t.

3.3.2 The Crew Recovery Problem

The rescheduling of flights in the airline network is affected by several operational

constraints as outlined in the formulation, but it is important to point out the level of

complexity which results from the crew constraints. Crew scheduling is by far the most

complex aspect of the airline planning process, and the ability to reschedule crews will

depend on the actual operational flights, which in turn, will depend on the availability of

crews at each station. Unlike all other resources in this system, the movement of the crew

members adds significant complexity in trying to solve the flight rescheduling problem.

Again, this sub-problem would be solved iteratively, and the resulting number of legal flight

crews at each station within a given time period would then be updated in the main problem

after each iteration. The following formulation of the crew recovery problem is based on

research of Lettovsky [5] on the topic.

This model solves the problem of crew rescheduling for all legal crew members "displaced"

in the network. It is based on the assumption that the airline has the ability to reassign crew

members to modified bidlines without the consent of each individual, provided the crew

member is able to maintain legality throughout the network. The model can be expressed as:
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min E I I Cf,,8fXPM
mEMpeP(m) fEp

subject to;

IXm
pEP(m)

5 1Vme M

S SjX,,,m
m MpI EP (m)

Xpm

Cfm

8fp

F

M

P(m)

am

pm
tEf

df

CREWf

fep

I df ,X,
fEp1

CREWfVf C

,,n a a, Vm e

,,71
< P/3,Vrm e M

equal to one if crew path p is assigned to crew m

cost of assigning flight f to crew member m

equal to one if crew path p contains flight f

set of all operational flights

set of all available crew members m

set of all possible crew paths for crew member m

amount of legal flying time remaining for crew member m

amount of legal duty time remaining for crew member m

total flying time for flight f

total duty time for flight f

number of crew members required for flight f

pE P(n)

1) E P (171)

where;
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The primary objective of this subproblem is to minimize the cost of reassigning crews to

operating flights in the residual airline network in the aftermath of the irregularity. The first

constraint ensures that each crew member is assigned to only one crew path at a given time,

and the second constraint ensures that all operating flights have the adequate number of

crew members on-board the aircraft. Constraints three and four in this model ensure that

each crew member does not violate established FAA operating safety requirements.

3.3.3 The Gate Allocation Problem

After the flight rescheduling problem has been completely solved, the reallocation of flights

to terminal gates would then be addressed, as some flights have the potential of being

delayed, thereby losing their originally scheduled time slot at a given gate. As the number of

aircraft on the ground is restricted by the number of available gates at each station in the

solution of the primary aircraft problem, all operational flights can be accommodated. The

only required task would be to re-assign aircraft (flights) to gates, taking into consideration

such issues as passenger connectivity, gates handling constraints, and the availability of

ground support services. The following model of the gate allocation problem is solely for

outlining the resulting subproblem. A more comprehensive discussion of this subproblem

can be found in Svrcek [47]. It is based on the assumption that an airline has the ability to

reassign aircraft to gates at will, provided the necessary airport operational regulations are

satisfied. The model can be expressed as:

minX ,,CfgXfgVj E J, p E P
fEF gEG(f)

subject to;
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IXfg 1 1Vg e G(j), Vp e P
feF(p,j)

Xg = 1Vf e F
gEG(f,j,p)

where;

X,,g equal to one if flight f is assigned to gate g, zero otherwise

P set of time periods p considered at a given station j

F set of all operational flights f

F(p,j) subset of flights on the ground at station j during time period p

G(j) set of all gates at station j

G(f,j,p) subset of gates eligible for flight f at station j during time period p

Cfg "cost" index for assigning flight f to gate g

The objective of this model is to minimize the "cost" of the gate allocation decision. The

actual content of such a cost function would depend on the operational philosophy of the

airline, and would potentially take into consideration issues such as aircraft size, passenger

walking distance, baggage transfer, and aircraft servicing requirements. The first constraint

ensures that each gate is assigned to only one flight which is on the ground at a given station

and time period. The second constraint ensures that each flight is assigned to only one gate

at a time.

3.3.4 The Passenger Flow Problem

Although the actual passenger itinerary issues are not explicitly considered in this model

formulation, the passenger flow problem has to be addressed in the aftermath of the flight

rescheduling decision. Based on the residual Schedule Map, the airline has to reassign
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passengers to flights in such a way that some prescribed criterion is minimized. The

decision objective of the passenger flow model would depend on the operational philosophy

of the carrier. Examples of such objectives range from minimizing overall passenger delay

time, to maximizing the passenger revenue "recovered" in the modified flight schedule; since

passengers could be potentially lost to competing carriers. The model is based on the

assumption that all spilled passengers of a specific "high-valued" origin-destination

itinerary are recaptured, provided there is adequate capacity to accommodate such

passengers. In effect, priority is given in the model to accommodate as many valuable

passengers as possible in the residual flight network. Again, the value of each passenger

would depend on the operational directives of the carrier.

The following formulation of the passenger flow problem is based on research currently

being done at MIT on the topic of an origin-destination based fleet assignment model by

Barnhart and Kniker [361. In this representative form, the primary objective of the model is

to maximize the recovered passenger revenue in the residual flight network, through the

optimal reassignment of seats to origin-destinations itineraries on each operational flight.

The model can be expressed as:

max fX
rEI pEP(1)

subject to;

8, X,, ! CAPJVf E F

reI peP(r)

X, D Vi E I

pP I
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where;

XP number of passengers for itinerary i assigned to path p

F set of all operational flights f in the residual network

I set of all potential origin-destination itineraries i at a given time

P set of all potential passenger travel paths p in the residual network

P(i) subset of paths that can be considered for a passenger with itinerary i

ft average passenger revenue for itinerary i

CAPf capacity of the aircraft assigned to flight leg f

Di total number of passenger booked to travel on itinerary i

S1f equal to one if itinerary i contains flight leg f, zero otherwise

The subset of passenger paths considered in the reallocation of passenger flows in the

residual flight network would be generated depending on the operational constraints

employed in the decision process (such as the maximum allowable delay for a given

passenger). For each itinerary, it is assumed that one fare class exists; as in practice,

ticketed passengers are not generally differentiated during this phase of the airline recovery

process. The ability to accommodate as many revenue passengers as possible on the

residual flight network could potentially influence flight reassignment decisions made in the

main aircraft problem. For example, it may be possible to ensure that certain origin-

destination markets are covered within a given time period, thereby guaranteeing that

certain "valuable" passengers are taken to their destinations in a timely fashion.
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"Some dreams live on in time forever, those dreams,

you want with all your heart ... If I could reach, higher,

just for one moment touch the sky, from that one

moment in my life, I'm gonna be stronger, know that

I've tried my very best, I'd put my spirit to the test, If I

could reach ...

Gloria Estefan
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Chapter 4

Review of Linear Programming and Network Flow Theory

4.1 Overview

The overall framework for the mathematical modelling and the corresponding solution

methodologies for the airline schedule recovery problem are based on network flow theory.

A comprehensive review of network theory can be found in Network Flows: Theory,

Algorithms and Applications (Ahuja, Magnanti, Orlin: Prentice Hall). The following sections

discuss several algorithms that have been adapted, and further enhanced by the author for

solving the schedule recovery problem. These include a specialized multi-label shortest path

algorithm, a multi-label out-of-kilter algorithm, and a column generation procedure which

uses the revised simplex algorithm.

In Chapter 3, the underlying subproblem of aircraft rerouting was discussed, outlining the

framework of the solution approach. The "constrained optimal path problem" can be

modelled either as a "constrained minimum cost flow problem" or as a "constrained

shortest path problem" and solved using specialized tree-searching algorithms. In this

research project, a variation of the out-of-kilter algorithm is used to solve the constrained

minimum cost flow problem, and the multi-label shortest path algorithm is used to solve the

constrained shortest path problem. In the next chapter, there is an extensive discussion of

the solution methodologies developed, but first it is necessary to give an introduction to the

underlying theory used in creating such methodologies.
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4.2 The Constrained Minimum Cost Flow Problem

The specialized algorithm developed to solve the constrained mimimum cost flow problem

is based on concepts of the out-of-kilter (OKF) algorithm, originally developed by Ford and

Fulkerson [72] for circulation flows. The primary enhancement being a modified version of

the tree-searching procedure within the OKF algorithm, in which multiple parameter labels

are monitored during the execution process, and the resulting minimum cost flow satisfies

additional constraints of the flow, such as time duration of the total flow in the network.

The name out-of-kilter reflects the fact that arcs in the network either satisfy the

complementary slackness optimality conditions (in-kilter) or do not (out-of-kilter).

Theorem (Ahuja et. al, 1993) A feasible solution is an optimal solution of the

minimum cost flow problem if and only if for some set of node potentials p, the

reduced costs Cijp and flow values Xij satisfy the following complementary slackness

optimality conditions for every arc (ij) in the network:

If Cijp greater than zero, then Xij equal zero

If flow Xij within arc limits, then Cijp equal zero

If Cijp less than zero, then Xij equal upper arc limit Uij

The out-of-kilter algorithm attempts to find the minimum cost cyclic flow in a network,

within the prescribed constraints of the problem. The algorithm iteratively modifies arc

flows and node potentials (later referred to as node prices) in a way that decreases the

infeasibility of the solution and simultaneously moves the solution closer to optimality. The

procedure concentrates on a particular out-of-kilter arc and attempts to put it in kilter. The

algorithm does this in such a way that all in-kilter arcs stay in-kilter, whereas the state

(kilter number) for any out-of-kilter arc either decreases or stays the same after each

M
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iteration. On each such iteration, the network is scanned, and the labelling process for

increasing or decreasing a particular arc flow in the circulation is found.

algorithm Clarke-OKF

begin

Out-of-Kilter scan

scan all arcs in the network to determine if any out-of-kilter arc exists

define the residual network G(x) and compute the kilter number of arcs;

while the network contains an out-of-kilter arc do

begin

select an out-of-kilter arc (p, q) in G(x);

identify target node for the labelling process;

while target node not labelled do

begin

constrained forward labelling from opened nodes in the network;

constrained reverse labelling from opened nodes in the network;

if target node labelled, break;

else if new labels, continue labelling;

else, update node prices;

if node price update not possible, STOP, infeasible flow;

end;

augment flow cycle;

update kilter number of arcs in the network;

end;

end;

Figure 4 - 1 Clarke-OKF Algorithm

It is possible to identify potential cost reduction arcs in the network, where a negative cost

cycle could be found using a set of temporary node prices (potentials) and reduced arc costs

(c-bar) that can be determined using optimal tree construction techniques. If the flow in
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some arc is infeasible (i.e., exceeds upper/lower bounds), then the out-of-kilter arc can be

scanned to bring it into feasibility. By scanning only the out-of-kilter arcs, and making the

appropriate flow changes, it is possible to find a minimum cost, feasible circulation flow in

the network for any values of the arc attributes. It is important to reiterate that the primary

decision parameter in the minimum cost flow problem is cost, but the feasible flow has to

also satisfy the time constraints of the problem, which is incorporated into the searching

procedure of the algorithm.

In order to implement the modified OKF algorithm, it is necessary to define the various out-

of-kilter states for arcs, based on the reduced arc cost, and the current arc flow relative to

the flow constraints placed on the arc.

Case 0 In-Kilter (no changes done to the network flow)

alpha c-bar greater than zero, and flow equal lower arc limit

beta c-bar equal zero, and flow within arc flow range

gamma c-bar less than zero, and flow equal upper arc limit

Case 1 Out-of-Kilter (increase flow in arc if possible)

alpha 1 c-bar greater than zero, and flow less than lower arc limit

beta 1 c-bar equal zero, and flow less than lower arc limit

gamma 1 c-bar less than zero, and flow less than upper arc limit

Case 2 Out-of-Kilter (decrease flow in arc if possible)

alpha 2 c-bar greater than zero, and flow greater than lower are limit

beta 2 c-bar equal zero, and flow greater than upper arc limit

gamma 2 c-bar less than zero, and flow greater than upper arc limit

If it is found that an arc is in states Case 1 or Case 2, it is required that the flow in the

network be modified to bring the arc into kilter. For the states alpha one, and beta one, it is

necessary to increase the arc flow to reach feasibility. In state gamma one, the negative value

of the reduced cost indicates the potential for reducing the cost of the flow by increasing the
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arc flow. For these three states, it is necessary to determine the possibility of increasing the

circulation flow in order to find a least cost feasible flow. If the arc is found to be in state

alpha two, it has a positive cost, but the possibility of reducing its flow will allow a

reduction of the network total flow cost. In states beta two, and gamma two, it is necessary

to reduce the arc flow in order to bring it into feasibility. Figure 4-1 summarizes the

modified Clarke-OKF algorithm, as it is used to solve the constrained minimum cost flow

problem.

4.3 The Constrained Shortest Path Problem

The shortest path problem is one of the fundamental problems studied in the operations

research field. Extensive research has been done on the topic, and a comprehensive

summary of such work can be found in an article by Deo and Pang [63]. In the case of the

constrained shortest path problem, many researchers have attempted to solve this problem

through the use of modified algorithms which were originally designed to solve the shortest

path problem. These algorithms make use of linear programming concepts such as the

relaxation of the additional and complicating constraints on the problem in order to achieve

a solution to the problem. In reviewing existing solution methodology developed to solve

complex problems such as the constrained shortest path problem, the generalized

permanent labelling algorithm (Desrochers and Soumis, 1984) appeared to be the most

efficient algorithm available to solve the problem.

The generalized permanent labelling (GPL) algorithm for the shortest path problem with

time windows developed by Desrochers, et. al at the GERAD Institute, has been modified

by the author to efficiently solve the shortest path problem with schedule time constraints.

This algorithm is a variation of the Ford-Bellman algorithm for the shortest path problem,

and assigns multiple labels to each node representing the cost and time constraint. During
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the solution procedure, the routes have to be compared based on the multiple criterion of the

problem. Several labels have to be stored at each node in the network and they are used

dynamically to calculate the labels of other nodes which satisfy all the side constraints on

the problem, such as a maximum cumulative time on the routing.

The algorithm stores at each node multiple labels of time and cost, until a less costly and/or

less travel time route arriving at the given node is found. At a given node, a new label is

said to dominate an existing label if both its time and cost parameters are better than the

"best" label to date. The set of labels stored at each node is dynamically managed in such a

way that unnecessary or "dominated" labels are deleted from the linked list at each node in

the network, and the label list is sorted in decreasing cost order. Each label corresponds to

a different path through the network from the source to the given node, and is classified as

being efficient (Desrochers and Soumis, 1988). An efficient path is defined as one such that

all of its labels are efficient, and such paths are used to determine the constrained shortest

path from source to sink in the network.

algorithm Clarke-GPL

begin

Initialize all label values at each node

Set "dominance label" at each node to zero cost and zero time

Open source node

while the network contains "opened" nodes do

begin

Scan all arcs from all opened nodes in the network

Establish candidate labels based on dominance test (cost and time parameters)

If cost or time is less than dominant label, store label; else discard new label

Open nodes whose labels satisfy dominance test

Update multiple attribute label linked list at each open/unscanned node
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Close scanned nodes at end of iteration

end

Select shortest path from source to sink in the network that satisfies schedule
constraints

end

Figure 4 - 2 Clarke - Generalized Permanent Labelling Algorithm

The underlying network used for the constrained shortest path problem is designed in such a

way as to prevent any cycling in the solution procedure. It is important to point out that

during the solution process, there is the possibility that all paths considered into a node

result in efficient labels. Depending on the structure of the Schedule Map, there can be an

exponential number of paths in the network, an exponential number of labels may exist, and

as a result, the permanent labelling algorithm can take exponential time to solve. The

exponential time issue has played a substantial role in the development and implementation

of the modified algorithm, especially in the design of the data structures used in the labelling

procedure. Figure 4-2 summarizes the modified version of the generalized permanent

labelling algorithm based on this implementation.

4.4 Algorithm Comparison

One of the driving design parameters in developing the solution procedures for solving the

ASRP problem has been real-time solution capabilities. The ability to solve the subproblem

of aircraft rerouting quickly is thus essential in achieving this goal. The modelling of the

subproblem as a constrained minimum cost flow problem and as a constrained shortest

path problem resulted in two separate solution algorithms for solving the subproblem.

Table 4-1 Comparison of Solution Run-time in Seconds for the Clarke-OKF

and Clarke-GPL Algorithms
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Problem Clarke-OKF Clarke-GPL

1 30.05 8.89

2 16.45 3.84

3 7.25 1.16

4 6.20 1.25

During the course of the research project, both algorithms were fully developed and tested

to compare the performance of each algorithm. Table 4-1 summarizes the run-time in

seconds for each algorithm using datasets derived from the case study analysis data. Based

on these preliminary tests, it was established that the Clarke-GPL algorithm was the best

choice for solving the aircraft rerouting subproblem.

4.5 Column Generation Procedure

The column generation method is based on the decomposition principles of Dantzig-Wolfe,

and it takes advantage of the premise that it is not necessary to store the complete

constraint matrix during the solution process, and that columns can be generated only on a

"as-needed" basis. The Dantzig-Wolfe decomposition technique was originally developed

to solve large scale, structured linear programming problems. Based on the solution of the

coordinating restricted master problem, the underlying subproblems are modified and

iteratively solved until a prescribed criterion is satisfied in the problem.

The process of implicit column generation using the revised simplex method is based on the

principle that the reduced cost of any feasible variable in the restricted master problem

should be non-negative in any optimal solution to a minimization problem. The overall

column generation procedure is more or less an extension of the simplex method, in which

subproblems and the restricted master problem are iteratively solved until the optimal

Page 80



Review of Linear Programming and Network Flow Theory

solution is achieved. The form of the subproblem will depend on the underlying

characteristics of the problem being considered, and it was established during the course of

the research project that both the constrained minimum cost flow problem, and the

constrained shortest path problem discussed above were applicable as subproblems to the

flight rescheduling problem.

During the column generation procedure, the large scale linear programming problem is

classified as the master problem MP and can be represented by the following mathematical

formulation (Bradley, et. al) :

Z*: Min z = CiXi + C2X2 +.... + CnX

subject to;

a11X1 + a12X2 + ... +amnXf= b, (I = 1, 2, .. ., m)

Xj >= 0 (j = 1, 2,. . . , n).

As in decomposition, an assumption is made a priori that certain variables, Xk+1, Xk+2, . ,X

are non-basic variables with value zero. The resulting linear program is described as being a

restricted problem, and is referred to as the restricted master problem RMP.

ZK: Min z = CiXi + C2 X2 + .... + CXk

subject to;

aX + a 2X 2 +... + aikXk= b, (I = 1, 2, ... , m)

Xj >= 0 (j = 1, 2,. . ., K).

where;
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nf, are the optimal shadow prices for each constraint equation

From linear programming theory, the solution to the restricted master problem if feasible,

may be optimal to the master problem if and only if the simplex optimality conditions are

satisfied. Let H1K, H , ... H m denote the optimal dual variables for the restricted master

problem, and as such, the reduced cost C-bar, of variable j is defined by:

C-bar, = C1a
fll

The simplex optimality conditions state that the solution is optimal if all reduced costs in

the restricted master problem are non-negative, that is C-bar, is greater than or equal to zero.

If this condition is met, the original master problem has been solved without explicitly using

all the constraint data or solving the full master problem. If any of the reduced costs are

negative, the corresponding variable (column) would be introduced into the basis of the

restricted master problem and re-optimized using the revised simplex method. The

procedure used to determine the reduced cost of each variable is itself an optimization

problem, and is generally referred to as the subproblem.

An overview of the complete column generation procedure for minimization problems is

summarized in the Figure 4-3. The efficiency of the solution methodology is a result of its

ability to take advantage of the underlying structure of the subproblems, and to obtain an

optimal solution before numerous columns have been added to the restricted master

problem. The application of the column generation procedure in solving the airline flight

rescheduling problem is complicated by the fact that each aircraft in the fleet has to be

represented as an individual commodity in the problem, and this has significant impact on

the overall dimensions of the problem.
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The ability to solve such large-scale multi-commodity flow MCF problems calls for the

reformulation of the generic assignment problem as a path based formulation instead of an

arc based formulation, as was outlined in Chapter 3. Based on the flow decomposition

theorem of network flows, it is possible to decompose optimal arc flows into path flows

such that mass balance conditions are satisfied in the problem. A comprehensive discussion

of the column generation procedure applied to multicommodity flow problems can be found

in Network Flows: Theory, Algorithms and Applications [54].

algorithm column generation using revised simplex method

begin

establish a restricted master problem with a feasible subset R of columns;

while simplex optimality conditions are not met do

begin

solve the RMP to optimality over the restricted subset;

obtain dual variables from existing solution;

using the dual variable, update subproblems and solve to determine new

variable (columns) to be added to the restricted master problem;

if minimum reduced cost column has a non-negative reduced cost,

STOP, global optimality.

otherwise, add minimum reduced cost column to the restricted subset R.

end

end

Figure 4 -3 Column Generation Procedure

The underlying principles are the same for the path based formulation, but there are

significant benefits through constraint size reduction, and the resulting solution time for the

problem being shortened. For a network with n nodes, m arcs, and K commodities, the path

formulation problem contains m + K constraints, in addition to any non-negativity
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restrictions imposed on the path flow variables. On the other hand, the arc based

formulation will have m + nK constraints since it contains one mass balance constraint for

every node and commodity combination. Based on the resulting structure of the constraint

matrix, it is possible to apply a specialized version of the simplex method such as the

generalized upper bounding (revised) simplex method to efficiently solve the path flow

formulation of the problem.

It is important to point out that the immense number of potential path possibilities for each

commodity in the problem may have a negative impact on the solution time, and overall

algorithm efficiency. However, from linear programming theory, it is known that at most K

+ m paths carry positive flow in some optimal solution to the problem. The implementation

of the generalized upper bounding linear programming procedure enables one to take

advantage of this observation. At each step of the revised simplex method, a basis is

maintained for the problem, which is used to determine the vector of simplex multipliers for

each constraint.

In the path-based formulation, there will be a dual variable wij for each arc constraint in the

matrix, as well as a dual variable ok for each commodity demand constraint in the problem.

The resulting reduced cost expression for each path (P) flow variable will be given by;

Cpa = {Ck + wq - - for each commodity k
(rj)EP

As in the arc based formulation case, it is required for all the reduced costs to be non-

negative for optimality in any minimization problem. The complementary slackness

conditions for optimality require that:
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1) the dual variable w,) of an arc (ij) is zero if the optimal solution does not use

all of the capacity of the arc.

2) the modified path cost " E (Ci;k + wij)" for each path connecting the

source node sk and the sink node tk of commodity k must be at least as

large as the commodity cost &'

3) the reduced cost must be zero for any path P that carries flow in the optimal

solution.

Based on these optimality conditions, it can be stated (Ahuja et. al):

ak is the shortest path distance from source Skto node tk with respect to the modified

costs c11k + wY and in the optimal solution every path from node Skto node tk that carries a

positive flow must be a shortest path with respect to the modified costs.

This result shows that the arc price (dual variable) w, permits the decomposition of the

multicommodity flow MCF problem into a set of independent "modified" cost shortest

path problems.
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Chapter 5

Solution Methodology

5.1 Overview

In developing solution methodologies for the airline schedule recovery (ASRP) problem, the

role of the airline operations controller was a constant factor in the design process. It was

determined that any decision procedures and methodologies should have the ability to

incorporate the high degree of uncertainty which exists in the daily operations of an airline,

and that it must look at problems from a total system perspective, ratheri than on a

localized decision level. During the development phases, several factors were considered

including the ability to have switching of aircraft types, to combine the decision on flight

delays and cancellations, to consider the effects of crew scheduling on the hybrid fleet

assignment/aircraft routing problem, and be compatible with solution methodologies and

resolution procedures currently in use at airline operation control centers.

The ability to solve the ASRP problem in real-time dictates very efficient solution

procedures and methodologies which will provide the user with a number of good possible

options. A trade-off has to be made between the optimality of the solution versus the

solution time. Airline operation controllers will address several irregularities during a given

shift period, so there is a sequence of decisions, and not just a single global decision. During

the initial development phase, it was uncertain if the



real-time decision requirements would demand heuristic procedures for the resolution

process. The following section will present an overview of several solution methodologies

that have been developed throughout the course of the research program, and that are

validated and tested with real world case studies.

Each of the solution procedures, whether heuristic or optimization-based, was developed

around the framework of a three-phase decision process. These are:

Generate

Potential flight sequences that meet all operational constraints, using modified tree search

algorithms on a sub-graph of the overall network schedule map.

Assign

Sequence of flights to each operating aircraft while optimizing specified objective (e.g.

maximize profit). If there are less aircraft than flight sequences, some flights are assigned to

"cancellation" sequences.

Revise

Overall network structure, adjusting scheduled arrival and departure times of each flight,

reflecting the output of the ASSIGN module.

The following solution procedures have been developed and implemented as computer

algorithms using the C++ programming language. The optimization-based methodology was

developed around the CPLEX callable programming library, which consists of a wide array

of mathematical programming solution procedures such as the revised simplex method, and

the branch and bound method. A comprehensive discussion of these solution procedures

can be found in Applied Mathematical Programming (Bradley, Magnanti, Hax: Addison-

Wesley 1983) and Network Flows: Theory, Algorithms and Applications (Ahuja, Magnanti,

Orlin: Prentice Hall 1993). There are two options for the solution approach:
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Option 1: Heuristic

The flight rescheduling problem is solved using specialized tree-searching procedures, based

on network flow theory. At each iteration, a possibly sub-optimal assignment of an aircraft

to a generated sequence of flights is made using a prescribed decision matrix.

Option 2: Optimization-Based

The flight rescheduling problem is solved as a large scale set-packing problem, in which

several feasible flight sequences are generated for each aircraft on an underlying structured

sub-problem and optimally assigned to operational aircraft using the revised simplex

method, and branch and bound method. This solution methodology is similar to state-of-

the-art procedures used to solve the airline crew scheduling problem.

5.2 Schedule Map Generation

5.2.1 Pre-Processing Procedures

The implementation of the solution procedures includes the generation of flight delay arcs

and ground arcs in the Schedule Map, based on information from the originally scheduled

revenue flights in the airline network, and established operational philosophies and

requirements of the carrier. These include, but would not be limited to operational

limitations (such as the maximum allowable delay for flights at a given station and time

period), passenger connectivity issues, arrival-departure bank integrity, the ability of a

given aircraft to operate a specific flight based on range capability, over-water requirements,

or type of aircraft originally assigned to the flight, and the ability to cancel a given flight in

the resolution process. Information for all operational aircraft in the fleet and for scheduled

revenue flights are input to the computer module, and the required arcs are automatically
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generated to create the Schedule Map consisting of flight, delay, ground, and maintenance

arcs, which was described in Chapter 3.

The generation of the delay arcs in the Schedule Map enables the solution procedures to

efficiently make trade-offs between cancelling and delaying each individual flight in a single

decision process. The number of delay arcs for a given flight would be restricted such that

cycling in the network would be prohibited, i.e., to prevent multiple covering of the same

flight in a generated sequence of flights. This is accomplished by restricting the latest

departure time of a given "delay arc" (delayed flight) to be within the total roundtrip

timeframe of the originally scheduled flight segment. This approach to the flight delay issue

was taken to allow the delay of individual flights, independent of upstream effects in the

network, thereby minimizing delay propagation. In modelling flight delays in this manner, it

is possible to absorb any delays in originally scheduled "slack" time in the Schedule Map.

Concern was also given to the impact of the increase in the number of arcs in the network to

the overall size of the problem, and the resulting solution time requirements.

Each delay arc would be coupled to the corresponding original flight arc such that any

decisions about the flight would be reflected on all fleet duplicates of the network. The

network generation procedure is summarized in Figure 5-1. It is important to re-iterate that

one of the driving design parameters in developing these solution methodologies was the

desire to provide "real-time" decision making capabilities to the airline controller.

procedure delay arcs and ground arcs generation procedure

begin

Read in flight information from data file, Edit if desired

Generate delay arcs as desired, based on operational constraints

Generate chronological event list of all potential aircraft movement activity at

each station, including delay arcs
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Generate ground arcs between consecutive "nodes" using sorted event lists

Build airline network of flight arcs, delay arcs, ground arcs and cycle arcs

Create specialized duplicate network for each aircraft in the fleet, based on

that fleet's operational capabilities and constraints.

end

Figure 5-1 Network Generation Procedure

5.2.2 Maintenance Arcs

The presence of "maintenance arcs" in the Schedule Map provides the ability to model

planned or unexpected maintenance checks within the resolution horizon, while determining

feasible flight sequences to assign to a given operational aircraft. Each maintenance arc

would be given an operating cost greater than zero, and a travel time of negative forty-hours

(current industry average flying time between minimum planned maintenance "A" check).

This represents the replenished flying time that would be available on the serviced aircraft

until the next scheduled maintenance check. During the tree-searching procedure, a

maintenance arc would only be considered if the aircraft required maintenance, as it would

be more beneficial (profitable) for an aircraft to cover a "flight arc" or "delay arc" than to

assigned to the maintenance arc, provided it has the necessary flying time. As discussed in

Chapter 4, the tree-searching algorithm is based on both time and operating profit (negative

cost). The following paragraphs discuss each solution procedure developed, outlining the

main phases of the solution process.

5.3 Greedy Heuristic Solution Procedures

The application of network based algorithms to solve the flight rescheduling problem is

possible because of the underlying structure of the problem. As outlined in Chapter 3, the

Schedule Map representing the airline's flight network is acyclic and as such, the modified

Page 91Solution Methodology



multiple criterion generalized permanent labelling algorithm for the constrained shortest

path problem or the modified out-of-kilter minimum cost flow algorithm presented in

Chapter 4, can be used effectively in the solution of the three dimensional assignment

problem. In attempting to solve this complex problem in a real-time setting, a greedy

heuristic methodology was initially developed. Subsequently, an alternative greedy heuristic

procedure was developed from this initial method.

The overall functional flow diagram for each greedy heuristic procedure is shown in Figure 5-

2. In the first case, the primary concern is to assign the most "maintenance critical" aircraft

first, i.e., based on the amount of remaining flying time on the aircraft. In the second case,

assign aircraft such as to maximize a prescribed decision criterion such as maximizing

operating profits, including the costs of potential passenger spill. The decision criterion is

defined as the primary operational objective that the airline controller will use in making any

decisions regarding routing aircraft in the SM. The overall greedy heuristic methodologies

are summarized in Figures 5-3 and 5-4.
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Generate
- Sequence of flights for each operational aircraft using

modified tree-searching procedures

(Procedure 1) Sort aircraft according to remaining flying time

Assign
-Operational aircraft to sequence of flights using
greedy heuristic criterion

No

All operational Yes
aircraft assigned ? T N D

Revise
- Residual Schedule Map, deleting "covered" flights

in the airline network
- Number of limited resources available

Figure 5-2 Functional Flow Diagram for Greedy Heuristic Solution Procedures

In the first phase of the procedure, the Schedule Map is developed based on a list of

scheduled flights in the airline network. As discussed, the appropriate delay and ground

arcs are automatically generated to complete the Schedule Map. Specialized Schedule Maps

(SM) are then created for each operational aircraft, based on operational constraints such as

range capabilities, over-water equipment requirements, and possibly noise restrictions.

Flights that are not eligible for a given aircraft are "deleted" from the specialized SM, but

may be covered by other aircraft in the fleet. The aircraft "structures" with specialized SM

are then stored in a linked list, and if required are sorted based on a prescribed criterion

such as remaining flight time.
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In the second phase of the solution procedure, aircraft are systematically assigned to a

sequence of flights, which has been determined using a modified tree-searching algorithm. A

candidate sequence of flights is found that already satisfies the maintenance time

restrictions, and is then assigned to a given aircraft so as to maximize operating profit. In

the first greedy heuristic procedure, the most "maintenance critical " aircraft that has not

been assigned to flights, is considered at each iteration of the solution procedure. During the

execution of the second greedy heuristic procedure, all unassigned aircraft are considered at

each iteration. The most profitable aircraft is then assigned to the sequence of flights.

In the final phase of the greedy heuristic procedure, the underlying Schedule Map is

updated, removing all "covered" flights in the network, and adjusting the number of limited

resources (such as crews, slots and gates) that have been used in the solution. The solution

mechanism of the tree-searching algorithm is normalized and the procedure is repeated until

all operational aircraft are assigned to a sequence of flights.

It is important to point out the role of the decision maker in implementing these solution

methodologies as it is necessary for such a person to prescribe which objective is being used.

As an example of a decision criterion, the primary objective of the problem could be to

minimize the amount of wasted maintenance time left over on each aircraft at the end of the

Resolution Horizon. In other cases, the airline controller who would serve as the decision

maker might find it desirable to minimize the overall cost of resolving the flight irregularities

over the prescribed time horizon.

methodology Greedy Heuristic Solution Procedure One

begin

Initialize parameters for tree-searching algorithms

Input flight and aircraft data to the data structures
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Create operational constraint decision criterion

Create "specialized" Schedule Maps for each aircraft

Sort aircraft based on remaining maintenance time available

while any operational aircraft is not assigned to a flight sequence do

begin

Determine candidate sequence of flights for most "critical" unassigned

aircraft which meets all operational constraints using modified tree-

searching algorithm.

Select aircraft assignment which maximizes the decision criterion

Delete "covered" flights from residual airline network

Update operational constraints information, e.g. gate utilization

end

end

Figure 5-3 Greedy Heuristic Solution Procedure One

The assignment of operational aircraft to potential flights is restricted by several operational

constraints as outlined in the mathematical formulation described in Chapter 3. These

include conditions on the number of arriving flights at a given station within a given time

period because of gate capacity, and landing slot availability. On the other hand, departing

flights are constrained by availability of legal crew members to staff all operating flights.

Once a decision has been made to assign an aircraft to a sequence of flights using the

heuristic procedure, the number of resources available at each station has to be

automatically updated. This is achieved by monitoring the flight assignment process, and

keeping track of the resulting flight covering.

methodology Greedy Heuristic Solution Procedure Two

begin

Initialize parameters for tree-searching algorithms

Input flight and aircraft data to the data structures
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Create operational constraint decision matrix

Create "specialized" Schedule Maps for each aircraft

while any operational aircraft is not assigned to a flight sequence do

begin
Determine candidate sequence of flights which meet all operational constraints

for each unassigned operational aircraft in the fleet using modified tree-
searching algorithm

Select aircraft assignment which maximizes decision criterion

Delete "covered" flights from residual Schedule Map

Update operational constraints information, e.g. gate utilization

end

end

Figure 5-4 Greedy Heuristic Solution Procedure Two

5.4 Optimization-Based Solution Procedure

An alternative to the greedy heuristic procedure is a large-scale integer programming set-

packing problem, which can solved using the branch and bound procedure. Initially, a linear

programming LP relaxation of the complex assignment problem is solved using the efficient

implicit column generation solution methodology outlined in Chapter 4. The underlying

structure of the problem allows the utilization of the constrained shortest path problem as

the subproblem in the solution process, which is solved using the multi-labelling Clarke-GPL

algorithm given in Chapter 4.

The output of each subproblem is a path (column) for addition to the Restricted Master

Problem (RMP), provided it meets the necessary optimality conditions for inclusion. Each

column contains information on the sequence of flights to be covered by an aircraft, and as

well as information on the corresponding operational constraints within the problem, such
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as landing slot utilization, gate utilization, and crew allocation. Figure 5-5 outlines the

functional flow diagram for the optimization-based procedure.

The initial phase of this procedure is identical that of the greedy heuristic procedure. In the

second phase of the optimization procedure, candidate flight sequences are generated for all

operational aircraft in the fleet. These are transformed variables and are used in a large-

scale set-packed problem. This problem is referred to as the "restricted master problem".

Based on the solution of the initial RMP, dual variables (multipliers) are determined and

used to update the structure of the underlying Schedule Map. An explicit column generation

procedure then used to iteratively solve the restricted master problem, and the series of

aircraft rerouting subproblems that are associated with the main problem. Each subproblem

is solved using the specialized tree-searching algorithm. The column generation procedure is

repeated until a pre-determined "sub-optimal" condition is satisfied. The final solution of

this phase is then used as the root of a branch and bound method, to solve the airline

schedule recovery ASRP problem. The overall solution procedure is summarized in Figure 5-

6.
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Column Generation Procedure

Generate
- Sequence of flights for each operational aircraft using

modified tree-searching procedures
- Determine columns to add to the restricted master problem

Solve
- Restricted Master Problem (RMP) to determine

feasible aircraft assignment, using revised simplex method
- Dual variable (multipliers)

Yes
Optimality Condircrn Satisfied ?su e i t

No

Revise
-Residual Schedule Map, adjusting arc costs using dual

variables

Assign
-Operational aircraft to flight sequences using the
revised simplex method and the branch and bound method

Revise
- Residual Schedule Map
- Number of limited resources available

Figure 5-5 Functional Flow Diagram for the Optimization-Based Solution Procedure
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methodology Integer Programming Optimization-Based Solution Procedure

begin

Initialize parameters for tree-searching algorithms

Input flight and aircraft data to the data structures

Create "specialized" flight networks for each aircraft

Solve initial restricted master problem to determine multipliers

while eligible columns exist for addition to the master problem do

begin

Generate flight sequence for each aircraft fleet using modified tree-searching
algorithm

Determine "aircraft" column corresponding to each variable and add to the
restricted master problem

Using the revised simplex method, determine the aircraft-flight sequence
assignments that will maximize decision criterion

Using dual variables found in revised simplex procedure, adjust costs on each
corresponding flight arcs in each specialized aircraft network

end

Solve restricted master problem as an integer programming problem using the
branch and bound solution procedure

Determine final aircraft assignment based on output of the IP solution procedure

end

Figure 5-6 Optimization-Based Solution Procedure

5.4.1 Column Generation Solution Procedure

During the column generation process, the dual variables (multipliers) w,, are used to price

out the non-basic variables (columns) by considering their reduced costs. The dual variables

ensure that the reduced cost for every variable (path P) in the basis is zero. If any reduced

cost is negative in a minimization problem, the method will introduce the corresponding

non-basic variable into the basis in place of one of the current basic variables, and

I
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recompute the simplex multipliers. In order to use column generation, the columns need to

have structural characteristics which allows pricing out operations without explicitly

considering every possible column in the problem.

The revised simplex procedure attempts to check if all reduced cost of variables are non-

negative for optimality, such that:

Min C + w} a-
(II)EP

The left hand side of this expression is the length of the time constrained shortest path

connecting the source and sink nodes of commodity k with respect to the modified costs ci1k

+ w1. If for all commodities k, the length of the constrained shortest path for that

commodity is at least as large as its corresponding dual variable ak, the procedure will

satisfy the complementary slackness conditions, and the solution will be optimal.

Otherwise, based on the constrained shortest path on the modified network, the reduced

cost of the column (path) is less than the length ak for a given commodity. By inserting this

column into the basis, there will be an improvement to the objective function.

As a result, the changed basis will lead to new dual variables, and thus a modified shortest

path distance ok between the source and sink nodes of the commodity k. At each iteration,

the dual variables are found to ensure that the reduced cost of all basis columns is zero.

Based on the new dual variables, the constrained shortest path problem would be resolved

on the modified network, to determine whether any commodity path has a shorter length

than its corresponding dual variable 7k. If this occurs, the path is introduced into the

problem basis, and the solution procedure will continue by alternatively finding new values

for the dual variables for each arc constraint and for path length ak, and solving the
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constrained shortest path problem for each commodity k. The process is thus repeated

iteratively until the linear programming complementary conditions are satisfied.

5.4.2 Column Generation Termination Mechanism

In order to effectively implement the column generation procedure in a real-time solution

environment, the ability to prematurely stop the column generation phase can have a

significant impact on the duration of the solution process. It is important for this

mechanism to have a minimal effect on the quality of the LP relaxation solution of the

problem, as this will be used as the lower bound for the integer programming branch and

bound procedure. In reviewing the column generation procedure described in Chapter 4, one

can identify several mechanisms which can be used to terminate the solution procedure,

provided an apriori criterion is established within the solution module. For this research

project, two such efficient stopping mechanisms were developed using concepts from linear

programming theory; the first being the setting of a tolerance on the reduced cost optimality

conditions (less than zero), and the second being a variation of the Lagrangian relaxation

technique for the lower bound on the problem.

Based on Lagrangian relaxation theory, it is possible to establish both lower and upper

bounds to the optimal solution of the resulting linear programming problem being solved by

the column generation procedure, since this problem is equivalent to the LP problem that

would exist during a Lagrangian relaxation solution procedure (Network Flows: Ahuja,

1993). Z* is used to denote the optimal objective function value of the multi-commodity

flow problem, and ZIP to represent the optimal objective function value at any iteration in

solving the path flow formulation of the problem by the revised simplex methodology. From

linear programming theory, Z, corresponds to a feasible solution to the problem, such that

Z* <= Z,. From Lagrangian relaxation theory, the optimal value L(w) of the Lagrangian
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subproblem is a lower bound on Z* for any value of the arc dual variables (prices) w.

During the course of the column generation methodology developed to solve the ASRP

problem, the solution of each modified constrained shortest path subproblem at each

iteration corresponds to solving the Lagrangian subproblem with respect to the current arc

prices wi1.

The value of the Lagrangian subproblem can be expressed as:

L(w)= ({lk w) -

keK (11)EA

where I' (w) is the constrained shortest path length for all commodities k with respect to the

modified costs cak + w,, and u,, is the upper bound on each arc. From the theory of

Lagrangian relaxation;

L(w) <= Z* <= ZIP

For the purposes of this research project, the column generation stopping mechanism is

derived from the static value of the lower and upper bound on Z*. This stopping

mechanism, later referred to as the "Lagrangian Gap", is defined as the percentage

difference between the upper bound ZI, and the lower bound value L(w).

It is important to point out that this stopping mechanism is based on the lower bound of the

objective function value which is determined as a by-product of finding the constrained

shortest path distances lk (w), since the algorithm is pricing out columns during the course of

the column generation procedure. Based on an apriori tolerance range, the solution

procedure can be prematurely terminated to obtain a near optimal solution to the relaxed

linear programming problem. The utilization of the revised simplex methodology guarantees

that the objective value ZI, of the LP problem (upper bound) is monotonically non-increasing
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after each iteration of the algorithm. On the other hand, the value of the Lagrangian

subproblem L(w) need not decrease at each iteration, and as such, the stopping mechanism

would use the largest value of L(w) as the best lower bound.

5.4.3 Branch and Bound Solution Procedure

After the successful completion of the column generation procedure, the resulting near

optimal solution to the relaxed LP problem is then used as the root node to the branch and

bound procedure for solving the original ASRP problem. As outlined in Chapter 3, this

decision model has been formulated as an integer programming problem. The branch and

bound solution procedure is based on the ability to use derived lower bounds to the optimal

solution as an algorithmic tool in reducing the number of computations required to solve the

problem to near optimality. This final phase of the solution methodology involves the

solution of the integer programming problem which represents the combinatorial

optimization nature of the complex reassignment problem.

During the branch and bound procedure, the feasible region F of the problem is

systematically partitioned into subregions F1, F2, - . . F, (Network Flows: Ahuja, 1993). If X

denotes the best feasible objective function solution value after each iteration, either Fk is

empty or Xk is a solution of a relaxation of the set Fk and CX <= CXk for each subregion k. If

these conditions are satisfied, no point in any of the subregions can have a better objective

function value than X, and as such X solves the original optimization problem. If CX> CXk

for any region Fk, it would be necessary to subdivide this region by "branching" on some of

the variables (i.e. dividing a subregion into two by setting Xj = 0 or Xj = 1 for some variable j

to define two new subregions in the original problem). The solution procedure would then

continue until the necessary optimality conditions are met, and the optimal solution is

determined.
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The development and implementation of an efficient branch and bound procedure can be

greatly influenced by many solution parameters including the branching strategy (order for

choosing the subregions), the variable selection criterion for branching, the node selection in

the branch and bound tree, an apriori objective solution optimality gap, the pricing

algorithm, and the underlying solution algorithms. Each solution parameter listed above can

have a significant impact on the quality of the final solution, as well as the solution time

necessary for a particular problem. In the next Chapter, there is a discussion of a series of

real-world case studies, using operational data from a major US domestic carrier and an

international carrier to validate the solution procedures and algorithms developed. Trade-

off comparisons are made for each solution parameter in order to establish the most

efficient branch and bound solution procedure, based on the commercial optimization

package CPLEX.

I
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Chapter 6

Case Study Analysis

6.1 Introduction

The ability to reassign operational aircraft to flights in the residual Schedule Map is

influenced by many factors as outlined in the previous chapters. As part of the final phases

of this research project, operational data from a major US domestic carrier, and data from

an international carrier were used to validate and test the algorithms and solution

procedures developed during the course of the research. Several parameters and important

issues were considered including the effect of the size of the Schedule Map on the solution

time of each algorithm. In particular, the case study considered the effects of number of

operational constraints, the number and duration of delay arcs, and passenger recapture

rate on the quality of the solution, flight coverage and the overall solution time of each

algorithm. Flight coverage is defined as the number of scheduled flights which are delayed

or cancelled in the final solution.

6.1.1 Description of the Datasets

The primary goal of this research project has been to develop solution procedures for flight

rescheduling in a real-time environment. As such, operational data from two different

carriers were studied in order to validate the algorithm, and attempt to establish a better

understanding of this highly complex problem. The following paragraphs outline each

airline's operations as used in the case studies.



- Garuda Indonesia (GA)

Garuda Indonesia is the national carrier of the Republic of Indonesia, a country which

consists of an archipelago of over 13,000 islands. It currently serves both an extensive

domestic and international flight network, spanning four continents. In this study, only the

domestic network is considered, consisting of fifteen airport stations, scattered across the

country. Garuda's operations are centered around the country's capital city Jakarta, which

is served by the international airport at Cengkareng (CGK). The airport in Denpesar, Bali

(DPS) plays a major role as a second hub in the airline's operations. The carrier's domestic

fleet is made up of four different types, totalling 35 aircraft. These include the 737-300,

737-400, A300-B4 and the A300-600R. Based on information from the carrier's published

timetable, a Schedule Map of 180 flights is used in the study.

- Northwest Airlines (NW)

Northwest Airlines NW is the fifth largest major carrier in the US domestic network, with a

fleet of over 475 aircraft. Its domestic network is based on the hub and spoke concept, with

over 98% of scheduled flights either arriving or departing from a hub airport. The carrier

operates three main hub airports at Detroit (DTW), Minneapolis (MSP), Memphis (MEM),

with satellite hubs at Boston (BOS) and Tampa (TPA). The domestic network consists of

37 stations, served by 1591 scheduled flights per day. Northwest's domestic fleet consists

of five aircraft types, namely the A320-200, 757-251, DC10-30, 727-200 and the DC9/M80

family. In this case study, a subset of the carrier's domestic network is considered due to

memory limitations on available computer facilities at the time of the study. The final NW

problem considered involved a network of 612 flights, and a fleet of four aircraft types (all

except the DC9/M80 family).
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Table 6-1 summarizes each case study problem addressed, based on the operational data

provided by the two carriers. Problem one corresponds to daily operations of Garuda's

domestic network, and Problems two through five are derived from the US domestic

operations of Northwest Airlines. Several important aspects are captured in these studies

including the ability to consider multiple fleet type swapping in attempting to resolve

irregularities.

Table 6-1 Summary of Operational Case Studies

Problem Aircraft Types Aircraft Flights Stations

1 4 35 180 15

2 1 49 201 37

3 1 50 192 37

4 2 99 393 37

5 4 177 612 37

6.1.2 Review of Actual Airline Operations

In order to compare actual operational data to results generated by each algorithm, data on

aircraft operating costs and average passenger fares for each origin-destination pair were

used to establish benchmarks for each study. Passenger fare data were determined using

revenue data from the airlines, and on-board revenue data from the O/D Plus database.

Operating costs were determined using published industry averages by aircraft type. From

this data, representative operating profit values were determined for each flight segment,

ignoring any network or connectivity effects on operating revenue. In addition, these figures

assume 100% passenger recapture, that is, all passengers from cancelled or delayed flights

are reaccommodated by flights flown by the carrier. In effect, this estimation ignores loss of



passengers to other carriers, and any effects that actual flight delays may have on passenger

levels for a given flight segment. In later paragraphs, distribution of actual delay times will

be addressed, based on operational data collected by the carriers.

Table 6-2 Summary of Estimated Operating Profit based on Actual Operating Data

(Daily Normal Operations)

Problem Flights Scheduled Flights Flown Percent Operating
Cancelled Profit ($)

1 180 174 4.92 619,885

2 201 196 3.45 2,674,739

3 192 189 1.56 2,148,606

4 393 385 2.28 4,823,345

5 612 590 3.75 7,013,333

Table 6-3 Summary of Estimated Operating Profit based on Actual Operating Data

(Daily Irregular Operations)

Problem Flights Scheduled Flights Flown Percent Operating
Cancelled Profit ($)

1 180 n/a

2 201 182 10.34 2,515,657

3 192 183 4.69 2,097,174

4 393 365 7.36 4,612,831

5 612 560 8.65 6,791,656

Table 6-2 and Table 6-3 summarizes operating profit for each case study, based on actual

traffic levels as reported by the airlines in the study. In the first scenario, the airline's

operations are not subject to any major disruptions and represents the "normal" operations

of the carrier. In the second scenario, the carrier's operations are affected by various

irregularities during the course of the day. It was not possible based on the format of the

database to explicitly identify the nature of the irregularities in the study. As a result, the
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impact of the irregularities on the operations of the carrier was modelled by restricting the

number of the arrivals and departures within a given time period, (fifteen minute interval)

based on the the actual levels of aircraft movement on the "irregular" day. The data

presented for Problems 2 through 5 under "normal" conditions correspondings to the daily

operations for NW on January 13, 1997. The "irregular" scenario corresponds to NW's

operations on January 9, 1997. These two distinct days of operations were identified by the

carrier for the purpose of the case study.

For each case, the estimated operating profit was calculated using Expression 6-1 outlined

below. In forthcoming studies of the algorithms, this formula is used to determine the

cumulative objective function value for each aircraft assignment, that is, the estimated value

of assigning a given aircraft to a predetermined sequence of flights in the airline network.

Expression 6-1

Operating Profit = (AHOC * BT) - (FARE*PAX)

where
AHOC average hourly operating cost
BT average flight block time
FARE average passenger fare
PAX actual number of passengers on leg

The ability to assess the impact of delay on passenger spill is a difficult task, and is a topic

worth addressing in future research projects. Previous work on this topic has been reported

by Mathaisel [8]. In this study, sensitivity analysis of both the delay duration and

passenger recapture rate were done, in order to determine their importance in the mechanism

of the solution procedures. As a preamble to these empirical studies, Table 6-4 summarizes

the distribution of actual flight delays in each case study, based on the reported aircraft

movement times. From these figures, candidate delay times were established for use in the

case studies.
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Table 6-4 Summary of Delay Time Distribution (Percentages)

Delay time None 0-14 15-29 30 -44 45 -59 60 - 119 120-179 > 180 Cancel

(min)

Problem 2

Normal 52.00 35.00 6.31 2.91 0.00 2.91 0.49 0.00 0.97

Irregular 21.49 26.86 14.88 5.79 4.55 12.81 5.37 1.65 6.20

Problem 3

Normal 55.28 29.15 7.04 3.52 0.50 2.51 0.00 0.50 1.51

Irregular 25.52 24.69 12.97 11.30 3.77 13.39 3.35 1.26 3.77

Problem 4

Normal 53.61 31.85 6.67 3.20 0.25 2.72 0.25 0.25 1.24

Irregular 23.49 25.99 13.93 8.52 4.15 13.10 4.37 1.46 4.99

Problem 5

Normal 51.88 30.40 6.74 3.13 0.31 3.60 0.63 0.16 3.13

Irregular 21.48 25.82 13.57 9.09 5.01 12.25 4.74 1.19 6.85

6.2 Simulation of Irregular Airline Operations

It was not possible from the existing format of the database of actual operational data to

explicitly identify discrete irregularities. As a result, it was not possible to recreate the

exact impact of these irregularities on the planned schedule of the airline in the case study.

In an effort to conduct a proof-of-concept of the developed solution methodologies and

algorithms, an attempt was made to simulate a series of potential irregularities over the

course of the resolution horizon. Based on actual aircraft movement data from the

operational database, the reduced number of arrivals and departures at each hub airport
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(subject to a series of irregularities) in the network were determined for prescribed time

intervals of fifteen minutes over the course of the day.

This information was then used to restrict aircraft movement in the network, thereby

simulating the "end-effect" of the multiple irregularities, ignoring the actual cause of each

event. Several operational scenarios were considered in the study, based on the level of

restrictions, or more appropriately, the number of auxiliary operational constraints

incorporated in the decision model. These are summarized below:

1. No auxiliary constraints are considered in the solution methodology

2. Landing slots constraints are considered by restricting the number of arrivals at each

affected station within a given time period.

3. Crew constraints are considered by restricting the number of departures at a given

station, within a given time period.

4. Both landing slots and crew constraints are incorporated into the decision model, by

restricting all aircraft movement at a given station within a time period.

6.3 Important Issues and Assumptions

In order to compare the results of each algorithm to the existing operational data, several

parameters were varied in order to access the quality of the solution relative to the actual

data. These included:

0 Number of aircraft and flights in the airline network

* Number of operational constraints incorporated into the decision model

0 Number of delay arcs, and the duration of the delay per flight

* Passenger recapture rate

* Minimum aircraft turn time
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The quality of each solution was measured by the resulting operating profit, percentage of

flights delayed, and the percentage of flights cancelled for each scenario. In addition, the

overall solution time for each algorithm was recorded, in order to establish the applicability

of these solution procedures for real-time decision making.

As outlined above, the current solution methodologies ignore the effects of passenger flow

and connectivity issues in determining passenger revenue, thereby taking a segment-based

approach. In the passenger flow sub-model presented in Chapter 3, such issues would be

considered, and any relevant information could be incorporated in the main model through

additional constraints on the aircraft movement. For example, an additional constraint

could be used to ensure that a particular origin-destination market is serviced by at least

one flight within a given time period. In each algorithm, it is assumed that each flight can be

flown by any aircraft in the fleet, provided it satisfies a prescribed criterion such as a

passenger "no-spill" condition or operational range capability. A minimum turn time of 30

minutes is allocated to all scheduled flights.

For the purposes of the case studies, it was assumed that each operational aircraft had

twenty-five "flying" hours remaining, since it was not possible to ascertain these actual

values from the available historical data. In addition, a maximum daily aircraft utilization

of twelve hours was preset for the implementation of the tree-searching algorithm. It is

assumed that all hub airports in the airline network are capable of serving as maintenance

bases for all aircraft types in the fleet. The resolution horizon H was set at twenty-four (24)

hours. In current airline scheduling planning, a planned aircraft rotation (equivalent to a

flight sequence beginning and terminating at a maintenance base) is typically 72 hours in

duration.

6.4 Practical Decision Model
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In order to utilize the ASRP model presented in Chapter 3, it is necessary to adapt the

mathematical model to real-world problems by relaxing some of the operational constraints

in the formulation. The overall framework of the solution procedure incorporates several

factors in the main problem of rescheduling flights in the aftermath of irregularities. The

primary constraint satisfied is the aircraft maintenance routing constraint. In the simplified

model used in the case study, all operational constraints are included in the model except

for the overnight aircraft balance constraint. In addition, the crew balance constraint is

relaxed to restrict the number of aircraft departures across the entire fleet, thereby assuming

crew commonality within the fleet. It is important to point out however, that the aircraft

type specific constraint could be easily incorporated into the model, but it would have a

marginal impact on the size of the network studied, and potentially the resulting solution

time. In addition, crew legality issues would highly complicate such constraints in the

rerouting problem.

6.4.1 LP Lagrangian Gap for Column Generation

As outlined in the previous Chapter, an optimization based algorithm has been developed

for solving the airline recovery problem which employs an implicit column generation

procedure. The ability to use this algorithm to solve real-world problems made it necessary

to determine an appropriate LP Lagrangian gap, in order to achieve a practical solution

quality. Based on preliminary analysis, a Lagrangian gap of 0.005 was determined as the

candidate value to satisfy this criterion, while maintaining a real-time solution capability.

Table 6-5 summarizes the effects of varying the Lagrangian gap on the solution time of the

column generation portion of the optimization algorithm. These figures are based on

Problem 2, consisting of 49 aircraft, 201 scheduled flights, and no replica delay arcs in the

network. The solution times are reported in seconds for each scenario (specific parameter

settings, and/or number of operational constraints), with runs on a Sun Sparc20
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workstation using the CPLEX callable library. An important observation of the results of

the column generation procedure was the high level of integrality which existed in the

solution to the linear relaxed problem studied. This resulted in relatively short branch and

bound solution times for each scenario.

Table 6-5 Effects of Lagrangian Gap on Solution Time (Secs) of Column Generation

Scenario Types of constraints 0.0500 0.0375 0.0250 0.0125 0.0050 0.0005

1 flight, aircraft 88.00 88.82 88.84 91.83 100.68 114.08

2 flight, aircraft, 272.25 287.02 302.42 301.75 302.36 302.36

landing slots

3 flight, aircraft, crew 274.16 286.33 286.58 286.58 286.58 286.58

4 flight, aircraft, slots, 495.90 495.90 545.24 545.24 567.96 567.96

crew

6.4.2 Integer Programming Solution Procedure

Based on preliminary analysis of the Schedule Map and resulting integer programming

problem input to CPLEX, a test matrix was established to determine the appropriate

settings for the CPLEX optimization module. In effect, an empirical study was conducted

to determine the best IP solution procedure for the airline recovery problem. Based on run

times, the following parameter settings were used for the mixed integer programming module

of the CPLEX callable optimization library.

Table 6-6 CPLEX Settings for Optimization-Based Algorithm

CPLEX Parameter

Start Algorithm

Sub Algorithm

Start pricing algorithm

Sub pricing algorithm

Integrality heuristic

Setting

Primal Simplex

Dual Simplex

Devex pricing

Steepest edge/Automatic

YES
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Node selection

Variable Selection

Branch strategy

Best bound search

Branch automatically selected

Algorithm decides

The reader is referred to the CPLEX manual for a more detailed discussion of these

parameters. Using these parameter settings, an extensive sensitivity analysis was

conducted using Problem 2's dataset to determine the most efficient IP optimality gap

setting for implementing optimization-based algorithm in a real-time environment. Table 6-7

summarizes the variation in solution quality and run time relative to the optimality gap.

From this empirical study, an optimality gap of 0.005 was set for terminating the

optimization algorithm.

Table 6-7 Effects of IP Optimality Gap on Solution Quality and

Run Time (secs)

Algorithm

Scenario Types of Factor 0.0500 0.0375 0.0250 0.0125 0.0050 0.0005

constraints

1 flight, obj 2733476 2733476 2733476 2733476 2733476 2733476

aircraft

time 108.00 105.87 107.38 106.28 106.54 295.29

2 flight, obj 1497023 1497023 1497023 1497023 1497023 1497023

aircraft,

slots time 293.54 293.54 293.54 293.54 293.54 309.75

3 flight, obj 1873689 1873689 1873689 1873689 1873689 1873689

aircraft,

crew time 287.42 287.42 287.42 287.42 287.47 303.35

MMMNMMMM M
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4 flight, obj 1175347 1175347 1175347 1175347 1175347 1175347

aircraf t,

slots, crew time 573.10 573.10 573.10 573.10 573.10 573.10

6.5 Review of Primary Findings

The following experimental results were obtained using the algorithms developed during the

course of the research project. All experimental results reported in this section are based on

computational runs conducted on a SunSparc 20 workstation. The underlying concepts of

each solution methodology were discussed in Chapter 5. A summary of this discussion is

now given, prior to presentation of the empirical results.

Algorithm 1 corresponds to greedy heuristic procedure one, in which each aircraft is

considered individually based on the amount of remaining flight time before scheduled

maintenance. Each aircraft is assigned to a sequence of flights based on operating profit.

Algorithm 2 corresponds to greedy heuristic procedure two, and attempts to establish a

local optima at each phase of the solution process. Each aircraft is assigned to a sequence

of flights based on operating profit.

Algorithm 3 corresponds to the optimization-based solution procedure, wherein column

generation is used to generate candidate flight sequences that meet aircraft maintenance

conditions, while attempting to maximize operating profit.

In order to implement these algorithms, several assumptions were made regarding the

underlying airline network and corresponding Schedule Map discussed in Chapter 3. The

resulting problem parameters are now listed, as a preamble to the solution results.



Additionally, a series of sensitivity analyses were conducted to assess the impact of varying

such parameters on the quality of the solution and the corresponding algorithm run time.

These results are reported in the next chapter.

Assumptions

* Minimum aircraft turn time

* Passenger recapture rate

* Number of delay arcs

* Duration of delay

* Lagrangian gap

* IP optimality gap

* Problem size

6.5.1 Actual Airline Operations

30 minutes

0.750

1

30 minutes

0.005

0.005

49 aircraft, 201 scheduled flights

The following tables summarize operating parameters (characteristics) of actual airline data,

and an assessment of the "operational schedule" generated by each algorithm during the

simulation phase of the case study. Table 6-8 shows the operating results based actual

airline data, using the Problem 2 dataset (49 aircraft, 201 scheduled flights, one aircraft

type). This dataset was also used for the irregularity simulation study.

Table 6-8 Actual Airline Operations (49 aircraft,

Parameter

Operating Profit ($)

ASM (seat-miles)

RPM (pax-miles)

ALF

Variable Unit Cost ($/mile)

Yield ($/mile)

Aircraft Utilization (hrs)

Avg. Block Time (hrs)

Normal

2674739

40384752

23910632

0.59

0.032

0.165

10.78

2.69

201 scheduled flights)

Irregular

2515657

39119384

23542646

0.60

0.032

0.159

10.44

2.81
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Flight Delay (%) 48.00 78.50

Flight Cancelled (%) 3.45 10.34

Each parameter was used in an effort to accurately quantify each algorithm based on the

airline industry's standard measures. These are now defined as a precursor to reviewing the

data. The available seat miles "ASM" represents the available capacity in the airline

network, based on the residual schedule map composition. The revenue passenger miles

"RPM" is a measure of the total operating revenue achieved in operating the scheduled

flights. The average load factor "ALF" is a measure of the percentage of seats occupied on

each flight segment. The average aircraft utilization measures the number of flight hours

flown by a given aircraft over the course of a day. The average block time represents the

mean duration of a flight in the airline network. The average yield is the amount of

operating revenue generated by carrying one passenger, one mile in the airline network. The

variable unit cost is a measure of the additional variable costs required to carry one seat,

one mile. The flight coverage in the network is indicated by the percentage of flights delayed

and cancelled.

6.5.2 Simulation of Irregular Airline Operations

Table 6-9 through Table 6-12 outline the resulting operating values for each scenario

described for the "irregularity" simulation. It can be observed from these results that each

algorithm is capable of generating a schedule of flights that are comparable to the actual

operations.

Table 6-9 Scenario 1 No auxiliary operational constraints

Parameter Algorithm 1 Algorithm 2 Algorithm 3
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Operating Profit ($)

ASM (seat-miles)

RPM (pax-miles)

ALF

Variable Unit Cost ($/mile)

Yield ($/mile)

Aircraft Utilization (hrs)

Avg. Block Time (hrs)

Flight Delay (%)

Flight Cancelled (%)

2647527

31545264

20590180

0.65

0.032

0.177

8.43

2.52

0.49

19.21

2590156

31236910

19753926

0.63

0.031

0.180

8.22

2.55

0.00

22.00

2752362

35253572

22660084

0.64

0.032

0.171

9.42

2.61

0.00

12.81

In the case of Scenario 1 (equivalent to normal operations), each algorithm creates a

schedule that is equivalent, if not better than the actual airline schedule. In considering each

parameter, one can observe that each schedule of flights generated by an algorithm is

operationally practical, and beneficial to the carrier.

Table 6-10 Scenario 2 Constraints on aircraft arrivals

Parameter

Operating Profit ($)

ASM (seat-miles)

RPM (pax-miles)

ALF

Variable Unit Cost ($/mile)

Yield ($/mile)

Aircraft Utilization (hrs)

Avg. Block Time (hrs)

Flight Delay (%)

Flight Cancelled (%)

Algorithm 1

2156899

29636202

17821380

0.60

0.032

0.174

7.92

2.55

26.60

25.12

Algorithm 2

2319814

29921202

17913154

0.60

0.031

0.182

7.87

2.47

20.00

23.00

Algorithm 3

2520176

31277682

20467372

0.65

0.032

0.171

8.35

2.59

0.50

22.17

Scenario 3 Constraints on aircraft departuresTable 6-11
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Parameter

Operating Profit ($)

ASM (seat-miles)

RPM (pax-miles)

ALF

Variable Unit Cost ($/mile)

Yield ($/mile)

Aircraft Utilization (hrs)

Avg. Block Time (hrs)

Flight Delay (%)

Flight Cancelled (%)

Algorithm 1

2334368

29354720

18566216

0.63

0.032

0.176

7.85

2.55

17.24

25.62

Algorithm 2

2310077

30448688

18715436

0.61

0.031

0.174

8.01

2.55

21.00

24.00

Algorithm 3

2628115

32088630

21072076

0.66

0.032

0.173

8.57

2.56

0.50

19.21

Table 6-12 Scenario 4 Constraints on all aircraft movement

Parameter

Operating Profit ($)

ASM (seat-miles)

RPM (pax-miles)

ALF

Variable Unit Cost ($/mile)

Yield ($/mile)

Aircraft Utilization (hrs)

Avg. Block Time (hrs)

Flight Delay (%)

Flight Cancelled (%)

Algorithm 1 Algorithm 2 Algorithm 3

1955652

27896194

16372050

0.59

0.032

0.173

7.46

2.54

33.50

29.06

2059552

28203332

16765522

0.59

0.031

0.175

7.42

2.47

34.00

27.00

2393016

29441276

19377704

0.66

0.032

0.172

7.86

2.53

0.50

25.12

The reader is referred to the appendices for sample output data files of Scenario 1 using

Algorithm 1, and the actual aircraft rotations for the normal day of operations. In addition,

the data input files containing the scheduled flights and aircraft, can be found in the

appendices.
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6.6 Summary and Conclusions

The main objective function considered in this study is based on an operating profit

expression which only accounts for the variable operating costs, and the average passenger

fare when determining the "value" of a given flight segment. In addition, since cancellation

costs are not explicitly accounted for the current model, the number of cancelled flights are

artificially inflated. As a result, aircraft utilization in the schedules generated by each

algorithm for normal operating conditions (no operational constraints on aircraft movement)

is slightly less (within 85%) than that of the actual airline operations. These artificially

reduced aircraft utilization figures result in lower available seat miles for each algorithm,

and associated revenue passenger miles. The average passenger yield achieved by each

algorithm is better than the actual operations, as "less-beneficial"(small profit/loss margin)

flights would be not flown, as there are no penalties to cancel these flights in the current

implementation.

The results of the simulation have shown that it is possible to efficiently reschedule flights in

the aftermath of irregularities. In each scenario considered, the value of majority of the

operating parameters monitored is within the same order of magnitude as the baseline case

of normal operating conditions (actual operations). For example, the average aircraft

utilization for each scenario under an irregular operating condition is within 95% of that of

normal operating conditions. Similarly, the average flight block time achieved in each

scenario under irregularities is within 99% of the norm. The simulation of the irregular

operations has successfully demonstrated a proof-of-concept, since the applicability of

these algorithms to reschedule flights has clearly been shown from the operational results of

this study. In the next chapter, a comprehensive sensitivity analysis study is discussed, in

which the major modelling parameters identified in this chapter are varied, and their impact

of algorithm run-time, solution quality, and flight coverage assessed.
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Chapter 7

Sensitivity Analysis

7.1 Solution Time and Quality of the Solution

As outlined in the introduction to the previous chapter, several issues were considered

during the course of the case study analysis, with a primary emphasis on the quality of the

solution (profitability) and corresponding algorithm run time. The following tables

summarize the major findings of the sensitivity analysis, by considering each issue

individually. In each scenario, "obj" corresponds to the value of the objective function as

defined in Chapter 5, and "time" corresponds to the CPU run time in seconds on a

SunSparc20 workstation for each algorithm.

7.1.1 Number of aircraft flights

From the onset of the research project, it was anticipated that one of the most important

factors to establish during the course of the validation phase of the project, was the

functional limitation of the algorithms developed. As such, the first issue to be addressed in

the case study analysis was the impact of problem size on the overall solution time of each

algorithm. In each case, all additional operational constraints were excluded from the

study. Table 7-1 outlines the run times in seconds for each case study problem dataset,

based on their descriptions in Chapter 6. By varying the dimension of the underlying airline

network, it is possible to assess the impact of problem size on the algorithm run-time.



Page 124 Sensitivity Analysis

Table 7-1 Summary of Effects of Problem Size on Solution Time (secs)

Problem Aircraft Flights Factor Algorithm 1 Algorithm 2 Algorithm 3

1 35 180 obj 716941 755835 784199

time 2.70 35.49 234.40

2 49 201 obj 2647527 2603870 2734698

time 2.29 27.84 105.72

3 50 192 obj 2092465 2104083 2141805

time 2.71 22.73 51.69

4 99 393 obj 4713562 4811564 4943535

time 9.65 277.11 707.04

5 177 612 obj n/a n/a n/a

time

One of the primary observations from this experiment was the strong correlation between

the problem dimensions and the overall solution run time. It was also apparent from these

results, that the performance of each algorithm is affected by the actual composition of the

underlying airline network. In a later sensitivity study, the impact of the duration of the

minimum aircraft turn time is considered, in terms of its effects on the solution quality, flight

coverage and algorithm run time. During the course of these computer runs, the issue of

CPU memory and processing speed surfaced as major factors which would limit the actual

case study problem used for the remainder of the validation phase of the research project.

As a result, in order to complete the planned comparison study of all three algorithms, the

problem size was limited to satisfy the memory capacity of the workstation. In subsequent

studies, the dataset for each scenario corresponds to Problem 2 (49 aircraft, 201 flights).

7.1.2 Number of Additional Constraints
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In this study, it is assumed that there are no delay arcs in the network, and as such, the

algorithm results would report which flights to cancel in the event that flight delays are not

considered in the decision process. Table 7-2 summarizes the variation in solution run time

and solution quality, based on varying the number of constraints considered. An important

observation in this study was the impact of the integrality requirement in Algorithm 3 on the

quality of the solution for problems subject to additional operational constraints. The

solution procedure initially solves the ASRP problem as a relaxed linear programming

problem, and then tranforms the result to an IP solution. As a result, the final solution of

the algorithm is highly impacted by the number of constraints, which may result in higher

instances of fractionality in the initial LP solution. In determining the IP solution, the quality

of the solution is thus sub-optimal. It is apparent from the case study, that this issue will

depend on the underlying structure of the Schedule Map being considered.

Table 7-2 - Effects of Additional Constraints on Solution Quality / Run Time (secs)

Scenario Types of constraints Factor Algorithm 1 Algorithm 2 Algorithm 3

1 flight, aircraft obj 2647527 2603870 2734698

time 2.29 27.84 122.80

2 flight, aircraft, obj 1464448 1777935 1497023

landing slots time 4.12 28.56 293.54

3 flight, aircraft, obj 1948904 1942234 1873689

crew time 3.72 22.40 288.44

4 flight, aircraft, obj 1295528 1457813 1175347

slots, crew time 5.40 24.73 559.92

7.1.3 Number of Delay Arcs and Delay Time

The ability to efficiently reschedule flights in the aftermath of irregularities can be greatly

influenced by the capability to accurately make a trade off between cancelling and delaying



a given flight in the network. In this study, the issue of the impact of delay arcs is

considered in two separate scenarios. In the first case, there are no additional operational

constraints considered during the decision process. In the later case, constraints on aircraft

movement are imposed based on actual operational data from a particular "irregular" day

which affected the operations of the airline.

Table 7-3 Effects of Delay Arcs on Solution Quality and Algorithm Run Time [secs]

(no additional constraints)

Scenario Number of Delay Factor Algorithm 1 Algorithm 2 Algorithm 3

Delay Arc (mins)

1 1 15 obj 2638203 2590156 2750408

time 8.71 131.29 550.60 e

2 1 30 obj 2647527 2590156 2752362

time 8.45 120.79 511.15 e

3 1 45 obj 2647853 2607270 2736194

time 8.34 115.85 384.15 e

4 1 1/2 flt time obj 2652539 2604561 2734616

time 8.71 114.78 424.65 e

5 2 15 obj 2638203 2590156 n/a

time 16.78 281.30

6 2 30 obj 2657066 2600518 n/a

time 16.10 259.01

7 2 45 obj 2628835 2587663 n/a

time 14.86 n/a

8 2 1/2 flt time obj 2634016 2587077 n/a

time 14.97 n/a

Table 7-3 reports the solution times and the quality of the solution for each algorithm, for

the case where there are no additional operational constraints. In contrast, Table 7-4

contains the figures for the real-world case, with constraints on aircraft movement based as

a result of reduced landing slots and available flight crews.
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Table 7-4 Effects of Delay Arcs on Solution Quality and Algorithm Run Time [secs]
(additional constraints on crew and landing slots)

Scenario Number of Delay Factor Algorithm 1 Algorithm 2 Algorithm 3
Delay Arc (mins)

1 1 15 obj 1851038 1915756 1801499

time 15.47 82.08 1782.40 e

2 1 30 obj 1955652 2059552 1967399

time 15.66 89.02 2113.55 e

3 1 45 obj 1974784 2117415 2023848

time 16.12 92.43 2124.55 e

4 1 1/2 flt time obj 1949323 1994718 1954047

time 15.71 73.48 2078.21 e

5 2 15 obj 1984528 2016319 n/a

time 27.85 n/a

6 2 30 obj 2014968 2091298 n/a

time 28.42 n/a

7 2 45 obj 2013300 2108169 n/a

time 28.65 n/a

8 2 1/2 flt time obj 1939778 2063627 n/a

time 28.23 n/a

It was observed from these experiments that the addition of delay arcs to the time-space

network had a significant impact on the solution time. For example, the addition of one

delay arc for each flight causes a 300% increase in run-time for Algorithm 1. In addition, as

the size of the problem increased, corresponding to the number of delay arcs considered in

the problem, it was not possible to solve the candidate case study problem on the computer

platform due solely to CPU memory limitations. However, it was possible to determine the

actual solution to these scenarios on a more powerful machine, with adequate memory

capacity but a slower processor time. The run times corresponding to these instances are

reported as estimated values, indicated by an "e".



7.1.4 Passenger Recapture Rate

In developing algorithms for use in any decision support systems, it is important to establish

a thorough understanding of all the underlying factors which may affect the quality of the

solution generated by the system. One of the fundamental issues that affects airline

operations is that of passenger recapture, and how this is incorporated into any fleeting

decisions.

Table 7-5 Effects of Passenger Recapture Rate on Solution Quality
and Algorithm Run Time [secs]

(additional constraints on crew and landing slots)

Scenario Passenger Recapture Factor Algorithm 1 Algorithm 2 Algorithm 3
Rate

1 0.500 obj 1619350 1719544 1557409

time 15.66 73.52 2093.41 e

2 0.625 obj 1778868 1888817 1763671

time 15.67 79.84 2385.83 e

3 0.750 obj 1955652 2059552 1967399

time 16.00 78.29 2113.55 e

4 0.875 obj 2283686 2243996 2187794

time 15.75 83.17 2271.71 e

5 1.000 obj 2561004 2498131 2412189

time 16.02 89.72 2145.40 e

In this study, a sensitivity analysis is conducted in which the passenger recapture rate is

varied, and its effects on profitability and algorithm run times are observed. Table 7-5

summarizes the results of the sensitivity study, in which a delay time of 30 minutes is

assumed. It is apparent from this experiment, that the actual value of the recapture rate

does not affect the solution time of the algorithm for a given duration of delay. On the other

hand, the profitability of the solution is significantly affected by this parameter in the

decision process.
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7.1.5 Minimum Aircraft Turn Time

Based on the observations made during the initial phases of the case study, a sensitivity

analysis was conducted on the minimum aircraft turn time assumed for the study. In this

study, it is assumed that there is one delay arc for each scheduled flight, with a

Table 7-6 Effects of Minimum Aircraft Turn Time on Solution Quality
and Algorithm Run Time [secs]

(no additional operational constraints)

Scenario Minimum Aircraft Factor Algorithm 1 Algorithm 2
Turn Time (min)

1 30 obj 2647527 2590156

time 9.11 125.35

2 45 obj 2617542 2566682

time 8.87 91.73

3 60 obj 2382182 2387878

time 8.06 105.75

4 max(30, 1/4 flt time) obj 2606652 2549006

time 8.93 137.35

5 max(30, 1/2 flt time) obj 2362666 2351759

time 8.39 88.52

corresponding delay time of 30 minutes. Table 7-6 outlines the effects of the prescribed

minimum aircraft turn time on the solution quality for the case with no additional

constraints. Table 7-7 presents the results for the case in which additional constraints are

incorporated into the decision process. Due the computer memory limitations, figures for

algorithm 3 are not reported. From these empirical tests, it was apparent that the assumed

minimum aircraft turn time can have a significant impact of the solution quality and the

level of flight coverage in the underlying airline network.

Table 7-7 Effects of Minimum Aircraft Turn Time on Solution Quality
and Algorithm Run Time [secs]
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(additional constraints on crew and landing slots )

Scenario Minimum Aircraft Factor Algorithm 1 Algorithm 2

Turn Time (min)

1 30 obj 1955652 2059552

time 15.82 110.65

2 45 obj 2056484 2041396

time 15.63 118.93

3 60 obj 1881298 1874251

time 16.09 115.55

4 max(30, 1/4 flt time) obj 1923115 2020063

time 16.68 93.08

5 max(30, 1/2 flt time) obj 1773190 1893163

time 16.08 89.54

The preceding tables of results have summarized the effects of various factors on the

solution run time of each algorithm, and its corresponding solution quality. From an

operational perspective, it is also important to assess the impact of these algorithms on the

actual airline's operation in the residual flight network. The following tables outline the

impact of each factor on the flight coverage in the airline network.

7.2 Flight Coverage

The existence of additional operational constraints in the airline recovery problem are a

required component to accurately model any real-world situation. A study of the impact of

such constraints on flight coverage in the network is thus warranted as a base case for

looking at the impact of delay arcs in the network. Table 7-8 shows the flight coverage

results for the baseline case of Problem 2, a network of 201 scheduled flights and 49

aircraft. In this study, there are no delay arcs in the network, and the impact of the

operational constraints can be observed from the experimental results. As the number of
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operational constraints increases, there is a corresponding increase in the level of flight

cancellations in the network (with no delay options).

7.2.1 Number of Additional Constraints

As anticipated, the number of operational constraints in the problem does have a significant

impact on the level of flight coverage in the network. An interesting

Table 7-8 Effects of Additional Constraints on Flight Coverage [%]

Types of constraints

flight, aircraft

flight, aircraft,

landing slots

flight, aircraft,

crew

flight, aircraft,

slots, crew

Flight

Delay

Cancel

Delay

Cancel

Delay

Cancel

Delay

Cancel

Algorithm 1

0.00

18.23

0.00

55.67

0.00

41.38

0.00

61.08

Algorithm 2

0.00

22.00

0.00

51.00

0.00

46.00

0.00

60.00

Algorithm 3

0.00

13.79

0.00

57.64

0.00

46.80

0.00

65.52

observation regarding the level of cancellation was made. In the current model formulation

of the airline recovery problem, the "cost" of flight cancellations are implicitly incorporated

into the decision process, and as such, the true penalty (cost) for cancelling a given flight is

not made accountable. As a result, there may be an artificially higher level of flight

cancellations in the solutions generated by an algorithm, even under normal conditions. It is

important to point out however, that the solution quality (profitability) of each algorithm

under these conditions is comparable to the actual levels of the real world operations.

Table 7-9 Effects of Delay Arcs on the Flight Coverage [%]
(no additional operational constraints )

Scenario

1

2

3

4
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Scenario Number of Delay Flight Algorithm 1 Algorithm 2 Algorithm 3

Delay Arcs (mins)

1 1 15 Delay 0.99 0.00 0.00

Cancel 19.21 22.00 13.30

2 1 30 Delay 0.49 0.00 0.00

Cancel 19.21 22.00 12.81

3 1 45 Delay 0.99 1.00 0.00

Cancel 18.72 21.00 14.29

4 1 1/2 fit time Delay 2.96 3.00 1.00

Cancel 17.73 19.00 13.79

5 2 15 Delay 0.99 0.00 n/a

Cancel 19.21 22.00

6 2 30 Delay 2.96 1.00 n/a

Cancel 17.73 21.00

7 2 45 Delay 4.43 4.00 n/a

Cancel 18.23 19.00

8 2 1/2 fit time Delay 2.96 4.00 n/a

Cancel 17.73 20.00

7.2.2 Number of Delay Arcs and Delay Time

The introduction of delay arcs into the Schedule Map increases the length of the solution run

time, but does provide the decision maker the ability to make an efficient trade-off between

cancelling and delaying a given flight. Table 7-9 shows the level of flight coverage for the

baseline problem with the additional delay arcs in the network. Since the primary decision

matrix is one of operating profit maximization, flights are intentionally delayed to help

improve profitability.

Table 7-10 Effects of Delay Arcs on the Flight Coverage [%]
(constraints on crew and landing slots )

Scenario Number of Delay Flight Algorithm 1 Algorithm 2 Algorithm 3
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Delay Arcs (mins)

1 1 15 Delay 26.11 27.00 0.00

Cancel 36.45 35.00 36.95

2 1 30 Delay 33.50 34.00 0.50

Cancel 29.06 27.00 25.12

3 1 45 Delay 41.38 36.00 4.50

Cancel 24.14 25.00 24.63

4 1 1/2 flt time Delay 37.44 33.00 7.00

Cancel 29.06 31.00 30.54

5 2 15 Delay 36.45 36.00 n/a

Cancel 27.59 25.00

6 2 30 Delay 40.89 39.00 n/a

Cancel 24.63 23.00

7 2 45 Delay 45.32 39.00 n/a

Cancel 21.18 23.00

8 2 1/2 flt time Delay 43.84 37.00 n/a

Cancel 24.14 24.00

In cases where additional operating constraints are imposed, the level of flight cancellations

are greatly reduced by the presence of delay arcs, which in turn lead to significant levels of

flight delays in the solution. Table 7-10 summaries the level of flight coverage in the airline

network under operational constraints on aircraft movement. In this study, these

operational constraints included limitations on aircraft arrivals due to landing slot

allocation, and restrictions on departing flights based on the number of crew available at a

given airport station.

7.2.3 Passenger Recapture Rate

The level of passenger recapture in the decision matrix has been shown to sufficiently

influence the level of flight coverage in the network. Table 7-11 outlines the flight coverage in

the network in light of variations in the recapture rate.
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Table 7-11 Effects of Passenger Recapture Rate on Flight Coverage [%]
(constraints on crew and landing slots )

Scenario Passenger Recapture Flight Algorithm 1 Algorithm 2 Algorithm 3

Rate

1 0.500 Delay 27.59 25.00 0.50

Cancel 33.99 33.00 35.47

2 0.625 Delay 30.54 33.00 0.50

Cancel 31.03 28.00 28.57

3 0.750 Delay 33.50 34.00 0.50

Cancel 29.06 27.00 25.12

4 0.875 Delay 43.84 40.00 0.50

Cancel 23.15 23.00 23.15

5 1.000 Delay 60.10 60.00 0.50

Cancel 20.20 21.00 21.18

In this study, one delay arc is generated for each scheduled flight in the original airline

network. The ability to accurately account for this factor in the current study is limited by

the omission of network effects, as it relates to passenger flow and connectivity in the main

problem.

7.2.4 Minimum Aircraft Turn Time

As outlined in earlier discussions, the assumed minimum aircraft turn time substantially

influences the underlying time-space network, and the resulting outcome of each algorithm.

The ability to cover scheduled flights in the airline network will be dictated by the amount of

"available" flight time across the fleet. By varying the minimum aircraft turn time (adjusting

block times, and/or shifting arrival/departure times), it is possible to determine more

efficient flight sequences with higher levels of aircraft utilization.

Effects of Minimum Aircraft Turn Time on Flight Coverage [%]Table 7-12
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(no additional operational constraints)

Scenario Minimum Aircraft Flight Algorithm 1 Algorithm 2

Turn Time (min)

1 30 delay 0.49 0.00

cancel 19.21 22.00

2 45 delay 3.45 4.00

cancel 19.70 23.00

3 60 delay 10.84 11.00

cancel 25.62 25.00

4 max(30, 1/4 flt time) delay 3.94 3.00

cancel 20.20 21.00

5 max(30, 1/2 flt time) delay 5.42 5.00

cancel 27.09 29.00

Page 135Sensitivity Analysis



Page 136 Sensitivity Analysis

Table 7-13 Effects of Minimum Aircraft Turn Time on Flight Coverage [%]
(constraints on crew and landing slots)

Scenario Minimum Aircraft Flight Algorithm 1 Algorithm 2

Turn Time (min)

1 30 delay 33.50 34.00

cancel 29.06 27.00

2 45 delay 34.98 35.00

cancel 27.09 28.00

3 60 delay 28.57 30.00

cancel 35.47 34.00

4 max(30, 1/4 flt time) delay 36.95 36.00

cancel 28.57 26.00

5 max(30, 1/2 flt time) delay 31.03 31.00

cancel 35.96 34.00

Table 7-12 and Table 7-13 summarize the flight coverage observed for the case with no

additional constraints, and the case with additional constraints respectively. From this

study, it is apparent that the assumed minimum aircraft turn time will marginally affect the

flight coverage achieved in the network.

7.3 Validation of the Algorithms

The results of the case studies in this chapter are based on several assumptions that have

been explicitly discussed. In an effort to validate the algorithm, an "approximate"

comparison is made between the solution quality of each algorithm and the actual

operations of the airline under normal operating conditions. Table 7-14 shows the

comparison of the output of each algorithm to actual operating results under normal

conditions.
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Table 7-14 Comparison of Solution Quality to Estimated Operating Results
(Normal Operations)

Problem Algorithm 1 Algorithm 2 Algorithm 3 Actual Operations

1 716941 755835 784199 619,885

(115%) (122%) (127%)

2 2647527 2603870 2734698 2,674,739

(99%) (97%) (102%)

3 2092465 2104083 2141805 2,148,606

(97%) (98%) (99.6%)

4 4713562 4811564 4943535 4,823,345

(97.7%) (99.8%) (102.5%)

As discussed in Chapter 6, it is almost impossible to "recreate" the series of irregularities

over the course of a day using one decision process. The "irregular" operating conditions

have been simulated for the purpose of this case study by restricting the number of aircraft

movement within a given time interval, as it was impossible to identify and model each

individual "irregularity" in the study. Consequently, the quality of the solution of each

algorithm for the problem under irregular conditions is not presented, since it is impossible

to make an accurate comparison to the actual airline operations.

However, the comparison of the algorithms under normal operating conditions does support

the validity of the algorithms for solving the airline schedule recovery ASRP problem. Future

research initiatives could explore the validation of these algorithms for case study problems

under irregular airline operations through in-field case studies at an airline operation control

center of a marginally sized carrier.

7.4 Summary and Conclusions



7.4.1 Analysis

The primary purpose of the sensitivity analyses have been to further validate, and "beta-

test" the greedy heuristic and optimization-based algorithms developed in the project.

Several operational issues were considered in the study, through a series of sensitivity

analyses that were conducted to establish the importance of each parameter in the future

development and implementation of these algorithms in a real-world environment. The

major findings and observations of the sensitivity studies are now summarized.

* There is a strong correlation between the dimensions of the problem (number of aircraft

and scheduled flights) and the overall algorithm run time. The underlying tree-searching

algorithm runs in 0(m) time.

* The performance of each algorithm appears to be affected by the actual composition

and structure of the underlying airline network. The ability to efficiently solve the

subproblem of aircraft rerouting will be driven by the number of possible flight sequence

combinations in the network. If the network is highly connected, the number of possible

routings will increase exponentially.

* The solution time of Algorithm 1 and Algorithm 2 are not significantly affected by the

addition of operational constraints to the problem. The inclusion of these auxiliary

constriants results in a corresponding "network truncation" prior to the execution of the

tree-searching algorithm. In effect, the addition of these constraints actually improve the

performance of Algorithm 1 and Algorithm 2.

* The solution time of Algorithm 3 is substantially impacted by the presence of additional

operational constraints in the decision model. This is a direct result of the fractionality

which exists in the initial LP solution to the problem.

" The duration of flight delays in an airline network which is subject to additional

operational constraints, does not affect the solution run-time of each algorithm.
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However, the delay duration affects the profit and the flight coverage achieved in the

network. By varying the average flight delay in the network from 15 minutes to 45

minutes, there is a 7.0% increase in the overall operating profit using Algorithm 1. At the

same time, there is a 33% reduction in the number of cancelled flights and a 60% increase

in the number of delayed flights in the network. Similar results can be observed for

Algorithm 2 and Algorithm 3.

* The assumed passenger recapture rate used in each algorithm does not affect the

solution run-time, but significantly impacts the profit and the associated flight coverage

in the network. By varying the passenger recapture rate from 0.50 to 0.75, the overall

operating profit (Algorithm 1) increases by 20%. This is associated with a 15%

reduction in the number of cancelled flights, and a 22% increase in the number of

delayed flights, as it becomes more beneficial to delay flights. Similar results can

obtained using Algorithm 2 and Algorithm 3.

* The profitability and corresponding flight coverage is influenced by the assumed length

of the minimum aircraft turn time. The aircraft turn time does not affect the algorithm

run-time. For a network subject to operational constraints, an increase in the minimum

aircraft turn time from 45 minutes to 60 minutes, results in a 9% reduction in the

operating profit. This is associated with a 18% reduction in the number of delayed

flights, but a 30% increase in the number of cancelled flights.

* The ability to efficiently trade-off between cancelling and delaying a given flight in an

airline network using a single decision model, is beneficial for the resolution process. The

presence of delay arcs in a network subject to operational constraints on landing slots

and crews, results in a 53% reduction in the percentage of flights cancelled, and an

associated 33% increase in the percentage of delayed flights. This improved flight

coverage results in a 50% in profitability using Algorithm 1.

Sensitivity Analysis Page 139



* The flight coverage achieved in the solution generated by each algorithm is affected by

the manner in which passenger spill and the corresponding "value" of a given flight is

incorporated into the decision model. In particular, there is an artifically higher level of

the flight cancellations, as the true "cost" of cancelling a given flight and other

"network" effects are not explicitly modelled.

* Under normal conditions, the quality of the solution (profit) generated by each algorithm

is comparable to the estimated profit values of the actual airline operations, (please

refer to prior discussions on the accuracy of these estimates).

* Under irregular operating conditions, it is very hard to make a meaningful validation of

the model, as it is almost impossible to simulate the series of decisions made by a

controller over the course of a day, using a single decision process.

Over the course of the case study phase of the project, many of the experiments considered

implicitly underscore the importance of the airline controller in dictating the outcome of any

resolution methodology implemented in an operations control center. By adjusting the

number of fleets included in the solution process, the controller has the ability to control the

effects of problem size (number of aircraft and corresponding flights) on solution time and

the quality of the solution. Similarly, by considering only the appropriate operational

constraints for a given situation, the controller is capable of limiting the effects of additional

constraints on the solution time, and overall quality of the final flight rescheduling solution.

As observed in the sensitivity analyses presented in this chapter, the various parameter

settings can significantly impact the outcome of the algorithm. An experienced airline

controller would be able to accurately control the execution of the solution procedures,

through varying the minimum aircraft turn time, passenger recapture rate, number of delay

arcs, and the duration of flight delays in the underlying airline network considered in the

solution process.
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7.4.2 Computational Experience

During the course of the case analysis, one of the major limitations faced was that of

computer memory capacity on the test platform. As a precursor to future research on the

airline recovery problem, the algorithms and solution procedures which had been developed

for the SunSparc workstation were ported to the UNIX environment running on an INTEL

Pentium-Pro equipped computer. As shown in Table 7-15 and Table 7-16, there are

significant gains in solution times from changing platforms, and in some cases considered, as

much as ten fold. This reinforces the premise that it is possible to develop efficient real-time

procedures to assist airline controllers in flight rescheduling in the aftermath of irregularities.

In analysing the computational times of the SunSparc workstation, it was observed that

almost 50% of the reported run time could be attributed to internal computer memory

management, due to the physical size of the machine's RAM space, and the resulting need to

swap memory between the hard-drive (virtual memory) and the actual RAM. In addition,

the processing speed of the Pentium-Pro processor (266 Mhz) significantly exceeds that of

the SunSparc 20 (75 MHz).

Table 7-15 Summary of Effects of Problem Size on Solution Time (secs)

Case Aircraft Fl

1 35

2 49

3 50

4 99

5 177

ights Factor

180 obj

time

201 obj

time

192 obj

time

393 obi

time

612 obj

Algorithm

716941

0.27

2647527

0.41

2092465

0.21

4713562

1.21

6823536

1 Algorithm 2

755835

3.00

2603870

2.45

2104083

2.71

4811564

15.72

n/a
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time 3.03

Effects of Delay Arcs on the Solution Quality and Algorithm Run Time

(additional constraints on crew and landing slots )

Scenario Number of Duration Factor Algorithm 1 Algorithm 2
Delay Arcs (mins)

1 1 15 obj 1851038 1915756

time 2.19 11.31

2 1 30 obj 1955652 2059552

time 1.71 10.56

3 1 45 obj 1974784 2117415

time 1.46 11.92

4 1 1/2 flt time obj 1949323 1994718

time 2.26 10.38

5 2 15 obj 1984528 2016319

time 2.86 25.38

6 2 30 obj 2014968 2091298

time 2.88 28.08

7 2 45 obj 2013300 2108169

time 3.09 16.03

8 2 1/2 flt time obj 1939778 2063627

time 3.21 25.15

Table 7-16

I
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Chapter 8

Summary and Conclusions

8.1 Review of the Airline Schedule Recovery Problem

The primary motivation of this dissertation has been the need to address flight rescheduling

in the aftermath of irregular airline operations. The ability of an airline to address flight

rescheduling depends on the availability of up-to-date, and accurate operational

information from all divisions of the carrier. The underlying assumption of this research

project has been that an efficient information flow mechanism already exists in the airline's

operation control center, and that airline controllers have full access to all relevant

information and corresponding databases, in order to make informed decisions about the

operations of the carrier.

The rescheduling of flights after irregularities is modelled as the Airline Schedule Recovery

Problem, and this is used as a foundation to develop efficient, robust and "real-time"

solution methodologies for reassigning operational aircraft to flights and concurrently

construct the residual airline network, and new "current" schedules. The development of

the airline schedule recovery problem has been greatly influenced by previous work on

related airline scheduling topics, as well as communications with airline controllers, the

potential end-users of the envisioned decision support tool.

8.2 Discussion of the Case Studies



The algorithms developed during the course of this research were validated and tested using

historical operational data from a major US domestic carrier, and data from the domestic

network of an international airline. Several parameters and implementation issues were

considered during the case study analysis, including the effect of the size of the airline

Schedule Map on the solution time of each algorithm. In particular, the case study

considered the effects of the number of operational constraints incorporated into the

decision model, the number and duration of delay arcs generated and considered, and the

passenger recapture rate on the quality of the solution, flight coverage and the overall

solution time of each algorithm.

Based on the extensive computational experiences of the case studies, it is important to

highlight the high level of sensitivity of the aircraft assignment results of each algorithm to

initial assumptions and prescribed parameters in the decision process. The ability to use

such algorithms to generate practical aircraft-flight assignments and corresponding aircraft

routings will depend on the experience of the airline controller. The analysis presented in

the previous chapter has demonstrated the flexibility and robustness of the algorithms in

dealing with variations in the level of irregularity experienced by the carrier. In addition,

results of the Case Studies have reinforced the need for such solution procedures, when one

considers the impact of irregularities on the airline's profitability. Finally, the Case Studies

identified limitations to potential "real-world" applications of these algorithms, in terms of

the virtual CPU memory requirements.

8.3 Contributions of the Research

The Airline Schedule Recovery decision model developed in this dissertation provides a

comprehensive framework which addresses how airlines can efficiently reassign operational

aircraft to scheduled revenue flights in the aftermath of irregularities. The design of the
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decision model and resulting solution methodologies have been driven by real-world

experiences in airline operations, and emphasize the role of the airline controller in the

decision process. The model integrates various aspects of the airline's tactical planning

processes, which are traditionally considered separatetly.

The mathematical formulation of the problem enables flight delays and cancellations to be

considered simultaneously, i.e., in the same decision model. In a real-world scenario, airline

controllers generally make this trade-off implicitly, but this fundamental mechanism has not

been modelled in previous work. The decision model allows for multiple fleet type aircraft

swapping in flight rescheduling, provided the candidate aircraft is capable of flying a given

flight segment. In addition, the impact of air traffic control (ATC) traffic flow management

initiatives and crew availability are incorporated into the model through restrictions on

aircraft movement at affected airports in the network system.

The Airline Schedule Recovery problem is best described as a hybrid three dimensional

decision model as it simultaneously solves the fleet assignment problem and the aircraft

routing problem which are normally solved sequentially. As a result, aircraft maintenance

requirements are implicitly satisfied in the aircraft assignment output from the implemented

algorithms. This unique solution approach to the aircraft routing aspect of the problem is

different from traditional procedures currently employed in the strategic phase of the

planning process, and in the aftermath of irregularities.

The algorithms and solution methodologies developed and validated in this dissertation

have successfully demonstrated that it is possible to develop efficient decision support

procedures for flight rescheduling. These algorithms, which are based on Network Flow

Theory and Mathematical Programming Theory, produce "real-time" solutions to highly

complex assignment problems. During the course of the implementation of the algorithms, it
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was established that it is possible to incorporate many aspects of the tactical planning

process into the decision process, thereby producing a "robust" solution to the main

problem of rescheduled flights, and rerouting operational aircraft. Based on experiences

from the case study, future research initiatives should explore the implementation of these

algorithms with even larger sized airline networks.

The design and implementation of the solution methodologies are based on an object-

oriented framework, and as a result, the various functional modules are interchangeable,

which provides flexibility in the solution process. The execution of each algorithm is highly

interactive, and requires an array of user-defined conditions and parameters, thereby

incorporating the airline controller in the decision process. These solution procedures can be

further enhanced and developed as the foundation of an operations control decision

support tool, to assist airline controllers in dealing with irregularities. The state-of-the

practice in AOCC generally involves manual resolution of irregularities.

8.4 Directions for Future Research Initiatives

8.4.1 Modelling Issues

In the current formulation of the airline schedule recovery problem, network effects on

revenue are not explicitly considered in the derivation of the cost coefficient. This simplified

version of revenue accounting in effect ignores leg-dependence effects in demand and

revenue estimations. However, the prevalence of hub and spoke airline network operations

does warrant such considerations, as only then can passenger connectivity effects be truly

incorporated into the decision process. The related issue of passenger flow considerations

are necessary in order to accurately determine spill, and the corresponding spill costs

associated with each flight segment in the network.



The existing model does not explicitly account for all aspects of crew scheduling, and its

impact on aircraft assignment. The ability to incorporate such issues is limited by the

potential impact on the tractability of the model. There exists a strong interdependence

between the aircraft reassignment problem, and the crew rescheduling problem. It is

important however, that future researchers accurately model the rescheduling of crew

members to flights in the residual airline network. This can be highly complicated by real-

world issues such as labour union contracts, which can be hard to incorporate into any

discrete decision model, and are particular to each airline.

The solution methodologies presented in the dissertation deal solely with the main problem

of reassigning aircraft to flights in the aftermath of irregularities. Currently, several

independent research projects are studying one of the auxiliary problems, but it is necessary

for future researchers to consider the interaction between these sub-problems, as decisions

made in one problem can significantly impact another problem. The ability to efficiently

capture such interaction could substantial improve the robustness of any solution

methodology developed for dealing with irregularities.

The overall framework of the ASRP model involves the iterative solution on the main

aircraft assignment problem, and associated sub-problems of ATC slot allocation, crew

rescheduling, gate allocation, and passenger origin-destination flow problems. In its present

form, the main problem of the airline schedule recovery model incorporates aspects of these

sub-problems, but future research initiatives should explore improvements in the modelling

of these constraints. In particular, it is important to assess the required information flow

mechanism necessary for the successful implementation of the overall solution methodology.

As previously discussed, there is a fundamental assumption in this dissertation that the

required information flow mechanism already exists. As a result, the further development
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and implementation of the airline schedule recovery problem is closely coupled to

information flow considerations. Future research initiatives should explore how the current

problem formulation affects information flow, and what implications this may have on

future work on the topic of irregularities. In the next section, implementation issues are

addressed in light of the computational experiences of the empirical studies.

8.4.2 Implementation Issues

As demonstrated in the case studies, real-time solution capabilities are possible with the

existing problem and corresponding algorithms. However, it is necessary to ascertain how

the issue of solution time will affect the applicability of these algorithms to larger airline

networks. In addition, researchers should consider what impact the need for "lead-time"

will have on the solution methodology as it relates to uncertainty in the available data, and

the ability to retrieve real-time up-to-date information from the corresponding databases in

the airline system. From a practical standpoint, the full benefits of any implementation of

the developed algorithms would depend significantly on efficient interfacing between the

front-end decision support tool and the back-office database systems. Researchers should

also explore alternative decision frameworks, such as considering sequential decision

mechanisms, and the inclusion of the probability of future irregularities.

The solution methodologies and procedures for dealing with irregularities presented in this

dissertation are a departure from current state-of-the-practice of Airline Operations Control

Centers (AOCC). In recent years, airlines have come to understand the importance of

collaborative decision making in its tactical operations. Many questions will arise from this

research, such as who would be responsible for the implementation of these algorithms in

the AOCC? In addition, the issue of information flow, and the dissemination of decisions

to the various divisions within the airline does warrant some consideration. For example,
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how would the deployment of a decision support system based on these developed

algorithms affect the daily operations of an AOCC, and how they deal with irregular airline

operations? In answering these and other important questions, future research initiatives

will further advance the development of efficient algorithms for flight rescheduling, and

other aspects of tactical airline planning.

So what exactly is Flight Transportation?

flight (flait) n. 1. the act, skill, or manner of flying. 2. a soaring

mental journey above or beyond the normal everyday world. 3. the act

of fleeing or running away, as from danger.

transportation (traenspor' teifen) n. 1. a means or system to carry or

cause to go from one place to another, especially over some distance. 2.

a system that provides ecstacy, rapture, or any powerful emotion.

flight tranportation (flait traenspor' teifen) n. 1. a program of study

that incorporates a broader education in the disciplines of engineering,

economics, management, law, and operations research. 2. the ultimate

frequent flyer program.



150



Bibliography

Irregular Airline Operations

[1] Arguello, Michael et. al. An Optimization Model for Aircraft Routing in Response

to Groundings and Delays. Working paper, University of Texas - Austin, March

1997.

[2] Cao, Jia-Ming and Adib Kanafani. Real-time Decision Support for Integration of

Airline Flight Cancellations and Delays, Part I: Mathematical Formulation.

Transportation Planning and Technology, Vol. 20, pg. 183-199 (1997).

[3] Cao, Jia-Ming and Adib Kanafani. Real-time Decision Support for Integration of

Airline Flight Cancellations and Delays, Part II: Algorithm and Computational

Experiments. Transportation Planning and Technology, Vol. 20, pg. 201-17 (1997).

[4] Jarrah, Ahmad et. al. A Decision Support Framework for Airline Flight

Cancellations and Delays. Transportation Science, Vol. 27, No. 3, August 1993.

[5] Lettovsky, Ladislav et. al. Airline Crew Recovery. INFORMS Aviation

Applications Section Presentation, New Orleans, October 1995.

[6] Luo, Songjun et. al. Airline Schedule Perturbation Problem: Ground Delay

Program with Splitable Resources. Univeristy of Texas-Austin, August 23, 1994.

[7] Luo, Songjun et. al. Airline Schedule Perturbation Problem: Landing and Take-off

with Non-splitable Resources for the Ground Delay Program. Univeristy of Texas-

Austin, August 8, 1994.

[8] Mathaisel, Dennis. Decision Support for Airline System Operations Control and

Irregular Operations. Computers and Operations Research, Vol. 23, No. 11, pg.

1083-98 (1996).

[9] Mette, Matthias. Sequential Heuristic Algorithm for Minimum-Cost

Rescheduling of Connecting Complexes in Airline Hub Operations. Flight

Transportation Operations Analysis term paper, May 1994.



Page 152 Bibliography

[10] Rakshit, Ananda et. al. Systems Operations Advisor: A Real-time Decision
Support System for Managing Airline Operations at United Airlines. Interfaces 26:
2 March - April 1996 (pp. 50-58).

[11] Teodorovic, Dusan et. al. Model to Reduce Airline Schedule Disturbances.
Journal of Transportation Engineering, Volume 121, Number 4, July-August 1995.

[12] Teodorovic, Dusan et. al. Model for Operational Daily Airline Scheduling.

Transportation Planning and Technology 1990, Volume 14, pp. 273-285.

[13] Teodorovic, Dusan et. al. Optimal dispatching strategy on an airline network after

a schedule perturbation. European Journal of Operational Research 15 (1984).

[14] Teodorovic, Dusan. A Model for Designing the Meteorological most reliable
Airline Schedule. European Journal of Operational Research 21 (1985), pp. 156-164.

[15] Yan, Shangy and Dah-Hwei Yang. A Decision Support Framework for Handling

Schedule Perturbation. Transportation Research B, Vol. 30, No. 6, pp. 405 - 419.

Airline Operations

[16] Airline Operational Control Overview. Prepared by the Airline Dispatchers

Federation and Seagull Technology Inc. May 1995.

[17] Aykin, Turgut. Networking Policies for Hub-and-Spoke Systems with Application

to the Air Transportation System. Transportation Science Vol. 29, No. 3, Aug 1995.

[18] Barnhart, Cynthia et. al. Flight String Models for Aircraft Fleeting and Routing.

Working paper, MIT Center for Transportation Studies, January 1997.

[19] Berge, Matthew and Craig Hopperstand. Demand Driven Dispatch: A Method for
Dynamic Aircraft Capacity Assignment, Models and Algorithms. Operations

Research, Vol. 41, No. 1, January - February 1993.

[20] Bihr, Richard. A Conceptual Solution to the Aircraft Gate Assignment Problem

using 0,1 Linear Programming. Computers and Industrial Engineering, Vol. 19,
No. 1-4, 1990, pg. 280 - 284.

[21] Cao, Jia-Ming and Adib Kanafani. The Value of Runway Time Slots for Airlines.

Working paper, University of California - Berkeley, May 1997.

[22] Carlson, Paul. Allocating Banks of Flights to Arrival Slots in Reduced-Capacity

Situations. MIT Center for Transportation Studies, May 1997.

[23] Chang, Ching et. al. Flight Sequencing in Airport Hub Operations. Presented at

the 1995 Annual Meeting of the Transportation Research Board.



Bibliography Page 153

[241 Clarke, L.W. et. al. Maintenance and Crew Considerations in Fleet Assignment.

Transportation Science Vol. 30, No. 3, August 1996.

[25] Deckwitz, Thomas. Interactive Dynamic Aircraft Scheduling. MIT Thesis, May

1984.

[26] Dennis, Nigel. Scheduling Strategies for Airline Hub Operations. Journal of Air

Transportation Management 1994 1(3), pp. 131-144.

[27] Dennis, Nigel. Airline Hub Operations in Europe. Journal of Transport Geography

1994 2(4), pp. 219-233.

[28] Etschmaier, Maximiliam and Dennis Mathaisel. Airline Scheduling: An

Overview. Transportation Science, Vol. 19, No. 2, May 1985.

[29] Farkas, Andras. The Influence of Network Effects and Yield Management on

Ailrine Fleet Assignment Decisions. MIT Flight Transportation Report R96-1.

[30] Ghobrial, A. et. al. Future of Airline Hubbed Networks: Some Policy Implications.

Journal of Transportation Engineering, Vol. 121, No. 2, March/April 1995.

[31] Gillingwater, D. et. al. Information System for Operations at Medium-Sized

Airports. Transportation Research Board 1461.

[32] Gosling, Geoffrey. Design of an Expert System for Aircraft Gate Assignment.

Transportation Research A, Vol. 24A, No. 1 (1990), pg. 59 - 69.

[331 Grandeau, Seth. The Processes of Airline Operation Control. MIT Flight

Transportation Report R95-2, February 1995.

[34] Grandeau, Seth et. al. The Processes of Airline System Operations Control. MIT

Flight Transportation Laboratory. Submitted for publication, March 1996.

[35] Kyle, Jon S. Airline and Airport Control Systems - The Next Generation.

Presented at the AGIFORS 1989 Symposium in Bymose Hegn, Denmark.

[36] Kniker, Timonthy et. al. Fleet Assignment and the Passenger Mix Problem

Incorporating Spill and Recapture. Working paper, MIT Center for Transportation

Studies, Spring 1997.

[37] Murray, Geoffrey. Dynamic Aircraft Reassignment: A Simulation. INFORMS

Airline Scheduling Session, New Orleans October 1995.

[38] Nakazawa, Shizuya. Dynamic Scheduling in Operation Control System. Presented

at AGIFORS 31st Symposium 1991, Minnesota.



Page 154 Bibliography

[39] Riccio, Lawerence and Nathan Ron. Computer-Generated System Aids Airline's
Passenger Flow and Routing of Aircraft. Industrial Engineering Vol. 17, No. 9,
September 1985, pg. 52 -56.

[40] Rosenthal, Richard et. al. Optimizing Flight Operations for an Aircraft Carrier in
Transit. Operations Research Vol. 44, No. 2, March - April 1996.

[41] Shumsky, Robert. Dynamic Statistical Models for the Prediction of Aircraft Take-
off Times. MIT Thesis June 1995.

[42] Simpson, Robert. Cancelling and Switching Flights within Clusters of Aircraft in a
Schedule. FTL Memorandum M88-8, November 1988.

[43] Simpson. Robert. Counting the "Turns" within a Cluster: The Turn Tree. FTL
Memorandum M88-10, December 1988.

[44] Soumis, Francois, et. al. A Model for Large-Scale Aircraft Routing and Scheduling
Problems. Transportation Research B, Vol. 14B, pp. 191-201.

[45] Su, Y.Y. and K. Srihari. A Knowledge Based Aircraft-Gate Assignment Advisor.
Computers and Industrial Engineering Vol. 25, Nos 1 - 4, pg. 123 - 126, 1993.

[46] Sullivan, James. The Effects of Inclement Weather on Airline Operations, AIAA-
89-0797

[47] Svrcek, Tom. Planning Level Decision Support for the Selection of Robust

Configurations of Airport Passenger Buildings. MIT Flight Transportation

Laboratory Report R94-6, May 1994.

[48] Talluri, Kalyan. Swapping Applications in a Daily Airline Fleet Assignment.

Transportation Science Vol. 30, No. 3, August 1996.

[49] Teodorovic, Dusan. Multi-Attribute Aircraft Choice For Airline Network. Journal

of Transportation Engineering Vol. 112, No. 6, November 1986.

[50] Vanderstraeten, Godelieve and Michel Bergeron. Automatic Assignment of
Aircraft to Gates at a Terminal. Computers and Industrial Engineering Vol. 14,
No. 1, pg. 15-25.

[51] Waldman, Gary. A Study of the Practicality and Profit Enhancement Potential of

Demand Driven Dispatch in Airline Hub Operations. MIT Thesis June 1993.

[52] Well, Alexander. Principles of Airline Scheduling, Air Transportation: A

Management Persceptive, Wadsworth Books, 1995.

[53] Yau, C. Dynamic Flight Scheduling. OMEGA International Journal of

Management Science, Vol. 17 (6) 1989, pp. 533 - 542.



Bibliography 
Page 155

Network Flow Theory

[541 Ahuja, Ravindra et. al. Network Flows: Theory, Algorithms and Applications.
Prentice Hall 1993.

[55] Ahuja, Ravindra and James Orlin. A Capacity Scaling Algorithm for the
Constrained Maximum Flow Problem. Networks, Vol. 25 (1995), pg. 89-98.

[56] Aneja, Y. P. et al. Shortest Chain Subject to Side Constraints. Networks, Vol. 13
(1983), pg. 295-302.

[57] Aneja, Y. P. and KPK Nair. The Constrained Shortest Path Problem. Naval
Research Logistics Quarterly. Vol 25 (1978)

[58] Azevedo, Jose Augusto de, and Ernesto Martins. An Algorithm for the Multi-
Objective Shortest Path Problem on Acyclic Networks. Investigacao Operacional,
Vol. 11, No. 1 (1991), pp. 52 - 69.

[59] Beasley, J.E. et. al. An Algorithm for the Resource Constrained Shortest Path
Problem. Networks, Vol. 19 (1989), pg. 379-394.

[60] Calvette, Herminia and Pedro Mateo. An Approach for the Network Flow
Problem with Multiple Objectives. Computers and Operations Research, Vol. 22,
No. 9, pp. 971 - 983, 1995.

[61] Climaco, J. C. and Ernesto Martins. A Bicriterion Shortest Path Algorithm.
European Journal of Operational Research 11 (1982), pp. 399 - 404.

[62] Current, John et al. Efficient Algorithms for Solving the Shortest Covering Path
Problem. Transportation Science, Vol. 28, No. 4, November 1994.

[63] Deo, Narsingh and Chi-yin Pang. Shortest-Path Algorithms: Taxanomy and
Annotation. Networks, Vol. 14 (1984), pg. 275-323.

[64] Desrochers, Martin et. al. A Reoptimization Algorithm for the Shortest Path
Problem with Time Windows. European Journal of Operational Research 35
(1988), pp. 242 - 254.

[65] Desrochers, Martin et. al. A Generalized Permanent Labelling Algorithm for the
Shortest Path Problem with Time Windows. Informs Vol. 26, No. 3 (1988)

[66] Desrochers, Martin et. al. A New Optimization Algorithm for the Vehicle Routing
Problem with Time Windows. Operations Research, Vol. 40, No. 2, March/April
1992.

Bibliography Page 155



Page 156 Bibliography

[67] Desrosiers, Jacques et al. Time Constrained Routing and Scheduling. Handbooks
In Operations Research and Management Science (1995), Vol. 8, Chapter 2.

[68] Desrosiers, Jacques et al. Routing with Time Windows by Colunm Generation.
Networks, Vol. 14 (1984) 545-565.

[69] Desrosiers, Jacques et al. Methods for Routing with Time Windows. European
Journal of Operational Research 23 (1986), pp. 236 - 245.

[70] Desrosiers, Jacques et al. The Pickup and Delivery Problem with Time Windows.
European Journal of Operational Research, Vol. 54, No. 1, Sep. 5, 1991.

[71] Divoky, James and Ming Hung. Performance of Shortest Path Algorithms in
Network Flow Problems. Management Science, Vol. 36, No. 6, June 1990, pp. 661 -
673.

[72] Ford, L. R. and D. R. Fulkerson. Flows in Networks. Princeton University Press,
1962.

[73] Handler, Gabriel et al. A Dual Algorithm for the Constrained Shortest Path
Problem. Networks, Vol. 10 (1990) 293-310.

[74] Hassan, Mohsen. Network Reduction for the Acyclic Constrained Shortest Path
Problem. European Journal of Operational Research 63 (1992)

[75] Henig, Mordechai. The Shortest Path Problem with Two Objective Functions.
European Journal of Operational Research 25 (1985), pp. 282 - 291.

[76] Jaffe, Jeffrey. Algorithms for Finding Paths with Multiple Constraints. Networks,
Vol. 14 (1984), pg. 95-116.

[77] Martins, Ernesto and Jose Luis Santos. An Algorithm for the Quickest Path
Problem. Published on the WWW site of the Department de Matematica,
Universidade de Coimbra, Portugal. March 1996.

[78] Pallottino, Stefano. Shortest Path Methods: Complexity, Interrelations and New
Propositions. Networks, Vol. 14 (1984), pg. 257-267.

[79] Sheir, D.R. Iterative Methods for Determining the k Shortest Paths in a Network.

Networks, Vol. 6 (1976) pg. 205-229.

[80] Sheir, D.R. On Algorithms for Finding the k Shortest Path in a Network.

Networks, Vol. 9 (1979), pg. 195-214.

[81] Sivakumar, Raj and Rajan Batta. The Variance-Constrained Shortest Path

Problem. Transportation Science, Vol. 28, No. 4, November 1994.



Bibliography 
Page 157

Mathematical Programming Theory

[82] Barnhart, Cynthia. Dual-Ascent Heuristics for Large-Scale Multi-commodity Flow

Problems. Naval Research Logistics 40 (1993), pg. 305 - 423.

[83] Barnhart, Cynthia et. al. A Column Generation and Partitioning Approach for

Multi-commodity Network Problems. Submitted for publication to

Telecommunication Systems.

[84] Barnhart, Cynthia et. al. Branch and Price: Column Generation for Solving Huge

Integer Programs, COC-94-03. Working paper from Industrial and Systems

Engineering at Georgia Tech.

[85] Barnhart, Cynthia et. al. Formulating A Mixed Integer Programming Problem to

Improve Solvability. Operations Research 41 (1993), No. 6, pg. 1013 - 1019.

[86] Bradley, Stephen et. al. Applied Mathematical Programming. Addison-Wesly

1983.

[87] Dantzig, G.B. and P. Wolfe. The Decomposition Algorithm for Integer Programs.

Econometrica 29 (1961), No. 4, pg. 767 - 778.

[88] Everett, Hugh. Generalized Lagrange Multiplier Method for Solving Problems of

Optimum Allocation of Resources. Management Science 11 (1963), pg. 399 - 417.

[89] Fisher, Marshall. The Lagrangian Relaxation Method for Solving Integer

Programming Problems. Management Science, Vol. 27:1 (1981), pg. 1 - 18.

[90] Fisher, Marshall. An Application Oriented Guide to Lagrangian Relaxation.

Interfaces, Vol. 15:2 (March-April 1985), pg. 10 - 21.

[91] Fisher, Marshall and P. Kedia. Optimal Solution of Set Covering/Partitioning

Problems using Dual Heuristics. Management Science, Vol. 36, No. 6, June 1990,
pp. 674 -88.

[92] Forrest, J.J and D. Goldfarb. Steepest Edge Simplex Algorithms for Linear

Programming. Mathematical Programming 57 (1992), No. 3, pg. 341 - 374.

[93] Gilmore, P.C. and R.E. Gomory. A Linear Programming Approach to the Cutting-

Stock Problem. Operations Research 9 (1961), pg. 849 - 859.

[94] Hearn, D.W. and S. Lawphongpanich. Lagrangian Dual Ascent by Generalized

Linear Programming. Operations Research Letters 8 (1989), pg. 189 - 196.

[95] Jones, K.L. et. al. Multi-commodity Network Flows: The Impact of Formulation

on Decomposition. Mathematical Programming 62 (1993), No. 1, pg. 95 - 118.

Bibliography Page 157



Page 158 - Bibliography

[%] Magnanti, Tom et. al. Generalized Linear Programming Solves the Dual.

Management Science 22 (1976), No. 11, pg. 1195 - 1203.

[97] Parker, M. and J. Ryan. A Column Generation Algorithm for Bandwidth Packing.

Submitted for publication to Telecommunications Systems.

[98] Sherali, H.D. and D.C. Myers. Dual Formulations and Subgradient Optimization

Strategies for Linear Programming Relaxations of Mixed-Integer Programs.

Discrete Applied Mathematics 20 (1988), pg. 51 - 68.

[99] Williams, H.P. Model Building in Mathematical Programming. John Wiley, 1990.



Appendices

Al Survey Questionnaire for AOCC Visit

A2 Summary of Data Requirements

A3 Sample Data Files for Case Study Analysis

1. Scheduled flights

(Origin, departure time, destination, arrival time, flight number, average

fare, distance, block time, number of passengers, type of aircraft originally

assigned to flight)

2. Operating aircraft

(Tail number, aircraft type, capacity, remaining flying time before

maintenance, range, hourly operating cost, crew, cabin, noise restriction)

3. Actual airline schedule of flights, and corresponding aircraft

rotations

4. Schedule and flight sequences generated using Algorithm 1
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Al Survey Questionnaire for Visit to AOCC

The primary purpose of these trips were to develop a better understanding of how actual

AOCC deal with irregular airline operations, as well as to get an insight into the daily

operations of the center. Several issues have been identified as being essential to

effective resolution of such irregularities, and it is the hope of the investigator to see the

relevance of each issue.

1. Information Flow

- types of communication channels currently in use at the center

- what is the most effective one

- areas for improvement

- how are decisions distributed to all relevant parties?

2. Information systems and databases accessible by AOCC

- how much access does AOCC have to other division's computer systems

- how much information is actually used from each system, accuracy

- which system is most important in the decision process

- what other databases do controllers want access to, why?

3. Interaction with other "operations" divisions

- during normal daily operations and irregularities

- how does the relationship between divisions change with irregularities

- how much consideration is given to passenger flow issues

- how much consideration is given to crew legality issues, who handles it?

- maintenance routing issues, and how is it dealt with in AOCC

4. Impact of external factors in the decision process

- how does ATC flow control programs affect resolution

- what role if any, does competitive concerns play in the decision process

- how is meteorological issues, flight planning issues incorporated

5. What are some of the current "rule-of-thumbs" used by irregularities

- which flights are considered for cancellation first, for delay
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A2 Summary of Data Requirement

In order to assess the heuristic procedures developed in the research program, it is

necessary to gather detailed operational data from an airline carrier with an extensive

route network, which is often subjected to severe weather patterns, resulting in

irregularities. The following is a preliminary listing of such operational data for each

scheduled flight required for the analysis.

Operational Data

e scheduled arrival time

* actual arrival time

- scheduled departure time
- actual departure time

- passenger load and fare mix (from CRS system)

- passenger itinerary mix (connectivity)

- aircraft type assignment

- delay status/recorded cause of delay

- planned aircraft rotations (sequence of flights) for a given period

- actual aircraft rotations

- planned crew rotations for a given period

- actual crew rotations

In addition, it would be necessary to ascertain if deemed important, airline specific

operating data in order to better assess the impact of recommended decisions on the cost

of operating an effective flight schedule (as an example, crew costs which are strongly

affected by labour contracts particular to the carrier). Maintenance planning data would

also be necessary to better understand the airline's maintenance planning process and

how it currently affects aircraft routing during irregularities. Establish a dataset of

specific "irregularities", and try to incorporate other factors such as slot allotment in a

given time period and its effects on operations. It would be necessary to quantify the

cost of an irregularity and the resolution, for comparison purposes.
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