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ABSTRACT

Driving the development of increasingly sophisticated methods of seat
inventory control are the complex fare and route structures evident in airline
operations today. Most control methods are currently based on an individual
flight leg level. However, with the increased presence of multi-leg traffic
flows, it becomes necessary to extend control methods beyond the flight leg
level in order to maximize network revenues. While utilizing a full network
optimization approach is not a suitable solution to satisfying airline desires
for immediate revenue gains, the development of leg-based network seat
inventory control algorithms is viewed as an applicable alternative approach.

In this thesis, two distinct components of seat inventory control are
addressed. First, control structures that recognize multi-leg traffic flows are
introduced and incorporated into leg-based network seat inventory control
algorithms. Secondly, the development of local displacement cost logic is
made and implementation issues within existing and newly developed
control algorithms are explored. In order to quantify the effectiveness of
inventory control algorithms to provide incremental revenue gains over
existing control methods, an optimization/booking simulation was utilized
to test the performances of these algorithms under a variety of demand
patterns. Extensive simulation results in addition to discussions on practical
implementation issues of different control approaches are made within the
thesis.
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Chapter 1

Introduction

1.1 Motivation for Thesis

In 1938, the Civil Aeronautics Board (CAB) became the regulatory

agency of the commercial airline industry in the United States. The

formation of the CAB marked a period of dramatic expansion experienced by

the airline industry. However, in the early 1970s, with growing airline

inefficiency coupled with a period of severe economic recession, an industry

wide drop in growth and profits occurred. Since airline fares were then based

on an accounting of the airline's cost and investment; in order to provide a

fair rate of return on investment, the CAB at that time began approval of

higher fares to counter increasing costs.

Mounting criticism of the CAB's pricing policy began as airline fares

increased. It was a common belief the CAB protected airlines from

competitive forces and therefore fostered inefficiency that leads to higher

costs and higher prices. As a results, advocates of "deregulation" preached

that a deregulated environment would provide the competition among

airlines necessary to bring about the objectives of efficiency, innovation and

ultimately lower fares. In 1978, Congress passed the Airline Deregulation Act,
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and during the next five years would phase out the CAB and government

regulation of most commercial and economic activities within the domestic

airline industry.

The passage of the Airline Deregulation Action allowed complete

freedom for domestic airlines to set fares at will, dramatically altering the

pricing strategies of the entire industry. By imposing restrictions on purchase

and travel, carriers soon discovered that incremental gains in revenue can be

had by offering several different fare products at varying fare levels to the

traveling consumer. This practice is known as differential pricing. The

advantages of utilizing a differential pricing strategy is twofold. First,

providing lower discount fares would stimulate price-sensitive consumers to

travel. Secondly, with the lowering of barriers to entry, the availability of

lower fares are necessary to maintain a competitive image against low cost

new entrant carriers infiltrating dominant major markets. In conjunction

with offering different fares, fare restrictions and booking limits imposed on

each group of fare products are used to prevent the diversion of passengers

willing to pay higher fares. Although the benefits of differential pricing are

not immediately recognizable to higher fare passengers, the incremental

revenue generated by discount passengers does help to keep average fare

levels down by covering a portion of the operating costs for the flight.

The practical difficulty with utilizing a differential pricing scheme is

determining how the allocation of seats to different groups of fare products

can be conducted in a revenue maximizing fashion. On the one hand,

airlines are looking to reduce the number of empty seats on any one flight

with the introduction of discounted fares. On the other hand, they want to

minimize the displacement of higher revenue passengers by lower revenue
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passengers. Ultimately, with an increasingly complicated and dynamic

pricing environment, carriers found that it was necessary to develop tactical

tools to help monitor and control the inventory of seats to sell at different

price levels.

To derive the necessary seat allocations, it was important to first predict

the number of seats that would not be sold to higher fare passengers. Driven

by the purchasing behavior of different market segments, these seats would

then be made available to lower fare passengers earlier in the booking process

while a certain number of seats would be protected for later booking higher

fare passengers. Moreover, the allocation of seats must also account for

passenger demands for a whole range of different fare products and market

segments. It is the ultimate goal of a proper inventory control approach to

provide a carrier with a substantial increase in expected revenues. This is the

basic philosophy behind the development of revenue/yield management or

seat inventory control techniques.

Controlling seat inventory was further complicated by significant

changes in airline route structures throughout the industry after

deregulation. Initially, carriers had only to contend with dividing inventory

among passengers traveling on a single flight leg from origin to destination.

In a point-to-point service network, there is little need to differentiate among

passenger revenue contributions to the network. However, as U.S. carriers

sought to improve operational efficiency, many found benefits in a shift to a

hub-and-spoke route structure. While the use of hub-and-spoke increases the

operational reach of carriers and improves service frequency to many

destinations, it also means that some passengers will be traveling on multi-

leg journeys from origin to destination, often with a connection at the hub.

111111 du h



From the perspective of managing seat inventory, the increase in

multi-leg origin-destination passengers on any one flight leg means greater

complexity in evaluating the revenue contributions coming from any

passenger. On any one flight leg into a hub, seat inventory allocations must

not only taking into consideration the total fare paid by the passenger but also

the travel itinerary of the passenger. If a multi-leg booking request was to be

accepted, the travel itinerary of the passenger will allow the control approach

to evaluate the potential of displacing higher revenue passengers on other

flight legs. To maximize network revenues, inventory control algorithms

must look beyond a single flight leg perspective and consider the network as a

whole, making necessary the development of network/OD seat inventory

control algorithms.

1.2 Thesis Objectives

Driving the development of increasingly sophisticated methods of seat

inventory control are the complex fare and route structures evident in airline 9

operations today. A part of current development is the need for seat

inventory control methods that extend beyond the individual flight leg

environment. At the same time, the ease of implementing newly developed 9

control approaches into current inventory control practices must also be

taken into account. As airlines are looking for immediate revenue gains

from a control methodology, a primary objective of this research is to 9

introduce several practical alternatives to full network seat inventory control

through the development of several leg-based network seat inventory control



algorithms that incorporate some key design changes to current inventory

control approaches.

In order to accomplish this task, control structures that recognize

multi-leg traffic flows must first be introduced and incorporated into any leg-

based methods to network seat inventory control. Additionally, the

development of local displacement cost approximations and implementation

issues in utilizing displacement costs must also be considered. Armed with

the components necessary to develop such control algorithms, several

approaches are designed and implemented into a simulated hub-and-spoke

environment to test their effectiveness and to illustrate their ease of

implementation. The control algorithms developed represent a range of

control possibilities differing in their effectiveness and required investment.

It is important to stress that the purpose of this research is not to

provide an exhaustive set of empirical results to be used in comparing one

inventory control approach with another with the intent of determining the

"best" approach. On the contrary, the empirical results are used as a means to

quantify the effectiveness of a particular approach to generate incremental

revenue gains over current practices and to serve as incentives to implement

such approaches. The empirical results also serve to illustrate the ease of

implementing such an approach in practice and to encourage the user to draw

more relevant, case-specific conclusions as to which approach will work best

under their own demand environments.
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1.3 Structure of Thesis

The remainder of this thesis is divided into five chapters. Chapter 2

introduces the basics of seat inventory control. We begin with a generic

problem definition whereby the complexities of controlling seat inventories

are discussed on both a leg and network level. Next, current solutions to the

inventory control problem are discussed through the use of leg-based fare

class control methodologies. The methodology is outlined in addition to

problems associated with implementing such approaches in a network

environment. We then justify the need to develop network control

approaches through the use of a simple example. Typical mathematical

approaches to network inventory control solutions are also discussed along

with their limitations in the "real-world" environment. Finally, leg-based

heuristic methods to origin-destination control are introduced and a basic

design framework of a leg-based OD control algorithm is established.

Through the discussion of the current body of literature available,

Chapter 3 develops a timeline in the development of seat inventory control

approaches, ending with the most current thinking on network inventory

control. Breaking down inventory control approaches into three distinct

categories, we introduce different methods associated with each category in

addition to the advantages and disadvantages of use in a network

environment.

In Chapter 4, approaches to leg-based network seat inventory control

utilizing OD control structures are discussed at length. We begin by defining

the OD control structure and the role it plays in controlling inventory on a

20



network level. Next, a review of current fare class nesting control structure is

made to contrast two different control structures specifically designed to

control seat inventory on a network level. "Virtual Nesting" and "Stratified

Bucketing" are then introduced and their advantages relative to basic fare

class nesting are discussed in detail. The remainder of Chapter 4 illustrates

and analyzes empirical results obtained from simulation runs utilizing

several seat inventory control algorithms developed in this research that

employ the previously mentioned control structures. Simulation runs are

performed at a various levels of demand based on real demand data obtained

from an airline.

Chapter 5 extends the discussion of developing OD or network seat

inventory control algorithms with the introduction of local displacement cost

logic. In this chapter, a detailed discussion on the definition of local

displacement cost and several approximations to local displacement cost is

presented. An approximation to local displacement cost is established and

local displacement cost logic is implemented into the control algorithms

developed in Chapter 4. Static and dynamic applications of displacement cost

logic are also discussed and incorporated into the development of control

algorithms. Simulation runs of several network seat inventory control

algorithms with displacement cost are then performed under a variety of

demand scenarios, and revenue impacts are illustrated and analyzed. In

addition to extending displacement cost logic to leg-based OD control

algorithms, an attempt to implement such logic into a leg-based fare class

control algorithm is also made. Empirical results obtained from simulations

are also presented at the end of the chapter to this effect.
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Finally, in Chapter 6 we summarize the findings of this research and

suggest future directions for further research. The need for some form of

network or OD inventory control is growing in the airline industry. Within

this research, the development of several applicable leg-based algorithms to

network seat inventory control can provide a first step towards achieving the

current goals of the industry. *

9

9

*
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Chapter 2

The Basics of
Seat Inventory Control

2.0 Introduction

In allowing new freedoms to set fare levels and routes, deregulation in

the U.S. airline industry has triggered an explosion of different fare products

available to the traveling public. While the public benefits from increased

fare competition, airlines are increasingly forced to determine new tactical

methods of remaining competitive without compromising profitability. The

development of an automated seat inventory control system is one of many

operational measures adopted by airlines to help achieve greater levels of

revenue.

The basic seat inventory control problem involves determining the

number of seats that should be protected for sale to passengers willing to pay a

higher fare away from lower fare passengers, with the intent of maximizing

revenue [1]. Inventory control could also provide an airline the opportunity

to participate in competitive discount fare initiatives in order to maintain

market presence. At a finer level, through an integrated process of historical

data collecting, forecasting, optimization and control, seat inventory control
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could not only allocate seats between the fare products but- between different

travel itineraries over the network as well.

2.1 Generic Problem Definition

Since deregulation, airlines have adopted the use of differential pricing

schemes in conjunction with seat inventory control systems for the purposes

of maximizing revenues. By offering seats at a discounted fare, an airline can

capture additional demand that otherwise would not be traveling, in turn

providing additional revenue. However, differential pricing has also lead to

an increase in the number of fare products available. As airlines added fare

products in order to capture different market demand segments by their

willingness to pay, the complexity of controlling the different fares within the

reservation system increased. To identify market demand segments, airlines

imposed fences or restrictions on purchase to prevent diversion to lower fares

by higher paying customers. In effect, by associating these restrictions with

different fare levels, airlines are creating a range of level-of-service based

products that cater to a variety of market demand segments. Consequently,

the ultimate objective of any seat inventory control system is to properly

allocate limited resources, in this case aircraft seats, to the different fare

products/types in an effort to maximize the expected revenue of future

scheduled flights.

Intuitively, the solution to correctly allocating seats may seem to be a

simple one. One might suggest allocating as many seats as there is demand

for the highest fare product, then continuing the allocation process to the next

highest fare products until all demand is satisfied or all seats are filled. This

24



suggestion would be correct only if all demands for future flights are known

with certainty and supply matches demand exactly. In reality, the complexity

of the seat inventory control problem extends far beyond the intricacies of

matching supply to demand. The sophistication (or lack thereof) of current

computer reservations systems (CRS), with their individual system

capabilities, must also be taken into consideration. The performances of even

the best seat allocation algorithms are bounded by the abilities of the

computer reservations system.

The adoption of the hub and spoke route structure by major airlines in

the United States presented new levels of complexity to the seat inventory

control problem. On any day, a large carrier can serve thousands of origin

and destinations (ODs) through its hub and spoke system, while providing a

multiplicity of different fare products to each OD market. As traffic flow on

any one flight leg to and from a hub will include a mix of passenger OD

itineraries, the seat allocation problem can no longer be viewed exclusively

from a single flight leg perspective. The interactions between individual

flight legs and the implications of their relationship on the entire network

must be taken into consideration. These are just a few of the issues that

illustrate the complexity of finding a revenue maximizing solution to the seat

inventory control problem. The following sections will further detail some

of the seat inventory control issues and how it is being addressed by different

control methodologies.
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2.2 Leg-Based Fare/Booking Class Control

Most airlines currently manage their seat inventories at the flight leg

level. The process by which seat inventories are managed can be broken

down into four basic components: historical data collection, forecasting and

optimization, in addition to a control mechanism. Initially, the different fare

products are assigned to a booking class. On any flight leg, a booking class can

be regarded as an aggregation of demand for a group of fare products in

question, irrespective of the flight itinerary or OD. Thus each fare class,

representative of a particular fare product defined by the airline, is associated

with a booking class for control purposes. For example, a discount ticket

classified as "B class" for a Boston to San Francisco through Detroit itinerary

would be grouped together in the same booking class as B class demand for a

Boston to Detroit itinerary. Although both demands share the same booking

class, the revenue contributions from those two itineraries could be

significantly different.

Historical data on passenger demand are also collected and analyzed

from the perspective of these individual booking classes on each flight leg.

Forecasting models are used to obtain demand predictions for the fare

products represented by their associated booking classes for future flights.

Recommendations for optimal seat allocations to the different booking classes

are then determined through marginal seat revenue analysis algorithms.

Algorithms such as those presented by Belobaba [2] (Expected Marginal Seat

Revenue) or Curry [3] (Optimal Booking Limits) are representative of the seat

allocation algorithms utilized by most airline revenue management systems

and are discussed in Chapter 3. The recommended seat allocations are

*
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usually presented to the control mechanism as protection levels for seats in

higher classes that cannot be sold to lower classes. These protection levels are

converted by the control mechanism into booking limits for each individual

fare class on each leg independently. In a hierarchical fashion, the booking

limits are also nested within each other.

The need for booking limits and a nested control structure is rooted

within the seat inventory control problem. A major difficulty in the seat

inventory control problem is that requests for discounted fares by leisure

travelers have a tendency to be made before higher/full fare passenger

demand materializes. If full fare passengers on average booked before lower

fare passengers the seat inventory control problem would be trivial.

However, this is usually not the case due in part to the nature of leisure or

discount customer bookings and the restrictions placed by the airlines on the

purchase of these fares. As a result, a major function of seat inventory

control is in essence the prediction of the number of seats that must be

withheld from lower class passengers for the later booking, higher revenue

passengers. This effort requires the determination of protection levels for

higher booking classes or booking limits for the lower booking classes. In

addition to optimal booking limits, these limits must also be nested

hierarchically within each other to prioritize the availability of seats to higher

fare passengers.

Effectively, in a leg based booking class inventory control approach,

each booking request is evaluated based on the availability of the booking

class requested on that flight leg, irrespective of the ultimate destination or

itinerary of the request. As presented by Belobaba [41, on a multi-leg itinerary



booking request, seat availability is determined by evaluating the following

equation:

BLi = Min[BLkd,VI e i] (2.1)

which states that the booking limit for any multi-leg itinerary, i, in

booking/fare class, k, will be equal to the minimum booking limit for that

fare class over all legs, 1, traversed by itinerary, i. Recall that in a leg-based

booking class approach, booking limits are determined to maximize revenue

on a single flight leg only and that the booking classes represent an

aggregation of demand that is not itinerary specific. This means that even

though different itineraries represented by these multi-leg flights contribute

different revenue values to the network, revenue is maximized solely on the

flight leg level without regard to its impact on network revenue. If the

airline's route structure consists of mainly point-to-point, non-stop flights

serving distinct origin-destination markets, as illustrated in Figure 2.1, the

use of a flight leg approach to seat inventory control is sufficient.

SEA BOS

J FK

SFO

Figure 2.1 - Example of a Point to Point Route Structure



However, most airlines, especially in the United States, have adopted a

hub and spoke route structure. The philosophy behind such a complex

network is that it improves the operational reach of a carrier into a greater

number of markets without expending a large amount of additional

resources. As shown in Figure 2.2, instead of point-to-point, OD specific

routes, a carrier transports passengers to an intermediate location, the hub,

and transfers passengers to connecting flights to their final destinations. Thus

on any one leg into a hub, demand for that flight leg could consist of many

different OD itineraries. These different itineraries contribute varying

amounts of revenue to the network, a fact that is not currently recognized by

leg-based booking class seat inventory control methods. In a 'typical' hub

complex with 30 legs in and 30 legs out with a total of 60 legs, there are 960

possible OD itineraries and by assuming 7 fare classes, 6,720 OD fare class

combinations [5]. With each leg serving a possible 217 possible OD fare class

combinations, a hub-and-spoke network illustrates the need to develope a

seat inventory control approach capable of differentiating among the different

ODF revenue contributions to the network.

Figure 2.2- Example of a Hub and Spoke Route Structure

Imil.



While there are great complexities introduced to the seat inventory

control problem by the hub-and-spoke route structure, the ramification of the

lack of differentiation between the revenue contributions of a local and a

multi-leg itinerary that share a common flight leg is that current leg control

does not maximize network revenues. Moreover, the implications of these

observations strongly suggest that the seat inventory control problem is a

network problem and that airlines need not only consider the management

of flight leg seat inventories but the control of traffic flow as well.

2.3 Why Origin-Destination Seat Inventory Control?

The switch to a hub and spoke route structure has had a significant

impact on passenger travel. As passengers are routed through connecting

hubs, the attributes of each flight leg and the associated control philosophy

change quite dramatically. In a connecting hub environment, it is no longer

sufficient to control inventories based solely at the flight leg level. Even

though revenues may be maximized at the leg level, there may be significant

revenue loss experienced on the network level.

Upon examination of a typical multiple-leg flight embedded within a

hub network, the mix of passengers on any one flight leg may consist of

varying amounts local and connecting passengers. A seat inventory control

system must be able to maximize and differentiate among the revenue

contributions of both types of passengers to the whole network and not only

across the traversed flight leg. For the simple example shown in Figure 2.3,

the complexity involved in optimally allocating seats to a multiple-leg

scenario can be illustrated.
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Figure 2.3 - Example of a Multiple Leg Flight

Consider a one stop flight from San Francisco through Minneapolis to

Boston. On this two leg flight, there are three possible itinerary combinations:

SFO to MSP, SFO to BOS and MSP to BOS. Assume only one fare

product/class is available for sale in each itinerary; for the two short haul

itineraries, a seat will be worth $70 and on the long haul itinerary, a seat will

be worth $100. If seat inventory is controlled on a single flight leg level, a

plausible revenue maximizing solution might be to protect as many seat as

possible in a 'greedy' fashion for the long haul passenger. Since the flight legs

are managed independently, a leg-based inventory control approach might

recognize that long-haul fares contribute the greatest amount of revenue to

the individual flight leg. Therefore, it is possible for a large number of seats

on legs SFO-MSP and MSP-BOS allocated to SFO-BOS passengers. If demand

for both local itineraries were extremely low or non-existent and long haul

demand is high, the maximum revenue for this particular flight would

probably be achieved. However, if local demand on both of the local

itineraries were high, it would be more logical to take two local passengers

over a long haul passenger. The sum of revenues contributed by two local leg

passengers are usually greater than that of a single long haul passenger.

There are a number of different demand scenarios among the three

itineraries. However, the important point is to recognize that different

passenger itineraries contribute differently to total network revenue in a

multiple leg scenario. A seat inventory control approach must be able to sort
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out the different demand levels associated with each OD itinerary and assign

the appropriate number of seats to each itinerary in a network revenue

maximizing manner. Moreover, if there are multiple fare classes available

for sale to each itinerary, the inventory control problem becomes substantially

more complicated. Not only must the methodology control the different

flight itineraries, it must now control the different fare products associated

with each itinerary simultaneously.

Normal hub operations can consist of hundreds of origin-destination

possibilities. Depending on the number of fare classes available, the number

of possible origin-destination fare (ODF) combinations can reach into the

thousands, with hundreds of possible ODF combinations on each flight leg,

each with varying levels of attractiveness. This explosion in the number of

control elements necessitates a very sophisticated seat inventory control

process, with a level of control beyond that of simple flight leg booking class

control. The ideal optimization techniques must take into account the

interactions between flight legs in the total network, and at the finest level

make decisions for possibly thousands of unique OD and fare options on each

departure. As a major airline could have over 2000 departures daily with

bookings being accepted a year in advance, one can easily comprehend the

complexity and magnitude of the seat inventory control problem; all of which

requires the use of an OD seat inventory control methodology.



2.4 Mathematical Approaches to OD Seat Inventory Control

Mathematical formulations to the network or OD seat inventory

control problem vary from the simple to the complex. Although most OD

seat allocation algorithms do address the basic components of fare class mix

and itinerary control intrinsic with the network seat inventory allocation

problem; the scope of control achieved, the ease of implementation and the

resulting impacts on revenue differ significantly between each formulation.

2.4.1 Network Approaches to OD Control

One approach to the OD seat allocation problem take the form of

mathematical linear programming formulations. These formulations

usually work under an assumption of either a deterministic or a probabilistic

demand environment. The assumption of a deterministic environment,

although somewhat unrealistic, implies that all demand within the

environment is known with certainty. Thus, demand for each fare class is

known and can be forecast precisely well in advance of the time frame over

which the demand materializes. While no assumptions are made to the

relative order in which passengers book in different fare classes, an

assumption of independence between booking classes is made.

A basic mathematical formulation for the deterministic seat inventory

control problem as a linear program formulated is shown below. The

objective function is to maximize total network revenues subject to capacity
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constraints and forecast demands as follows:

Max 1 1 FkSk
i k

s.t. Y X <A, Vie l,Vl (2.2)
i k

S, ! Da V(i,k)pairs

Each decision variable, Sik, represents the optimal allocation of seats to an OD

itinerary, i, and a fare class, k. The revenue contribution associated with each

decision variable is the full fare value associated with that OD fare class

combination, Fik. Two non-trivial constraint sets are also used for this

formulation of the network problem. The first set of constraints prevents the

total number of seats allocated to all ODF combinations on any particular leg,

1, from exceeding the seat availability or capacity of aircraft assigned to that

leg. The second set of constraints prevents the number of seats allocated to

each ODF from exceeding the corresponding demand forecast for that ODF.
9

A probabilistic formulation of the network seat inventory problem is a

model that better captures the true nature of passenger demand. Using the

idea of probability distributions and expected marginal revenues, which will

be discussed in Chapter 3, these mathematical formulations can account for

the uncertainties associated with demand forecasts. Formulation of the

probabilistic linear program differs from the deterministic one in that there is 9

a separate, binary decision variable for each seat being allocated to an ODF.

This implies that the number of decision variables just increased by a factor

equal to the capacity of the aircraft on each leg. Several formulations of *

probabilistic linear programs as applied in leg-based OD control heuristics was

developed and tested by Williamson in her doctoral dissertation [6].

3
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While both basic network approaches to the OD problem seem to be a

viable method to optimal seat allocation solutions and revenue

maximization, there are many practical and theoretical shortcoming in using

them. Section 2.4.2 of this Chapter is devoted to detailing some of the

obstacles in utilizing a network optimization approach and it highlights the

need for alternative methods to full network optimization techniques.

2.4.2 Obstacles to Network Optimization

At first glance, the network seat inventory control problem would

seem to benefit the most from a network optimization solution. However,

there are certain inherent theoretical and practical features of the problem

that stand to limit the effectiveness of these types of formulations. In most

cases, network formulations do not represent the "real" seat inventory

problem accurately.

One of the most important data inputs to any inventory control

methodology is demand. Network optimization approaches require the

forecast of demand for hundreds, sometimes thousands of individual ODF

combinations. In most instances the forecast for such demand on each leg

involve very small, highly variable numbers that are subject to large errors.

Methods to forecast such demand accurately have, to date, not been fully

developed by airlines, although some airlines have begun work on an ODF

database. Even so, the computer databases required to store the massive

amount of historical ODF data may not be worth the effort or investment.

Other obstacles include the fact that many mathematical programming

formulations assume demand to be deterministic. As stated by Williamson
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[61, passenger demand is in actuality highly probabilistic. There always exists a

level of uncertainty to the level of demand for a future flight, itinerary or

booking class. Furthermore, demand frequently experiences systematic

fluctuations due to holidays, seasonal changes and even by day of week.

While the stochastic nature of demand can be modeled and represented with

a statistical probability distribution, the fact remains that there is some level

of unpredictability associated with future demand that is not addressed in the

most basic of network optimization formulations.

Demand in the travel industry is also by nature extremely dynamic. As

time passes, the demand for any one ODF can change unpredictably. The

effects of these demand fluctuations can have a tremendous impact on the

optimal seat allocation solutions. From any one day to the next, the total

number of bookings can change for a flight, affecting not only the solution for

the OD in question but its fellow dependent ODs throughout the network.

The dynamic characteristic of demand cannot be attributed only to passenger

behavior, but airlines' frequent schedule and price changes effect demand as

well. In order to take into account the dynamic stochastic nature of demand

in a network formulation, dynamic programming methods could be applied.

However, the increase in decision variables and computation time may

prevent the speed and efficiency required of processing seat inventories

within the reservations system.

Another constraint imposed on the network approach is that the

recommended seat allocations must be integral numbers. Obviously, seats

cannot be allocated or sold in fractions. The implication this constraint has

on the mathematical formulation is an increase in the data processing time

required to develop an optimal integer solution. Consequently, the increase
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in extra processing time coupled with the dynamic nature of demand could

have a substantial impact on the ability of the reservations system to make

revisions on seat allocations interactively.

Moreover, airlines prefer the use of a nested inventory structure to

minimize the possibilities of neglecting higher revenue collecting

opportunities. Unfortunately, virtually all traditional network optimization

techniques generate solutions that are consistent with a partitioned inventory

structure. Distinct solutions are generally not optimal seat allocations for a

nested inventory structure. In fact, the use of distinct allocations to control

bookings have been shown to lead to negative revenue impacts.

The use of a nested structure in a network environment in

conjunction with distinct allocations serves to further complicate the use

network approaches. On a single flight leg, the hierarchical order in which

nesting takes place is simple, with the highest fare at the top and the lowest at

the bottom. However, in a network environment, the highest fare ODF on

that leg may not necessarily be the greatest contributor of revenue to the

entire system. As detailed in Section 2.3, depending on the demand of local

passengers over the legs traversed by the multi-leg ODF, the more desirable

passenger may be the local itinerary. Thus, the question is raised as to how

different ODFs sharing the same seats on any particular flight leg be ranked in

a hierarchical nesting structure by their relative contributions to the network

as a whole. Trying to determine optimal seat allocations for a nested

structure on a single flight leg is a difficult task in itself without considering

network implications.
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Practicality considerations involved in solving for optimal integer seat

allocations in a probabilistic, dynamic, nested environment makes it difficult

to be routinely utilized in an interactive system. While the solutions

obtained from a network approach is optimal, optimality does not ensure

network revenue maximization especially without a proper control structure.

Optimization and control must be an integrated process. It is the main

objective of this research to present alternative methods of OD seat inventory

control that addresses the different complexities of the OD problem, but

without the mathematical rigors of network approaches

2.4.3 Leg-Based OD Control

In theory, revenues cannot be truly maximized without optimizing

over an entire network of connecting flight legs and its individual ODF

combinations. It is important to recognize that leg-based fare class control

achieves results that represent sub-optimal solutions on the network level.

Furthermore, full network optimization approaches present several practical

implementation problems as was discussed in Section 2.4.2. Even though the

interactions of passenger flows between connecting legs are taken into

account, the formulations necessary for network optimization become very

large, particularly when the probabilistic nature of demand is incorporated.

Airlines are seeking benefits which can be achieved today from an OD control

methodology, and thus, the current interest throughout the industry is

focused on incorporating network effects into the simpler leg-based control

environment [7].
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As the name implies, "leg-based Origin-Destination control" is a

method that takes into account information about passenger demand and

traffic flows while optimization and control remains at the flight leg level. In

this research, heuristic approaches to leg-based OD control are developed

through examination of two distinct components of seat inventory control:

the control structure and the optimization method.

First of all, changes to the current leg-based fare class control structure

are examined. In maximizing network revenue, different OD contributions

to total network revenue must be identified and placed into equally valued

control "buckets" irrespective of fare type. In fare class control, ODFs with

varying revenue contributions are usually aggregated together into control

buckets that are associated with the fare type of the OD on that leg. This level

of control results in a distorted view of the value of different ODs on the

network level. In a leg-based OD control method, a first step is to allow for

the differentiation of revenue contributions to the network by aggregating

similarly fare valued ODFs into the same control buckets. By using "virtual

nesting" or "stratified bucketing" control structures, which will be presented

in the next chapters, ODF combinations are grouped together into control

buckets that are representative of their revenue contributions to the entire

network. This type of aggregation will allow the optimization routines to

better identify the ODFs which are more valuable to the network and to

allocate/protect seats accordingly. Hence, by allowing for the differentiation

of ODF contributions to the network and utilizing leg-based optimization

techniques such as EMSR, an OD control algorithm is developed without the

need to venture from a leg-based control structure or the use of complex

network optimization techniques.
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The optimization component is also another area of development in

leg-based OD seat inventory control. While the control structure has allowed

for one level of OD control, there is still room to further differentiate OD

revenue contributions to the network through the use of displacement cost

logic embedded within the optimization methods. The addition of

displacement cost is motivated by the need to further account for network

effects through altering the leg-based revenue values associated with each

connecting ODF. Since displacement cost represents the potential lost

revenue associated with displacing a local leg passenger in favor of a

connecting passenger, the lost revenue potential should be reflected in the

revenue contribution levels of multi-leg itineraries. By subtracting the

displacement cost from the fare values of multi-leg itineraries, the

optimization method will be better able to determine the revenue potential of

allocating seats to a connecting versus a local itinerary. The addition of

displacement cost is a key factor in being able to better differentiate the

potential revenue contributions of each ODF on a network level. Moreover,

it improves the ability of any seat inventory control approach to control the

flow of traffic throughout the system in an effort to maximize network

revenues.

While the development of leg-based network seat inventory control

approaches is of current interest in the airline industry, the development of

seat inventory control approaches, in general, has a solid historical basis. The

next chapter will describe some of the major research developments in the

area of seat inventory control that have contributed to today's level of

technology.



Chapter 3

Review of Past Research

Prior to the early 1970's, work in the area of revenue management

focused on the development of sophisticated overbooking techniques. These

techniques were used to ensure that the maximum number of passengers are

carried per flight. Since then, the upsurge in development of revenue or seat

inventory control techniques has been driven by deregulation of the North

American airline industry. Increased price competition and the resulting

proliferation of discount fares have forced airline planners to determine new

ways of optimally allocating seats among the various groups of fare products.

Past research on the problem of optimal seat allocations has historically

tended to fall into three areas of development. First, the problem was

attacked utilizing mathematical programming and/or network models.

These models represent the most theoretical approaches to the seat allocation

problem. While the resulting solutions are "optimal", they are usually

discrete and difficult to implement (Mayer [8]; Glover et al. [9]; Wollmer

[10,11,12]). The second categorization centers around the development of

expected marginal revenue analysis techniques. These methods are utilized

in many heuristic approaches to the problem and include many highly

restrictive assumptions in the formulation. Solutions often include



assumptions of a single flight leg, independent demands,. no cancellations,

and lower classes book first. Even though the resulting solution is optimal

within its own environment, sub-optimality usually persist from the context

of the overall network problem (Littlewood [13], Bhatia and Parekh [14];

Richter [15]; Belobaba [2]; Brumelle and McGill [16], Curry [3]). Lastly,

development has sought to focus around techniques that merges both the

above categorizations. The desired result is to capture some level of network

effects while at the same time addressing implementation issues through

mating leg-based optimization techniques with certain network models. Leg-

based origin-destination control techniques recognizes the need to control

seats beyond a single leg environment, while yet utilizing single-leg

optimization and/or mathematical programming techniques in the process

(Williamson [6,17], Smith and Penn [18], Belobaba [4,5,7]). The following is an

overview of some of the developmental work in these areas that has marked

the pathway to current revenue control practices.

In 1972, Kenneth Littlewood [13] of BOAC proposed a seat allocation

methodology that is based on the determination of the expected marginal

revenue concept. The expected marginal revenue of any particular seat in

question is the probability of selling the seat multiplied by the related average

revenue fare value for that class of service. Recognizing that the stochastic

nature of demand can be modeled as a probability distribution; the probability

of selling, S, number of seats is based on the probability of having S or more

requests for seats, r, in any particular class of service or P[r S].

Mathematically, this probability is:

P[r S1= fp(r)dr (3.1)
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With the probability of selling the Sth seat known, P[r S] or P(S), the expected

marginal revenue for that seat is:

EMR(S) = f*P(S) (3.2)

where f is the average fare level for the related fare class.

In a simple two class, single flight leg problem, Littlewood [6] contends that

revenue would be maximized, assuming that lower classes book first, if lower

fare passenger bookings are accepted as long as the revenue contribution from

f2  EMR(S) = f,*P,(S) (3.3)

the lower fare passengers, f2, always exceeds the expected marginal revenue

from the higher fare passengers. Shown in Equation 3.3, at a point where the

probability of selling all remaining seats to higher fare passengers equal the

ratio of lower fare to higher fare, f2 / f1, no additional seats will be made

available to lower fare passengers.

Similar expressions to Littlewood were formulated by Bhatia and

Parekh [14] of TWA in 1973 and Richter [15] of Lufthansa in 1982, although

they both utilized different approaches. Bhatia and Parekh approached their

formulation by equating the ratio of higher to lower fares, f2/f1, to an integral

of the distribution of higher fare class demand, fi(xi), as follows:

f,= cs2 f (x1 )dx (3.4)

where C represents the capacity of the aircraft and S2 is the optimal allocation

of seats to lower fare passengers. When the integral, representing the

probability of higher fare seats exceeding its current allocation, equal the ratio
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of fares, a condition of revenue indifference is achieved and there is an

optimal allocation of seats to lower fare passengers.

Richter, on the other hand, defines his point of indifference by

examining the changes in expected revenue when additional seats are offered

to lower class passengers. Termed the differential revenue method, the

differential revenue is defined to be the difference between the displacement

cost of removing a seat from the higher classes and the revenue gain from

allocating that seat to a lower class. Furthermore, under the assumption of

independent demands, the differential revenue can be rigorously determined

through a simple probability analysis:

DR= f2*P2(S2)-f 1*P2(S2)*P1(C-S2 +1) (3.5)

whereby, P2(S2), represents the probability of selling the seat to a lower class

passenger, and Pi(C-S2+1), represents the probability of sale to a higher fare

passenger. As allocation of seats to lower fare passengers increases, the value

of DR approaches zero at which a situation of revenue indifference is

achieved and the optimal allocation of seats to the lower fare class is

determined. An important observation made by Richter is to note that the

optimal allocation of seats is influenced only by the distribution of the higher

yield passengers, though the lower yield demand does influence the total

expected revenue of the flight.

While the above methodologies have been shown to lead to optimal

allocations for single flight leg, two fare class scenarios; their extension to a

multi-leg, multiple fare class environment is a non-trivial task. In particular,

the inclusion of the interactions between multiple probability demand

distributions provide for a difficult transition from an optimal two class to a



general multi-class solution. Belobaba [2] in 1987 proposed a solution to the

multiple fare class problem on a single flight leg through what is defined as

the Expected Marginal Seat Revenue (EMSR) method. In this method, the

number of seats to be allocated to any lower class in question, or booking

limit, is determined from the sum of seats protected for higher classes with

respect to that lower class. The protection level for any higher class, i, over a

lower class, j, S,, is determined through the expected marginal revenue

approach discussed by Littlewood [13]. Consequently, the protection level for

the highest fare class, r1j, is simply, S2 , such that:

EMR(S2) = fl*P 1(S2)= (3.6)

Furthermore the protection level for the two highest fare classes, r 2 , is

defined as the sum of the individual protections S3 and S3, as determined

from the relationship in Equation 3.6. In general, the total protection level

for the n-1 highest fare class is determined by the combination of the n-1

individual protection levels:

n-1

n, 1 = Si, (3.7)
i=1

Therefore the booking limits, BLi, for any fare class, i, are determined from

the capacity of the aircraft, C, subtracted by the total number of seats protected

for higher fare classes, Un-1, as follows:

BL = C - 1 i-I (3.8)

While the EMSR method does obtain optimal seat allocations for any

pair of fare classes taken in isolation, it disregards that fact that fare classes are

nested sequentially within each other and therefore interrelated. Since the
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EMSR method does not take into consideration the -joint probability

distribution of demand for each fare class, while it provides for easy

implementation, it does not produce optimal booking limits for multiple

nested fare classes.

In 1991, Belobaba [2] modified the EMSR heuristic to generate joint

protection levels for higher fare classes relative to lower fare classes. This

"EMSRb" methodology, utilizes an approached similar to that of the EMSR

method, with the exception that probability densities of higher classes are

combined to determine joint protection levels from the lower class. In the

general case, for class n, the probability distribution of classes 1 to n are

combined as follows:

i=1n

a, = (3.10)
i=1

n

Using the combined probability distribution and the average fare value for

the n classes involved, the joint protection level, fln, is:

EMSR1,,(In) = P1,,(S)*f1, = f,,, (3.12)

where the booking limit for class n+1 is determined as follows:

BL.,1 = C - TI, (3.13)



While the approach of the EMSRb method is similar to that of the EMSR

method, the inclusion of joint densities have allowed simulation results

from previous studies to show positive revenue gains above that of EMSR in

a variety of scenarios. In addition to the positive revenue impacts, EMSRb

requires 1/3 fewer computations than that of EMSR for 6 nested fare classes.

The search for optimal booking limits in a multiple nested fare class

environment on a single flight leg found independent solutions from

Brumelle and McGill [16], Wollmer [11] and Curry [3]. Curry addresses the

problem utilizing the optimal booking limit (OBL) approach. Assuming a

continuous distribution and utilizing convolution integrals, an expression

for optimal booking limits is determined:

= f,1  pi(ri)dri + j d - ry) (3.14)
H'niniHg.. 0

where function SLi, represents the combined expected revenue function from

i fare classes. The expression, which is similar to Littlewood's rule for two

fare classes (Equation 3.3) when i=1, is recursively solved for joint protection

levels for each nested fare class. The final optimal booking limits for each

fare class can be determined as before by subtracting the joint protection levels

from the capacity of the aircraft.

Wollmer [11], on the other hand, approached the problem by not

assuming continuous demand distributions but rather focusing on known

discrete demand distributions and deriving optimal booking limits through

the use of a convolution sum, rather than an integral. In the paper, Wollmer

follows through on a tedious formulation of the solution in addition to

providing an algorithm of applying the formulation in determining the
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optimal seat allocations and the optimal expected revenues. Furthermore,

application of Wollmer's formulation in booking simulations produced

results that, while optimal, were within 1% of Belobaba's non-optimal EMSR

heuristic results under a variety of cases tested.

Although some have focused their research on optimal allocations

within a multi-class environment on a -single flight leg, others sought to

incorporate the interactions between multiple flight legs through the control

of origin-destination itineraries within their methodologies. The use of

mathematical programming and network flow techniques have been the

most common optimization framework for optimal solutions to OD control

problems. As exemplified by Buhr [19] of Lufthansa, the optimal allocation of

seats between 2 flight legs (3 airports) with one fare class was considered. In

very much the same way the expected marginal revenue of an individual seat

is determined in Littlewood, the expected marginal revenue for a seat in any

particular OD itinerary, SOD, is defined to be:

EMROD(SOD) = fOD *POD(SOD) (3.15)

In the formula, fOD is the average fare of the OD itinerary and POD is the

probability of selling the SODth seat. Assuming that the demand for each

particular OD itinerary is independent, the total revenue for a two leg flight

between three points is maximized, according to Buhr, by minimizing the

following relationship:

AEMR = IEMR13(S13) - [EMR12 (Sl2 )+ EMR,(S,)] (3.16)

By adjusting the values of Sij in an iterative procedure described by Buhr, the

optimal seat allocation or sales limits for each flight segment can be found.
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Further evidence of the effectiveness of this technique can be found in Buhr's

paper through the results of specific case examples performed using actual

Lufthansa flight data. While no specific algorithm was described by Buhr for

a multi-leg, multi-class scenario; suggestions were made as to the inclusion of

such a scenario into the above methodology.

In 1983, Wang [20] at Cathay Pacific provided a first attempt at a feasible

solution to the multi-class, multi-leg seat allocation problem. By extending

Buhr's formulation to include a multiple class structure, Wang was able to

optimally allocate seats to each OD and fare class (ODF) by maximizing the

estimated marginal revenue of each seat in the ODF combination across the

multi-leg flight path. In this method, each seat of the aircraft is assigned to

the ODF combination that will provide the greatest expected marginal return

on revenue. One by one, the seats are allocated in a greedy fashion to the

highest expected marginal revenue combination across the flight path. *At the

point when the aircraft is filled, the process is complete. Even though the

solution is an optimal one, the feasibility of such a methodology in a large

network structure is highly suspect due to computational difficulties.

In formulating the ODF seat inventory problem as a large network flow

model, Glover et al. [9] was able identify the optimal ODF seat allocation or

passenger mix across all points in the flight path. The author proceeded with

solving the problem by formulating a minimum cost/maximum profit

network flow model with special side constraints. Each node on the network

represented origin/destination point and were connected by two sets of arcs.

The forward arcs represent the number of passengers traveling on that flight

segment, while the reverse arcs represent the individual flight
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itineraries/fares of the passengers. Limitations were set on the forward arc by

the authorized capacity of the assigned aircraft on the flight segment, in

addition to limits set on the reverse arcs by the deterministic ODF demand

estimates. Subject to these constraints, the objective function of the network

flow problem is solved by maximizing the flow through the arcs with the

highest fare itineraries. Once again, while the solution is optimal, the

resulting set of discrete seat allocations provide for implementation

difficulties in a nested environment. Additionally, the dubious assumption

of deterministic demand makes the model highly impractical and

inapplicable in any real-world setting.

Wollmer [10, 12] of McDonnell Douglas proposed additional

optimization techniques for the multi-leg, multi-class problem by modeling it

as a large, yet simple, network flow problem. In the paper, Wollmer

formulated models and their associated solution algorithms for a variety of

scenarios. These included the single flight leg, two flight leg and hub

scenarios, in addition to extending these models to a general N leg case. In

the general case, the solution began with the development of a linear

program utilizing binary decision variables, xij, to represent a seat on a flight

leg and ODF combination. A single program constraint was set up such that

the sum of seats allocated to a particular flight leg is limited to the capacity of

the aircraft assigned to that leg. The resulting LP formulation is written as

follows:

Max Z(n ,n2,...,nN) = (317)

such that



XX,k=n, where h=1,...,N (3.18)
jeB(h)

05 Xk 1,j# i

In maximizing the objective function, Z(n), the author seeks to maximize the

expected revenue if all n seats, on all respective flight legs considered, where

protected for higher classes based on the marginal revenue approach, as

illustrated by Littlewood. By combining mathematical programming with

marginal revenue optimization techniques, Wollmer was able to produce

large solution sets of optimal, although discrete (non-nested), seat allocations

to multiple itineraries within the network.

From the standpoint of implementation, the network optimization

techniques reviewed so far, in general, do not allow for an easily transition

from current yield management systems. In addition to requiring large

databases, most of the above techniques are mathematically complicated to

solve and produce large solution sets of small partitioned seat allocations. As

illustrated by Williamson [171 and Belobaba [7], contrary to popular belief, the

use of optimal partitioned network solutions can in fact lead to decreases in

total revenues. Therefore, the need for optimization approaches that

incorporates not only a multiple-leg, multiple-class environment but a nested

seat inventory structure has lead to the development of solution techniques

from D'Sylva [21], Curry [22] and Williamson [6].

Curry's [22] approach to the network level problem consists of

employing mathematical programming in conjunction with the expected

marginal revenue approach. Even though this combination approach is not

unique, as previously shown by Wollmer, the solution does incorporate a

nested fare class structure. In a methodology similar to that suggested by



Buhr [19] for a multi-leg multi-class problem, a two step approach is utilized;

however, the steps are done jointly by Curry rather than in succession. First

off, distinct itinerary allocations are obtained from the combined optimal

expected revenue function of the nested fares classes of the OD. In

conjunction with the mathematical programming solution, nested fare class

allocations are determined within each OD based on Curry's OBL

methodology. In other words, in this method, each OD within the network is

first allocated the optimal number of seats based on the highest marginal

revenue contribution. Individual fare class nesting is then performed based

on the number of total seats allocated to the particular OD. While Curry

addresses the problems associated with discrete seat allocations by nesting fare

classes within each OD, the true benefits of CRS nesting are not reaped, as 0

inventory allocations between ODs are not shared. This inability to share

inventory between ODs make the revenue impacts of Curry's solution "sub-

optimal". However, unlike previous mathematical programming

approaches, advances are made towards a network wide shared inventory

structure.

In her Ph.D. thesis, Williamson [6] recognized the practical problems

associated with large scale network optimization. Besides implementation

difficulties into today's revenue management systems, direct application of

the partitioned optimal network ODF seat allocations have been shown to

lead to poor revenue performance. Williamson proposed a number of leg-

based approaches to solving the network seat inventory control problem, in

addition to other nesting heuristics based on network solutions. In the bid

price approach, once again, mathematical programming solutions are utilized

in conjunction with fare class control techniques. The bid price is in actuality



the shadow price associated with the capacity constraint on a leg, and can in

fact be interpreted as the network revenue contribution of the last seat on

that leg. A seat request for an ODF is granted as long as the fare contribution

is greater that the sum of the bid prices over all legs traversed. Williamson

claims that due to the requirement of frequent re-optimization and the risk of

over-selling undesirable ODFs; the use of this approach, while effective, is

limited in practice.

In addition to different fare class nesting heuristics based on bid prices,

fares and shadow prices of demand, Williamson identifies a myriad of leg-

based OD control methodologies. "Virtual Nesting", as described by

Williamson, is one of the most common methodologies associated with leg-

based approaches. While virtual nesting is not an optimization technique, it

was developed by American Airlines [18] as an inventory control structure for

providing limited ODF availability control at the flight leg level. When used

in conjunction with leg-based optimization techniques such as OBL or EMSR,

significant incremental revenue gains can be achieved. Williamson provides

a detailed analysis of the utilization of virtual nesting in its purest form, in

addition to extensions of virtual nesting that incorporate network revenue

effects into the nesting structure. Other approaches proposed by Williamson

include a leg-based bid price approach, which is similar to the network

approach, but without the mathematical complexities of a full network

optimization. An extensive amount of simulation results using the proposed

methods, in the form of multi-leg and hub scenarios, are also provided by

Williamson. Since one of the major objectives of this piece of research is to

further develop methods of leg-based origin and destination control, more
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detailed discussion of the basic control and optimization framework will be

presented in the following chapters.

A review of the current literature indicates the need for more

sophisticated inventory control methods, especially when airlines continue to

expand their route structures. The general consensus in today's airline

industry is that Origin-Destination control will be the next step in improving

current seat allocation methods. While past research have provided optimal

solutions based on network optimization techniques, they have failed to

examine the feasibility of implementation into current reservation control

systems. In the following chapters, alternative methods for Origin-

Destination control that address the issues raised by the OD seat inventory

control problem will be presented.
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Chapter 4

The OD Seat Inventory
Control Structure

4.1 Defining the Control Structure

The purpose of seat inventory control is to determine the right mix of

seats available at different fares on a flight leg in order to maximize revenue.

To accomplish this task, Figure 4.1 as presented by Belobaba [7] shows that the

main functional components of seat inventory control are integrated together

in a cyclic process, similar to that of a large feedback loop. In this process,

historical demand is updated with input from the control mechanism, new

Figure 4.1 - Flow Chart of the Seat Inventory Control Process
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forecasts are generated and the optimization model feeds new seat allocations

back to the control mechanism. The process continues in a regulated cycle for

as many as 15 to 20 times for each flight on every flight leg in the network,

beginning as early as 360 days from departure.

Historical demand data is collected to aid in the forecasts of demand for

future flights through the use of the forecasting model. The type of data

collected is dependent on the capabilities of the CRS system and the data

requirements of the forecasting model. Currently, many airlines collect

demand data on each flight leg by fare class, although the capability exists to

collect segment demand data by itinerary and fare type for multiple leg flights.

An optimization model such as the EMSR heuristic or the OBL approach

discussed in Chapter 3 then uses the demand forecast to determine "optimal"

seat allocations. It is important that the optimization approach utilized by the

seat inventory control method matches the inventory control structure. That

is, the EMSR heuristic produces seat allocations in a form that is suitable for

nested inventory structures whereas different optimization models are

required for partitioned or hybrid structures [7]. The last step in the cyclic

process involves the component of interest in this section of the research, the

control mechanism and in particular the inventory control structure used in

the development of leg-based origin-destination/network control algorithms.

The primary function of the control mechanism is to implement the

seat allocation recommendations provided by the optimization method by

converting them into a form compatible with the inventory control structure

utilized by the airline reservations system. This implies that in a nested

booking class inventory structure, the control mechanism is responsible for
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converting the seat protection levels obtained from the optimization method

into nested booking limits for each booking class within the inventory

structure. Additionally, the control mechanism is the outlet through which

the seat inventory control algorithm communicates its seat allocations to the

user end of the computer reservations control system, namely the travel

agent and, in turn, the air-travel consumer. In most systems, the control

mechanism resides in the computer reservations system (CRS) and thus

shares system capabilities that are dictated by the CRS.

The importance of the type of control structure housed by the control

mechanism must not be overlooked. In terms of fare-type and traffic flow

control, the inventory structure utilized will dictate the level of control that

can be achieved by the inventory control algorithm. For instance, in a leg-

based approach, the definition of the control buckets determines how the

aggregated demand for a group of fare products is viewed by the forecasting

and optimization method. Each control bucket in a particular inventory

structure thus defines the level at which the forecasting of future demand is

conducted. Consequently, the inventory control structure dictates the

environment in which the seat inventory control algorithm resides and

works.

Beginning with a discussion of leg-based fare class nesting, the next few

sections will describe several inventory control structures that are utilized by

airlines in the United States. While fare class nesting is the most common

control structure used today, it does preclude the control of OD traffic flows.

Increasingly, "stratified bucketing" and "virtual nesting" are becoming a

popular alternative inventory control structure, since itinerary control can be



accomplished, while yet remaining in a leg-based control.and optimization

environment.

0

4.1.1 Fare Class Nesting

Leg-based fare class nesting is an inventory control structure that does

not incorporate itinerary/OD control into the seat inventory control

methodology. Even so, it is important to gain an understanding of this most

common form of seat inventory control to apply its lessons to more

sophisticated methodologies. As previously mentioned, fare classes are used

to represent groups of fare products within the control method. That is, a Y

fare class would commonly represent a non-restricted full fare ticket, while a

Q fare class may represent a 14 day advance purchase non-refundable discount

ticket. The classifications associated with each fare product may differ among

airlines and the number of fare classes may also vary, but in all cases, fare

classes are representations of product types, not necessarily total fare value.

In a leg-based nested fare class seat inventory control approach,

demand for different fare products are aggregated and classified by their

associated fare classes irrespective of flight itinerary or fare value. Historical

data is collected and forecasting is also conducted on the flight leg, fare class

level. Relying on leg-based optimization techniques such as EMSR or OBL,

protection levels are recommended to the control mechanism for each fare

class based on a demand forecast for the fare products on each flight leg

independently. In a nested environment, protection levels represent the

number of seats that should be allocated exclusively to a given fare class and

is not shared with lower fare classes in the hierarchy. On the flight leg level,



it has been shown that the control of bookings through a nested structure of

inventory classes generate higher expected revenue than a partitioned, or

distinct, structure under the same conditions. Logic also dictates that a higher

valued passenger booking request should never be refused when seats

originally allocated to lower valued passengers remain available -- a criterion

that is met using a nested inventory structure.

The control mechanism then determines booking limits for each fare

class by subtracting the number of seats protected for higher fare classes from

the capacity of the aircraft or the remaining available seats left on that flight.

Table 4.1 illustrates the booking limits for an example 7 class nested fare

Table 4.1 - Example of Nested Fare Classes

Fare Class Fare Product Protection Level Booking Limit

Y Full Fare 25 200

B Discount One-Way 35 175

M 7 Day Non-Refund. 45 140

Q 14 Day Non-Refund. 35 95

H 21 Day Non-Refund. 15 65

K "Sale" Fares 15 50

L Special Promotions 0 35

structure with an aircraft capacity of 200. Booking requests are then evaluated

based on the availability of seats or the booking limit of the fare class in

question. On a multi-leg itinerary request, the lowest booking limit for a

particular fare class over all legs traversed is used to evaluate the booking

request. If seats are available, a booking request is accepted and booking limits

are decremented from the appropriate fare classes.
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Even though effective leg-based fare class inventory control approaches

have been shown to bring incremental revenue gains over that of no

inventory control, it is limited by its inability to control itinerary flows over

multiple legs within a network. These limitations are predominantly a

function of its control philosophy of aggregating by fare products rather than

by revenue values; resulting in potentially "sub-optimal" seat allocations on

the network level. As shown in Figure 2.3 of Chapter 2, the limitations of a

leg-based nested fare class control structure can be especially pronounced

when utilized in a multi-leg multi-fare class environment. Section 4.3 will

show supporting empirical evidence that the lack of itinerary control does

indeed lead to poorer results, particularly when compared to leg-based control

structures that attempt to differentiate among the revenue contribution of

different passenger itineraries within a hub and spoke route structure.

4.1.2 Stratified Bucketing

A problem with aggregating ODF itineraries on a flight leg into fare

class buckets is that there often can be a significant amount of overlap in

revenue values between fare classes due to the lack of revenue differentiation

between passenger itineraries. Consider a single fare class, Y, on any one

flight leg in a hub and spoke structure. Based on the ODF combinations that

traverse over the leg, Y-class can easily consist of demand ranging in value

from $300 to $800. If the demand for the lowest OD fare ($300) is much greater

than the highest OD fare ($800), the weighted average fare for Y class may in

some instances be less than the weighted average fare for the next lowest

class. When the weighted average fares are not decreasing with respect to the

fare class hierarchy, leg-based fare class optimizations are not very effective



since seats are no longer protected for high revenue fare classes from that of

lower revenue fare classes. Recognizing the need to properly take into

account the different values to the network of passenger itineraries, "stratified

bucketing" was developed as a simple OD control structure that can be

implemented as an extension to the concepts of current leg-based fare class

control approaches.

The conceptual basis of "stratified bucketing" centers around the need

to differentiate between passenger itinerary revenue contributions to the

network within a leg-based control environment. Stratified bucketing

accomplishes this first by abandoning the concept of equating booking class to

fare product and redefines each booking class to manage bookings by specific

value to the network, regardless of the fare type or itinerary. In this case, the

value of an itinerary is defined by its total itinerary ticket fare value. Through

the redefinition of fare classes to represent a specific range of revenue values,

demand is aggregated into control buckets based on its revenue contribution

to the network. Specific booking requests are then evaluated by the network

solely on the basis of its revenue contribution to the network.

In order to convert a fare class structure into a stratified control

structure, two basic changes to the control concept are made. First the fare

classes have to be redefined to represent a range of revenue values. Even

though the class letter classifications are still maintained, the control buckets

no longer represent fare products, as illustrated in Table 4.2 for a 7 booking

class structure. Secondly, the different OD fares would have to be re-filed into

the new control buckets by the reservations system. This would entail

sending

Oft



Table 4.2 - Example of Stratified Bucket Definitions

Stratified Bucket
Letter Classification Revenue Ranges

Y $650+
B $550 - $649

M $450-$549

Q $350 - $449

H $250-$349
K $150-$249
L $0 - $149

the fare changes through the Air Tariff Publishing Company (ATPCO) and

actually displaying fare products in control buckets that are not associated

with their traditional fare class definitions. That is, on certain travel

itineraries, the highest priced unrestricted fare would not be a Y class fare, but

in a stratified structure may show up as an H class fare. This departure from

traditional fare class definitions may pose as a initial confusion factor to users

unfamiliar with a stratified control structure. However, with a little training,

much of the cost associated with the confusion factor can be minimized. In

Example 4.1, an illustration of converting from a fare class to a stratified

bucketing control structure for a multiple-leg flight is made.

Note that through a rather simplistic change in control philosophy, a

form of minimal OD control has been established within an existing leg-based

inventory control algorithm without the need to venture into network

Multi-Leg Flight from San Francisco through Denver to Boston



Conventional Fare Class Bucketing

Short Haul Long Haul Connection
Definition SFO - DEN DEN - BOS SFO - BOS

Y Full Fare $467 $648 $724
B Discount One-Way $259 $440 $467
M 7 Day Non-Refund. $204 $324 $357
Q 14 Day Non-Refund. $184 $302 $269
H 21 Day Non-Refund. $164 $257 $251
K "Sale" Fares $140 $179 $199
L Special Promotions $110 $149 $179

Stratified Bucketing

Revenue Range Short Haul Long Haul Connection

Y $650 + Full-Fare

B $550-$649 Full-Fare

M $450 - $549 Full-Fare One-Way

Q $350 - $449 One-Way 7 Day
H $250 - $349 One-Way 7/14/21 Day 14/21 Day

K $150-$249 7/14 /21 Day Sale Sale

L $0 - $149 Sale/Special Special Special

Example 4.1 - Conversion from Conventional Fare Class Bucketing
to Stratified Bucketing.

optimization techniques. Not only will this approach improve operational

performance network wide, as will be presented in Section 4.3, stratified

bucketing also provides substantial incremental revenue gains when

compared to traditional leg-based fare class seat inventory control methods.

Brunger [231 of Continental Airlines, who coined the term "stratified

bucketing", stressed that stratified bucketing is a control structure that can
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bring about incremental gains in revenue for airlines that fit specific demand

profiles. He additionally pointed out that the financial investment required

would be minimal and that no structural changes are needed to implement

this method into airlines that already utilize a leg-based fare class seat

inventory control approach. The bottom line is that stratified bucketing can

provide a level of itinerary control to current fare class control methods and

is suitable for airlines that lack the resources to develop an entirely new OD

seat inventory control algorithm.

4.1.3 Virtual Nesting

Similar to stratified bucketing, "virtual nesting" establishes a control

structure hierarchy that is based on some measure of network contribution or

value associated with each specific OD fare combination. However, unlike

stratified bucketing, virtual nesting is not confined by the control structure

previously configured for conventional fare class control methods; i.e. 7

booking classes equals 7 stratified control buckets. As its name implies, the

users of a virtual nesting control structure will be hidden from any changes to

the seat inventory control method as far as booking class definitions and fares

are concerned. That is a Y fare would still be defined as a full unrestricted

fare in a virtual structure for all ODF markets, alleviating the initial

confusion factor found in stratified bucketing. Even so, in many respects,

stratified bucketing is considered to be a limited form of virtual nesting.

As previously discussed in Chapter 2, American Airlines [18]

developed the virtual nesting concept as a means of achieving some level of

control over passenger itineraries without resorting to complex network
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optimization techniques. Each virtual control bucket on a flight leg

represents a range of actual fares or revenue contributions, thereby allowing

ODFs with similar revenue values to be aggregated together for optimization

and control purposes. As in stratified bucketing, ODFs are aggregated into

their associated virtual control buckets based on their actual itinerary fares.

Once each ODF is "mapped" to a virtual control bucket, demand forecasts

generation and optimization of seat allocations take place within each virtual

class on each flight leg, in a process similar to conventional leg-based fare

class inventory control algorithms. Using leg-based optimizations techniques

such as EMSR nested booking class heuristic or the OBL algorithm, nested

booking limits can be determined for each virtual class on a flight leg

departure. Thus when a booking request is made by the user, the passenger

OD itinerary "points" to its related virtual class table and bookings are

accepted or denied based on the availability of the virtual class to which the

ODF is mapped.

The virtual nesting approach is illustrated in Example 4.2 using the

two flight leg network used in Example 4.1. In this example, fares for the San

Francisco through Denver to Boston flight are listed in the OD market

revenue tables. However, control and optimization actually takes place at the

level of the virtual buckets to which each ODF is mapped. Consequently,

each virtual inventory bucket is defined over a range of revenue values or

fares, with virtual bucket V1 defined over the revenue range of $700 and up,
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OD Market Revenue Tables

Network Virtual Mapping Table

Example 4.2 - Mapping Two-Leg
Virtual Buckets as Defined

ODFs into Their Respective
by a Revenue' Range

virtual bucket V2 over the range $550 to $699 and so on. Based on the total

ticket value of the fares, for a Y class (full fare, refundable) ticket on the SFO to

BOS OD valued at $724; it is mapped into virtual bucket V1 and resides in this

bucket for purposes of forecasting, optimization and availability. Note that in

this case, the Y class demand for the SFO to DEN leg is mapped into a lower

control bucket, whereas in a leg-based fare class control structure all Y class

demand would be aggregated into the same control bucket. This process
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SFO - DEN

Class Fare

Y $467
B $259
M $204

Q $184

DEN - BOS

Class Fare

Y $648
B $440

M $324

Q $302

SFO - BOS

Class Fare

Y $724

B $467
M $357
Q $269

Virtual Class Virtual Range Mapping of ODFs

V1 700 + SFOBOS Y

V2 550 - 699 DENBOS Y

V3 450 -549 SFODEN Y/SFOBOS B

V4 400-449 DENBOS B
V5 350 - 399 SFOBOS M

V6 300 - 349 DENBOS M/DENBOS Q
V7 260-299 SFOBOS Q
V8 200 - 259 SFODEN B/SFODEN M
V9 150-199 SFODEN Q

V10 0-149



continues in the same manner for all other OD fare combinations in the

network.

Since similarly valued ODFs are mapped into their respective virtual

buckets, the problem associated with overlapping average weighted fares is

now eliminated. However, a problem associated with utilizing the full

itinerary fares as a basis for mapping ODF itineraries on each flight leg into

virtual buckets is that when combined with a leg-based optimization

techniques such as EMSR or OBL the resulting seat inventory control

algorithm tends to be "greedy"; with priority given to long haul, higher

revenue itineraries over short haul, lower revenue itineraries. Depending

on the demand level of the ODs, always giving priority to long haul

passengers can result in negative revenue impacts. This is true in cases

where long haul ODFs may displace combinations of short haul or local traffic

which have a greater combined total revenue value contribution to the

network. While the "greedy" approach still generates positive revenue

impacts, the addition of displacement costs to the optimization model is a

method proposed to alleviate the greediness effect of pure virtual nesting. In

this research, leg-based heuristic methods to network inventory control that

take account of displacement costs are examined in Chapter 5.

In addition to issues concerning the greediness of pure virtual nesting,

several specific characteristics of a virtual nesting control structure are also at

issue and are detailed in Section 4.3. These characteristics include the

methods in which revenue ranges are determined for each virtual bucket; the

number of virtual buckets to used; and the system level of the virtual

mappings tables -- should they be created on a network level or on a flight leg
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level. Simulation results will be used to illustrate the role these parameters

play in the performance of a virtual nesting inventory control algorithm.

4.2 Optimization/Booking Process Simulation

In this research, a number of new OD control algorithms are developed

and tested. One of the most effective ways to estimate the revenue impacts of

these control processes is to simulate the booking process of an airline and the

way in which the control methodology will affect the acceptance and/or

rejection of booking requests. A simulation is a mathematical representation

of the way a process functions in a controlled environment. In the case of

seat inventory control design, a simulation will set the stage in which to

evaluate the effectiveness of the different inventory control approaches.

A major motivation behind development of new seat inventory

control methods is to capture incremental revenue, as such, one of the most

effective measures of initial performance is to determine the increase in total

revenue a control process will provide an airline. In particular, the results

obtained from the simulation will help to quantify the expected revenue gain

relative to that of current practices in seat inventory control. While the exact

level of incremental revenue obtained is difficult to pinpoint due to the

inability of the simulation to accurately represent all facets of the "real world"

environment, it is still important to estimate these measures as a basis for

judging the effectiveness of the seat inventory control method and to help

justify the large investment required in redesigning inventory structures and

reservations control systems.
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A major advantage of using a simulation in this manner is that an

environment in which factors that influence the amount of revenue

collected such as pricing strategies, the economy and reservation control

policies can be controlled and their impacts separated from the inventory

control methodology. Additionally, identical demand patterns can be

generated for each inventory control process evaluated, aiding in the accuracy

of comparing different methods. At the same time, a methodology can also

be tested over a range of demand scenarios in order to evaluate the robustness

and effectiveness of the control structure under varying demand patterns. In

effect, the different demand patterns could be interpreted as representations of

time of day, time of week and even different flight departure demand

variations. Consequently, a simulation provides an environment which is

impossible to emulate in real-time experimentation, that will provide a good

estimation of the relative levels of revenue and the potential benefits that can

be obtained from a newly developed seat inventory control method, without

a large investment in risk and costs.

The simulation routine used in the evaluation process for this research

was initially developed by Williamson [6] at the Massachusetts Institute of

Technology, Flight Transportation Laboratory, and since has been expanded to

incorporate the algorithms formulated for this research. An integrated

optimization and booking routine that simulates a real-time booking process

for a set of interrelated flight departures was programmed in conjunction

with assumed airline reservations control practices to estimate the

performance of different inventory control algorithms. An actual connecting

hub-and-spoke network for a major airline was modeled as the operating

environment in which to test the different inventory control approaches.
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This connecting bank consists of 15 flight legs into the hub. and 15 flight legs

out for a total of 30 flight legs. A variety of flight legs are represented from

long-haul international routes to short haul domestic routes, providing a

good mix of ODF traffic across the network. Demand on each leg was also

varied with demand factors ranging in value from 0.42 to 1.17 on the inbound

legs and from 0.48 to 1.31 on the outbound legs, creating a relatively balanced

network. Of the 240 possible OD combinations, actual airline demand data

was collected for 197 pairs. With 7 different fare classes offered for each OD

market, there are a total of 1379 different OD fare combinations possible. The

variety of OD markets used in addition to varying levels of demand and

capacities on each flight represent a highly realistic operating environment in

which to evaluate the network inventory control algorithms.

In addition to the setup of the network operating environment, other

inputs required by the simulation include the aircraft or cabin capacity on

each flight leg, the fare products offered in each OD market, the number of

booking iterations and the fares and incremental demand densities for each

booking period between revision points. To reflect the dynamic nature of the

actual booking process, scheduled revision points are incorporated into the

booking/optimization simulation at which seat allocations and booking

limits can be updated. Using the inputted incremental demand densities,

booking requests are generated in between revision points thus allowing for

adjustments to be made to seat availability at each revision point on the basis

of current bookings on hand and bookings to come. The number of revision

points (frequency) is determined by the airline and rests on the availability of

incremental booking information; a constraint of the airline's forecasting



capabilities. In this research, 10 revision points are utilized, resulting in 10

booking periods before each flight departure.

Once all the necessary input data is collected, the simulation runs in a

fashion similar to that of a typical seat inventory control approach illustrated

in Figure 4.1. Based on demand forecasts of future flight departures, booking

limits are first calculated using a specific optimization technique. Specifically,

the EMSRb heuristic developed by Belobaba is used as the base optimization

technique for all simulation runs in this research. Deriving a probability

distribution from the mean and standard deviation of the demand forecast

for the booking period, demand for each ODF is randomly generated in a

poisson process. The types of booking requests generated are influenced by

the historical booking curves of each fare product incorporated into the

simulation's incremental demand data. These booking curves are highly

representative of passenger booking behavior for a flight departure. For

example, demand for lower fare types tends to be higher at the earlier stages of

the booking process versus demand levels for higher fares towards the end of

the booking process. In any event, given that seats are available, demand is

accepted and booked one request at a time, followed by the decrementing of

the appropriate booking limits. At the point where all demand is satisfied

relative to seat availability for the current booking period, the booking limits

are re-optimized and the booking process repeats itself for subsequent booking

periods.

To obtain a statistically significant sample of results, the entire booking

and revision process for a single network of departures is repeated 100 times.

It is important to keep in mind that the intent of this simulation is not to

accurately model every aspect of the "real-world" environment, instead it is
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to provide a realistic yet sterile environment to compare the relative

effectiveness of one control method over another under identical

circumstances. For a more detailed discussion of the simulation and some of

the modeling assumptions made, refer to Williamson's [61 doctoral

dissertation.

4.3 Simulation Results of Different OD Control Structures

As mentioned in the previous section, the primary objective in

developing new methods for controlling seats on a flight leg is the potential

for increasing revenue. In this section, the control structures described in the

previous sections will be teamed with a leg-based optimization technique

(EMSRb heuristic) and subjected to the optimization/booking simulator

under a variety of demand scenarios within the hub-and-spoke environment.

In this manner, the revenue impacts of the different inventory control

approaches can be compared to each other and in particular to current leg-

based fare class control methods prevalent in inventory control approaches

used today.

In all cases examined, five different demand scenarios are used,

differentiated on the basis of average percentage of local OD traffic on each leg

across the network. Local OD traffic is defined as passengers who travel over

only one flight leg of the network from origin to destination, whereas

connecting passengers are those who travel on two or more flight legs in the

network. In these scenarios, average local demand ranges from 26% to 47%

over the entire network. Additionally, within each local demand scenario,

global demand adjusters were also used to vary the demand factor (i.e. ratio of



demand to capacity). In the base case of 30.5% average local traffic demand,

which corresponds to the actual demand data and the historical scheduled

flight capacities obtained for this simulation from an actual airline hub, the

demand factors were adjusted to represent a range from 0.66 to 1.42. In other

scenarios, such as the one with an average local demand of 47%, the average

leg demand factor may range from 0.81 to 1.73, representing a much more

heavily loaded network. By comparing the revenue impacts across different

local demand patterns, in conjunction with the varying demand factors

within each scenario, a good representation of the capabilities of the tested

control methods can be analyzed in relation to its ability to generate

incremental revenue.

In the analysis of the simulation results, a leg-based fare class control

structure that utilizes an EMSRb optimization heuristic is set as the base case.

As mentioned, the utility of a new OD control method is dependent on its

ability to produce revenue gains above that of current seat inventory control

approaches. The leg-based fare class control algorithm is recognized as a

standard seat inventory control method that is currently being used by many

airlines worldwide. Therefore, the fare class approach is used as a standard to

judge the capabilities of newly developed OD control algorithms.

Applying the stratified bucketing inventory control approach to the

simulated hub-and-spoke network environment, the booking simulation

yielded positive revenue impacts across all demand scenarios. Figure 4.2

illustrates some of the demand scenarios tested. Assuming that the base

inventory control approach is that of a leg-based fare class control structure

utilizing an EMSRb optimization heuristic, as much as 7.75% can be realized
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at an extremely high demand factor of 1.73, for an average local demand of

47%. More realistically, depending on the average local demand
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Figure 4.2 - Revenue Impacts of the Stratified Bucketing Inventory Control Algorithm

in the network, a revenue impact of 1% to 4% can be obtained corresponding

to an average leg demand factor of 0.70 to 1.10.

Further analysis of the results reveals a clear relationship between the

average percentages of local traffic traversing across the network and the

marginal revenue impacts achieved. At lower demand factors of 0.65 to 1.0,

revenue impacts in comparison to their respective base cases differed by only

slight margins of less than 1%, while larger differences begin to emerge at

demand factors greater than 1.0. The simulation results reveal that revenue

impacts differ as much as 3% between local demand scenarios and 6% from

the base case at a demand factor of 1.2. Additionally, the rate at which

incremental revenue growth occurs also differ significantly among the

different scenarios. Examining the slopes of the curves in Figure 4.2, note



that revenue growth begin with similar levels at the lower demand factors,

however, as the demand factor grew, scenarios with higher average
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Figure 4.3 - Average Hub Load Factors Achieved by a Stratified Bucketing Control Algorithm

local demands tends to achieve a higher growth rate. Although, as

exemplified by the 47% local demand scenario, there does exist a level at

which incremental revenue growth begins to flatten out, beginning around a

demand factor of 1.40. Realistically, most airlines would be more concerned

about the revenue impacts of their control methods at demand factors

ranging from 0.7 to 1.1.

Figure 4.3 continues illustrating the revenue impacts of a stratified

bucketing inventory control algorithm in addition to the average network

load factors achieved at each demand factor. The demand factor is defined to

be the ratio of demand to capacity. To obtain an average demand factor for a



hub-and-spoke network, the following formulation was used:

(Demf x Dis tan ce.f RPM Demand
Average DF = - ASM ASM (4.1)

In equation 4.1, the demand factor for the network is determined by dividing

the total revenue passenger miles of demand (RPM Demand) by available seat

miles (ASM). RPM Demand is found by summing the product of each

forecasted ODF demand by the distance of the OD itinerary. On the other

hand, the load factor is defined to be the ratio of passengers carried (load) to

capacity. Once again, in the case of determining an average network-wide

load factor, the following formulation based on a weighted average of

passengers carried was used:

(Paxe, xDistancef) RPM
Average LFASM ASM (4.2)

In this case, RPM is determined by summing the product of actual passengers

carried by the distance of the OD itinerary. In every case, as illustrated in

Figure 4.3, the demand factor exceeds the average network load factor

indicating that there is some level of unsatisfied demand left in the network.

Ideally, average network load factors should be at 1.0 implying that every seat

available is filled, although in reality, average network load factors achieved

today is currently around 0.63 in the U.S.

Implementing a stratified bucketing control structure has been

empirically shown to provide significant revenue impacts ranging from 1%

to 4% for realistic demand scenarios with hub load factors ranging from 0.63

to 0.93. These revenue gains are a result. of redefining the control buckets
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used in the inventory control structure with no other changes made to either

the optimization technique or to the seat inventory control process shown in

Figure 4.1. In many respects, stratified bucketing is a form of virtual nesting

utilizing control buckets that are defined by revenue ranges rather than fare

types As previously stated, the application of stratified or virtual nesting

control structures without accounting for displacement costs usually results

in "greedy" inventory control algorithms whereby long-haul higher revenue

itineraries are always given higher priority over short-haul or local

itineraries. The following paragraphs will describe the revenue impacts

achieved by utilizing a virtual nesting control structure in a "greedy" seat

inventory control algorithm.
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Figure 4.4 - Revenue Impacts of the "Greedy" Network Demand Virtual Nesting Algorithm

In testing the "greedy" approach in the simulation, revenue impacts as

shown in Figure 4.4 were recorded. Depending on the average demand factor

of the network and the average proportion of local traffic, revenue impacts

range anywhere from 0.2% to 8% above that of leg-based fare class control



approaches. Take, for example, a scenario with an average local demand of

40% on the network, at realistic demand factors of 0.70 to 1.10, the

incremental revenue impacts obtained range from 0.6% to 4% with average

network load factors ranging from 0.72 to 0.92.

Up to this point, the "greedy" algorithm utilized a network-wide or

network virtual mapping table for the purposes of ODF revenue

differentiation and control. In the context of the simulation, it means that a

single virtual table with its virtual buckets defined over a range of

predetermined revenue values are used to map every ODF over the entire

hub network into their appropriate control buckets. Thus if a BOS-SFO Y

class ODF was mapped into virtual bucket V1, it remains in bucket V1 over

all legs traversed in the network. While there are no recognizable negative

impacts from using a network-wide virtual table, the possibility exists to take

ODF revenue differentiation one step further with the development of flight

leg specific virtual tables.

In this approach, each flight leg will have a virtual mapping table

specific to only that leg, whereby all ODFs that traverse the leg will be mapped

to a virtual control bucket as defined by leg specific revenue ranges. In the

case of some multi-leg OD itineraries, an ODF combination may reside in

virtual bucket V1 on the first flight leg, but bucket V2 on the second flight leg.

Table 4.3 shows that the extra segmentation and differentiation of revenue

values is important in determining which itinerary combinations are of

greater value to the network, in turn resulting in higher revenue impacts.

In Table 4.3, leg-based virtual tables were incorporated into the

"greedy" algorithm's virtual nesting control structure. Depending on the



demand profiles, the revenue impacts are significant and range from 0.2% to

8.23% above that of the base case. On average, leg specific virtual range

definitions provided an additional 0.12% of incremental revenue above that

of network virtual tables. Although a statistically significant increase in

incremental revenue was recorded, the value of switching to leg-specific

virtual tables must be weighted against the increase investment required in

storing and processing the additional information.

Table 4.3 - Percentage Revenue Impacts of a Network versus a Leg Specific
Virtual Table

Average Demand Factor

Avg. Local Dem. Virt. Table 0.63 0.72 0.81 0.90 0.99 1.08 1.17 1.27 1.36

27% Network 0.18 0.60 0.96 1.47 2.08 2.67 3.23 3.63 4.30

1eg 10.18 0.61 0.97 1.52 2.19 2.80 3.28 3.62 4.52

Average Demand Factor
Avg. Local Dem. Virt. Table 0.81 0.93 1.04 1.15 1.27 1.39 1.50 1.61 1.73

47% Network 1.31 2.24 3.53 4.69 5.88 6.78 7.37 7.80 8.06

_Lg 1.33 2.29 3.61 4.75 5.97 6.90 7.57 8.06 8.23

The development of leg-specific virtual tables is -a logical means to

prioritize the ODF combinations at a leg level and to add an additional level

of flow control into the process. Since traffic mix and fares vary significantly

by leg, it seems that by redefining virtual ranges for each leg, ODFs considered

more valuable to the network will be better differentiated and accordingly

prioritized on each leg. For example, multi-leg ODFs are assigned booking

limits equal to the minimum booking limit over all legs traversed. Using a

network virtual table, a BOS-DFW-SFO itinerary is assigned to virtual bucket

V2 and remains in that same bucket over all legs. However, in a leg based
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virtual table, each leg is better able to prioritize the ODFs. traversing the leg

through development of it own virtual table. Thus, if there is greater

demand for higher fares on the DFW-SFO leg, the ODF may be assigned to V3

on that leg and V2 on the BOS-DFW leg where the ODF is perceived to be

more valuable. This extra level of differentiation may account for the slight

improvement in revenue performance over a network-wide virtual mapping

table.

In developing a virtual table, it is also important to examine the

methods by which virtual bucket revenue ranges are defined. In this

research, two heuristic forms of defining virtual ranges were examined. The

first heuristic entails equal assignment of forecasted demand over all virtual

buckets. Simply, total demand in the network or on a leg is divided equally

into the number of virtual control buckets used in a hierarchical order. By

ranking all demand in the network in a hierarchical fashion based on its

revenue contribution (fare), virtual ranges are defined by the highest fare and

the lowest fares represented in the equal demand slice assigned to the virtual

control bucket.

The second heuristic is a value based or revenue based approach which

defines virtual ranges on the basis of equalizing total expected revenue

contributions from each virtual control bucket. The expected total revenue to

be collected in the network is first determined and divided by the total

number of virtual control buckets. Demand is then allocated to each control

bucket in a hierarchical fashion until the expected revenue contribution by

the bucket equals the revenue level predetermined in the first step. The

virtual ranges are then defined by the highest and lowest fare level

represented in each virtual bucket.
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Figure 4.5 - Network Demand Based versus Network Revenue Based Virtual Range Definition
Heuristic

Figure 4.5 shows the results of a simulation run based on an average

local demand of 30.5% utilizing a network-wide virtual mapping table and

Figure 4.6 illustrates results from a leg-based virtual mapping table. It is

evident in both cases that a demand based virtual range definition approach

performs better in comparison to a value based definition. This result is true

of all five scenarios tested, over all demand factors. On average, the demand

based approach produced revenue impacts anywhere from 0.3% to 1.5% above

that of a revenue based approach when compared to leg-based fare class

control.

The consistency of the results strongly supports the notion that a

higher level of inventory control is achieved when equally dividing the

inventory units, in this case forecasted demand, into each control bucket. A

revenue based approach tends to assign a greater amount of demand to the
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lower virtual control buckets since each unit of demand contributes a lower

amount of revenue to the network than those from higher buckets. This

"bottom-heavy" assignment may result in a greater number of seats being

Figure 4.6 - Leg Demand Based versus Leg Revenue Based Virtual Range Definition Heuristic

protected for the lower virtual buckets, allowing for higher booking limits. In

fact, in most scenarios examined, the network load factors of a revenue based

approach were 1 to 2 percentage points higher than a demand based approach

indicating that there is less control over seat allocations to lower fare products

thus resulting in more demand being accepted. Even so, while a revenue

based approach may accept more passenger bookings, the types of bookings

accepted are obviously contributing a lesser total amount of revenue to the

network.

In general, a major advantage of having an well defined virtual table,

whether it is leg specific or network-wide, is the potential to have mapping

tables that are sensitive to a whole range of factors that cause demand
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variations such as seasonality, schedule variations, pricing schemes, etc.

Although, in all the aforementioned simulation results, all virtual tables

have been formed on an unrealistic level. That is, all virtual tables, whether

on a leg or network level, or demand or revenue based, have been formed

with "perfect" knowledge of the demand forecast which makeup each

demand factor and average local demand scenario. In the 'real-world'

environment, this is not always the case. Therefore, it is important to

examine the robustness of virtual tables and in general the virtual nesting

control structure in its response to varying levels of demand not coincident

with the demand forecast used in its inception.
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Figure 4.7 - Evaluation of Robustness of Virtual Nesting Control Structure

To test the robustness of virtual tables, in particular the virtual range

definitions, two sets of virtual tables were constructed and tested. One table's

virtual range definitions were formed on flight departure specific demand

forecast, implying that the virtual table is fully aware of the demand

characteristics of the set of flight departures. Non-flight specific demand
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information was used to form the other table. That is a "generic" demand

forecast was used to developed the virtual range definitions that does not

necessary correspond to a specific flight departure. In "real-world" terms, this

test will determine the revenue impacts of developing virtual tables that

account for the seasonality, time of day variations in demand for a set of flight

departures versus one that does not.

Figure 4.7 shows results of a simulation run based on a average local

demand scenario of 40%. In the figure, a comparison is made between virtual

mapping tables that have been formed with flight departure specific demand

forecasts and mapping tables that are formed without the use these demand

forecasts. From these results, it is empirically shown that the virtual nesting

control structure is extremely tolerant of variations in demand. In the

realistic demand factor ranges of 0.7 to 1.1 there is almost no significant

difference between the revenue impacts realized by both cases. Simulation

runs of other scenarios also result in the lack of significant differences in

revenue impacts between the two cases. These results suggest that "perfect"

virtual tables and therefore "perfect" virtual revenue range definitions are

not necessary to realize the revenue impacts of seat inventory control

methods that use a virtual nesting control structure. In any case, even

without developing "perfect" virtual tables, flight-leg specific virtual tables

have been shown to provide for the highest revenue impact when it comes

down to developing a "greedy" OD inventory control algorithm.



Figure 4.8 - Revenue Impacts of a Stratified Bucketing versus a Network Virtual Nesting
Control Algorithm

In comparing the revenue impacts between a virtual nesting control

algorithm and a stratified bucketing control algorithm, it is important to state

that in many respects, the stratified bucketing control algorithm used in this

research can be considered to be a network based virtual nesting algorithm

utilizing 7 virtual or stratified booking classes instead of 12. In Figure 4.8, the

stratified bucketing inventory control algorithm with 7 control buckets was

compared to a "greedy" algorithm that utilizes a virtual control structure

with 12 virtual buckets within a network based virtual mapping table.

Based on a local demand scenario of 40%, it is evident in Figure 4.8 that

a stratified bucketing approach does not perform as well as an OD heuristic

that employs a virtual nesting control structure. A reason might be that in

stratified bucketing, a form of "adaptive" virtual tables cannot be

implemented into the control algorithm. This is due to the fact that any

shifts in OD fare bucket assignments have to be filed with the ATPCO,
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making constant changes inconvenient and slow. On the other hand, besides

satisfying forecasting and data integrity requirements, the assignment and

reassignment of ODFs to different virtual buckets in virtual nesting can be

done efficiently and is invisible to the CRS users. Therefore, a major

advantage of a virtual control structure is the ability to differentiate potential

revenue contributions of an ODF to the network at a level greater than that

expected from a stratified bucketing approach. However, implementing a

virtual control structure into an existing leg-based seat inventory control

method requires a physical change of the current inventory control structure

which is unnecessary in a switch to a stratified bucketing approach.

Consequently, the resulting positive revenue impact differences between the

two approaches to OD control should be weighed against the financial and

operational investment necessary to switch to one method or the other.

Table 4.4 - Revenue Impacts for a Range of Different Number of Control
Buckets

% Difference from Leg-Based Fare Class Heuristic
# of Control Buckets** DF* = 0.62 DF = 0.88 DF = 1.32

8 0.26 1.80 5.44
12 0.27 1.98 5.49
16 0.28 1.96 5.23
20 0.29 1.73 4.82

* = Demand Factor
Average Local Demand scenario of 30.5%

Since the only difference between the two algorithms presented in

Figure 4.8 was essentially the number of control buckets used, an empirical

study of the revenue impact the number of control buckets has on an

inventory control methodology was conducted and the results are presented

in Table 4.4. Based on a "greedy" approach that uses a network based virtual
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mapping table, the simulation results in Table 4.4 indicate a slight advantage

for algorithms using 12 control buckets to provide the greatest expected

revenue gains in the demand scenarios tested. While there does not exist a

solid theoretical foundation to support the claim, empirical results do

indicate that the number of virtual buckets does play a significant role in

determining the level of revenue gains that can be expected. Whether it is an

insufficient level of revenue differentiation or too much differentiation

resulting in a "small numbers" problem, the number of control buckets to use

should not be considered trivial in the design of an OD control methodology.

The differences recorded in the comparison of a stratified bucketing approach

and a "greedy" approach could be accounted for by the differences in the

number of control buckets utilized.

4.4 Summary of Simulation Findings

Figure 4.9 illustrates the maximum expected simulated revenue

impacts of the most effective leg-based OD seat inventory control algorithms

for a realistic range of demand factors ranging from 0.7 to 1.1. Recall that the

revenue impacts observed from the simulation runs are a result of changes

exclusively made to the inventory control structure and does not include any

changes to the optimization or forecasting models used in the process.

Clearly the use of a virtual nesting control structure which incorporates leg

virtual tables that are formulated using a demand based virtual range

definition provide the highest possible expected revenue impact. The

average network load factors achieved under all inventory control algorithms

are not significantly different, differing by only 1 or 2 percentage points.
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Figure 4.9 - Maximum Expected Revenue Impacts for Several OD Control Algorithms

While simulations are great tools for determining the effectiveness of a

newly developed inventory control algorithm, one has to be careful in

accepting the resulting revenue impacts as fact. Even though simulated
9

revenue impacts of inventory control algorithms developed with a stratified

bucketing or virtual nesting control structure have resulted in maximum

expected incremental gains of 3.5% above that of leg-based fare class nesting

methods, these simulations were performed under somewhat unrealistic

conditions. Average network demand factors in the simulation are constant

throughout any one simulated run and can be adjusted to feed unrealistically

high demand factors to the control algorithm. In the "real world", average

network demand factors rarely exceed 1.0 and more importantly tend to

fluctuate by time of day, time of month and even by flight departure/leg.

Thus, the consistency of demands encountered in a simulated environment

usually encourages the overstatement of revenue impacts provided by a

inventory control approach. However, this does not necessarily invalidate



the effectiveness of a control process, but rather paints a more optimistic

picture of the resulting revenue impacts.

In previous empirical observations made by Belobaba [24], fare class

nesting has been claimed to provide an additional 2 to 6% increase in

revenues above that of no inventory control. In this research, while

simulation results have tended to show average gains in excess of 3% above

fare class nesting for a demand factor range of 0.7 to 1.1; a more realistic

estimate is between 1 to 2% when the type of uncertain environment the

control process will be in is taken into consideration. However, the level of

revenue gains encountered is highly dependent on a number of different

factors, some of which are uncontrollable. The definition of the virtual

tables in particular the number of virtual classes and the value ranges; the

proportion of local traffic on each leg; in addition to the amount of short to

long leg connections encountered will clearly dictate the amount of revenue

the network can expect to collect. Even so, it is empirically evident that the

adaptation of some form of itinerary control is a beneficial next step in

improving the revenue performances of current seat inventory control

approaches.
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Chapter 5

Leg-Based Displacement Cost
Heuristics for O-D Inventory
Control

5.1 Local Displacement Cost

As motivated in Chapter 4, OD control approaches based on a "virtual

nesting" or "stratified bucketing" control structure without the application of

displacement cost logic represent "greedy" algorithms for revenue

maximization. In these algorithms, higher revenue long-haul multi-leg

itineraries are always given higher priority over lower revenue short-haul or

local leg itineraries. While a primary advantage of a virtual nesting or

stratified bucketing control structure is its simplicity and an improved level

of performance over leg-based fare class nesting, always prioritizing long-haul

multi-leg bookings may not necessarily achieve network revenue

maximization. In a network only constrained by a few high demand flight

legs, giving priority to the long haul passenger may be a revenue maximizing

approach to inventory control. However, as demand for each flight leg

increases across a network, continued utilization of a "greedy" algorithm can

result in negative revenue impacts as long-haul multi-leg traffic begin to

displace short-haul and local traffic combinations of greater total revenue.



In the case of a hub-and-spoke network, a connecting passenger

generally produces less revenue than the sum of local markets into and out of

the hub. That is, if a flight path through a hub consisting of local ODs

contributing $300 each to the network is constrained on the inbound and

outbound legs, the network revenue maximizing decision would be to accept

two local bookings contributing a total of $600 to the network rather than a

connecting booking contributing only $400. To alleviate the "greediness" of

virtual nesting or stratified bucketing and to incorporate the revenue impacts

of displacing local traffic into the OD control algorithms developed in Chapter

4, both American [18] and United [25] have proposed seat inventory control

methodologies that take into account local displacement cost. Local

displacement cost represent the lost revenue to the network of displacing

local passengers in favor of connecting passengers on any one flight leg.

Implementing local displacement logic implies that the value of each

multi-leg itinerary to the network is equal to the total fare of the itinerary

adjusted to account for the expected displacement of local passengers on

upline and downline legs. By penalizing the fare .value of multi-leg

itineraries, the risk of displacing higher valued local passengers is

incorporated into the control method. Furthermore, the expected

displacement cost on each leg of a multi-leg itinerary is determined based on a

forecast of the demand and fares for the different types of traffic flow across

each flight leg. Thus, the value of multi-leg itineraries is dependent on the

proportion of local traffic demand that exists and the associated local revenue

contribution to the network. As local traffic increases, the value of

connecting markets to the network is reduced accordingly. While local



displacement cost logic does account for a significant portion of displacement

risk, it does ignore the potential costs associated with displacing passengers

from other constrained connecting itineraries by concentrating only on local

passenger displacement.

In the development of leg-based inventory control algorithms, a

problem exists as to the procedure by which displacement costs can be

determined for each connecting itinerary without the use of network

optimization tools. Leg-based OD control methodologies cannot rely on

network shadow prices and data is available only on a flight leg level with

control, optimization and forecasting accomplished by stratified or virtual

nesting based inventory control algorithms. The objective of this chapter is to

develop and present simulation results of alternative leg-based OD control

algorithms that take into account local displacement costs without using

complicated computational approaches or information about individual

ODFs.

5.1.1 Approximations to Local Displacement Cost

One estimate of the displacement cost associated with a flight leg, j, as

proposed by Williamson [6] is the expected marginal revenue of the last

available seat on the flight leg, EMRj(Cj), where C is the available capacity.

The value of a multi-leg itinerary to a given flight leg, or the "network

revenue value" is determined by adjusting the total itinerary ticket fare

value, fodf, by the EMR(C) value of all other legs traversed by the flight. Thus,

the "network revenue value" on flight leg i of an ODF itinerary, NVi,odf, is



defined as:

NV ,= fodf-X EMR(C,)(5)

for all flight legs j over which the ODF traverses, where j#i. In a two leg

connecting itinerary, the network revenue value to leg 1 of an ODF which

traverses legs 1 and 2 can be approximated as [5]:

NV, = f df - EMR(C2) (5.2)

where the EMR(C) value can be determined directly from the expected

marginal revenue curves of the associated booking classes on that leg. Recall

that the EMR value for seat C is defined by the following equation:

EMR(C) = P(C) x REV (5.3)

where P(C) represents the probability of selling seat C and REV is the mean

fare value of all ODFs that traverse the leg.

However, Belobaba [24] identified a problem with using the full EMR

value taken from their respective EMR curves. The fact. is that the EMR(C)

value contains aggregated information about total fare value and demand of

seat C to the leg, which is not necessarily representative of local displacement

cost. As evident in the formulation of the EMR value, the related

components are an aggregation of fare values and demand levels taken from

all ODF itineraries that traverse the leg and does not specifically represent

inputs from only local itineraries. Therefore, the approximation of local

displacement cost based purely on the EMR(C) value would tend to

overestimate the downline local displacement cost.



In order to better approximate the local displacement cost value, it

would be necessary to determine the portion of the EMR(C) value that is

directly related to local traffic demand. Breaking down the individual

components that makeup the EMR(C) value in Equation 5.4:

EMR(C) = P(C) x REV

EMR(C) = P(C) x Pax,1Farec+PaxnFare. (5.4)
Paxt.

the mean fare value component, REV, has been separated into local,

PaxlocFareloc, and connecting, PaxcnxFarecnx, passenger revenue contribution

components and divided by the total expected passenger demand, Paxtotal.

This first step in developing a theoretical local displacement cost formula is

used to establish the mean fare value of only local traffic demand. By

multiplying the REV component in Equation 5.4 by an adjustment factor,

REVCO0 oc, a mean local fare value variable, REV 0c, is determined as follows:

REVX = Pax,1 Fare,. + Pax.Farec 1 x REVCO,. (5.5)
Paxtotd

where,

REVC 10c =Pax Fareo 1 Tot Rev 1 (5.6)
PaxI.Fare1 + Pax.Fare. Tot Rev

which defines REVCO0 oc as the proportion of total expected revenue, TotRev,

attributable to local passenger revenue contributions, TotRevloc.

With the average local fare value established, it is also important to

estimate the probability that the last seat is sold to a local passenger on the

flight leg. PLOC represents the probability that the last seat is sold to a local



passenger and is formulated as the product of the probability of selling the last

seat, P(C), and the probability of a local passenger booking request occurring,

P(loc), as follows:

Pwc = P(C) x P(loc) (5.7)

To complete the formulation of the local displacement cost, DISPoc, the

EMR(C) value is then multiplied together with the displacement coefficients,

PLOC and REVCO0 oc, resulting in an approximation for the down-line local

displacement cost on a flight leg as shown in Equation 5.8.

DISP1, = EMR(C) x Pwc x REVCO,, (5.8)

The approximation of local displacement cost formulated in Equation

5.8 is a more realistic estimate of the value than using the entire EMR(C)

value as previously proposed. In Equation 5.8, the local contributions of

revenue and demand are accounted for exclusively while the revenue

contributions from connecting itineraries are removed, thereby resulting in a

better approximation of the local displacement cost. The network revenue

value to leg 1 of a two leg ODF itinerary can now be formulated as follows:

NV,f = fo,- DISPxo2

NV1,,d = ff - [EMR2 (C) x PwC x REVCOc

Similarly, Equation 5.9 can be applied to all multi-leg ODFs for all flight legs

in the network to determine the network revenue value of each ODF over

each leg traversed.

The formulation of a plausible local displacement cost approximation

sets the stage for developing OD control algorithms that utilize local



displacement cost logic in its optimization and control process. The next few

sections of this Chapter will describe several applications of local

displacement cost logic in developing new OD control algorithms, beginning

with a discussion of "static" and "real-time" applications of local

displacement cost.

5.2 Static and Real-Time Applications of Local Displacement Cost

In this research, the incorporation of local displacement cost into a leg-

base OD control methodology will be examined from two perspectives. The

first being a "static" approach and the second, a "real-time" or dynamic

application of local displacement cost. The main function of local

displacement cost is to include the potential of displacing higher revenue

local itineraries by determining the value of connecting itineraries to the

network. In a "static" displacement cost OD control algorithm that utilizes a

virtual nesting control structure and an EMSRb optimization method, the

value to the network of each connecting ODF combination is represented by

the network revenue value found according to Equation 5.9.

The "static" displacement cost inventory control algorithm begins with

an initial mapping all ODF combinations into their respective virtual control

buckets, as determined by the demand-based network virtual nesting control

structure presented in Chapter 4. EMR curves for each flight-leg in the

network are then calculated based on the aggregation of ODF demand from

each booking class. The next step entails calculating local displacement cost,

DISPIoc, on each flight leg in the network by taking the EMR of the last

available seat and multiplying by the displacement coefficients, PLOC and



REVCO0 oc. The network revenue value, NVi,odf, of each connecting ODF

that traverses over leg, i, is then calculated through the adjustment of

itinerary fare values by the local displacement cost as shown in Equation 5.9.

Each connecting ODF can then be re-mapped or reassigned into a new virtual

control bucket based on the maximum network revenue value, NVi,odf,

obtained over all legs, i, instead of its itinerary fare value. The use of the

maximum network revenue value is explained by the fact that if only one leg

of a two leg flight is highly constrained, the airline should still accept the two

leg connecting passenger over a single local passenger. In most cases, the

connecting itinerary will provide a higher revenue contribution than a single

local itinerary.

The logic behind the "static" displacement cost algorithm rests on the

notion that if the risk of displacement is high due to highly constrained

flights, the network revenue value of the connecting ODF will be sufficiently

reduced, resulting in the re-mapping of the ODF into a lower virtual control

bucket, and in turn, reducing its booking availability. On the other hand, if

the demand conditions are low, connecting itineraries will not be penalized

as severely and usually no re-mapping of the connecting ODF is required.

Logically, local ODFs are not affected by local displacement costs and are not

re-mapped into new control buckets. While the displacement cost

applications introduced in this section requires the use of the maximum

network revenue value of a multi-leg ODF as the value basis to remap the

ODF, other seat inventory control algorithms will be introduced in later

sections that do not require the use of this criterion.

The "static" nature of the above local displacement cost algorithm is

explained by the fact that the local displacement costs are fixed for all flight
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departures on a flight leg, irrespective of day or time of departure. In the

"static" algorithm, local displacement costs are only calculated periodically

and reassignment of ODFs to new control buckets thereby occurs periodically.

While re-mapping of ODFs to new virtual control buckets should ideally be

done for each future flight departure/date or even dynamically after each

booking period, the need to maintain the consistency of historical data by

virtual buckets prevents frequent reassignment of ODF demand [241.

Therefore, after each re-mapping procedure, ODFs usually remain fixed or

"static" in their respective virtual control buckets for extended periods of time

until the next scheduled update of displacement cost values.

Consider the two leg flight network presented in Example 4.2 in which

the fare for a SFO-DEN Y fare ticket is $467, a SFO-BOS Y fare ticket is $724 and

a DEN-BOS Y fare ticket is $648. Assume that the local displacement cost

approximated for each flight leg is as follows:

DISPC(SFO - DEN) = $150

DISPI (DEN - BOS) = $225

Based on these local displacement cost values, the cost of displacing a local

passenger by accepting a connecting SFO-BOS passenger is estimated at $150

on the SFO-DEN leg and $225 on the DEN-BOS leg. Thus the network

revenue value of the connecting itinerary, SFO-BOS, is estimated at $499 on

the first leg and $574 on the second leg, respectively. Based on the network

"static" displacement cost algorithm, the maximum network revenue of $574

is utilized to reassign the ODF to a new virtual control bucket. Referring to

the network virtual table shown in Example 4.2, note that the SFO-BOS Y fare

will no longer be mapped into virtual bucket V1, instead it will be re-mapped

into a lower virtual bucket V2 for the purposes of optimization and control.



The local itineraries will remain in the initially assigned buckets of V3 for the

SFO-DEN Y fare and V2 for the DEN-BOS Y fare. In this example, due to the

significant impacts of local displacement costs requiring the re-mapping of the

SFO-BOS Y fare, this ODF is no longer considered more valuable to the

network than a local DEN-BOS Y fare mapped into the same virtual bucket.

Upon completion of the re-mapping procedure, the rest of the network

''static" displacement cost OD control algorithm continues in a fashion

similar to that of leg-based booking class control methods introduced in

Chapter 4. Optimization, forecasting and historical data collection are

accomplished on an individual flight leg level for each virtual control bucket.

ODF's are then controlled according to the booking limits of their respective

"newly" assigned virtual control buckets on each flight leg, as is done in other

leg-based booking class approaches. By re-mapping the ODFs based on their

network revenue values, a better "picture" of the value of multi-leg ODFs to

the network is drawn, allowing for the optimization method to be better able

to allocate seats accordingly. Re-mapping based on network revenue value

also alleviates some of the "greediness" of OD control algorithms introduced

earlier. As shown in the previous example, if local itineraries prove to be

more valuable to the system as represented by higher local displacement cost

figures, a multi-leg itinerary may not always be given higher booking priority.

Note that the application of "static" displacement cost approaches are

not limited only to virtual nesting control structures but can be applied to

stratified bucketing as well. As previously mentioned, in many respects,

stratified bucketing can be considered a limited form of virtual nesting and

shares many of the same benefits. However, a stratified bucketing control

structure requires re-filing of fares through ATPCO at every instance an ODF
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is moved from one control bucket to another. This inconvenient procedure

can limit the effectiveness of re-mapping an entire network of multi-leg ODFs

into new control buckets based on their network revenue values. Even with

infrequent re-mappings as is the case in a "static" displacement cost inventory

control algorithm, the additional effort required to re-file the fares may

overshadow the benefits of applying "static" displacement cost logic in a

stratified bucketing structure.

The development of a "real-time" displacement cost application

provides an alternative approach to applying local displacement cost to

control algorithms which cannot conveniently re-map their ODF

combinations. Especially with the advent of seamless CRS availability

communication, booking requests can now be evaluated by the selling airline

on a real-time basis, thus allowing for "real-time" local displacement cost

calculations to be made before a booking request is evaluated [5].

The "real-time" displacement cost algorithms developed in this

research have been applied to a stratified bucketing control structure. "Real-

time" displacement costs may also be applied to a virtual control structure

with no significant difference from stratified bucketing expect for the number

of control buckets utilized. As in "static" algorithms, "real-time" local

displacement cost inventory control algorithms begin by initially mapping all

ODFs into a "default" control bucket based on the ODF's full itinerary fare

value. It is at the level of these control buckets that forecasts of passenger

demands and "optimal" allocations of seats are generated at all points in the

control algorithm. Using Equation 5.9, at the time a booking request for a

multi-leg itinerary is received, the network revenue value of the connecting

ODF is determined based on current seat availability and demands on each
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flight leg traversed. As in the "static" case, the maximum network revenue

value over all legs is used for the purposes of establishing the value of the

connecting ODF to the network. Once the network revenue value is

established, instead of re-mapping the ODF into a new control bucket, the

''real-time" algorithm only uses the availability of the control bucket

corresponding to the network revenue value of the multi-leg ODF. Thus,

even though the ODF demand is not reassigned to a new control bucket, ODF

seat availability is still potentially reduced based on the most current network

revenue value approximated over all legs traversed. Therefore, if at the time

of a booking request for a two leg itinerary, both legs traversed are highly

constrained, the multi-leg itinerary will receive lower availability as

determined from its network revenue value, and preference will be given to

local passengers. Conversely, if demand for either legs are low or if there is

an abundance of available capacity, the availability of the connecting ODF will

most likely be unaffected due to insignificant local displacement cost values

on one or both flight legs.

Take for example the two flight leg network described earlier. Using

the network "static" local displacement cost algorithm, the connecting

itinerary, SFO-BOS, was reassigned to virtual control bucket V2 from bucket

V1. If a network "real-time" local displacement cost algorithm was used, at

the time of the booking request, network revenue values would be updated

with the most recent information available and a maximum network

revenue value would be established. Assuming a value of $574 is used, the

algorithm would than seek out the booking class that includes the updated

network revenue value within its revenue range definition and display the

seat availability associated with the booking limit of that control bucket. If
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seats are available, the booking request would be accepted, and booking limits

are decremented from the "default" booking classes. This same procedure is

accomplished at every multi-leg booking request, and the rest of the

algorithm proceeds in the same manner as leg-based booking class control

methods, except for the "real-time" evaluations of booking requests.

The advantage of utilizing a "real-time" local displacement cost

algorithm is rooted in the its ability to perform simple displacement cost

calculations at the time a booking request is made based on the most current

information available, and return a seat availability corresponding to the

most up-to-date value to the network of the booking request. Unlike "static"

algorithms that calculate network revenue values periodically based on

historical demand and fare information, "real-time" approaches utilize

relevant demand and fare information during the same period of time in

which the request is made. Additionally, the flexibility of "real-time" local

displacement cost logic allows it to be applied to a myriad of seat inventory

control algorithms which are incompatible with local displacement cost

applications that require the shifting or re-mapping of demand information

between control buckets. Seat inventory control algorithms that utilize

control structures such as fare class nesting or stratified bucketing may benefit

from the incorporation of a non-remapping "real-time" local displacement

cost application into their control process. The next section will present

simulated revenue impacts of some leg-based OD control algorithms

developed in this research that incorporate "static" and "real-time" local

displacement cost logic in conjunction with a variety of control structures.
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5.3 Simulation Results of "Static" Displacement Cost Heuristics

The optimization/booking simulator was used to evaluate the revenue

benefits of several leg-based OD control algorithms that take into account

local displacement costs. As in Chapter 4, these inventory control algorithms

were subjected to several demand scenarios within a hub-and-spoke

environment and the resulting revenue impacts are compared to an EMSRb

leg-based fare class control algorithm.

The first leg-based displacement cost control algorithm examined is

one based on the application of a network "static" displacement cost logic to

an inventory control algorithm that utilizes a virtual nesting control

structure and an EMSRb seat allocation heuristic. Recall that the basis of the

"static" displacement cost approach involves the periodic calculation of
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Figure 5.1- Revenue Impacts of the Virtual Network "Static" Displacement Cost Algorithm
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network revenue values for each multi-leg ODF in the network, followed by

the subsequent re-mapping of these ODFs into related control buckets. In

Figure 5.1, the revenue impacts of a network "static" displacement cost

algorithm is shown for a range of demand scenarios as compared to the base

case. Once again, the base case represent a leg-based fare class nesting seat

inventory control algorithm.

The incremental revenue gains over the leg-based fare class control

approach shown in Figure 5.1 are significant and are consistent over all

demand factors and average local demand scenarios. Simulation results

show that the revenue impacts of a network "static" displacement cost

algorithm range from a low of 0.2% to a high of 9% depending on the

demand factor and the level of average local demand. Focusing in on a more

realistic demand factor range of 0.7 to 1.1, revenue impacts varied from 0.6%

to 5% with corresponding average hub loads factors of 0.71 to 0.89.

It is evident from examination of the simulation results that there is a

clear relationship between demand factor and the magnitude of revenue

impacts realized. Additionally, a similar relationship is found between the

average level of local demand that exists in the network and expected

revenue gains. As exemplified in Figure 5.1, at lower demand factors of 0.9,

there was an insignificant difference in revenue impact recorded between the

three average local demand scenarios examined. At a more constraining

demand factor of 1.2, a revenue impact difference of more than 1.1% between

the three local demand scenarios is recorded when compared to the base case.

Obviously, an objective of displacement cost approaches is to be better able to

handle local demands within constrained demand environments. The

simulation results have shown empirically that the algorithm does recognize
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to a certain extent the level of local demand present in the network as evident

in the level of comparative revenue impacts achieved with respect to the

average local demand present in the network.

To illustrate the effectiveness of a displacement cost algorithm's ability

to alleviate some of the "greediness" effects of using a "greedy" algorithm in a

virtual nesting control structure, Figure 5.2 draws up a comparison between

the "greedy" inventory control algorithm presented earlier and a network

"static" displacement cost algorithm. As found in Figure 5.2 for an average

local demand scenario of 40%, the virtual network "static" displacement cost

0 9.00% 8.08

g 8.00%. "Static" Displacement Cost 7.57

E7.00%. 6.43 6.27 0 "Greedy" Algorithm
6.00% _ _.

I 5.00%.- 4.39 4.36

e 4.00%

3.00%- 2.3 2.27

2.00%

1.00% , 0.570.58

6 0.00% . "'"'"' -

0.74 0.84 0.94 1.05 1.15 1.25 1.36 1.45 1.58

Average Leg Demand Factor

Figure 5.2 - Revenue Impacts of a "Greedy" versus a Virtual Network
Cost Algorithm

"Static" Displacement

algorithm recorded revenue impacts slightly above that of the "greedy"

approach at the lower end of the demand factor range. As the demand factor

climbs, the magnitude of the differences in revenue impacts recorded began

to differ more substantially, reaffirming the notion that incorporating some

form of displacement cost logic in the control methodology is beneficial to
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better control of OD itineraries or traffic flow in the more constrained

networks.

A second "static" displacement cost control algorithm develop in this

research differs from the network "static" approach in the method by which

ODFs are re-mapped into a control bucket. In a network "static" approach the

maximum network revenue value over all legs traversed by a multi-leg ODF

is used as the value basis for re-mapping the ODF. For a leg "static"

displacement cost algorithm, in a similar process as described by

Williamson's "Value Net of Opportunity Cost" approached introduced in her

doctoral dissertation [6], each multi-leg ODF will now be re-mapped into the

corresponding control bucket representative of the network revenue value

calculated for the ODF on that leg. It is assumed that this additional level of

OD revenue differentiation may provide a better picture of the value of a

multi-leg ODF to the network.

Reconsider the example of the SFO-DEN-BOS flight where the network

revenue value of a SFO-BOS connecting ODF has been calculated to be $499

on the SFO-DEN leg and $574 on the DEN-BOS leg. In the case of a network

"static" displacement cost approach, the SFO-BOS would be re-mapped into a

new control bucket based on the $574 value. However, in a leg "static"

displacement cost approach, the SFO-BOS would be remapped on the SFO-

DEN leg into a control bucket that contains $499 in its revenue range

definition and remapped on the DEN-BOS leg in a corresponding control

bucket that contained $574 valued ODFs. A single multi-leg ODF may be

mapped into different virtual control buckets on different flight legs with

different booking limits; a procedure similar to using leg specific virtual

mapping tables in the "greedy" control algorithm presented in Chapter 4.
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Figure 5.3 - Revenue Impacts of the Virtual Leg "Static" Displacement Cost Algorithm

Figure 5.3 illustrates the revenue impacts recorded from simulation of

the virtual leg "static" displacement cost seat inventory control algorithm.

Depending of the level of demand encountered, this control algorithm

realized revenue impacts ranging from 0.2% to 9% above the base case.

Additionally, load factors achieved ranged in value from 0.63 to 0.94 for a

variety of demand factors ranging from 0.63 to 1.73. Taking for example a

realistic average local leg demand of 35%, within the demand factor ranges of

0.7 to 1.1, incremental revenue gains realized ranged anywhere from 0.4% to

3% above that of a leg-based fare class nesting control algorithm.

Summarizing the effectiveness of the two "static" displacement cost

approaches, Table 5.1 lists the comparative revenue impacts of both

algorithms in addition to a "greedy" virtual nesting algorithm for a range of

plausible demand levels. The revenue impacts recorded by both

displacement cost simulations are highly dependent on the level of demand,
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Table 5.1- Percentage Revenue Impacts of "Static" Displacement Cost and
"Greedy" Algorithms

Avg. Average Demand Factor

Local Dem. Algorithm 0.63 0.72 0.81 0.90 0.99 1.08 1.17 1.27 1.36

27% "Greedy" 0.18 0.60 0.96 1.47 2.08 2.67 3.23 3.63 4.30
Network 0.18 0.60 0.98 1.52 2.25 2.77 3.25 3.56 4.15

1 Leg 0.18 0.60 0.97 1.52 2.26 2.77 3.25 3.58 4.17

Avg. Average Demand Factor

Local Dem. Algorithm 0.81 0.93 1.04 1.15 1.27 1.39 1.50 1.61 1.73

47% "Greedy" 1.31 2.24 3.53 4.69 5.88 6.78 7.37 7.80 8.06
Network 1.32 2.23 3.55 4.65 6.05 7.01 7.74 8.33 8.72

Leg 1.26 2.22 3.53 4.78 6.13 7.05 7.74 8.29 8.68

especially local demand on the network. At lower levels of local demand,

the positive impacts of displacement cost algorithms are minimal and at

points result in marginally lower revenues than the "greedy" approach. As

local demand increased, the revenue gains achieved by displacement cost

algorithms began to show substantial gains above that of the "greedy"

algorithm, especially at the higher demand factor ranges.

It is important to reiterate that the use of a "static" displacement cost

algorithm is not limited only to a virtual nesting control structure, but may

be applied to a stratified bucketing control structure as well. While the re-

mapping of ODFs in a stratified bucketing control methodology is

inconvenient, it does not affect the operational applicability of "static"

displacement cost logic. Recall that in this research, the stratified bucketing

algorithms are in fact virtual nesting algorithms utilizing 7 control buckets
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instead of 12. In Figure 5.4, a network "static" displacement cost algorithm

was applied to a stratified bucketing control structure.
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Figure 5.4 - Revenue Impacts of the Stratified Network "Static" Displacement Cost Algorithm

The revenue impacts achieved in the application of the stratified

network "static" displacement cost algorithm are positive throughout all

demand scenarios tested. Incremental revenue gains above that of the base

case ranged from 0.2% to 8% with average hub load factors of 0.63 to 0.96,

depending on the demand level. Within more realistic demand factors of 0.7

to 1.1, revenue impacts for an average local demand proportion of 35%

ranged from 0.4% to 3%, with average hub load factors ranging from 0.68 to

0.89.

In comparison to the "greedy" stratified bucketing control algorithm,

the trends in revenue impacts realized are similar to those found in

comparisons made between the "greedy" virtual nesting control algorithm

and the virtual network "static" displacement cost algorithm. Figure 5.5
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shows that the difference in incremental gains are minimal at the lower

ranges of the demand factors, and as expected, a larger impact appears as the

demand factors begin to climb into the higher ranges. Unlike the virtual

"static" displacement cost algorithm, the impact of local displacement cost

logic applied to the stratified bucketing "greedy" algorithm results in at most a

0.2% increase in revenues above the "greedy" algorithm when compared to

the base case.
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Figure 5.5 - Revenue Impacts of the "Greedy" versus the Stratified Network "Static"
Displacement Cost Algorithm

However, is the relatively poorer revenue performance of the "static"

displacement cost logic when used in conjunction with a stratified bucketing

control structure a function of the displacement cost methodology or the

control environment? In a comparison of revenue impacts made between a

stratified bucketing based network "static" displacement cost algorithm and a

virtual nesting based network "static" displacement cost algorithm shown in

Figure 5.6, the results obtained are as expected, with the virtual nesting
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algorithm realizing higher revenue impacts, especially at the lower demand

factor ranges. It is possible that the differences in revenue impacts are not a

function of the "static" displacement cost methodology, but a function of the

control structure's ability to provide enough revenue differentiation between

the ODFs. As discussed in Chapter 4, the only difference between stratified

Figure 5.6 - Revenue Impacts of the Virtual "Static" versus the Stratified "Static"
Displacement Cost Algorithm

bucketing and virtual nesting is the number of control buckets each control

structure uses. In Table 4.4 of Chapter 4, simulation results have already

shown that the number of control buckets does have a significant impact on

the level of revenue impacts realized. Nonetheless, the revenue gains

achieved by a stratified structure is still quite substantial, and more

importantly, the cost of implementing a virtual nesting structure versus that

of a stratified control structure must be weighted against the differences in

revenue gains obtainable by each approach.
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In any event, the simulation results shown up to this point represent

the effectiveness of using "static" displacement cost logic in conjunction with

either form of OD seat inventory control structure. While the revenue

impacts realized do differ among the inventory control algorithms

introduced so far, the incremental revenue benefits of using any of these

algorithms have been empirically shown to be substantial and positive over

all demand levels.

5.4 Simulation Results of "Real-Time" Displacement Cost Heuristics

The application of a "static" displacement cost algorithm in a stratified

bucketing control structure has proven to be effective in producing

substantial revenue gains above that of leg-based fare class nesting methods.

However, "static" displacement cost algorithms require the periodic re-

mapping of ODF combinations. While the re-mapping procedure should

ideally occur as often as operationally possible to update the displacement cost

values, especially in markets that experience much fare and demand

fluctuations, the stratified bucketing control structure does not allow for

convenient shifts in control bucket assignments. A "real-time" displacement

cost algorithm was developed to take into account the operational inefficiency

of constant re-mapping, by taking advantage of evolving CRS capabilities to

perform "real-time" updates of displacement costs and seat availability. A

"real-time" displacement cost algorithm requires no re-mapping of ODFs,

maintaining the consistency of historical data collection, yet it still provides

the benefits of incorporating local displacement cost information into a leg-

base OD seat inventory control process.
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In this research, several "real-time" displacement cost algorithms were

developed that utilize an EMSRb optimization heuristic and a stratified

bucketing control structure. In Figure 5.7, a comparison of the revenue

impacts between the stratified network "static" and the stratified network

"real-time" displacement cost algorithm is made. As there is no re-mapping

of ODFs to different control buckets, "real-time" calculation of a multi-leg

ODF's network revenue value is performed at the time of the booking

request. Once again, the network definition of the algorithm refers to the use

of the maximum network revenue value calculated for the ODF as the basis

for determining from which control bucket to obtain seat availability

information.
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Figure 5.7 - Revenue Impacts of the Network "Static" versus the Network "Real-time"
Inventory Control Algorithm

It would appear that the use of a "real-time" approach with real-time

information does provide a significant but small improvement in revenue

impacts over a "static" approach. In the 40% average local demand scenario
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shown in Figure 5.7, at almost all demand factors, the "real-time"

displacement cost algorithm realized slightly higher revenue than the

network "static" displacement cost algorithm. Although the load factors

achieved by the "static" approach was 1 to 2 percentage points higher, it is

obvious that the "real-time" approach was better able to determine which

bookings would be able to provide better total revenue contributions to the

network. The level of incremental revenue benefits achieved indicate the

feasibility of utilizing "real-time" displacement cost logic in cases where re-

mapping of ODF demand is not a viable alternative to taking into account

displacement risk.

A stratified leg "real-time" displacement cost algorithm was also

developed. This algorithm is similar to that of the previously introduced

virtual leg "static" displacement cost algorithm except for the fact that "real-

time" displacement cost calculations are performed and no re-mapping of

ODFs are required. Simulation results of this algorithm proved to be positive

and ranged in revenue impacts, for a 34.7% average local demand scenario,

from 0.4% to 7% with average load factors of 0.68 to 0.92. In comparison to a

network "real-time" displacement cost algorithm shown in Figure 5.8, the

revenue gains achieved were slightly lower, differing by as much as 0.2%

from the base case for the same average local demand.

The persistence of this trend throughout all demand scenarios tested

would tend to indicate that the application of a leg "real-time" displacement

cost algorithm in conjunction with a stratified bucketing control structure

may prove to be too restrictive on the flow of multi-leg ODFs in the network.

Especially with the availability of more accurate displacement cost values in a

"real-time" approach, it would seem that the need to further differentiate
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connecting ODF seat availability on an individual leg basis is an additional

level of control unnecessary for this type of seat inventory control approach.
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Figure 5.8 - Revenue Impacts of the Leg "Real-Time" versus the Network "Real-Time"
Displacement Cost Algorithm

The positive revenue impacts realized by all "real-time" displacement

cost algorithms developed serves testimony to the effectiveness of utilizing

such an approach. Even though the above simulations are of leg-based "real-

time" displacement cost algorithm based on a stratified bucketing control

structure, there are no reasons not to apply a similar approach to a virtual

nesting control structure. As mentioned, the only difference between a

stratified bucketing control structure and the virtual nesting control structure

utilized in this research is the number of control buckets utilized. It can be

speculated that application of "real-time" displacement cost logic to a virtual

nesting control structure will produce revenue impacts above that of "static"

approaches in either control structures for reasons previously mentioned.
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However, the use of "real-time" displacement cost algorithms are not

without its drawbacks.

One possible algorithmic difficulty encountered is the risk of leaving

empty seats protected for multi-leg ODFs during each booking period. As a

tradeoff to re-mapping, ODFs are maintained in a "default" control bucket

usually defined by the ODF's itinerary fare value. Consequently, as protected

seats for lower control buckets are being shared with connecting ODFs

assigned to higher buckets, the seats protected for the higher control buckets

are not being shared with the lower ones in a "real-time" displacement cost

concept. Thus, in a highly constrained flight leg, even though connecting

ODFs are being penalized by seeking availability from lower control buckets,

local ODFs are not implicitly provided any additional preference to seats

initially protected for higher buckets.

These complications are due to the fact that all ODF combinations are

maintained in their original control buckets, insulating the optimization

heuristic from the potential displacement risk involved. Thereby, the

protection of seats are still performed in a "greedy" fashion based on each

control bucket's demand and revenue contribution potential. The resulting

effect is a lower average load factor and lost of potential demand. Although

these problems can be overcome with more frequent revisions of protection

levels, the additional computations required may negate any performance

advantages. Nonetheless, the application of leg-based displacement costs

algorithms in either control environment has proven its effectiveness in

capitalizing on its ability to alleviate some of the "greediness" effects of a

virtual nesting or stratified bucketing control structure and to return a

substantial level of incremental revenue gains.
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5.5 Application of Displacement Cost to Fare-Class Nesting

The previous two sections have described the application of

displacement cost logic to OD control structures, i.e. virtual nesting, stratified

bucketing. While it has been motivated that displacement cost approaches

were developed to alleviate the "greedy" effects of certain OD inventory

control algorithms, local displacement cost logic can also be applied to fare

class nesting control structures. Even though fare-class nesting has been

identified as an ineffective inventory control structure in its ability to

differentiate and maximize OD traffic flows and revenues, the addition of

displacement cost logic to this structure may prove to be a beneficial and low

cost first step towards improving the current control process.

The use of a displacement cost algorithm without the use of virtual or

stratified control buckets has become a feasible control methodology with the

advent of seamless CRS and "real-time" ODF seat availability evaluation [24].

In a process similar to that of the "real-time" displacement cost algorithms

introduced previously, ODF assignments to fare classes are kept intact and no

shifting/re-mapping of fare class assignments are made during the control

process. At the time of a multi-leg booking request, the network revenue

value of the request is calculated on a "real-time" basis utilizing the expected

marginal revenue analysis displacement cost approximation. Once the

displacement cost is determined and deducted from the itinerary fare value,

seat availability is determined corresponding to the network revenue value

of the ODF. However, unlike a stratified or virtual control structure with

control buckets defined by revenue ranges, the average fare value of each fare
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class is used as the upper bound in which to judge if the booking request's

network revenue value corresponds to the value of the fare class on the flight

leg.

As an example, consider a two flight leg network, with current fare

class information for each of the flight legs listed below in Example 5.1.

Assuming that the local displacement cost calculated at the time of a $210 V

class multi-leg booking request is as follows:

DISPX(LEG 1) = $30

DISPOc (LEG 2) = $40

the corresponding network revenue value of the V class fare on leg 1 and leg

2 would be $170 and $180, respectively. Referring to average fare values in

Example 5.1, the maximum seat availability for a network revenue value of

$170 on leg 1 corresponds to a V class availability of 45 seats, since it is less

than the upper bound average fare value of $180. On leg 2, the $180 value

would corresponds to a seat availability of 10 seats. Therefore, the number of

seats available for the two leg V class itinerary is equal to the minimum

availability over both legs - 10 seats. In this example, the $210 V class itinerary

was worth more to the network on Leg 2 than the average fare value

LEG 1 LEG 2
Fare Class Avg. Fare Avail. Avg. Fare Avail.

Y $450 130 $300 65
B $400 95 $250 50
M $325 80 $210 30

Q $280 59 $180 10
V $180 45 $145 0

Example 5.1 - Example average fare values and seat availability for a two leg
flight network.
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represented by that class. Consequently, the ODF specific booking request was

given a higher availability than was shown by a basic leg-based fare class

nesting algorithm. This improved inventory control process is defined as the

leg fare class displacement cost algorithm.

It is hoped that incorporating displacement cost logic will improve the

fare class nesting control algorithm's ability to evaluate the value of each ODF

combination to the network and in turn provide significant revenue gains.

In Figure 5.9, booking simulation results of the network fare class

displacement cost algorithm are first presented. Unlike Example 5.1, the

maximum network revenue value over both legs is used to decide which fare

class to seek seat availability. Once again the maximum network revenue

value is utilized to prevent the potential of rejecting a multi-leg booking

request when only one leg of a two leg flight is highly constrained. Thus, in

the previous example, the network revenue value of $180 is used on both legs

, 4.00%.

0 -+-30.5% LocalM 3.50%
E
o 3.00% - -3 4.7% Local 2.90%

a,2.50%-2 --- 40.0% Local
2.00% -

,,ofe66c, .78% + .4
1.50%.

W 1.00% .

0.50%

0 0.00% +
0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6

Average Leg Demand Factor

Figure 5.9 - Revenue Impacts of the Network Fare Class Displacement Cost Algorithm
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to determine availability, instead of the network revenue values associated

with each leg traversed.

The level of incremental gains over a fare class nesting approach

realized by a network fare class displacement cost algorithm is quite

substantial, ranging from 0.04% to 4% depending on the level of demand

encountered. Load factors achieved were also good 'ranging from 0.66 to 0.91.

On a more realistic demand factor range of 0.7 to 1.1, the level of revenue

gains expected ranged from 0.1 to 1% for an average local demand of 34.7%

and 0.5% to 2% for an average local demand of 47%. The trends illustrated by

the algorithm are similar to those exhibited by other displacement cost

algorithms with revenue impacts dependent on the level of local demand in

addition to the average leg demand factor of the network.

w 4.00%

- -30.5% Local 
3.71%

3.28%
o 3.00% -- 34.7% Local

o~2.50% 4_1_96
S 2.00% -- 40.0% Local

S1.50% .36% +.6* 1.00%

1 .50%
0~~ .18% 0

1.00% ..--....-

0.50%.3 
4-'%

0.00% 4 M
0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6

Average Leg Demand Factor

Figure 5.10 - Revenue Impacts of the Leg Fare Class Displacement Cost Algorithm
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Figure 5.10 illustrates the simulation results of the leg fare class

displacement cost algorithm presented in Example 5.1. Once again, significant

incremental revenue gains above the base case are realized over all demand

scenarios. Take for example an average local demand of 34.7%, for demand

factors of 0.7 to 1.1, revenue impacts realized ranged from 0.3 to 1.4% with

good average load factors of 0.68 to 0.87. Overall, expected incremental

revenue gains ranged from 0.1% to 4% above that of the base case with

average load factors of 0.66 to 0.90.

Recall that the network algorithm utilizes the maximum network

revenue value over all legs traversed to determine which control bucket to

display availability and the leg algorithm utilizes the individual network

revenue values calculated on each leg traversed. In a comparison to the

w 3.50% .3.28

3.00% - Network Displacement Cost 2.96 29

2.56

2.00% . 1.89 1.78

1.36 1.33

0.99
0 1.00% . 0.84

0.4 0.63 0.610.50% - 0.25 0.26
009 0.15

04 0.00% 4- - -1

0.69 0.79 0.89 0.99 1.08 1.19 1.29 1.38 1.48

Average Leg Demand Factor

Figure 5.11 - Revenue Impacts of the Network versus the Leg Fare Class Displacement Cost
Algorithm

network fare class displacement cost algorithm, Figure 5.11 shows that the leg

fare class displacement cost out performs the former, based on revenue gains
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over the base case in all levels of demand tested. In particular, the leg

algorithm showed revenue gains over the network algorithm of over 0.4% in

some cases. Although the average load factors achieved by the leg algorithm

were on average 1 to 2 percentage points lower than the network algorithm,

the extra revenue gains realized signify that the determination of ODF

availability though utilizing the network revenue values associated with

each leg is beneficial for improved revenue performance by a fare class

displacement cost algorithm.

Even though the level of potential revenue benefits that can be

realized from a fare class displacement cost algorithm is quite substantial

when weighed against fact the no additional investment in developing an OD

control structure is necessary. It is obvious from Figure 5.12, that a fare class

displacement cost seat inventory control algorithm is not capable of out

performing an OD seat inventory control algorithm that utilizes a virtual

e 7.00%

6 - -Fare Class Nesting
S6.00%

5.00% -0--Stratified Bucketing .09%

4.00%

3.00% .3% 2.90%

S2.00% 00

U 1.00%

A 0.00% " I I I I I I
0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5

A..---- r%- --A __L9

Figure 5.12 - Revenue Impacts of the Network Fare Class versus the Network "Real-Time"
Displacement Cost Algorithm
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nesting or stratified bucketing control structure. However, the positive

revenue impacts from utilizing displacement cost logic on a non-OD based

inventory control structure is a good indication of the potential benefits to be

had from incorporating such a concept into any control process.

5.6 Summary of Simulation Results

It is not the intent of this research to make judgments on which OD

control algorithm will prove to be the best method to implement. On the

contrary, its intent is to present a range of possible alternative approaches to

an OD control methodology in addition to providing empirical evidence as to

its effectiveness. In this Chapter, a study of the effectiveness of several leg

based inventory control algorithms that incorporated local displacement cost

logic was undertaken through the analysis of simulation results. Based on a

set of demand levels that is assumed representative of "real-world" demand

environments, Figure 5.13 and 5.14 summarizes the revenue impacts realized

by the displacement cost control algorithms introduced within this chapter

for a demand factor range of 0.7 to 1.1.

Figure 5.13 represents the maximum expected revenue gains for OD

control algorithms that have incorporated a "static" displacement cost

methodology into the inventory control process. These algorithms have been

developed with both a virtual nesting and a stratified bucketing control

structure. As empirically shown, the leg "static" displacement cost

methodology has realized the largest expected incremental revenue gains

over the base case, although the other algorithms do perform as well in

comparison. In some respects, the leg "static" algorithm can be expected to
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perform the best as it utilizes the highest amount of available information in

its decision process.

I T
Deg "Static"otDisplacement Cost4.%

Network "Static"
Displacement Cost

Stratified Network
"Static" Displacement

4.10%

4.07%

3.50% 3.60% 3.70% 3.80% 3.90% 4.00% 4.10% 4.20% 4.30% 4.40% 4.50%

Percentage Difference of Revenue from EMSRb Nested Fare Class Heuristic

Figure 5.13 - Maximum Expected Revenue Impacts for Several "Static" Displacement Cost
Algorithms

Figure 5.14 illustrates the maximum expected incremental revenue

gains for a set of seat inventory control algorithms based on "real-time"

displacement cost logic. As previously mentioned, the flexibility of a "real-

time" approach has allowed the "real-time" algorithms to utilize control

structures that are not compatible with frequent shifts in fare assignments.

In this research a virtual nesting approach was not tested with a "real-time"

displacement cost approach. Nevertheless, for our purpose, a stratified

bucketing control structure is identical in design to that of a virtual nesting

control structure, only differing by the number of control buckets used. Thus,
the revenue impacts realized by a stratified inventory control method can be

extended to that of a virtual nesting based algorithm.
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In examining the simulation results of a "real-time" algorithm, unlike

the "static" algorithms, the "real-time" algorithm that incorporates the

greatest amount of available information into the control process did not

provide the largest return on expected revenue. Additionally, the lower

revenue impacts obtained from incorporating displacement cost logic into a

fare-class nesting control structure serves to stress the importance of

integrating the correct optimization and control elements in a seat inventory

control algorithm. That is, even though displacement cost algorithms were

developed to enhance the effectiveness of controlling inventories by

evaluating the revenue contributions of bookings with respect to the

network, without a proper control structure, even the effectiveness of the best

displacement cost algorithms are severely restricted.

I
Stratified Network

"Real-Time"

Stratified Leg "Real-
Time" Displacement Cost

Fare Class Leg "Real-
Time" Displacement Cost

Fare Class Network
"Real-Time"

-Iii----------------" 4.36%

3.61%

2.50%

1.78%

I | 1 i I II

0.00% 0.50% 1.00% 1.50% 2.00% 2.50% 3.00% 3.50% 4.00% 4.50%

Percentange Difference in Expected Revenue from EMSRb Fare Class Heuristic

Figure 5.14 - Maximum Expected Revenue Impacts for Several "Real-Time" Displacement Cost
Algorithms

In general, while the simulation results have shown average expected

revenue gains ranging anywhere from 1 to 8%, taking into consideration the
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kind of uncertain demand environments the control process works in, a

more realistic expectation would range from 2 to 4% above that of the base

case. Furthermore, the impact of these incremental revenue gains must be

weighed against the financial and operational investment required for the

development and implementation of new inventory control approaches.

Consequently, the algorithms introduced in this chapter differ not only in the

expected revenue impacts but also in the level of investment required in

implementing such algorithms. Still the positive levels of revenue gains

shown by incorporating different displacement cost logic to a variety of

control structures have illustrated the potential range of revenue benefits that

can be realized.
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Chapter 6

Conclusions

6.1 Summary

The primary objective of this research was to develop leg-based

inventory control approaches that address the problems associated with the

network seat inventory control problem. By taking into account the

interactions between flight legs and traffic flow across the network, two

structural components of the basic seat inventory control approach were

pinpointed as areas of interest. The OD control structure was first examined

for its effectiveness in controlling seat inventories by revenue value rather

than product type such that the potential for increased network revenue is

realized. The second involves the incorporation of displacement cost logic

into the optimization algorithm to improve the allocation of seats to different

local and multi-leg OD fare itineraries across the network. By combining the

different control structures and optimization algorithms presented in this

research, a variety of leg-based network inventory control approaches were

developed and evaluated within a simulated hub-and-spoke network.

A major reason behind the development of new approaches to manage

and control seat inventories is to capture incremental revenue gains over
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current leg-based seat inventory approaches. As such, the revenue

performances of new approaches can be determined through the comparison

of revenue impacts obtained versus an existing inventory control approach.

Consequently, by utilizing the integrated optimization/booking simulator

developed at MIT, a sterile environment was constructed, whereby the

revenue impacts realized by the newly developed control algorithms with

respect to a leg-based fare class seat inventory control algorithm can be

compared.

Empirical results obtained through the use of the integrated

optimization/booking simulation show that direct application of the OD

control structures introduced in this research into a leg-based seat inventory

control algorithms utilizing an EMSRb optimization heuristic can achieve

incremental revenue gains ranging from 0.5% to 3.5% depending on the types

of demands encountered. However, recall that the simulation while an

effective tool in evaluating the relative performances of new algorithms,

operates under unrealistic demand conditions. Passenger demand is by

nature highly dynamic and stochastic, which is not taken into full

consideration in the simulation. Taking this into account, the revenue

impacts obtained by the simulation are usually a more optimistic

representation of "real-world" results.

In this research, while the "greedy" algorithm utilizing a virtual

nesting control structure has been shown to provide the largest revenue gains

compared to all other "greedy" approaches utilizing some variation of virtual

nesting or stratified bucketing, it is important to evaluate the significance of

these empirical results relative to the additional investment required to

implement such inventory control algorithms.
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In incorporating displacement cost logic to alleviate the greediness of

"greedy" seat inventory control algorithms, simulation results reveal

revenue gains ranging from 1% to 4% above that of a leg-based fare class

control algorithm. Naturally, the level of revenue gains realized is

dependent on how displacement cost logic is applied by the inventory control

algorithm. In this research, both static and dynamic applications of

displacement cost within an OD control structure were considered.

Furthermore, an experimental application of dynamic displacement cost logic

was examined within a fare-class control structure. Revenue impacts for a

fare-class based displacement cost algorithm ranged from 0.5% to 2.5% above a

leg-based fare class nesting control algorithm that does not employ

displacement cost logic.

The level of incremental revenue gains obtained from simulation

results in this research corresponded well with a predicted upper bound

approximation of 4% for leg-based network inventory control methods

employed within a hub-and-spoke network [6]. While there is no doubt that

effective control of ODF itineraries at the network level can provide

significant revenue benefits, the utilization of full network optimization

methods still must overcome several practical obstacles to proper

implementation within existing reservations control systems. The

development and implementation of leg-based heuristic control approaches,

which incorporate information about passenger demands and traffic flows

across the network, can result in incremental revenue gains of as much as 4%

above current control approaches. These revenue gains can translate to a

substantial increase in total airline revenues.
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6.2 Future Research Directions

As the science of network seat inventory control is a relatively recent

area of development, there are many opportunities to extend the research

presented in this thesis to new areas of continued research. In particular,

much of the conclusions reached about the effectiveness of the control

approaches presented in this research are based on simulation results. The

booking/optimization simulator used in this research disregards the effects of

cancellations, no-shows, passenger upgrades and many other "real-world"

factors in order to simplify the simulation and evaluation process. It is

important to address the role each of these factors will play in altering the

effectiveness of a seat inventory control approach before actual

implementation into a new reservation control system.

In this research, many of the control algorithms introduced employ

some form of virtual nesting or stratified bucketing as the basis for

controlling seat inventory. While the basic application of these control

structures, the number of control buckets, the definition of revenue ranges,

and the level at which a virtual mapping table is applied were discussed in

the thesis, there is still much that can be done to further the research in these

areas. The number of control buckets used and methodologies developed to

define revenue ranges in the control algorithms presented cannot be

considered "optimal". Since the appropriate determination of these factors

have been shown to have a significant effect on the performance of a seat

inventory control algorithm, further work into the proper definition of these

parameters should be examined.
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The approximation of displacement cost and the application of

displacement cost logic are necessary areas of continued research and

development. In this research, an approximation to local displacement cost

reflects the probability of selling a seat to a local passenger and the revenue

contribution to the network of a local itinerary. However, the displacement

of passengers on down-line flights legs does not only include local passengers,

but other passengers connecting to the leg from other flight legs in the

network. It is important to determine the effects of disregarding the

displacement of other connecting passengers on the performance of control

approaches that apply displacement cost logic. Furthermore, displacement

cost is currently approximated on a flight leg basis, based on the aggregation of

all ODF itinerary demand and fares on the flight leg. Would it be possible to

break displacement cost approximations down to an OD level whereby each

OD traversing the leg can have an associated displacement cost value? Or,

have displacement cost values associated with each control bucket rather than

the last seat on each flight leg? Or, have displacement cost values determined

on some network level? Is the expected marginal revenue curve the best

approximation of displacement cost or are there some other variations of the

EMR curve? Obviously, there is much be to done in this area of research

Additional analysis with respect to the type of optimization heuristic

utilized in each control algorithm would be interesting. In this research, the

EMSRb optimization heuristic is utilized in every algorithm introduced.

Consequently, is this optimization heuristic generally compatible with all

control structures and displacement cost approaches discussed? Are there

other optimization heuristics more compatible with certain control structures

versus others? The proper integration of optimization and inventory control
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components is important to the successful performance of any control

algorithm. Thus it is just as important to examine the optimization heuristic

itself in addition to any other components that makeup a leg-based network

seat inventory control algorithm.

While the focus of this research has been on the development of leg-

based approaches to network seat inventory control, a natural extension of

this research is to move towards the development of full network seat

inventory control methods. With respect to full network approaches, work

on developing an effective and efficient mathematical algorithm is necessary.

The development of an ODF database and its associated implementation

issues would also be required, in addition to the potential effects on revenue

of implementing network seat allocations in current control structures, and

the communication difficulties associated with relaying ODF availability

between CRS's. The financial investment required to develop these

approaches and the flexibility built into future reservation control systems to

adapt to changes in a dynamic airline industry should also be addressed for

both leg-based and full network inventory control approaches.

An increasingly competitive airline industry has dictated the

development of more sophisticated tools to manage and control seat

inventories, not only as a means to remain competitive but as a means to

better utilize limited resources. Depending on the nature of the competitive

environment in which a particular carrier operates, its route structure, the

size of the carrier, and the types of markets served can all affect the

determination of which seat inventory control approach will best serve the

carrier. However, in almost any environment, the utilization of a network

approach to control seat inventories can provide a substantial return in terms
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of increased revenues. As carriers develop route structures that include

many multi-leg segments, the revenue benefits of a network control approach

will become increasingly important.
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