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ABSTRACT

This thesis explores the use of demand driven dispatch in the hub and spoke
environment prevalent in the route networks of major airlines in the United States.
Demand driven dispatch is an operational mode where aircraft assignments can be
changed in response to variation in demand. A computer program simulated the
functions of a revenue management system and an optimal aircraft assignment routine
over the course of the passenger booking process. An isolated hub with service
exclusively between the hub and 15 spoke cities was assumed.

Two series of quantitative studies were done, one looking at the possible profit
improvements at various demand levels with demand driven dispatch and the other
examining the sensitivity of demand driven dispatch results to when the first and last
optimal reassignment of hub aircraft was made in the booking process. In the first series,
comparisons were made between results obtained from static aircraft assignments and
fully dynamic demand driven dispatch assignments. Several scenarios were simulated.
These involved various combinations of demand distribution, demand balance, and
booking process assumptions. Booking process sensitivity studies were performed on a
small subset of the scenario combinations. A discussion of practical issues which could
affect implementation is also included.

Results show that demand driven dispatch performance is fairly uniform regardless of the
scenario with the best projected yearly profit increases for a major hub and spoke
operator of $35-$40 million over the current fixed assignment practice. This occurred at
load factors similar to airline historical levels of 65%. The profit increases at normal
demand levels were achieved mostly through better aircraft utilization patterns (lower
costs) and not revenue enhancement. At higher average load factors demand driven
dispatch improvement was less significant but was always positive. Studies on when
demand driven dispatch was applied during the booking process showed that major
benefits could be gained by evaluating assignments even once as long as this assignment
period preceded any significant level of high yield passenger booking requests.

Thesis Supervisor: Professor Peter P. Belobaba
Title: Assistant Professor of Aeronautics and Astronautics
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Chapter 1: Introduction

Much has been written over the past few years about the financial woes of the

airline industry. How poorly have the airlines performed? Losses over the past three

years alone top $9 billion just for the domestic U.S. carriers.1 What are the root causes of

the industry's difficulties? For airlines in the United States, the current list of items is

long and varied. Among the most cited reasons are high costs, low yields, overcapacity

relative to demand, government mishandling of bankruptcy laws, foreign competition,

and, of course, the Airline Deregulation Act of 1978.

With the outlook of the industry not likely to improve in the near future, does it

make sense for the major carriers like American, Delta, and United to consider exiting the

industry for strategic reasons? It has been the topic of discussion at many board

meetings, and rightly so. If these firms choose not to formulate and implement bold and

creative solutions to deal with ever changing market conditions, then they would indeed

be doing a service to their shareholders to dissolve their companies. After all, there are

airlines which have managed to make money and even prosper while the rest of the

industry has suffered these horrendous losses. Most notable is Southwest Airlines, a

Dallas-based carrier which has adopted a strategy of low frills, low costs, and high

frequency service. Southwest has been profitable the last 18 years, and is the only major

airline in the United States which had positive net earnings in 1992. As an indication of

the paralytic state which the other majors find themselves, even though Southwest

presents a significant threat to erode their market shares, they have yet to define a strategy

to check Southwest's growth.

Many of the successful innovations which were introduced by individual carriers

since deregulation, like frequent flyer programs and super saver fares, have lost their

effectiveness to boost primary demand for travel. These programs benefit an airline only

over the short term because they are easily replicable and therefore not sustainable
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competitive advantages. What is a sustainable competitive advantage is an organization's

ability to continuously bring to the market cost effective innovations which the market

will embrace. This thesis examines an airline operational philosophy which meets the

previous criteria in that it goes beyond the traditional way of executing a flight schedule

while at the same time lessening the negative impact of what is perhaps the greatest

external impediment to sustained profitability in any organization, variation in demand.

In particular, the subject of this thesis is demand-driven dispatch (D3) in a hub and

spoke environment typically found in the United States today. First developed by

Boeing 2 , demand driven dispatch is a dynamic aircraft assignment procedure which

utilizes the detailed and constantly updated data in the revenue management system in an

attempt to increase airline profits relative to the current fixed aircraft assignment practice

by more closely matching seat capacity to passenger demand.

The discussion in this thesis will commence with a background section on the

evolution of the current route structure and a review of previous work on demand driven

dispatch. The final sections of the thesis discuss computer simulations which illustrate

the potential magnitude of benefits to the airlines, specific issues which would have to be

addressed in order to convert to a D3 operational mode, and a set of conclusions

addressing the overall merit of such a shift.
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Chapter 2: The Development of the Hub and Spoke System

2.1 The Era of Regulation

In the days when airline travel was regulated by the Civil Aeronautics Board

(CAB), airline route networks reflected point to point service offered along trunk, or high

demand, routes. Airlines tended to provide air services within confined geographical

regions. Indeed their names alluded to the areas of the country where a company's

service was focused. There are numerous examples: Eastern, Southern Airways,

Western, Northwest Orient, Piedmont, etc. Carriers could be further classified into those

whose route networks were primarily east-west (United) or north-south (Eastern), but

there were no airlines that were truly national in terms of complete coverage of the

country. Airlines were assured steady financial returns and little competition under the

benevolent stewardship of the CAB. With no motivation to strive for organizational

efficiency, airline costs gradually drifted upwards. Inevitably, fares rose as well to cover

the cost increases.

In part because of the recognition that bureaucratic oversight of the airline

industry did not maximize benefits to the traveling public, the U.S. government in 1978

dissolved the CAB with the passage of the Airline Deregulation Act. For the first time

airlines were free to serve markets and set prices at their own discretion. Filings for new

airline operating licenses rose tremendously in the aftermath. New carriers with low fare,

low frill service, People Express Airlines for example, were enthusiastically embraced by

the public. The established carriers that offered more traditional levels of service faced

the prospect of large declines in passenger traffic and were forced to seek new operational

and marketing strategies which would allow them to retain their passenger base in a cost

effective manner. Innovations like super save fares and frequent flyer plans were

introduced. It was also in this newly competitive environment that the hub and spoke

system began to flourish.
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2.2 The Hub and Spoke Solution

What was so appealing about the hub and spoke system? The answer is that it

gave the airlines the ability to serve a large number of markets with relatively few

Figure 2.1: Generic Hub and Spoke Network

Originating
City

In this example,
12 aircraft can serve
156 markets.

aircraft. Consider a generic hub with n spokes similar in layout to the one in the Figure

2.1. Each spoke city is linked via the hub to n markets comprised of the other n-I spoke

cities and the hub itself. For passengers beginning their trips in the hub city, there are an

additional n markets to consider. Thus, over all spokes there are a total of n(n+l) markets

or origin-destination pairs which can be served with n aircraft. The arrival and departure

of aircraft at the hub must obviously be sequenced to provide enough time for passengers

to connect to other aircraft. The window of time when all the aircraft are present at the

hub and passenger transfers occur is commonly referred to as a connecting bank or

connecting complex.

Another advantage of hub and spoke networks is that they allow airlines to

operate fewer models of aircraft which can efficiently service flight legs of varied

distances from the hub. This results in greater scheduling flexibility. Also, these aircraft

are usually jets, which are desirable from a level of service perspective, not small

propeller driven planes. Larger jet aircraft feeding traffic (passengers) into the hub can

routinely be filled regardless of the local market being served by the aircraft because of

-11 -



spoke passenger opportunities to connect to numerous market destinations beyond the

hub. Non hub operations of a similar schedule, in contrast, would not only require many

more aircraft but aircraft of various capacities to match market size.

Today's hub and spoke systems are clearly an integral part of an airline's flight

operations. The statistics below give a sense of the magnitude and scope of hub and

spoke operations at Delta Air Lines.

Number of Hubs - 9 (5 major, 4 minor)
Percentage of system-wide flights originating or terminating at hub - 90%
Typical number of aircraft in a connecting bank - 30
Maximum number of aircraft in a connecting bank - 65
Typical number of connecting banks per day per hub - 8
Maximum number of connecting banks per day - 10

Recent bankruptcies of carriers who had been operating in the pre-deregulation

era points to the importance of the hub and spoke system as an indicator of sustainable

success in the 1980s. Those airlines which recognized the market and cost efficiencies of

hub operations from the outset have managed to survive the initial shakeout period.

Prominent examples are the "Big Three" - American, Delta, and United. Many airlines

who were late or negligent in establishing a strong nationwide hub and spoke system

have exited or are in the midst of exiting the industry. Airlines in this category include

Pan American, TWA, and Eastern. For Pan American and TWA it was a clear problem

of failing to grasp the importance of establishing feeder systems for their vast overseas

route networks. Eastern, possibly because it had no choice but to concentrate on

resolving labor issues, never grew its hub and spoke system beyond a couple on the East

Coast.

2.3 Is the Hub and Spoke System Obsolete?

In the past few months the cost effectiveness of hub operations has come into

question. The most outspoken person on this issue has been American Airlines Chairman

Robert Crandall. He feels that part of the responsibility for American's losses rests upon
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the failure to account for higher costs incurred when routing passengers through a hub

relative to the costs of point to point service. Specifically, Crandall argues that "hubs

require the presence of a large number of employees and an infrastructure to handle the

periodic bank of flights, which have sent airport costs soaring." 3 While this might be

true, a counter argument might highlight other contributing factors to losses like low

demand, ill-conceived pricing schemes, and overcapacity. Also, there are several studies

which completely contradict this notion. Kanafani and Hansen 4 find that "airlines with

strongly hubbed route systems incur roughly the same cost to provide a given amount of

transportation as those with less hubbed systems, controlling for other factors." In other

words, if the accounting were done correctly, one would find that the greater market

reach of the hub and spoke system versus point to point can be achieved with little or no

cost penalty.

Regardless of the whether this is the core problem for American Airlines or not,

Crandall's contention that hubs are more costly to operate in general should be addressed.

Indeed the key motivation for this study of demand driven dispatch is to evaluate its

potential for increasing profits in a hub and spoke network. A.J. Reynolds-Feighan in her

doctoral dissertation 5 on the effects of deregulation on route network concludes at one

point that "for these hubs (where the carrier has a dominant market position) a better

matching of equipment with passenger demand and route length is the most important

aspect that can lead to improved efficiency levels." For all intents and purposes, this

statement is an endorsement of the demand driven dispatch philosophy.

Point to point service is making a bit of a comeback today with new entrants like

Reno Airlines, Kiwi, and the yet to be certificated Family Airlines. One should

understand that this is not an indictment of the hub and spoke system. The markets these

airlines are targeting justify this level of service. Airlines operating hub and spoke

systems offer nonstop service in selected markets as well. However, hubs are by far the

most effective method to link the greatest number of smaller markets with the fewest
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number of aircraft. If hubs are not turning a "profit", the airline should reexamine the

allocation of seats to markets (aircraft size) as well as the way they are being used (D3)

before they abandon the hub and spoke system prematurely.
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Chapter 3: The Evolution of Demand Driven Dispatch

3.1 Problems Inherent in Current Aircraft Assignment Process

Airlines typically fix the flight schedule on either a monthly or seasonal basis.

The aircraft type assignments and tail number routings are also simultaneously set on the

basis of the outcome of a network optimization mathematical programming routine.

There are several drawbacks with this approach. Principally, the solution depends upon

either forecasted or projected demand. Forecasting relies upon methodologies which

estimate future demand based upon past traffic data while accounting for factors like

seasonality, day of week, special events like holidays or the Super Bowl, and the time of

day. Projections in this context are subtlely different in that they estimate demand for

new flight services or a changing competitive environment. Projections also are a

function of the aforementioned factors applied not to past traffic data, which would

reflect an invalid competitive model, but rather to theoretical demand relationships which

are based upon market size and flight frequency. In either case the results are never

wholly accurate.

Another inherent problem is caused by the use of deterministic data in the

assignment process. A more sophisticated approach might include some probabilistic

techniques to assess spill potential. Spill is a measure of the level of passenger requests

for air travel which cannot be met. However, current practice does not account for the

situation where, for example, a specific flight has mean demand of 100 (adjusted for the

various factors) where the actual demands are 65 and 135.

Demand-driven dispatch creates a flexible assignment environment which

converts this variability into an opportunity to increase profits rather than the settling for

the current situation of demand spill and low average load factors. In the above example,

a demand driven dispatch-controlled system would have advance knowledge of flights

where passenger demand was projected to vary significantly from the expected level.
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This information would come from a revenue management system which monitors

among other items deviations from historical or forecasted booking patterns for every

flight. A D3 optimization routine would then look for feasible aircraft assignment swaps

which would result in an increase in operating profit for the airline. A feasible

assignment would be one that in the context of the overall schedule could be executed

with little impact to other operational areas like crew scheduling and maintenance.

3.2 Demand Driven Dispatch as Means to Sell Airplanes

Demand drive dispatch was introduced by the Boeing Company primarily as a

vehicle which allowed the company to exploit its 'family of aircraft' product line

advantage. A manufacturer is usually selected on a repeat basis by an airline customer

for reasons like airframe/engine commonality, which reduces spare parts inventories and

maintenance costs, and savings on flight training. Over time each major aircraft

manufacturer has recognized the importance of the family concept and has acted to

expand their product line accordingly. Examples of manufacturers and their family

concept are show in Table 3.1. The aspect of flight training commonality across aircraft

Table 3.1: Airframe Manufacturers Aircraft Families
Manufacturer Aircraft Family Range of Capacities

Boeing 737-300,400,500 108-148
McDonnell Douglas MD81,83,85,87,88 115-145

Airbus A319,A320,A321 115-180
Fokker F70,F100,F130 70-137

British Aerospace RJ70,RJ85,RJ100 70-125

families is the most critical for D3 operations to be successfully conducted. The reader

may have noticed that any mention of changes to the scheduling of flight crews has been

absent from the discussion. This is not an unintentional omission. Under D3 the flight

crews will still be flying their preassigned flight legs regardless of the member of the

aircraft family at the departure gate. This can be only be done if aircraft families are
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designed with similar cockpits in order to qualify for certification by the Federal Aviation

Administration (FAA) in the category of "common type rating." This essentially means

that the flight crew is legally allowed to fly any aircraft in the family without any sort of

intervening training. Without this stipulation, D3 would not be possible.

3.3 Why the Airline Industry Needs D3

There is a checklist of characteristics whose presence, absence, or extent in an

industry will easily allow even a person with a layman's knowledge of economics to

quickly determine the prospects for long term profitability in that industry. Included on

this list are relative level of fixed costs, barriers to entry, nature of variability in channels

of distribution, perishability of the product, and differentiability among competing

products. Where does the airline industry fit in this picture? Before I answer this

question, let us examine industries/firms at two extremes and speculate about their

chances for success in economic terms. At one end of the spectrum is a software

company like Microsoft. Its products require little capital to develop (a few computers),

are considered in many cases to be the best available as well as industry standards, last

for years (MS-DOS and Excel), and are in high demand. Their fortunes at least over the

next few years are relatively secure. Now consider the independent fishermen. Their

boats are relatively expensive, anybody with the inclination and money can enter the

business overnight, both the supply of and demand for fish is variable, a fair portion of

their catch dies before reaching market, and a fish is difficult to brand. Under these

circumstances it is almost miraculous if a fisherman makes any money at all.

Unfortunately for the airline industry, it more closely resembles commercial

fishing than software design. For the airlines the situation is as follows. On the positive

side of the ledger, starting an airline is not a trivial task. While the used aircraft market

today is certainly a buyers market, the management of a new entrant still must deal with

Federal Aviation Administration operating approval, distribution costs through
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competitor-owned customer reservation systems, gate availability, and, in some cases,

landing slot restrictions. The good news for prospective airline moguls ends there. New

jet aircraft represent a large capital investment, anywhere from 20 to 120 million dollars

depending on the capacity and range. While the supply of seats can be controlled,

passenger demand at a disaggregate level is not highly predictable. An airline's product,

available seat-miles, perish upon departure if not sold. Any new service features can be

quickly copied by the'competition, effectively preventing branding.

Much of what is seen in the industry today is driven by these industry

circumstances. While fixed costs are high, marginal costs are low. This observation, in

combination with perishability and importance of low cost to the passenger for air

service, leads to the never ending fare wars. In an area of concern to this paper, airlines

have also invested heavily in revenue management systems in order to better cope with

the stochastic nature of passenger demand. Revenue management systems serve to

determine seat availability in different fare classes with the objective of maximizing

revenue. The number of seats allocated to each fare class is based upon the mean demand

for the fare class, the variance of the demand, and the fare itself. However, one must

realize that using a revenue management system is only an acknowledgment of

variability, not a solution to eliminate it. Even with revenue management systems in

place, on average over 30% of airline seats in the United States fly unfilled each day!

Demand driven dispatch is to aircraft seat supply like revenue management is to

passenger demand, but they are not substitutes for each other. To ideally maximize

profits a firm must be able to exert some control over both supply and demand. In fact,

differential pricing mechanisms are currently meshed with revenue management systems

to achieve this effect, but the results are not always desirable. For example, a passenger

wanting to buy a super saver ticket for a 9 AM flight from Los Angeles to New York

might be told that all the seats available at that fare on the requested date are sold. The

traveler now has several alternatives: buy a more expensive ticket on the desired flight,
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fly at a less desirable time (e.g. a "red eye" or perhaps the same flight the next day), try

the competition, or not fly at all. Every one of these alternatives from the airline's

perspective should represent a failed opportunity to meet a customer's need.

Additionally, the prospective passenger's ultimate decision will affect demand statistics

which the airline relies upon for future forecasting. However, the airlines currently have

no way of knowing whether the passengers who flew on today's 9 AM flight really

wanted to fly on the flight or whether it was an "undesirable alternative." In this way,

variability is introduced into the system with no way of flushing it out. D3 will break

this cycle because aircraft capacity would be moved to conform with basic demand

patterns.

3.4 The Rubber Airplane

In 1986 an internal memo at the Boeing Company was written describing an

operating concept based upon a "rubber" airplane, 6 A few years later, Berge and

Hopperstad of Boeing wrote what is the seminal paper on demand driven dispatch, the

formal name for the "rubber" airplane concept.2 As a reminder, demand driven dispatch

uses demand forecasts from the revenue management system and subsequent passenger

bookings to dynamically adjust aircraft assignments as the date of departure approaches

to optimize profit. How this is done will be developed in a subsequent chapter. In their

paper Berge and Hopperstad conclude that demand driven dispatch could improve airline

earnings and could be feasibly applied to any route network regardless of its fundamental

structure or size. Other noteworthy conclusions from the paper are:

- The major elements necessary to run a demand driven dispatch operation, namely
aircraft with common flight crew ratings, reservations systems capable of
forecasting demands and flexible enough to accommodate aircraft changes, and
computing capability, are all currently available.

- Operating profit on hub and spoke dominated networks can be improved in the
range of 2 to 4 percent.

- The source of the benefits comes not only from increased revenue but better
utilization of aircraft. In some case studies the latter was even the majority
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component. This has implications for fleet planning as well. There was some
indication that demand driven dispatch with smaller aircraft will generate as much
revenue as the fixed assignment method using larger aircraft. Smaller aircraft
require less capital investment.

. Relative to the fixed schedule, load factors (the number passenger miles flown
divided by the number of seat miles flown) rise by a couple percentage points
while spill (demand not satisfied because of unavailability of a fare product) dips
slightly.

. Large-scale aircraft assignment problems can be solved heuristically to near
optimal levels in a short time.

- Even with switching of aircraft assignments, tail number-specific activities like
maintenance can be accomplished.

The demand driven dispatch model and case studies used in preparation of this report will

be presented in the next section. Differences and similarities with the Berge and

Hopperstad model will also be discussed.
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Chapter 4: Demand Driven Dispatch Simulation

4.1 Simulation Overview

The simulation used to test the potential of demand driven dispatch under a

variety of conditions is essentially composed of two separate functional modules, the

revenue management module and the aircraft assignment module, which function

independent of each other except during the exchange of data. Each module will be

described in detail below. Before this is done, a flowchart of the integrated process

(Figure 4.1) is presented.

Each simulation consists of a set of 200 iterations of the complete booking and

assignment process. The number of iterations is a compromise between simulation run

time (30 minutes per run on a multi-user VaxStation 9000) and data points needed to

demonstrate statistical significance of results. As each iteration commences, the revenue

management module at the initial booking revision point evaluates probabilistically the

likelihood of passenger bookings by fare class and leg for the specified aircraft capacities

for the entire booking process. Later revision points will subtract seats already filled

from the various capacities.

With this information, initial booking limits are set and revenue estimates become

available. Revenue management systems in general seek to maximize the revenue

generated by passenger bookings by attempting to balance the opportunity cost of an

empty seat which could have been sold to a low fare, discretionary passenger against the

ability to offer a seat to high fare, non-discretionary customer who typically books closer

to the departure date. It should be noted that the revenue management system does not

attempt to fill each seat in the aircraft since this will not likely maximize revenue. A

thorough explanation of the revenue management methodology used in this paper,

Expected Marginal Seat Revenue (EMSR) can be found in Belobaba 7 . EMSR is a
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Fig. 4.1: Flowchart of Demand Driven Dispatch Simulation
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heuristic model for maximizing revenue on the flight leg level given nested fare classes.

Briefly, the general concept of EMSR is that expected revenue is the product of the

probability of the unconstrained passenger demand for a seat in a specific fare class and

the fare associated with that seat. The example in Table 4.1 shows why holding a seat for

Table 4.1: Simple Revenue Management Example
assen er 1 Passen er 2

Booking Probability 0.20 0.80
Fare $1000 $200

Expected Revenue $200 $160

a passenger who is less likely to book could make sense from a revenue standpoint. Even

though a particular seat held for Passenger 1 will remain empty 80% of the time, on

average the airline will come out $40 ahead in revenue than if it sold the seat to Passenger

2. This example illustrates that it is not always obvious from which fare class the next

most valuable expected revenue seat will come.

Costs of operating the different type of aircraft are then calculated considering

performance characteristics of the aircraft (expected fuel burn for a flight leg based upon

operating weights, block time) and the expected passenger load. Referring to the

example in Figure 4.2, this latter figure will be always be less than the aircraft seating

capacity. The magnitude of the difference will grow with aircraft size since the

probability of booking successive passengers trends downward. The expected passenger

curve is not smooth. While not obvious in Figure 4.2, it is actually quite jagged because

the probability of a booking a passenger is not the dominant concern. Maximizing

revenue is the goal. In contrast, Figure 4.2 shows that the derivative of the expected

revenue line will always be negative, a direct result of the revenue management system

prioritizing seats on the basis of revenue. Contributions to operating profit are then

simply the difference between the expected revenues and costs. Variable costs for items

like meals need not be included since they are the same regardless of the type of aircraft

the passenger ultimately flies. They are also small enough in magnitude (a few dollars)
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Figure 4.2: Expected Revenue and Passenger Load versus Aircraft Capacity
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so that we can reasonably expect the revenue from any seat sold to cover them.

The next step in the process is the communication of the revenue and cost

information to the optimization module. The optimization module within the bounds of a

set of specified operational constraints then finds the aircraft assignment combination

which is expected to maximize profit. Some of the studies which will be discussed later

in the paper look at the effects on profits of "turning off' the optimal assignment module

at different points in the booking cycle. A decision box modeling this option appears in

the flowchart for this reason.

With booking limits set and aircraft assignments completed, the simulator

proceeds to randomly generate passenger bookings based upon the probabilistic demands

that have been fed into the revenue management model. The outcome statistics for events

like seats booked, revenue earned, and demand spilled are then tabulated. The simulation

then returns to the initial step of estimating demands for the remaining periods and so on.

This loop will be executed at every booking revision point. When the final revision point

is reached, the final statistics for the run are saved for post processing, the model is reset,

and the next iteration commences.
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4.2 Simulation Specifics

We have tried to simulate as realistically as possible the booking patterns, fare

classes, fares, costs, etc. that one is likely to find in typical hub and spoke operation of a

major airline. The revenue management module is an extension of the revenue

management and booking process work done by Williamson 8 . The demand driven

dispatch module was written specifically for this thesis. A comparison of characteristics

between the revenue management model in this thesis and the one utilized by Boeing

appears in Table 4.2. While the Boeing studies were designed to highlight general trends

over an entire route network, this model has purposely been created to encompass more

revenue management detail with the goal of characterizing parametric changes in demand

driven dispatch performance in a hub and spoke network. The greater number of booking

revision points and fare classes used in my revenue management module will assure that

any discernible differences in profit will be largely attributable to the demand driven

dispatch optimal assignment routine. With this level of resolution, EMSR revenue

benefits will approach the possible maximum magnitude. 1 1 Because the booking process

and fare class definitions more accurately reflect actual airline practice, the magnitudes of

the numerical differences are also likely to be closer to what would be expected under

realistic conditions.

A major feature of the Boeing model was the use of a continuously moving

"planning window." The planning window extended one week into the future. In this

concept the demand driven dispatch routine searches throughout the next seven days of

the schedule for globally optimal switch opportunities and makes appropriate assignment

changes. In this manner schedule feasibility will always be assured while permitting

switching anywhere in the system.

Schedule feasibility in the demand driven dispatch version in this thesis is assured

because the aircraft are on a daily cycle. While the flexibility of switching outside the

hub is a nice feature, one should realize that both versions of demand driven dispatch are
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constrained in some way. In the Boeing version, future decisions are dependent upon

previous decisions. The degree to which this is so depends upon the number of days

between decisions. Given that a decision has been made for Day 1, the ability to

optimally assign aircraft to maximize profit from Day 2 is somewhat compromised. The

chances of having aircraft placed optimally for Day 10 operations are much better. In this

model, the slate is wiped clean each day, but we contend with the same aircraft being

assigned to the outbound and inbound leg.

As the number of legs the aircraft must fly before returning to the hub increases,

the effectiveness of the thesis method decreases because of demand imbalance. Consider

a plane which must fly to other cities beyond the initial spoke destination before returning

the hub for the next connecting bank. The probability of one aircraft type being well-

matched in terms of capacity to each of the legs is not high. For this reason, the aircraft

itineraries in my simulation are restricted to fly only roundtrips between a hub and spoke.

Even so, in all likelihood one would expect some demand imbalance even over a single

roundtrip. Several of the scenarios to be examined in this thesis will address the demand

imbalance issue. Unless an airline has an infinite supply of aircraft, a compromise on

assignment flexibility will exist in every operational scheme in one form or another.

Finally, the Boeing model penalizes spill and denied boardings. Spill relates to

the number of passengers whose requests for a specific fare could not be satisfied.

Denied boardings occur as a consequence of flights being oversold or, in the case of

demand driven dispatch, swapping a smaller aircraft for a larger aircraft on a leg whose

bookings exceed the capacity of the smaller aircraft. The costs of spill and denied

boardings are based upon things like lost revenue potential and passenger inconvenience.

Quantifying these costs is a difficult and sometimes arbitrary exercise. The demand

driven dispatch routine in this thesis does not take the costs of these two items into

consideration when solving for the optimal assignment. Spill data will, however, be
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recorded, and the specific formulation of the assignment algorithm (See Explanation of

Constraints in Section 4.2.4.2) precludes denied boardings.

Table 4.2: Comparison of Study Simulations
Boeing Generic MIT

Case Study Hub and Spoke Model

Revenue Management EMSR EMSR
Methodology
Assignment Time Frame Planning Window Daily Cycle
Booking Revision Points 3 10
Fare Classes 2 7
Spill Penalized Measured
Denied Boardings Penalized Not Allowed

4.2.1 Hub and Spoke Network

A daily cycle at a mythical Dallas-Fort Worth "in and out" connecting hub with

15 spokes will be assumed in all studies. Because the flight legs outbound from and

inbound to the hub will be purposely constrained to be flown by the same set of physical

aircraft, the number of required aircraft is equivalent to the number of spokes. This set of

aircraft will be defined as the switching pool. The daily cycle begins during a connecting

complex and not necessarily at a specific time of day. Because aircraft flying in hub

networks often overnight in spoke cities, the daily cycle might be defined by the 24 hour

period commencing at the 5 PM connecting complex as opposed to the time the airport

opens in the morning. The simulation aircraft are Boeing 737s with an equal number (5)

of each type assigned to the pool of aircraft available for switching. The passenger

capacities for each aircraft in the series are shown in Table 4.3 The spoke cities were

selected on the criteria that they have varied distances from the hub, and that operations

with every member of the 737 family were possible. Baseline aircraft

Table 4.3: Aircraft Capacities
Aircraft Capacity
737-300 128
737-400 148
737-500 108
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assignments for both the outbound and inbound leg and flying distances are shown in

Table 4.4. Baseline demands in these markets, which will be discussed later in Chapter 6,

will be influenced by these assignments. This specific assignment combination attempts

to evenly allocate aircraft types over the flight distances and will remain the same in all

static scenarios. The static scenario simulations will be used for comparison with

demand driven dispatch scenario simulations and are meant to represent the fixed

assignment operations currently practiced by airlines.

Table 4.4: Spoke Cities and Baseline Assignments
Spoke City Distance (Miles) Baseline Asinnt
Austin TX 183 737-500

San Antonio TX 246 737-300
Wichita KS 329 737-400

Albuquerque NM 569 737-500
Denver CO 645 737-300
Phoenix AZ 868 737-400

Mexico City MEX 935 737-500
Salt Lake City UT 988 737-300

Las Vegas NV 1050 737-400
San Diego CA 1171 737-500

Los Angeles CA 1235 737-300
Oakland CA 1457 737-400

San Francisco CA 1465 737-500
Portland OR 1616 737-300
Seattle WA 1660 737-400

Because the flight legs in the base case vary greatly in distance, it is reasonable to expect

that over the course of a daily cycle an airplane could fly more Dallas-Austin legs than

Dallas-Seattle legs. This has been reflected in my model by weighting spoke city service

frequency according to distance from the hub. Table 4.5 shows the classification of hub

flight segment lengths into 3 general categories and the assumed daily cycle service

Table 4.5: Spoke Frequency Weighting Factors
Distance Category Mileage Range Number of

Daily Frequencies
Short Haul 0 to 350 4

Medium Haul 350 to 1000 2
Long Haul Over 1000 1
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frequencies. The demand driven dispatch simulation studies done for this thesis only

consider assignments made at the beginning of a daily cycle for the entire cycle. In the

case of short haul and medium haul flights, each of the multiple flights are equivalent in

the sense that the simulated demands are the same. Aircraft assignments were extended

to cover all of the flights in multiple frequency markets over the daily cycle. In reality, it

would be possible to consider aircraft switches at times of the day other than the when the

full complement of aircraft are in place to execute the main connecting bank. Figure 4.3

shows the airport load diagram for our mythical hub. Each peak represents a demand

Figure 4.3: Load Diagram for Simulation Hub
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driven dispatch opportunity for switching of aircraft. Swapping within these peaks would

be desirable in order to avoid the problem discussed earlier where aircraft are assigned to

many flight legs with non-uniform demands. As long as demand forecasts are available

for each occasion of service in multiple frequency markets, swapping internal to the daily

cycle can be readily written into the D3 assignment routine.

4.2.2 Revenue Management Module

Since the revenue management module in this simulation functions largely

independent of the aircraft assignment module, the simulation can be run with any
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revenue management methodology without modification. The EMSR nested leg heuristic

was chosen because it has been widely discussed in academic literature, is used in many

actual airline revenue management systems, and most importantly, was used in the

Boeing studies. While D3 performance might be better in concert with other revenue

management methodologies, it is not the point of this study to search for an optimal

match.

The specification of 10 booking limit revision points is similar to what is done in

present revenue management systems. The spacing of the revision points is typically one

week starting at 8 weeks before the flight with the exceptions to this pattern at the

beginning and end of the process. The initial "revision" is on the day the flight becomes

available for bookings (330 days before departure). The final revision usually occurs 3

days before the flight.

Passenger demands were generated assuming a Poisson arrival pattern. These

demands are defined for each booking period which commences after fare class purchase

limits have been set at the corresponding booking revision point. The Poisson arrival

pattern allows for random arrivals (in this case requests by passengers for various fare

class products) with the restriction that the mean arrival rate k be specified. Also, the

arrival events are independent of each other, and the probability of arrival in an interval

At is proportional to At. Given these assumptions, it can be shown that the distribution

of inter-arrival times is exponential 9 . The probability of n arrivals occurring in an

interval of length t under these conditions is defined by 10

P(n) =(Xt)et (n = 0,1,2,...)
n!

This distribution is the Poisson distribution. The use of the Poisson distribution in the

simulation of a booking process is described in Williamson 8 . Information pertaining to

the construction of the EMSR heuristic and its revenue impact can be found in Belobaba7

and Mak 1 .
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4.2.3 Aircraft Costs and Performance Characteristics

Estimates of total block hour aircraft operating costs minus fuel for the 737 series

of aircraft were provided by the Boeing Company. Fuel burn and flying times were

estimated using performance curves from 737 Operations Manuals12, 13 ,1 4 with the

following cruise condition assumptions:

. Long range cruise planning (M=.78)

. Flight Level 330

. Both engines operating
- Cabin air-conditioning on
. M=.74 climb and descent

Weight of an individual passenger with baggage is 200 lbs. The cost of a gallon of jet

fuel is 0.70 USD. Block hours were determined by adding 30 minutes of taxiing time to

flying time. Other aspects, like seating configuration, operator's empty weight, and

engine model, were selected to represent the options most often requested by airline

customers.

4.2.4 Aircraft Assignment Module

This is the key aspect of the demand driven dispatch scheme. Optimal assignment

decisions were determined using output from the following linear program. In the current

booking period p, we seek to

Maximize Cijxij

P f

where Cij = BKDREVjn+ I EXPREViin - ACCOSTij
n=1 n=p+1

Subject to:
xij=NACi (1)

xij=1 (2)

CAPixij BKDPAXOj (3)
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CAPixj>BKDPAXIj (4)

O!xijs1 (5)

i = 1,2,3 and represents the three different aircraft types
j = 1,2,...,15 and represents the 15 spoke aircraft itineraries from the hub
n = 1,2,...,10 and represents the number of booking periods

where
Cij is the contribution to profits expected with aircraft type i from

flying out of and back to the hub on the spoke connecting hub with
city j.

BKDREVj is the booked revenue on the roundtrip legs on spoke j over
the booking periods n = 1 to p. Booked revenue is equal to the
sum of the fares paid by each booked passenger.

EXPREVijn is the expected revenue figure from the revenue management
system for the roundtrip on spoke j for an aircraft with capacity
CAPi from the next booking period n = p+1 to the final booking
period n = f.

ACCOSTij is the total aircraft operating cost for aircraft type i for the
roundtrip on spoke j. ACCOSTij is a function of aircraft
performance characteristics, the price of fuel, weight of passengers
(firm plus expected bookings) and baggage, and roundtrip flight
mileage.

NACi is the number of aircraft type i in the switching pool

BKDPAXOj is the number of bookings on the hub to spoke city j leg

BKDPAXIj is the number of bookings on the spoke city j to hub leg

The decision variables xij are not specified as integer. However, because the linear

programming formulation represents a balanced transportation problem, we are assured

that the optimal solution will have integer values as long as the supplies and demands are

integers15 . This is indeed the case. The "supplies" are the numbers of each aircraft type,

and the "demands" are the requirements that one aircraft be assigned to each flight leg.
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4.2.4.1 Explanation of Decision Variable Coefficients

The decision variable coefficients Cij reflect the total operating profit obtained

from operating a specific aircraft type on the roundtrip legs. Since our model assumes

that the same tail number aircraft must fly the inbound and outbound leg, the revenues

and costs from the inbound and outbound leg can be collapsed into one variable. There

are three components of the coefficient: the booked revenue for all previous periods for

the number of passengers that have been booked on each leg, the expected revenue for the

remaining periods for each aircraft type on each leg, and the cost of operating each

aircraft type on each leg. Note that the BKDREV figure, which accounts for revenue for

a specific leg accumulated in all previous booking periods, does not vary by aircraft type.

Thus, if on a particular leg there are 130 passengers booked up to the current booking

revision point, the corresponding BKDREV will be a component in the coefficient for the

108 seat 737-500 in the present aircraft swapping analysis. Constraints 3 and 4, however,

preclude the 108 seat aircraft from being assigned to this particular set of inbound and

outbound legs.

4.2.4.2 Explanation of Constraints

Constraint 1 specifies that each aircraft in the switching pool must be assigned.

Constraint 2 prevents the assignment of more than one aircraft to an outbound/inbound

itinerary. Constraints 3 and 4 forbid the assignment of an aircraft to a leg whose capacity

is less than the number of bookings on both the outbound and inbound flights. The

consequence of this is that denied boardings (i.e. overselling) is not allowed. While

overbooking strategies were not used in this study, expanding the capability of the

simulation to include this feature would simply require multiplying capacities at each

booking revision point on each leg by an "overbooking factor" and adjusting bookings for

cancellations.

- 33 -



4.2.5 Fares and Booking Patterns

Fares in each fare class were derived from flown revenue figures in each of the

actual origin-destination markets. This data was provided to MIT by Delta Air Lines.

The seven fare classes represent the range of fare products available in the coach cabin of

the aircraft. In theory the fare levels are a function of mileage with prescribed discounts

applied to fare classes in proportion to the level of restrictions. Twenty-one day advance

purchase and Saturday night stay are examples of restrictions placed on the cheapest

tickets. Flown revenue per passenger in a fare class often differs from the "formula" due

to circumstances like competitive pressure or promotional programs. Booking patterns

by fare class were also constructed based upon actual booking trends (See Chapter 5).

Generation of demands in the simulation via a Poisson process requires the

definition of X, the mean arrival rate. A Poisson random variable process has the

property that X = a2 where c2 is the variance. Obviously the mean arrival rate of

booking requests in each period in each fare class on each leg should be equal to the

similarly defined mean demand data t used by the revenue management module (X = ).

Therefore, in order to have the revenue management module set fare class booking limits

which faithfully reflect the random nature of the booking process, the variance of

passenger booking arrivals must equal the mean demand.(a 2= pt) The point of this

derivation is to show that once the demands are specified (forecasting from historical

data), the use of a Poisson process for simulation implicitly fixes what the variance of the

demands should be. If the actual variances differ greatly from the Poisson variances, then

one should consider another probability distribution function to model the process.
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Chapter 5: Practical Aspects of D3 in a Hub Environment

5.1 Airline Reluctance in the United States

Though some major airlines in the United States have expressed interest in the D 3

philosophy, not a single one has yet incorporated D3 into their daily operations. D3 is

clearly a radical idea, and part of the blame for its lack of acceptance has been a less than

thorough evaluation by the airlines of the changeover and long term costs of running a D3

assignment process relative to the fixed aircraft assignment mode. Berge and Hopperstad

address the major issue of aircraft maintenance and conclude that multiple opportunities

for maintenance would still exist in a D3 environment. However, there are many other

practicalities which must conform to D3 without adverse effects on operating costs and

passenger expectations. It is an all or nothing proposition as well. If a single aspect of

the airline operation cannot be performed acceptably in a D3 environment, then it is

doubtful that an airline would ever implement the methodology. The necessary

adaptations of current practices in fundamental operational areas which need to be made

to allow for D3 operations are the subject of the following section of the thesis.

5.2 Scheduling

At every point in the booking process the reservation and revenue management

system must have knowledge of the number of seats on the aircraft which will be

assigned to each flight leg. This condition also must be met by D 3 . Upon initial

scrutiny, this condition seems to impose a difficult obstacle to the implementation of D3 .

On the one hand we are saying that in a D3 system the aircraft assignments are

potentially changing at each booking revision point. However, at the same time, we must

always know the complete set of available specific leg capacities. A simple way to

bridge these two restrictions in a hub and spoke system is to create fixed switching pools

of aircraft from which the D3 decision tool can then assign optimally to flight legs.
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Additionally, the exact composition of the pool (i.e. the number of each aircraft family

member) must not vary from day to day. This suggests two basic tail routings (Figure

5.1) which I have termed the autonomous and linked hybrid hubs.

Figure 5.1: Hub Aircraft Routings

Autonomous Hub Linked Hub
Hub
Spoke/Line Station

In the autonomous hub, specific tail numbers are assigned to the hub so that every

24 hours the same aircraft are collocated at the hub for possible assignment switches. In

a linked hub system, identically composed pools of aircraft travel from hub to hub over

the daily cycle. The principal benefit to this latter form is a flight schedule which will

more likely meet marketing requirements for ideal arrival and departure times when the

connecting banks through the hub serve short and long haul flights among city pairs

spread across several time zones.

Today's major airline hub and spoke networks in the United States are actually a

superimposition of the autonomous and linked concept. Therefore, running a D3 system

would in all likelihood require little alteration to current flight schedules. The ultimate

extension of assignment flexibility for this model would be similar to the switching posed

by Berge and Hopperstad. As stated earlier, their Boeing model allows for the possibility

of switches anywhere in the route system, not just the hub. For the purpose of analyzing

the impact of non-hub switching within the framework of this simulation, a constraint
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assuring that the composition of the pool of aircraft at the hub remain unchanged would

still be required. Figure 5.2 shows an example of how this switching could be

accomplished. At spoke station A aircraft types 1 and 2 are switched. In order to meet

the composition restriction, the D 3 routine must also recommend a switch of types 1 and

2 at another station (B) in a way that the overall profit to the airline is still increased.

Of course the switches at stations A and B will force further switches at other

spoke stations which must be feasible and profit enhancing. Spoke switching is a

completely feasible activity at an airline today with the aid of the multitude of scheduling

applications on the market. For readers interested in this aspect of the problem, Berge

and Hopperstad discuss at length the complexity and associated practicalities of

identifying switching opportunities over the entire route network.

Figure 5.2: Non-Hub Switching

Station B

Hub
Station A

Aircraft Type 1
/r-r- - Aircraft Type 2

The results in this report are based on an autonomous hub system. The

autonomous hub was chosen because it is a reasonably simple introduction to D3 and the

order of magnitude of the payoff could be quickly quantified over a variety of demand

characteristics. Airlines would probably seek to implement more complicated D3

strategies once convinced of its worth.
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5.3 Flight Crews

For each aircraft type in an airline's fleet, pilots bid on flights with priority given

to those with the highest seniority. In D3 there should be no major change to the trip bid

process since the pilots can still fly their desired itineraries. The schedule will still be set

well ahead of the departure date. However, as mentioned previously, there is a

fundamental assumption being made with regard to this issue. Families of aircraft like

the Boeing 737 carry similar type ratings. This means that pilots are legally allowed to fly

any plane in the series without recurrent training or a familiarization check on a

simulator. With D3 it is possible that over the course of the day/trip the flight crew might

end up flying each aircraft series several times but never fly the same series back to back.

A potential safety concern might arise with continued exposure to slightly different

aircraft handling characteristics and critical performance parameters like rotation, takeoff,

and landing speeds. It is felt that this obstacle can be overcome since the aircraft in the

737 or any other family are by definition very similar. Also, adjusting to a new aircraft

would not require additional pilot workload, just additional vigilance. This might even be

a desirable action because changing aircraft types frequently might reduce the buildup

over the day of complacency and fatigue which could result in operational mishaps.

5.4 Cabin Crew

This issue is actually more complicated than the flight crew issue since the FAA

mandates the minimum number of cabin staff which must be assigned to an aircraft on

the basis of passenger load and aircraft capacity. Under D 3 an airline might find itself in

the situation where aircraft assignments are changed because of a surge of demand late in

the booking process. Like pilots, flight attendants also bid on trips on the basis of

seniority. Flight attendant union rules likely prohibit the last minute forced switching of

personnel.
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A way to avoid this situation is to extend itinerary bidding rights only to the

number of most senior flight attendants needed to minimally staff all aircraft in the pool.

Those attendants low in seniority would not have specific itinerary bid privileges but

would be able to bid on itinerary lengths, dates, etc. With this system in place, these

attendants could then be assigned as late as the day of the flight. Since the aircraft for a

specific pool would be collocated at regular intervals, these "pool attendants" could be

reassigned to other aircraft as necessary and would stay with the aircraft pool until it

returned to a personnel switchout station (i.e. a major hub).

5.5 Ticketing/Seat Assignment

Since the exact seating layout for a flight might not be known until the day of

departure under D3 , some consideration must be given to how seating assignments would

be handled. A proposed solution requires the renumbering of aircraft rows so that a

boarding pass sent to a passenger would remain valid regardless of when it was issued or

of the final aircraft assignment. Seats would also have to be assigned to passengers from

the rear section of the plane to the front. The desire to handle seat assignments in this

manner can be explained with the help of the table below. In the initial stages of the

booking process, it is possible that any of the three aircraft types could hold the current

Table 5.1: Alternative Row Numbering Scheme
737-40T 25 1 5N
737-400 25 1 25
737-300 21 5 25
737-500 18 8 25

assignment for a flight leg. In this situation no seat should be assigned with a row

number less than 8. With each booking period aircraft assignments will be reevaluated

and larger aircraft will be made available in most cases to those legs whose projected

demand is greatest. When the number of passengers booked on a leg exceeds the

minimum capacity of the smallest aircraft but is less than the largest aircraft, seat
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assignments can be made for rows 5 through 7. Assuming that bumping of passengers is

not allowed, passengers assigned to rows 5 through 7 will always hold a valid boarding

pass since it is not possible for their flight to be assigned the 737-500. The same

argument holds once bookings for a flight exceed 128 (the capacity of the 737-300). Any

passenger assigned a seat in rows 1 through 4 will know that the assigned aircraft cannot

be any one other than the 737-400. On the other hand, a passenger assigned to a row

higher than row 8 cannot predict in advance which aircraft from the 737 family will be

assigned to his/her flight.

Booking from the rear of the aircraft also carries with it the advantage that

passengers who book latest in the booking process, i.e. the high-yield passenger, will get

a seat near the front of the aircraft. This creates a last-in, first-out situation which is

considered desirable by the business traveler. However, in situations where a flight is

being heavily overbooked, an airline would likely require seats to be assigned at the gate.

5.6 Ground Servicing

This aspect of operations will be largely unchanged with minor exceptions. In the

case where specific aircraft are assigned to a single hub, the destination of the next flight

leg for an aircraft at a spoke station will always be the hub. Since the aircraft type might

vary from day to day, fueling requirements will be different. However, this is usually the

case anyway because of variations in enroute weather, passenger load, etc. What will

also be changing frequently is the aircraft destination beyond the hub. For example, on

one occasion the aircraft will arrive at the hub as part of a connecting complex and depart

for City A. The next day the final destination might be City B. To expedite passenger

processing at the hub, it is advantageous to place bags going to the final destination at the

rear of the cargo hold to minimize baggage handling time at the hub. Ground crews

should be aware that the final destination, and thus the direct flight that the aircraft
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represents, will likely change on a daily basis. Thus, the switches that will be made at the

hub must be known before the incoming flights depart.

In general, the communications structure of the airline's organization would have

to be capable of quickly updating information systems and personnel on the multitude of

changes likely to occur each day. This is not a major problem since airlines tend to be

quite sophisticated in information systems technologies anyway. If a small airline is not

capable of disseminating updated information to all its line stations, it probably also does

not have the sophisticated revenue management technology and staff necessary to run in a

D3 environment.

5.7 A European Example

The non-overseas operations of many airlines in Europe are conducted in a

manner analogous to the hub and spoke model described in this thesis. One airline,

KLM, applies D3 to their European network through their Amsterdam hub. The process

KLM uses to identify switch opportunities is similar to that embodied in this simulation.

Based on demand data from the revenue management system, certain legs are flagged for

service by larger aircraft. Information on assignment recommendations is sent to the

scheduling department with a list of possible replacement legs for the smaller aircraft.

In an interesting twist, KLM swaps assignments among 737-300s, 737-400s, and

Airbus A310s. They do not operate 737-500s. Because of a restriction imposed by the

airline's agreement with its pilots concerning itinerary changes, assignments must be

fixed 10 days in advance of the flight. Itinerary changes occur in this case because the

Boeing and Airbus aircraft do not carry similar pilot type ratings.

While results from D3 have not been quantified, the fact that KLM has been using

D3 for some time must attest to their satisfaction. Even with the additional crew

scheduling obstacle, KLM has demonstrated that D3 operations are possible in an actual

airline environment. Airlines in the United States should take notice.
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Chapter 6: Outline of Study Scenarios

Two types of studies on the impacts of demand driven dispatch were conducted

for this thesis. The first block of eight studies span a simulation matrix in three

dimensions: load factor distribution, leg demand balance, and booking pattern. Within

each dimension there are two assumption states which presents a total of 23 = 8

combinations. Each of the studies compares results over a range of demand multipliers

between a fully dynamic simulation (aircraft assignments evaluated in every booking

period) to the corresponding static simulation where aircraft assignments are invariant.

Demand multiplier and leg load factor are defined as

Demand Multiplier = Scenario Demand , and
Baseline Demand

Leg Load Factor = Bookings
Capacity'

The other group of two studies look at the sensitivity of the demand driven dispatch

process itself to varying the number of booking periods when aircraft assignments may be

revised.

6.1 Dimension One: Load Factor

Average load factors (demand multiplier = 1.0) were selected to be 0.65, a

representative annual average figure for U.S. airlines. This was modeled two ways. The

first method assumes that a route planner is deciding among aircraft in the fleet which

should serve a leg on the basis of achieving a load factor of 0.65. Working in reverse, the

mean demands on a leg between the hub and the spoke were "found" to have values equal

to 65% of the capacities of the three aircraft types. Assigning aircraft to the inbound and

outbound flight itinerary could then simply be done by inspection. With five aircraft of

each type, the demand distribution would have several peaks as shown in the histogram in

Figure 6.1. The mean demand in this scenario is 0.65 * 128 = 83.2 passengers.
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Figure 6.1: Planned Load Factor Alternative

Histogram of 65% Planned
Load Factor Demands

7
6
51

70.2 83.2 96.2

Passenger Demand

The second approach was to smooth out demand by assuming a normal distribution with

the same mean as the first alternative of 83.2 and a k factor of 0.3 The k factor is defined

as
k factor = Standard Deviation

Mean

The 15 leg demands were created by selecting equally spaced probability percentiles

along on the normal distribution curve between 15 and 85 percent. The distribution of

demands in this instance would resemble Figure 6.2. Aircraft were assigned such that the

smallest capacity 737 would fly the legs with the five lowest demands, the mid-sized 737

Figure 6.2: Distributed Load Factor Alternative

Distributed Demand
Mu=83.2, k=0.3

P n e

Passenger Demands
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the legs with the next five larger demands, and the largest 737 the legs with the five

greatest demands.

6.2 Dimension Two: Balance of Leg Demands

The baseline assumption for this study was to assume that the mean passenger

demand on the leg from the hub to a particular spoke would be equal to the demand from

that spoke city to the hub. This could be applicable to the situation where the daily cycle

for aircraft assignments begins in the morning and ends in the evening of the same day.

The level of demand for air travel during these periods is often markedly higher than at

other times during the day. Because of the peaking characteristics shared by both time

periods, the assumption that demand would be roughly equivalent over time on the basis

of balance of flow considerations does not seem unreasonable. If the hub served many

nearby markets (i.e. predominantly local traffic), one might expect this trend to be

reinforced because of a commuter-type effect.

In other situations, the assumption of bi-directional demand equality might not

hold. If the aircraft daily assignment cycle begins and ends in the middle of the day,

there is not likely to be a consistent pattern of demand in each direction common to all

market pairs, especially if they are separated by one or more time zones. Another

argument against equal leg demands is that in a multi-hub network where much of the

passenger traffic is connecting through the hub, there are several itinerary options

connecting spoke cities. For example, if many passengers preferred for some reason to

connect through Dallas on their way from Los Angeles to Boston and through Chicago on

the return trip, the demand on the Los Angeles-Dallas leg might vary from the demand on

the Dallas-Los Angeles leg.

There is also a day of the week effect. Consider a market where business travel

predominates. Very few business trips are likely to be initiated Friday morning but a

large number will likely conclude before the weekend. Thus, demand might be lower in

the morning and higher in the evening relative to the average over the entire week.
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In some sense there is probably a lot of "canceling out" of these effects, but the

imbalance applicable to the situation modeled in this thesis is not likely to vanish

completely. To examine what impacts the demand imbalance might have on demand

driven dispatch, alternate demand data scenarios for the simulation were generated where

the demand on one leg of a closed hub-spoke flight itinerary was increased by 10% and

demand on the other leg was decreased by 10%. Because the same aircraft is constrained

to fly both legs, it does not matter which leg demand is increased and which is

suppressed.

6.3 Dimension Three: Booking Patterns

Booking patterns or curves describe the demand for fare class products over the

booking process. If the overall percentage of passengers seeking a seat in fare class i is

FCi and the fraction of overall bookings which occur in fare class i in booking period j is

PERij, then the demand DEMj for a particular fare class i in period j with a cabin level

demand DEM is DEMij = DEMx FC x PERij. Two booking patterns, one which

exemplifies a typical booking demand pattern on short and medium haul fights and

another more representative of a booking pattern shifted closer to the date of departure,

were chosen for the study. Tables 6.1 and 6.2 contain the percentage breakdowns of

aggregate demand into fare class and booking period demand. Fare classes are arranged

in descending order by fare. The accompanying Figure 6.3 shows the cumulative buildup

of bookings over all fare classes throughout the booking process. One can observe in the

late booking curve the noticeable shift of the curve to the right relative to the typical

booking curve. This represents a difference in total bookings on a specific day before the

departure of the flight.
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Tables 6.1 and 6.2: Simulation Incremental Booking Curves

Table 6.1: Typical Booking Pattern
Days Before Departure

49 42 35 28 21
0.12 0.03 0.03
0.08 0.05 0.05
0.10 0.06 0.08
0.32 0.08 0.08
0.36 0.09 0.09
0.24 0.05 0.05
0.22 0.06 0.06

0.05 0.05 0.06 0.09
0.05 0.05 0.09 0.11
0.10 0.12 0.13 0.16
0.08 0.10 0.10 0.08
0.08 0.10 0.10 0.08
0.08 0.12 0.15 0.17
0.09 0.12 0.18 0.20

14 7 3 0
0.18 0.12 0.27
0.20 0.14 0.18
0.20 0.02 0.03
0.10 0.04 0.02
0.06 0.02 0.02
0.06 0.04 0.04
0.02 0.03 0.02

Table 6.2: Late Booking Pattern
Days Before Departure

CLASS MIX 56 49 42 35 28 21 14 7 3 0
Y 0.10 0.04 0.02 0.02 0.04 0.04 0.06 0.13 0.22 0.14 0.29
B 0.26 0.05 0.02 0.02 0.03 0.05 0.08 0.15 0.24 0.16 0.20
M 0.07 0.14 0.04 0.04 0.05 0.09 0.13 0.20 0.24 0.04 0.03
H 0.02 0.26 0.04 0.07 0.07 0.10 0.10 0.12 0.14 0.06 0.04
Q 0.08 0.39 0.05 0.05 0.05 0.06 0.08 0.12 0.10 0.06 0.04
K 0.21 0.20 0.02 0.03 0.05 0.09 0.18 0.21 0.10 0.06 0.06
L 0.24 0.21 0.04 0.04 0.06 0.09 0.17 0.24 0.06 0.05 0.04
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Figure 6.3: Buildup of Bookings
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Chapter 7: Presentation of Results

7.1 Raw Simulation Outputs

Tables 7.1 and 7.2 are examples of simulation output results for the scenario

where demands are distributed and balanced, and a late booking pattern is assumed.

Most of the items are self explanatory with the possible exception of the first five

columns underneath Flight Leg Summary. From left to right, the columns show the

airport codes for the origin and destination city and the number of daily roundtrips, the

average capacity of the aircraft assigned to the flight leg over all iterations, and the

number of assignments made to each aircraft type in the 200 iteration runs for the 737-

500, 737-300, and 737-400. Table 7.1 is the static case where assignments are fixed.

Therefore, each leg has only one aircraft type, the baseline aircraft type, assigned 200

times. Contrast this with the results on Table 7.2 The total number of assignments on

each leg is 200, but the assignments on several legs are spread over more than one aircraft

type. This spreading of aircraft assignments is the result of demand driven dispatch

optimization efforts.

The leg designation of multiple aircraft types in our hub, or "swapping volatility"

if you will, is actually not that high as it might first appear. Three city pairs (DFW-SAN,

DFW-LAX, and DFW-LAS) have no swapping occurring whatsoever, and only four city

pairs (DFW-PHX, DFW-SAT, DFW-SFO, and DFW-ICT) are ever assigned all three

aircraft types. Maximum volatility would occur when each aircraft type is assigned to a

leg 200/3 = 66 2/3 times. I would characterize a substantial level of swapping activity as

the case where each aircraft type is assigned to a leg a minimum of 30 times. The

swapping activity in the case shown in Table 7.2 is representative for what was seen in

most other studies. Some studies did exhibit increased volatility on some legs, but

averaged over the entire hub the activity levels were not remarkably high.

- 48 -



TABLE 7.1: DISTRIBUTED DEMANDS (MU=.65*128,SIGMA=.3*MU)/BALANCED/TYPICAL

SIMULATION SIZE: 200
DEMAND DISTRIBUTION: POISSON

LEG DEMANDS ADJUSTED BY 1.00
STANDARD DEVIATION FACTOR: 0.
NUMBER OF CAPACITY REVISIONS (0=EMSR): 0

MEAN REVENUE: 492979.16
MEAN FLIGHT COST: 219875.41
MEAN PROFIT: 273103.75
STD DEV ON MARGIN: 10578.20

TOTAL
MEAN DEMAND: 4845.28
MEAN LOAD: 4845.24
MEAN SPILL:
% SPILL:

0.04
0.00

ONE LEG
4845.28
4845.24

0.04
0.00

TWO LEG
0.
0.
0.
0.

FLIGHT LEG SUMMARY:

DFW-SAN (1)
DFW-LAX (1)
DFW-PDX (1)
DFW-AUS (4)
DFW-SEA (1)
DFW-LAS (1)
DFW-PHX (2)
DFW-SLC (2)
DFW-DEN (2)
DFW-SAT (4)
DFW-ICT (4)
DFW-MEX (2)
DFW-ABQ (2)
DFW-OAK (1)
DFW-SFO (1)
SAN-DFW (1)
LAX-DFW (1)
PDX-DFW (1)
AUS-DFW (4)
SEA-DFW (1)
LAS-DFW (1)
PHX-DFW (2)
SLC-DFW (2)
DEN-DFW (2)
SAT-DFW (4)
ICT-DFW (4)
MEX-DFW (2)
ABQ-DFW (2)
OAK-DFW (1)
SFO-DFW (1)

AVG
108.
128.
128.
108.
148.
148.
148.
128.
128.
128.
148.
108.
108.
148.
108.
108.
128.
128.
108.
148.
148.
148.
128.
128.
128.
148.
108.
108.
148.
108.

ASSIGNMENT
200 0 0

0 200 0
0 200 0

200 0 0
0 0 200
0 0 200
0 0 200
0 200 0
0 200 0
0 200 0
0 0 200

200 0 0
200 0 0

0 0 200
200 0 0
200 0 0

0 200 0
0 200 0

200 0 0
0 0 200
0 0 200
0 0 200
0 200 0
0 200 0
0 200 0
0 0 200

200 0 0
200 0 0

0 0 200
200 0 0

LOAD FACT
0.53
0.60
0.62
0.58
0.62
0.64
0.67
0.65
0.68
0.71
0.70
0.63
0.64
0.73
0.68
0.52
0.60
0.63
0.57
0.63
0.65
0.68
0.65
0.67
0.70
0.70
0.62
0.65
0.73
0.68

AVERAGE HUB LOAD FACTOR: 0.65
AVERAGE HUB YIELD: 14.22
UNIT AIRCRAFT COST: 4.13
AVERAGE REVENUE PER PAX: 101.75
AVERAGE REVENUE PER AVAILABLE SEAT:

HOURS: 737-500-> 6.60 737-300-> 7.30 737-400-> 7.33
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PAX LOAD
57.36
76.25
79.11
62.29
92.39
95.39
99.28
83.67
87.54

90.99
103.97
67.55

69.50
108.07
73.83
56.58
76.97
80.80
61.90
92.90
95.65

100.28
82.81
85.83
89.43

104.00
67.11
70.21

108.71
73.26

DEMAND
57.36
76.25
79.11
62.29
92.39
95.39
99.28
83.67
87.54

91.00
103.98
67.55

69.50
108.07
73.83
56.58
76.97
80.80
61.90
92.90
95.65

100.28
82.81

85.83
89.43

104.00
67.11
70.21

108.71
73.26

SPILL
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.01
0.01

0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.

YIELD
12.87

12.40
10.88
32.89

9.98
13.05
13.51
12.66
16.47
24.17
22.61

9.26
15.98
10.90
11.57
12.88

12.39
10.83
32.95

10.00
13.00

13.46
12.57
16.55
24.22
22.51

9.29
16.02
10.96
11.59

66.76



TABLE 7.2: DISTRIBUTED DEMANDS (MU=.65*128,SIGMA=.3*MU)/BALANCED/TYPICAL

SIMULATION SIZE: 200
DEMAND DISTRIBUTION: POISSON

LEG DEMANDS ADJUSTED BY 1.00
STANDARD DEVIATION FACTOR: 0.
NUMBER OF CAPACITY REVISIONS (0=EMSR): 10

MEAN REVENUE: 4 92 97 9. 31
MEAN FLIGHT COST: 217708.09
MEAN PROFIT: 275271.22
STD DEV ON MARGIN: 10536.25

TOTAL
MEAN DEMAND: 4845.28
MEAN LOAD:
MEAN SPILL:
% SPILL:

4845.22
0.06
0.00

ONE LEG
4845.28
4845.22

0.06
0.00

TWO LEG
0.
0.
0.
0.

FLIGHT LEG SUMMARY:

DFW-SAN (1)
DFW-LAX (1)
DFW-PDX (1)
DFW-AUS (4)
DFW-SEA (1)
DFW-LAS (1)
DFW-PHX (2)
DFW-SLC (2)
DFW-DEN (2)
DFW-SAT (4)
DFW-ICT (4)
DFW-MEX (2)
DFW-ABQ (2)
DFW-OAK (1)
DFW-SFO (1)
SAN-DFW (1)
LAX-DFW (1)
PDX-DFW (1)
AUS-DFW (4)
SEA-DFW (1)
LAS-DFW (1)
PHX-DFW (2)
SLC-DFW (2)
DEN-DFW (2)
SAT-DFW (4)
ICT-DFW (4)
MEX-DFW (2)
ABQ-DFW (2)
OAK-DFW (1)
SFO-DFW (1)

AVG
148.
148.
111.
120.
119.
148.
123.
108.
121.
113.
127.
108.
147.
137.
136.
148.
148.
111.
120.
119.
148.
123.
108.
121.
113.
127.
108.
147.
137.
136.

ASSIGNMENT
0 0 200
0 0 200

163 37 0
75 125 0
83 117 0
0 0 200

54 142 4
193 7 0
68 132 0

142 57 1
19 168 13
200 0 0

0 3 197
0 106 94
3 106 91
0 0 200
0 0 200

163 37 0
75 125 0
83 117 0
0 0 200

54 142 4
193 7 0
68 132 0

142 57 1
19 168 13

200 0 0
0 3 197
0 106 94
3 106 91

LOAD FACT
0.39
0.52
0.71
0.52
0.78
0.64
0.81
0.77
0.72

0.81
0.82
0.63
0.47
0.79
0.54
0.38
0.52
0.73
0.52
0.78
0.65
0.82
0.77
0.71
0.79
0.82
0.62
0.48
0.79
0.54

AVERAGE HUB LOAD FACTOR: 0.67
AVERAGE HUB YIELD: 14.22
UNIT AIRCRAFT COST: 4.18
AVERAGE REVENUE PER PAX: 101.75
AVERAGE REVENUE PER AVAILABLE SEAT:

HOURS: 737-500-> 8.05 737-300-> 7.15 737-400-> 6.03
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PAX LOAD
57.36
76.25
79.11
62.29
92.39
95.39
99.28
83.67
87.54

91.00
103.97
67.55

69.50
108.07
73.83
56.58
76.97
80.80
61.90
92.90
95.65

100.28
82.81
85.83
89.43

104.00
67.11

70.21
108.71
73.26

DEMAND
57.36
76.25
79.11
62.29
92.39
95.39
99.28
83.67
87.54

91.00
103.98
67.55

69.50
108.07
73.83
56.58
76.97
80.80
61.90
92.90
95.65

100.28
82.81
85.83
89.43

104.00
67.11

70.21
108.71

73.26

SPILL
0.
0.
0.
0.
0.
0.
0.
0.00
0.
0.
0.01
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.00
0.
0.
0.
0.
0.
0.
0.
0.

YIELD
12.87

12.40
10.88
32.89

9.98
13.05

13.51
12.66
16.47
24.17
22.61

9.26
15.98
10.90
11.57

12.88

12.39
10.83
32.95
10.00
13.00
13.46
12.57

16.55
24.22
22.51

9.29
16.02
10.96
11.59

68.45



7.2 Output Form Explanation

Output forms with data from the simulation scenarios are presented later in this

chapter. Two graphs will accompany each scenario output form. These graphs highlight

the effects of demand driven dispatch relative to the static simulations on two key

parameters, the change in airline profit and utilization of the three types of aircraft. In the

latter part of this chapter, the results of the dynamic sensitivity analysis are presented and

explained.

The output forms have four separate blocks for displaying static base case data,

demand driven dispatch data, absolute difference between demand driven dispatch data

and static base case data, and percentile difference data. Formulations from which the

data were calculated are outlined below.

. REVENUE is the average over all iterations and legs of the money earned
throughout a complete booking process cycle from passenger bookings in each
fare class multiplied by the respective fare.

. COST comes from the average flight operating costs for the hub over all iterations
scaled to full total operating costs. Flight operating costs comprise about 45% of
total operating costs with ground and system operating costs making up the
difference 1 6 . The non-flying costs which were calculated for the static base case
were also used to generate total costs in the demand driven dispatch case under
the assumption that ground and system operating costs would not markedly
change in demand driven dispatch operations.

. PROFIT equals REVENUE minus COST.

. SPILL (%) is the average over all iterations and legs of the percentage of
passengers who desired to purchase a fare product but could not because either the
aircraft had been filled or the booking limit for a fare class as recommended by
the revenue management module had been reached.

. LOAD FACTOR equals RPMs divided by ASMs. RPMs is the average number
of passengers on each leg multiplied by the leg mileage flown in each iteration.
ASMs is the average number of seats on each leg multiplied by the leg mileage
flown in each iteration. This is the definition of load factor at the network level.

. YIELD equals REVENUE divided by RPMs expressed in cents per passenger
mile.

. UNIT COST equals COST divided by ASMs expressed in cents per available seat
mile.
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. UTILIZATION equals the average over all iterations of the number of hours
flown by a single aircraft of each aircraft type during the execution of the
schedule as represented by the frequency-weighted legs into and out of the hub

7.3 Significance Testing

The results were also tested for statistical significance. Specifically, the null and

alternative hypotheses subjected to a difference of means testing are

Ho : PROFITstatic = PROFITD and

Hi : PROFITDs 3PROFITstatic.

The calculated test statistic for this test is 17

C = Ki-a tatic/n + &23/m

where

PROFIT is the average profit,

C is the constant chosen to reject Ho if PROFITDs - PROFITstatic C to
a specified significance level a,

Ki-a the value taken from the normal distribution table for a specified
significance level ax,

Y2  the variance in the simulation of PROFIT, and

n,m the number of data points (simulation iterations). In all simulation
runs n = m = 200.

The designated significance level for the scenario studies is 90%, and the corresponding

Ki-a is 1.3.
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7.4 Results

7.4.1 Results and Analysis of Scenario * 65% Plapped Load Factor
- Balanced Demauds
. Typical Booking Pattern

The level of added contribution from demand driven dispatch peaks at $2,379 per

daily cycle at demand multiplier 1.0 and gradually declines over the range of demand

multipliers (Figure 7.1.1). Significance testing to a 90% confidence level in this (and all

other) cases requires a contribution difference of approximately $1500. Since all

contribution differences above demand multiplier 1.2 fall below this level, no

performance difference between the static and demand driven dispatch model can be

statistically claimed at this significance level. Even so, the downward sloping trend in

the Additional Profit versus Demand Multiplier graph are seems to fit expected behavior.

As demand is increased, the revenue management module sets lower booking

limits for the lower yielding passengers because the opportunity to fill the aircraft with

higher yielding passengers improves. As demand starts to spill, the simulation reaches

the point where almost any seat still available can be sold to a high fare passenger. Also,

the variability in demand on the legs where the demands are greatest is reduced relative to

the other legs. Recall that the variance in demand in each fare class and booking period is

equal to the mean of that demand. However, the spread in demand about the mean as

signified by the k factor goes down as demand rises since the standard deviation is equal

to the square root of the variance. Thus at higher demand multipliers the booking

demands take on a more deterministic appearance with the largest demand legs

approaching this state more rapidly than the others. The end result is that as overall

variability in the hub is lowered, the static case aircraft assignments which were based on

deterministic demands become increasingly attractive. With the demand driven dispatch

assignments looking more and more like the static case assignments, the profit

differential disappears.
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Another result is that the role of revenues and costs in the composition of profit

gains complete reverses over the range of demand multipliers. This can be seen in the D3

Relative Difference data block. At lower demand multipliers, the model attempts to

increase profits by reducing costs. There is really no other option since there is little

demand spill in either the static base case or dynamics D3 case, which means the revenue

is going to be the same regardless of the aircraft assignments. As demand multipliers

rise, note how D3 attempts to increase revenue. At this point the high yield passenger

demands are strong enough to allow the model to diminish in importance the smaller cost

flight cost differences.

The data also offers a very important lesson on why financial statistics taken in

isolation can be misleading. Every airline these days is rightfully talking about cutting

costs. Unit cost is commonly used as the figure of merit in these exercises. Imagine a

group of airline managers who are asked to evaluate whether to switch to demand driven

dispatch operations solely on the basis of cost effectiveness. They are told that current

unit costs are 8.26 O/ASM, and that under D3 they would rise to 8.36 O/ASM. My guess

is that a majority would choose to remain with the present fixed assignment system. If

this were indeed the case, the majority would be wrong.

A paradoxical feature of a D3 system is that it can reduce overall costs by

increasing unit costs. This is accomplished by increasing the utilization of smaller,

higher unit cost aircraft in situations where a larger aircraft cannot be filled. Overall costs

are reduced because trip costs for smaller aircraft are generally lower than they are for

larger aircraft. Figure 7.1.2 shows how the D3 utilization of the 108 seat 737-500 goes up

1.5 hours per day (22.7%) relative to the static case. At the same time the D3 utilization

of the 148 seat 737-400 drops by almost the same number of hours -1.3 (18.1%). This

trading of hours between these two aircraft will be seen in each of the eight case studies.

As the demand multiplier rises, the bar graph of Figure 7.1.2 takes on the appearance of a

damped system response as the utilizations slowly revert to those of the static case.
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A positive differential in load factors in the D3 simulations implies that smaller

aircraft are being used on longer legs in situations of weaker than average demand. Since

no passengers are being spilled at low demand multipliers, the number of revenue

passenger miles is the same in the static and D3 case. The only way that the overall hub

load factors can rise in D3 is if fewer seat miles are flown. This is accomplished where

economically justifiable by having higher than average leg load factors on smaller aircraft

on long legs and lower than average load factors on larger aircraft on short legs.

We have established that the $2,379 contribution increase at demand multiplier

1.0 is statistically significant, but is it financially significant? The static run at demand

multiplier 1.0 confirms that the cost and revenue models in the simulation are roughly

correct in that it predicts a profit of only $1,563 on revenues of $490,170. Of course the

results would have been more realistic if a loss had been shown. This happens in other

scenarios. In this case, though, the $2,379 represents an increased profit from one daily

cycle of 152%! Since one daily cycle involves on average two roundtrips to the hub, it

would probably be roughly equivalent to two connecting banks. Referring to average hub

and spoke characteristics presented in Chapter 2, if we were to assume that an airline

could operate 4 similar daily cycles D3 per day of 30 aircraft each at 5 hubs, the direct

scaled yearly revenue profit increase would be approximately $35 million. While not a

major windfall (about 0.3% of sales at an airline like American), this benefit can be

achieved every year with low one time startup costs. Other harder to quantify benefits

might be derived from more accurate demand forecasts.

At higher demand multipliers, the added contribution, even if it had remained at

the $2,379 level, does not amount to much. This is because the static case contribution is

very high, equivalent to 32% return on sales.
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Table 7.3: 65% Load Factor, Balanced Demands, Typical Booking Scenario

Base Case Actual Data
Demand Multiplier

1.0 1.1 1.2 1.3 1.4 1.5
Revenue ($) 490,170 540,029 588,543 636,111 680,507 719,296
Operating Cost ($) 488,607 488,740 488,873 489,002 489,118 489,196
Contribution ($) 1,563 51,289 99,670 147,109 191,389 230,100
Spill (% Demand) 0.00 0.00 0.03 0.30 1.30 3.99
Load Factor 0.65 0.71 0.78 0.84 0.90 0.93
Yield (O/RPM) 14.17 14.19 14.18 14.19 14.25 14.46
Unit Cost (0/ASM) 8.26 8.26 8.26 8.26 8.26 8.26
Aircraft Utilization (Hours) f

737-300 7.3 7.3 7.3 7.3 7.3 7.3
737-400 7.3 7.3 7.3 7.3 7.3 7.3
737-500 6.6 6.6 6.6 6.6 6.6 6.6

D3 Actual Data
Demand Multiplier

1.0 1.1 1.2 1.3 1.4 1.5

Revenue ($) 490,170 540,019 588,589 636,502 680,968 719,556
Operating Cost ($) 486,228 486,839 487,693 488,717 489,170 489,382
Contribution ($) 3,942 53,180 100,896 147,785 191,798 230,174
Spill (% Demand) 0.00 0.00 0.01 0.20 1.19 3.84
Load Factor 0.66 0.73 0.79 0.85 0.90 0.94
Yield (O/RPM) 14.17 14.19 14.18 14.19 14.25 14.47
Unit Cost (0/ASM) 8.36 8.32 8.32 8.30 8.30 8.30
Aircraft Utilization (Hours) /

737-300 7.1 7.6 7.4 7.2 7.2 7.2
737-400 6.0 6.1 6.7 7.2 7.4 7.4
737-500 8.1 7.5 7.2 6.8 6.6 6.6

D3 Difference Relative to Base Case
Demand Multiplier

1.0 1.1 1.2 1.3 1.4 1.5

Revenue ($) 0 -10 46 391 461 260
Operating Cost ($) -2,379 -1,901 -1,180 -285 52 186
Contribution ($) 2,379 1,891 1,226 676 409 74

Statistically Significant? Yes Yes No No No No
Spill (% Demand) 0 0 -0.02 -0.1 -0.11 -0.15
Load Factor 0.01 0.02 0.01 0.01 0.00 0.01
Yield (O/RPM) 0 0 0 0 0 0.01
Unit Cost (O/ASM) 0.1 0.06 0.06 0.04 0.04 0.04
Aircraft Utilization (Hours) /

737-300 -0.2 0.3 0.1 -0.1 -0.1 -0.1
737-400 -1.3 -1.2 -0.6 -0.1 0.0 0.1
737-500 1.5 0.9 0.6 0.2 0.0 0.0

D3 Percent Differences
Demand Multiplier

1.0 1.1 1.2 1.3 1.4 1.5
Revenue 0.0% 0.0% 0.0% 0.1% 0.1% 0.0%
Operating Cost -0.5% -0.4% -0.2% -0.1% 0.0% 0.0%
Contribution 152.2% 3.7% 1.2% 0.5% 0.2% 0.0%

Spill 0.0% 0.0% -66.7% -33.3% -8.5% -3.8%
Load Factor 1.5% 2.8% 1.3% 1.2% 0.0% 1.1%
Yield 0.0% 0.0% 0.0% 0.0% 0.0% 0.1%
Unit Cost 1.2% 0.7% 0.7% 0.5% 0.5% 0.5%
Aircraft Utilization (Hours) /

737-300 -2.7% 3.4% 1.1% -1.2% -1.2% -1.6%
737-400 -18.1% -16.0% -8.9% -1.5% 0.7% 1.8%
737-500 22.7% 13.9% 8.6% 3.0% 0.6% -0.3%

-56-



Figure 7.1.1

Profit Increase With Demand Driven Dispatch
Over a Range of Demand Multipliers
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7.4.2 Results and Analysis of Scenario * 65% Planned Load Factor
- Unbalanced Demands
. Typical Booking Pattern

This is the first scenario where the demands in each fare class on one hub-spoke

leg were increased by 10% and reduced by 10% on the return leg. Each hub and spoke

leg pair is still balanced in terms of overall passenger demand, but the total expected

revenue from the booking process will be different because variability changes which will

impact revenue management booking limits. It was initially anticipated that this might be

a favorable set of conditions for the D3 model given the relatively high spillage occurring

at high demand multipliers. Yet the results were quite similar to the planned load factor,

balanced demand, typical booking pattern case. The proposed explanation is that as

demand multipliers are increased, the legs with the higher demands begin to overshadow

the decreased demand legs in terms of revenue opportunities. Instead of 15 sets of

inbound and outbound legs of equal weight, the coefficients for expected contribution

become dominated by the 15 increased demand legs.

This being the case, the same downward sloping trend in contribution differential

as a function of demand multiplier (Fig 7.2.1) as seen in the balanced leg demand

scenario since the 10% factor is uniformly applied to all legs. Aircraft utilization patterns

are also similar.
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Table 7.4: 65% Load Factor, Unbalanced Demands, Typical Booking Scenario

Base Case A ctual Data
Demand Multiplier

1.0 1.1 1.2 1.3 1.4 1.5

Revenue ($) 492,154 541,212 591,132 636,525 677,300 714,296
Operating Cost ($) 488,611 488,747 488,880 489,000 489,091 489,160
Contribution ($) 3,543 52,465 102,252 147,525 188,209 225,136

Spill (% Demand) 0.00 0.02 0.19 1.09 3.01 6.18
Load Factor 0.65 0.72 0.78 0.84 0.88 0.92
Yield (g/RPM) 14.19 14.18 14.21 14.24 14.4 14.62
Unit Cost (0/ASM) 8.26 8.26 8.26 8.26 8.26 8.26
Aircraft Utilization (Hours)

737-300 7.3 7.3 73 7.3 7.3 7.3
737-400 7.3 7.3 7.3 7.3 7.3 7.3
737-500 6.6 6.6 6.6 6.6 6.6 6.6

Demand Multiplier
1.0 1.1 1.2 1.3 1.4 1.5

Revenue ($) 492,169 541,255 591,478 637,247 677,675 714,623

Operating Cost ($) 486,417 487,214 488,296 488,949 489,161 489,297

Contribution ($) 5,752 54,041 103,182 148,298 188,514 225,326

Spill (% Demand) 0.01 0.01 0.09 0.90 2.97 6.01
Load Factor 0.67 0.73 0.79 0.84 0.89 0.92
Yield (O/RPM) 14.19 14.18 14.2 14.24 14.4 14.62
Unit Cost (O/ASM) 8.34 8.32 8.30 8.30 8.30 8.30
Aircraft Utilization (Hours) P

737-300 7.3 7.5 7.4 7.2 7.3 7.2
737-400 6.0 6.4 7.0 7.3 7.3 7.4

737-500 7.9 7.4 6.9 6.7 6.6 6.6

D3 Derence Reatve to Base Case
Demand Multiplier

1.0 1.1 1.2 1.3 1.4 1.5

Revenue ($) 15 43 346 722 375 327
Operating Cost ($) -2,194 -1,533 -584 -51 70 137
Contribution ($) 2,209 1,576 930 773 305 190

Statistically Significant? Yes Yes No No No No

Spill (% Demand) 0.01 -0.01 -0.1 -0.19 -0.04 -0.17
Load Factor 0.02 0.01 0.01 0.00 0.01 0.00
Yield (O/RPM) 0 0 -0.01 0 0 0
Unit Cost (0/ASM) 0.08 0.06 0.04 0.04 0.04 0.04
Aircraft Utilization (Hours) '

737-300 0.0 0.2 0.1 -0.1 0.0 -0.1
737-400 -1.3 -0.9 -0.3 0.0 0.0 0.1
737-500 1.3 0.8 0.3 0.1 0.0 0.0

D3 Percent DRearences
Demand Multiplier

1.0 1.1 1.2 1.3 1.4 1.5

Revenue 0.0%/ 0.0% 0.1% 0.1% 0.1% 0.0%
Operating Cost -0.4% -0.3% -0.1% 0.0% 0.0% 0.0%
Contribution 62.4% 3.0% 0.9% 0.5% 0.2% 0.1%

Spill 0.0% -50.01 -52.6% -17.4% -1.3% -2.8%
Load Factor 3.1% 1.4% 1.3% 0.0% 1.1% 0.0%
Yield 0.0% 0.0% -0.1% 0.0% 0.0% 0.0%
Unit Cost 1.0% 0.7% 0.5% 0.5% 0.5% 0.5%
Aircraft Utilization (Hours) 7

737-300 0.00 2.3% 1.0 -1.8% -0.4% -1.6%

737-400 -18.1% -12.3% -4.1% 0.00 0.0% 1.8%
737-500 19.7% 12.1% 4.5% 1.5% 0.0% -0.3%
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Figure 7.2.1

Profit Increase With Demand Driven Dispatch
Over a Range of Demand Multipliers
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7.4.3 Results and Analysis of Scenario * Distributed Load Factor
. Balanced Demands
. Typical Booking Pattern

The magnitude of the results from this scenario (demand multiplier =1.0) are

similar to those in the planned load factor case. There are couple of new trends which do

emerge. Most noticeable is the upturn in added contribution that takes place at demand

multipliers beyond 1.3 (Figure 7.3.1). Again, the data are not statistically different from

the static case to the 90% level of significance. It would probably be possible to

demonstrate significance at higher demand multipliers with something like a pair wise t-

test, but the magnitudes of the contributions are so small as to be nearly inconsequential.

Yet there does seem to be an explanation for the behavior of the curve. At demand

multiplier =1.5, the D3 version is spilling 12% fewer passengers. Overall spill in the

distributed demand pattern is higher than the planned load factor demand model because

the load factors of some flights at demand multiplier 1.0 are already in the 80% range.

Thus, significant spill will start appearing at lower demand multipliers.

The contribution difference at the higher demand multipliers is derived mostly

from revenue gains from the additional number of passengers booked. The operating

costs with D3 are actually higher than those in the equivalent static case.
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Table 7.5: Distributed Loads, Balanced Demands, Typical Booking Scenario

Base Case Actual Data
Demand Multiplier

1.0 1.1 1.2 1.3 1.4 1.5

Revenue (N) 492,979 542,934 592,099 638,880 682,125 717,596
Operating Cost ($) 488,611 488,747 488,880 489,002 489,107 489,173
Contribution ($) 4,368 54,187 103,219 149,878 193,018 228,423
Spill (% Demand) 0.00 0.01 0.09 0.69 2.42 5.89
Load Factor 0.65 0.72 0.78 0.84 0.89 0.92
Yield (#/RPM) 14.22 14.23 14.23 14.26 14.37 14.58
Unit Cost (0/ASM) 8.26 8.26 8.26 8.26 8.26 8.26
Aircraft Utilization (Hours) ffffffffffffffffffffffffffffffff

737-300 7.3 7.3 7.3 7.3 7.3 7.3
737-400 7.3 7.3 7.3 7.3 7.3 7.3
737-500 6.6 6.6 6.6 6.6 6.6 6.6

D3 A ctual Data
Demand Multiplier

1.0 1.1 1.2 1.3 1.4 1.5
Revenue ($) 492,979 542,918 592,199 639,402 682,956 719,059
Operating Cost ($) 486,444 487,123 488,090 488,990 489,230 489,448
Contribution ($) 6,535 55,795 104,109 150,412 193,726 229,611
Spill (% Demand) 0.00 0.01 0.06 0.51 2.04 5.17
Load Factor 0.67 0.73 0.79 0.85 0.90 0.93
Yield (O/RPM) 14.22 14.23 14.23 14.26 14.4 14.61
Unit Cost (g/ASM) 8.36 8.34 8.34 8.32 8.32 8.32
Aircraft Utilization (Hours) '

737-300 7.1 7.4 7.2 7.3 7.4 7.3
737-400 6.3 6.3 6.8 7.2 7.2 7.3
737-500 8.0 7.6 7.2 6.7 6.6 6.6

D3 Difference Relative to Base Case
Demand Multiplier

1.0 1.1 1.2 1.3 1.4 1.5
Revenue ($) 0 -16 100 522 831 1,463
Operating Cost ($) -2,167 -1,624 -790 -12 123 275
Contribution ($) 2,167 1,608 890 534 708 1,188

Statistically Significant? Yes Yes No No No No
Spill (% Demand) 0 0 -0.03 -0.18 -0.38 -0.72
Load Factor 0.02 0.01 0.01 0.01 0.01 0.01
Yield (O/RPM) 0 0 0 0 0.03 0.03
Unit Cost (#/ASM) 0.1 0.08 0.08 0.06 0.06 0.06
Aircraft Utilization (Hours) /

737-300 -0.2 0.1 -0.1 0.0 0.1 0.0
737-400 -1.0 -1.0 -0.5 -0.1 -0.1 0.0
737-500 1.4 1.0 0.6 0.1 0.0 0.0

D3 Percent Differences
Demand Multiplier

1.0 1.1 1.2 1.3 1.4 1.5

Revenue 0.0% 0.0% 0.0% 0.1% 0.1% 0.2%
Operating Cost -0.4% -0.3% -0.2% 0.0% 0.0% 0.1%
Contribution 49.6% 3.0% 0.9% 0.4% 0.4% 0.5%
Spill 0.0% 0.0% -33.3% -26.1% -15.7% -12.2%
Load Factor 3.1% 1.4% 1.3% 1.2% 1.1% 1.1%
Yield 0.0% 0.0% 0.0% 0.0% 0.2% 0.2%
Unit Cost 1.2% 1.0% 1.0% 0.7% 0.7% 0.7%
Aircraft Utilization (Hours) 7

737-300 -2.7% 1.0% -1.8% -0.4% 1.0% -0.4%
737-400 -14.1% -13.7% -6.8% -1.4% -1.4% 0.0%
737-500 21.2% 15.2% 9.1% 1.5% 0.0% 0.0%
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Figure 7.3.1

Profit Increase With Demand Driven Dispatch
Over a Range of Demand Multipliers
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7.4.4 Results and Analysis of Scenario * Distributed Load Factor
- Unbalanced Demands
. Typical Booking Pattern

Any major deviation in the pattern of results in this scenario could be of interest

since the distributed load factor and unbalanced demand combination is likely to be what

would be encountered to some extent in actual airline operations. The contribution at

demand multiplier 1.0 is lower ($1961 versus about $2200) than in other cases. This

would lead to a smaller yearly profit increase than calculated in Section 7.4.1. The

magnitude of the difference in aircraft utilization of the 737-500 is also smaller (1.2

versus 1.5 in planned load factor, balanced demands), a good indicator of lessened D3

impact.

In other scenarios, graphs of Contribution Difference versus Demand Multiplier

displayed either a roll-off with unbalanced demands or increase with distributed loads at

high demand multipliers. What is seen in Figure 7.4.1 is a complete flattening out of the

curve. This suggests that the effects of unbalanced demand and distributed load are

largely independent and of similar magnitude to roughly cancel each other out. Thus,

even at high demand multipliers, demand driven dispatch will still deliver some

incremental benefit.
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Table 7.6: Distributed Loads, Unbalanced Demands, Typical Booking Scenario

Demand Multiplier
1.0 1.1 1.2 1.3 1.4 1.5

Revenue ($) 496,040 544,175 592,828 638,650 678,487 716,722
Operating Cost ($) 488,618 488,749 488,878 488,993 489,080 489,149
Contribution ($) 7,422 55,426 103,950 149,657 189,407 227,573
Spill (% Demand) 0.00 0.07 0.51 1.84 4.09 7.40
Load Factor 0.65 0.72 0.78 0.84 0.88 0.91
Yield (O/RPM) 14.23 14.23 14.25 14.34 14.49 14.75
Unit Cost (#/ASM) 8.26 8.26 8.26 8.26 8.26 8.26
Aircraft Utilization (Hours) 7

737-300 7.3 7.3 7.3 7.3 7.3 7.3
737-400 7.3 7.3 7.3 7.3 7.3 7.3
737-500 6.6 6.6 6.6 6.6 6.6 6.6

D3 Actual Data
Demand Multiplier

1.0 1.1 1.2 1.3 1.4 1.5

Revenue ($) 496,031 544,253 593,306 639,481 679,534 717,829
Operating Cost ($) 486,657 487,579 488,626 489,072 489,295 489,374
Contribution ($) 9,374 56,674 104,680 150,409 190,239 228,455
Spill (% Demand) 0.01 0.04 0.33 1.53 3.56 6.72
Load Factor 0.67 0.73 0.79 0.84 0.88 0.92
Yield (g/RPM) 14.23 14.23 14.25 14.35 14.51 14.79
Unit Cost (0/ASM) 8.36 8.34 8.32 8.32 8.32 8.32
Aircraft Utilization (Hours) / //

737-300 7.3 7.3 7.3 7.4 7.4 7.4
737-400 6.1 6.6 7.1 7.2 7.2 7.2
737-500 7.8 7.3 6.9 6.6 6.6 6.6

D3 Difference Relative to Base Case
Demand Multiplier

1.0 1.1 1.2 1.3 1.4 1.5

Revenue ($) -9 78 478 831 1,047 1,107
Operating Cost ($) -1,961 -1,170 -252 79 215 225
Contribution ($) 1,952 1,248 730 752 832 882

Statistically Significant? Yes No No No No No
Spill (% Demand) 0.01 -0.03 -0.18 -0.31 -0.53 -0.68
Load Factor 0.02 0.01 0.01 0.00 0.00 0.01
Yield (O/RPM) 0 0 0 0.01 0.02 0.04
Unit Cost (0/ASM) 0.1 0.08 0.06 0.06 0.06 0.06
Aircraft Utilization (Hours) 7

737-300 0.0 0.0 0.0 0.1 0.1 0.1
737-400 -1.2 -0.7 -0.2 -0.1 -0.1 -0.1
737-500 1.2 0.7 0.3 0.0 0.0 0.0

D3 Percent Differences
Demand Multiplier

1.0 1.1 1.2 1.3 1.4 1.5

Revenue 0.0% 0.0% 0.1% 0.1% 0.2% 0.2%
Operating Cost -0.4% -0.2% -0.1% 0.0% 0.0% 0.0%
Contribution 26.3% 2.3% 0.7% 0.5% 0.4% 0.4%
Spill 0.0% -42.9% -35.3% -16.8% -13.0% -9.2%
LoadFactor 3.1% 1.4% 1.3% 0.0% 0.0% 1.1%
Yield 0.0% 0.0% 0.0% 0.1% 0.1% 0.3%
Unit Cost 1.2% 1.0% 0.7% 0.7% 0.7% 0.7%
Aircraft Utilization (Hours) W

737-300 0.0% -0.4% -0.4% 1.0% 1.0% 1.0%
737-400 -16.8% -9.6% -2.7% -1.4% -1.4% -1.4%
737-500 18.2% 10.6% 4.5% 0.0% 0.0% 0.0%
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Figure 7.4.1

Profit Increase With Demand Driven Dispatch
Over a Range of Demand Multipliers

2,000

1,800
1,600
1,400

1,200
1,000

800
600
400

200

0--
1.0 1.4

Figure 7.4.2

Demand Driven Dispatch Daily Aircraft
Utilization Relative to Static Model

1.3 1.4 1.5

Demand Multiplier

U 737-300 E 737-400 0 737-500

- 66 -

1.2 1.3

Demand Multiplier

1.5

1.5

1.0

0.5

0.0

-0.5

-1.0

-. 0

bO ~

1.5



7.4.5 Results and Analysis of Scenario * Distributed Load Factor
- Balanced Demands
. Late Booking Pattern

This scenario repeats the pattern seen in earlier distributed load factor /balanced

demand simulations where D3 performance reaches a minimum at demand multiplier 1.3.

Balanced demands also produce slightly better contributions relative to unbalanced

scenarios. This is a direct result of lower demand spill.

The distributed load factor scenario contributions at most demand multipliers are

below those of planned load factors everything else being equal. In conjunction with

slightly higher variances between D3 and static results, the number of demand multiplier

points which meet the statistical significance test drops from two to one. The

contribution at demand multiplier 1.1 falls just outside the confidence interval. Because

the transgression is small and the shape of the curve on the whole in Figure 7.5.1 is about

as expected, I would tend to dismiss this point as an aberration caused by possible unique

data circumstances specific to this run.
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Table 7.7: Distributed Load, Balanced Demands, Late Booking Scenario

Base Case Actual Data
Demand Multiplier

1.0 1.1 1.2 1.3 1.4 1.5

Revenue ($) 479,302 527,377 574,362 620,653 663,671 701,975
Operating Cost ($) 488,584 488,716 488,844 488,971 489,078 489,160
Contribution ($) -9,282 38,661 85,518 131,682 174,593 212,815
Spill (% Demand) 0.00 0.00 0.00 0.42 1.64 4.54
Load Factor 0.64 0.70 0.76 0.93 0.87 0.92
Yield (#/RPM) 14.09 14.12 14.10 14.12 14.19 14.36
Unit Cost (0/ASM) 8.26 8.26 8.26 8.26 8.26 8.26
Aircraft Utilization (Hours) f

737-300 7.3 7.3 7.3 7.3 7.3 7.3
737-400 7.3 7.3 7.3 7.3 7.3 7.3
737-500 6.6 6.6 6.6 6.6 6.6 6.6

D3 Actual Data
Demand Multiplier

1.0 1.1 1.2 1.3 1.4 1.5

Revenue ($) 479,299 527,376 574,439 621,065 664,456 703,228
Operating Cost ($) 486,356 486,968 487,968 488,814 489,183 489,387
Contribution ($) -7,057 40,408 86,471 132,251 175,273 213,841
Spill (% Demand) 0.00 0.00 0.04 0.30 1.36 3.96
Load Factor 0.65 0.71 0.77 0.83 0.88 0.92
Yield (O/RPM) 14.09 14.12 14.10 14.11 14.20 14.40
Unit Cost (#/ASM) 8.38 8.34 8.32 8.32 8.32 8.32
Aircraft Utilization (Hours) /

737-300 7.1 7.4 7.3 7.3 7.4 7.3
737-400 6.0 6.2 6.7 7.2 7.2 7.3
737-500 8.1 7.6 7.2 6.8 6.6 6.6

D3 Difference Relative to Base Case
Demand Multiplier

1.0 1.1 1.2 1.3 1.4 1.5
Revenue($) -3 -1 77 412 785 1,253
Operating Cost ($) -2,228 -1,748 -876 -157 105 227
Contribution ($) 2,225 1,747 953 569 680 1,026

Statistically Significant? Yes Yes No No No No
Spill (% Demand) 0 0 0.04 -0.12 -0.28 -0.58
Load Factor 0.01 0.01 0.01 -0.10 0.01 0.00
Yield (#/RPM) 0 0 0 -0.01 0.01 0.04
Unit Cost (#/ASM) 0.12 0.08 0.06 0.06 0.06 0.06
Aircraft Utilization (Hours) /

737-300 -0.2 0.1 0.0 0.0 0.1 0.0
737-400 -1.3 -1.1 -0.6 -0.1 -0.1 0.0
737-500 1.5 1.0 0.6 0.2 0.0 0.0

D3 Percent Diffrences
Demand Multiplier

1.0 1.1 1.2 1.3 1.4 1.5

Revenue 0.0% 0.0% 0.0% 0.1% 0.1% 0.2%
Operating Cost -0.5% -0.4% -0.2% 0.0% 0.0% 0.0%
Contribution -24.0% 4.5% 1.1% 0.4% 0.4% 0.5%
Spill 0.0% 0.0% 0.0% -28.6% -17.1% -12.8%
Load Factor 1.6% 1.4% 1.3% -10.8% 1.1% 0.0%
Yield 0.0% 0.0% 0.0% -0.1% 0.1% 0.3%
Unit Cost 1.5% 1.0% 0.7% 0.7% 0.7% 0.7%
Aircraft Utilization (Hours) 7

737-300 -2.7% 1.0% -0.4% -0.4% 1.0% -0.4%
737-400 -18.1% -15.1% -8.2% -1.4% -1.4% 0.0%
737-500 22.7% 15.2% 9.1% 3.0% 0.0% -0.3%
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Figure 7.5.1

Profit Increase With Demand Driven Dispatch
Over a Range of Demand Multipliers
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7.4.6 Results and Analysis of Scenario * Distributed Load Factor
. Unbalanced Demands
- Late Booking Pattern

The results of this simulation do not vary from those of other scenarios. The

demand driven dispatch algorithm works fairly well at demand multiplier 1.0 with

performance yielding constant returns at higher demand multipliers. Gains at the higher

end are made possible because D3 is spilling a smaller percentage of the demand at the

higher demand multiplier 1.5, 5.8% versus 6.22% for the static case. The difference in

the number of passengers spilled at this test point is 30.2. With an average revenue

difference of $969, this equates to an opportunity cost of $32 per passenger. The average

revenue per passenger is approximately $104 in both scenarios. This is a strong

indication the revenue management system is working properly since the passengers

being spilled must be coming from low fare demand.

The cost side results are also in line with what has been seen in the previous

studies. Unit costs are slightly higher in the D3 runs with hours being exchanged

between the 737-500 and 737-400.
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Table 7.8: Distributed Load, Unbalanced Demands, Late Booking Scenario

Base Case A tual Data
Demand Multiplier

1.0 1.1 1.2 1.3 1.4 1.5

Revenue($) 481,591 529,394 575,545 620,842 660,754 697,923

Operating Cost ($) 488,589 488,722 488,847 488,964 489,060 489,131
Contribution ($) -6,998 40,672 86,698 131,878 171,694 208,792

Spill (% Demand) 0.00 0.03 0.36 1.32 3.40 6.22
Load Factor 0.64 0.71 0.77 0.82 0.87 0.90
Yield (#/RPM) 14.12 14.09 14.11 14.16 14.28 14.5

Unit Cost (/ASM) 8.26 8.26 8.26 8.26 8.26 8.26

Aircraft Utilization (Hours)
737-300 7.3 7.3 7.3 7.3 7.3 7.3
737-400 7.3 7.3 7.3 7.3 7.3 7.3
737-500 6.6 6.6 6.6 6.6 6.6 6.6

D3 Actual Data
Demand Multiplier

1.0 1.1 1.2 1.3 1.4 1.5

Revenue ($) 481,579 529,403 575,943 621,654 661,683 698,896

Operating Cost($) 486,568 487,355 488,425 489,025 489,219 489,313

Contribution ($) -4,989 42,048 87,518 132,629 172,464 209,583

Spill (% Demand) 0.00 0.03 0.22 1.05 3.04 5.80
Load Factor 0.65 0.72 0.77 0.83 0.87 0.91
Yield (O/RPM) 14.12 14.09 14.11 14.16 14.29 14.52

Unit Cost (9/ASM) 8.36 8.34 8.32 8.32 8.30 8.30
Aircraft Utilization (Hours)

737-300 7.3 7.4 7.3 7.3 7.4 7.3
737-400 6.1 6.5 7.0 7.2 7.3 7.3
737-500 7.9 7.4 7.0 6.7 6.6 6.6 6

D3 Difeence Relative to Base Case
Demand Multiplier

1.0 1.1 1.2 1.3 1.4 1.5

Revenue($) -12 9 398 812 929 973

Operating Cost ($) -2,021 -1,367 -422 61 159 182
Contribution (8) 2,009 1,376 820 751 770 791

Statistically Significant? Yes No No No No No

Spill (% Demand) 0 0 -0.14 -0.27 -0.36 -0.42

Load Factor 0.01 0.01 0.00 0.01 0.00 0.01

Yield (OfRPM) 0 0 0 0 0.01 0.02

Unit Cost (ASM) 0.1 0.08 0.06 0.06 0.04 0.04
Aircraft Utilization (Hours) o--0/00

737-300 0.0 0.1 0.0 0.0 0.1 0.0

737-400 -1.2 -0.8 -0.3 -0.1 0.0 0.0

737-500 1.3 0.8 0.4 0.1 0.0 0.0 1

D3 Percent DRelrences
Demand Multiplier

1.0 1.1 1.2 1.3 1.4 1.5

Revenue 0.00% 0.0%/ 0.1% 0.1% 0.1% 0.1%

Operating Cost -0.4% -0.3% -0.1% 0.0% 0.0% 0.0%

Contribution 28.7% 3.4% 0.9% 0.6% 0.4% 0.4%

Spill 0.0 0.0% -38.9% -20.5% -10.6% -6.8%

Load Factor 1.6% 1.4% 0.0% 1.2% 0.0% 1.1%

Yield 0.0% 0.0% 0.0 0.0% 0.1% 0.1%

Unit Cost 1.2% 1.0% 0.7% 0.7% 0.5% 0.5%
Aircraft Utilization (Hours)

737-300 0.0% 1.0% -0.4% -0.4% 1.0% -0.4%

737-400 -16.8% -11.0% -4.1% -1.4% 0.0% 0.0%

737-500 19.7% 12.1% 6.1% 1.5% 0.0% -0.3%
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Figure 7.6.1

Profit Increase With Demand Driven Dispatch
Over a Range of Demand Multipliers
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7.4.7 Results and Analysis of Scenario - 65% Planned Load Factor
* Balanced Demands
. Late Booking Pattern

The highest contribution difference at demand multiplier 1.0 ($2,411) is generated

in this scenario. Because this occurs at a demand multiplier where there is no spill, the

improvement is entirely a result of lower costs. Not surprisingly, the 737-500 achieves

its highest utilization per day, 8.2 hours, in this scenario. Again, this means higher unit

costs in the D3 run versus the static case, but the overall costs come out lower because the

trip costs for the smaller aircraft are less than the larger aircraft.
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Table 7.9: 65% Planned Load Factor, Balanced Demands, Late Booking Scenario

Base Case A ctul Data
Demand Multiplier

1.0 1.1 1.2 1.3 1.4 1.5

Revenue ($) 476,184 524,683 570,646 618,519 662,890 702,168
Operating Cost ($) 488,582 488,716 488,840 488,971 489,089 489,178
Contribution ($) -12,398 35,967 81,806 129,548 173,801 212,990
Spill (% Demand) 0.00 0.00 0.02 0.13 0.84 2.97
Load Factor 0.64 0.70 0.76 0.83 0.88 0.93
Yield (o/RPM) 14.04 14.04 14.05 14.05 14.09 14.23
Unit Cost (0/ASM) 8.26 8.26 8.26 8.26 8.26 8.26
Aircraft Utilization (Hours) /

737-300 7.3 7.3 7.3 7.3 7.3 7.3
737-400 7.3 7.3 7.3 7.3 7.3 7.3
737-500 6.6 6.6 6.6 6.6 6.6 6.6

D3 Actual Data
Demand Multiplier

1.0 1.1 1.2 1.3 1.4 1.5

Revenue ($) 476,184 524,682 570,685 618,708 663,314 702,462
Operating Cost ($) 486,171 486,691 487,550 488,627 489,065 489,292
Contribution ($) -9,987 37,991 83,135 130,081 174,249 213,170
Spill (% Demand) 0.00 0.00 0.01 0.08 0.76 2.81
Load Factor 0.65 0.71 0.77 0.83 0.89 0.93
Yield (O/RPM) 14.04 14.04 14.05 14.05 14.09 14.25
Unit Cost (g/ASM) 8.36 8.32 8.32 8.30 8.30 8.30
Aircraft Utilization (Hours)

737-300 7.1 7.6 7.5 7.3 7.3 7.2
737-400 6.0 6.1 6.5 7.1 7.3 7.4
737-500 8.2 7.5 7.2 6.8 6.6 6.6

D3 Difference Relative to Base Case
Demand Multiplier

1.0 1.1 1.2 1.3 1.4 1.5

Revenue($) 0 -1 39 189 424 294
Operating Cost ($) -2,411 -2,025 -1,290 -344 -24 114
Contribution ($) 2,411 2,024 1,329 533 448 180

Statistically Significant? Yes Yes No No No No
Spill (% Demand) 0 0 -0.01 -0.05 -0.08 -0.16
Load Factor 0.01 0.01 0.01 0.00 0.01 0.00
Yield (#/RPM) 0 0 0 0 0 0.02
Unit Cost (#/ASM) 0.1 0.06 0.06 0.04 0.04 0.04
Aircraft Utilization (Hours) /

737-300 -0.2 0.3 0.2 0.0 0.0 -0.1
737-400 -1.3 -1.2 -0.8 -0.2 0.0 0.1
737-500 1.6 0.9 0.6 0.2 0.0 0.0

D3 Percent Differences
Demand Multiplier

1.0 1.1 1.2 1.3 1.4 1.5

Revenue 0.0% 0.0% 0.0% 0.0% 0.1% 0.0%
Operating Cost -0.5% -0.4% -0.3% -0.1% 0.0% 0.0%
Contribution 19.4% 5.6% 1.6% 0.4% 0.3% 0.1%
Spill 0.0% 0.0% -50.0% -38.5% -9.5% -5.4%
Load Factor 1.6% 1.4% 1.3% 0.0% 1.1% 0.0%
Yield 0.0% 0.0% 0.0% 0.0% 0.0% 0.1%
Unit Cost 1.2% 0.7% 0.7% 0.5% 0.5% 0.5%
Aircraft Utilization (Hours) 7

737-300 -2.7% 3.7% 2.3% -0.4% -0.4% -1.8%
737-400 -18.1% -16.4% -11.0% -2.7% 0.0% 1.4%
737-500 24.2% 13.6% 9.1% 3.0% 0.0% -0.3%
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Figure 7.7.1

Profit Increase With Demand Driven Dispatch
Over a Range of Demand Multipliers
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7.4.8 Results and Analysis of Scenario * 65% Planned Load Factor
- Unbalanced Demands
- Late Booking Pattern

The results from this scenario simulation are not remarkably different from other

simulations - contributions drop with increasing demand multiplier, spill is relatively high

at high demand factors, and utilization patterns are typical.
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Table 7.10: 65% Load Factor, Unbalanced Demands, Late Booking Scenario

Base Case Actual Data
Demand Multiplier

Revenue($) 478,380 526394 573,552 617,574 659,754 696,388
Operating Cost ($) 488,587 488,720 488,849 488,969 489,069 489,142
Contribution ($) -10,207 37,674 84,703 128,605 170,685 207,246

Spill (% Demand) 0.00 0.00 0.12 0.70 2.28 5.21
Load Factor 0.64 0.70 0.77 0.83 0.87 0.91
Yield (#/RPM) 14.04 14.04 14.05 14.05 14.17 14.39
Unit Cost (/ASM) 8.26 8.26 8.26 8.26 8.26 8.26
Aircraft Utilization (Hours)

737-300 7.3 7. 3 7.3 7.3
737-400 7.3 7.3 7.3 7.3 7.3 7.3
737-500 6.6 6.6 6.6 6.6 6.6 6.6

Demand Multiplier
1.0 1.1 1.2 1.3 1.4 1.5

Revenue ($) 478,373 526,390 573,752 618,234 660,185 696,629
Operating Cost ($) 486,349 487,007 488,050 488,807 489,078 489,246

Contribution ($) -7,976 39,383 85,702 129,427 171,107 207,383

Spill (% Demand) 0.00 0.00 0.06 0.53 2.21 5.08
Load Factor 0.65 0.72 0.77 0.83 0.88 0.91
Yield (OfRPM) 14.04 14.04 14.05 14.05 14.18 14.40
Unit Cost (ASM) 8.34 8.32 8.32 8.30 8.30 8.30
Aircraft Utilization (Hours) 11 ,01 .:

737-300 7.3 7.5 7.3 7.3 7.3 7.2
737-400 6.0 6.3 6.9 7.2 7.3 7.4
737-500 7.9 7.4 7.0 6.7 6.6 6.6

D3 Diffrence Relative to Base Case
Demand Multiplier

1.0 1.1 1.2 1.3 1.4 1.5

Revenue($) -7 -4 200 660 431 241
Operating Cost ($) -2,238 -1,713 -799 -162 9 104
Contribution ($) 2,231 1,709 999 822 422 137

Statistically Significant? Yes Yes No No No No

Spill (% Demand) 0 0 -0.06 -0.17 -0.07 -0.13
Load Factor 0.01 0.02 0.00 0.00 0.01 0.00
Yield (O/RPM) 0 0 0 0 0.01 0.01
Unit Cost (#/ASM) 0.08 0.06 0.06 0.04 0.04 0.04
Aircraft Utilization (Hours) '

737-300 0.0 0.2 0.0 0.0 0.0 -0.1
737-400 -1.3 -1.0 -0.4 -0.1 0.0 0.1
737-500 1.3 0.8 0.4 0.1 0.0 0.0

D3 Percent Diffrences
Demand Multiplier

1.0 1.1 1.2 1.3 1.4 1.5

Revenue 0.0 0.0 0.00 0.1% 0.1% 0.0%
Operating Cost -0.5% -0.4% -0.2% 0.0 0.0% 0.0%
Contribution -21.9% 4.5% 1.2% 0.6% 0.2% 0.1%
Spill 0.000 0.0% -50.0% -24.3% -3.1% -2.5%
Load Factor 1.6% 2.9% 0.0% 0.0% 1.1% 0.0%
Yield 0.0%0 0.00 0.0% 0.0 0.1% 0.1%
Unit Cost 1.08 0.7% 0.7% 0.5% 0.5% 0.5%
Aircraft Utilization (Hours) 7/

737-300 0.00 02.% -0.4% 0.40 -0.4% -1.6%
737-400 -18.1% -13.7% -5.5% -1.4% 0.0% 1.8%

737-500 19.7% 12.1% 6.1% 1.5% 0.0% -0.3%
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Figure 7.8.1

Profit Increase With Demand Driven Dispatch
Over a Range of Demand Multipliers
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7.5 Sensitivity Analysis of Dynamic Nature of Demand Driven Dispatch

Tables 7.11 and 7.12 show data from simulations runs where the demand driven

dispatch module was "turned on" and "turned off" over the entire range of possible

booking revision points. Regardless of whether D3 was being used or not, the revenue

management module was invoked. The reason for doing such an analysis is to determine

for airlines which might not wish to run D3 assignment programs at every booking

revision point for every flight on a daily basis the fewest number of assignment revision

points and their occurrence in the booking process necessary to achieve good profit

enhancement results. In all likelihood the answer to this question will heavily depend

upon the distribution of and booking patterns for demand. The two scenarios examined

here are planned load factor / balanced demand / typical booking and distributed load

factor / balanced demand / typical booking at demand multipliers 1.0 and 1.5.

"Turning off" the D3 process is defined as running the D3 module at every

booking revision point prior to the specified revision point and thereafter skipping over

D3 in the simulation at every revision point. "Turning on" represents the opposite action.

The D3 module is not run until a certain booking revision point is reached, and then it is

run until the end of the booking process. By definition the contribution from the situation

where the final booking period is the last revision point in the "turn off" case must equal

the contribution from the situation where the initial booking period is the first booking

revision point in the "turn on" case. Both of these points are equivalent to running D3

over the entire booking process.

7.4.1 Planned load factor / Balanced demand / Typical booking

At demand multiplier 1.0, Figure 7.9.1 shows a sharp rise in contribution with the

between the zeroth and first assignment revision point. In fact, 85% of the total possible

contribution increase from using the D3 process is gained between these two points. Of
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course turning off D3 at assignment point 0 is the same as saying that the simulation is

being run under static conditions. Terminating D3 at assignment point 1 is analogous to

running D3 just once at the start of the booking process. This is a very important result

since it means that if airlines could assign their aircraft at the beginning of the booking

process for a flight many months away just on the basis of probabilistic fare class demand

analysis (as opposed to aggregate level analysis used at many airlines), they can gain a

large percentage of the D3 benefits without running a full blown D3 assignment process.

Detailed demand data is supplied by the revenue management system, so it is crucial that

the revenue management and demand driven dispatch functions be highly integrated to

ensure timely relay of updated information. Over the rest of the booking periods, there is

a gradual upward trend towards the final contribution figure. Thus, at every booking

revision point where D3 is run, there is on average some marginal benefit.

Where Figure 7.9.1 shows that large benefits can be gained by running D3 just

once, Figure 7.9.2 shows how contribution drops depending upon how late in the booking

process the first D3 assignment is made. Clearly if an airline chose to run D3 at the final

booking revision point, which corresponds to the day of the flight, it would bear some

opportunity cost. Figure 7.9.2 suggests that as late as the seventh revision point, or 14

days before the flight, the airline can determine D3 assignments without a perceptible

drop in contribution.

That this transition point occurs 14 days before departure is not likely a matter of

coincidence. Many airlines set purchase restrictions which require passengers seeking

discount fares to book seats by 14 days before the flight. Even though passengers have

the option of booking well before the 14 day cutoff, the uncertainty inherent in planning

any future event promotes increased booking activity as fare class advance purchase

deadlines approach. Figure 6.3 shows that almost 50% of passenger bookings in the

typical model occur in the last four booking periods. More importantly, since these
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bookings represent predominantly higher yield passengers, the percentage of revenue

booked over these periods is even greater.

In fairness it should be pointed out that the worst result is relatively small, only

$170 (4.3%) lower in contribution. Why so low? One must remember that at demand

multiplier 1.0 there is no spill whatsoever (Table 1.3). This in turn is a result of my

demand models not having enough variability and/or high enough base load factors.

Under these circumstances we are in the situation where running D3 just once at any point

in the booking process is sufficient. Spill is more common in real life because load

factors are not so controlled. Additionally, fare class demands are broken out to the full

origin-destination level as opposed to the leg level. This is important because it means

that for a given demand level the variability will be higher when the demand is composed

of many smaller, more volatile (higher k factor) market demands as opposed to a single

aggregate demand.

At demand multiplier 1.5, there is no dramatic jump in contribution between the

static case (last assignment revision point = 0) and any demand driven dispatch "turn off"

point. The curve in Figure 7.9.3 even shows a drop in contribution at last assignment

revision point = 2. There are separate phenomena at work in this situation. First, the

level of spill at high demand multipliers is such that most of the contribution

improvements come from the revenue side, and there are plenty of high revenue

passengers to fill seats. Load factors in this instance are over 90%. Secondly, aircraft

seats come in discrete quantities. Therefore, it is possible that a more costly assignment

solution is found in anticipation of simulated bookings which do not materialize. With no

further revisions possible after the last revision point, the revenue management system

must make the best of the flawed assignments.

Figure 7.9.4 shows an uneven decline in contribution as the first assignment

revision point is varied. A definitive break appears again appears at assignment revision

point 7 for most likely the reason stated previously. In both Figures 7.9.3 and 7.9.4 the
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absolute changes are so low, on the order of a couple hundred dollars in comparison to

the static value of about $230,000, as to be essentially insignificant in economic terms.

7.4.2 Distributed load factor / Balanced demand / Typical booking

As seen with the results in the demand multiplier sensitivity section, there are no

major differences in the results between distributed load factor and planned load factor

scenarios. The nominal demand multiplier (1.0) cases in fact look identical with slight

differences only in absolute contribution levels (Figures 7.10.1 and 7.10.2). In this

scenario too there is no spill at this demand multiplier to cause a larger drop at late

assignment points in Figure 7.10.2.

At demand multiplier = 1.5, the "turn off" response of demand driven dispatch

(Figure 7.10.3) differs from the planned load factor case in the fact that the upward trend

in contribution rises more steadily. However, the number of dollars is so small that it

would be stretching the point to attach any significance.
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Table 7.11: Sensitivity Analysis - Changing Number of A/C Assignment Revision Points

Planned Load Factor of 65%/Balanced Demands/Typical Booking
Demand Multiplier = 1.0
Last Revision Period 0 1 2 3 4 5 6 7 8 9 10

Operating Revenue $490,170 $489,816 $489,960 $490,156 $490,077 $490,092 $490,163 $490,160 $490,157 $490,170 $490,170

Flight Cost $219,873 $217,477 $217,562 $217,766 $217,653 $217,597 $217,721 $217,617 $217,626 $217,580 $217,494
Total Cost $488,607 $486,211 $486,296 $486,500 $486,387 $486,331 $486,455 $486,351 $486,360 $486,314 $486,228
Contribution $1,563 $3,605 $3,664 $3,656 $3,690 $3,761 $3,708 $3,809 $3,797 $3,856 $3,942

Planned Load Factor of 65%/Balanced Demands/Typical Booking
Demand Multiplier = 1.5
Last Revision Period 0 1 2 3 4 5 6 7 8 9 10

Operating Revenue $719,296 $719,296 $719,147 $719,186 $719,324 $719,282 $719,358 $719,429 $719,474 $719,504 $719,556

Flight Cost $220,138 $220,138 $220,197 $220,126 $220,183 $220,167 $220,213 $220,248 $220,261 $220,269 $220,324
Total Cost $489,196 $489,196 $489,255 $489,184 $489,241 $489,225 $489,271 $489,306 $489,319 $489,327 $489,382
Contribution $230,100 $230,100 $229,892 $230,002 $230,083 $230,057 $230,087 $230,123 $230,155 $230,177 $230,174

Planned Load Factor of 65%/Balanced Demands/Typical Booking
Demand Multiplier = 1.0
First Revision Period 0 1 2 3 4 5 6 7 8 9 10
Operating Revenue $490,170 $490,170 $490,170 $490,170 $490,170 $490,170 $490,170 $490,156 $490,078 $490,050 $489,996

Flight Cost $217,494 $217,494 $217,494 $217,494 $217,494 $217,494 $217,494 $217,494 $217,493 $217,491 $217,490

Total Cost $486,228 $486,228 $486,228 $486,228 $486,228 $486,228 $486,228 $486,228 $486,227 $486,225 $486,224

Contribution $3,942 $3,942 $3,942 $3,942 $3,942 $3,942 $3,942 $3,928 $3,851 $3,825 $3,772

Planned Load Factor of 65%/Balanced Demands/Typical Booking
Demand Multiplier = 1.5
First Revision Period 0 1 2 3 4 5 6 7 8 9 10
Operating Revenue $719,556 $719,296 $719,515 $719,483 $719,381 $719,411 $719,432 $719,033 $718,906 $718,719 $718,679

Flight Cost $220,324 $220,138 $220,327 $220,326 $220,329 $220,338 $220,333 $220,345 $220,292 $220,317 $220,321
Total Cost $489,382 $489,196 $489,385 $489,384 $489,387 $489,396 $489,391 $489,403 $489,350 $489,375 $489,379
Contribution $230,174 $230,100 $230,130 $230,099 $229,994 $230,015 $230,041 $229,630 $229,556 $229,344 $229,300



Figure 7.9.1
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Figure 7.9.3

Effects on Contribution from
"Turning Off' Demand Driven Dispatch
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Table 7.12: Sensitivity Analysis - Changing Number of A/C Assignment Revision Points

Distributed Load Factor/Balanced Demands/Typical Booking
Demand Multiplier = 1.0
Last Revision Period 0 1 2 3 4 5 6 7 8 9 10
Operating Revenue $492,979 $492,776 $492,822 $492,813 $492,876 $492,869 $492,915 $492,967 $492,969 $492,977 $492,979
Flight Cost $219,875 $217,753 $217,806 $217,756 $217,814 $217,793 $217,818 $217,894 $217,856 $217,781 $217,708
Total Cost $488,611 $486,489 $486,542 $486,492 $486,550 $486,529 $486,554 $486,630 $486,592 $486,517 $486,444
Contribution $4,368 $6,287 $6,280 $6,321 $6,326 $6,340 $6,361 $6,337 $6,377 $6,460 $6,535

Distributed Load Factor/Balanced Demands/Typical Booking
Demand Multiplier = 1.5
Last Revision Period 0 1 2 3 4 5 6 7 8 9 10
Operating Revenue $717,596 $717,596 $718,575 $718,234 $718,438 $718,410 $718,819 $718,876 $718,874 $718,974 $719,059
Flight Cost $220,128 $220,128 $220,429 $220,235 $220,301 $220,253 $220,346 $220,395 $220,390 $220,399 $220,403
Total Cost $489,173 $489,173 $489,474 $489,280 $489,346 $489,298 $489,391 $489,440 $489,435 $489,444 $489,448
Contribution $228,423 $228,423 $229,101 $228,954 $229,092 $229,112 $229,428 $229,436 $229,439 $229,530 $229,611

Distributed Load Factor/Balanced Demands/Typical Booking
Demand Multiplier = 1.0
First Revision Period 0 1 2 3 4 5 6 7 8 9 10
Operating Revenue $492,979 $492,979 $492,979 $492,979 $492,979 $492,979 $492,971 $492,918 $492,756 $492,704 $492,631
Flight Cost $217,708 $217,708 $217,708 $217,708 $217,708 $217,708 $217,708 $217,704 $217,688 $217,686 $217,682
Total Cost $486,444 $486,444 $486,444 $486,444 $486,444 $486,444 $486,444 $486,440 $486,424 $486,422 $486,418
Contribution $6,535 $6,535 $6,535 $6,535 $6,535 $6,535 $6,527 $6,478 $6,332 $6,282 $6,213

Distributed Load Factor/Balanced DemandsfTypical Booking
Demand Multiplier = 1.5
First Revision Period 0 1 2 3 4 5 6 7 8 9 10
Operating Revenue $719,059 $719,044 $719,044 $719,026 $718,993 $718,904 $718,818 $718,399 $717,985 $717,935 $717,800
Flight Cost $220,403 $220,401 $220,401 $220,403 $220,403 $220,416 $220,449 $220,380 $220,317 $220,359 $220,307
Total Cost $489,448 $489,446 $489,446 $489,448 $489,448 $489,461 $489,494 $489,425 $489,362 $489,404 $489,352
Contribution $229,611 $229,598 $229,598 $229,578 $229,545 $229,443 $229,324 $228,974 $228,623 $228,531 $228,448
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Figure 7.10.3

Effects on Contribution from
"Turning Off' Demand Driven Dispatch
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Chapter 8: Conclusions

Demand driven dispatch in airline hub operations can improve airline profit

margins under certain conditions on the order of tens of millions of dollars annually. The

best results obtained in this study were at load factors similar to those seen in the airline

industry today. It was initially thought that the positive impacts of demand driven

dispatch would carry through to higher demand situations as well. This was discovered

not to be the case because opportunities for revenue generation are plentiful even in the

static scenario that as long as revenue management systems are in place, the difference

will be negligible.

In situations where profit was most significantly improved, the demand driven

dispatch algorithm achieved these results by minimizing costs. This was done by

radically changing the aircraft utilization pattern of the Boeing 737 family with respect to

the static case. Daily utilization was greatly increased in the demand driven dispatch

simulations for the smallest aircraft, the 737-500, by over an hour per airplane

(approximately 20% change). Consequently, the daily utilization of the largest aircraft,

the 737-400, was reduced by the roughly same amount on a per plane basis. This

produced the situation where unit costs were higher in the demand driven dispatch runs

relative to the static runs, but overall costs were lower because the demand driven

dispatch model considers only trip costs. In situations where there was variability and

low spill (i.e. demand multiplier 1.0) it made sense profit-wise to use the smaller aircraft

more extensively because of lower trip costs. Variability in bookings and revenues drops

when passenger demand greatly exceeds available capacity. Thus, as demands rise, the

utilization rates drift back towards the static case assignment values since this set of

aircraft assignments will capture by definition the greatest revenue under more

deterministic conditions.

-89-



The results did not vary significantly with changes to the scenario definition. The

profit improvement was always greatest at demand multiplier 1.0 regardless of any

combination of demand distribution, leg demand balance, and booking process

assumptions. This suggests a high degree of robustness of demand driven dispatch

performance with regard to variable market conditions.

While it is difficult to make a direct comparison with the results from the Boeing

studies, the impact on profit improvement from this version of demand driven dispatch

was in general less (40%) than found with the Boeing model on a per airplane basis.

There are two possible explanations. First, the Boeing model does not capture enough

detail in the fare structure and booking process definitions. This suggests that demand

driven dispatch profit projections cited in the Boeing studies could be more optimistic

than those likely to be encountered in practice. However, it could also be true that the

planning window approach is simply better than the daily cycle approach used in this

thesis. Further study would be needed to determine the actual source(s) of the

discrepancy.

Studies on the effectiveness of demand driven dispatch when initiated and

terminated at different points in the booking process revealed two major conclusions.

The first is that most of the benefit to be gained from running a demand driven dispatch

reassignment routine at every booking revision point can be gained from performing the

analysis just once early in the booking process. This is a clear message that airlines are

limiting profit opportunities if aircraft assignments are made on the basis of aggregate

demand data alone. It logically follows that independent of whether aircraft assignments

are made upon consideration of deterministic or stochastic analyses, they must be made

on at least a day of week basis if demand variation is high. Assigning a single aircraft

type to a specific flight leg for an entire month will result in tremendous opportunity costs

under this circumstance.
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The second conclusion is that demand driven dispatch can be first used in the

booking process as late as the revision point where advance purchase constraints initially

come into play without a detrimental impact to profits. For example, the results from

starting demand driven dispatch at 56 days before the flight will not vary greatly from

those where demand driven dispatch assignments are initially made at 14 days before the

flight, a common advance purchase restriction imposed by the airlines. This is an

intuitive conclusion since passengers will typically not book restricted tickets until as late

as possible because of penalties for itinerary changes.

Practical issues concerning the day to day operation of an airline in a demand

driven dispatch environment were also examined. There seem to be no insurmountable

obstacles preventing implementation of demand driven dispatch operations at airlines in

the context of a multiple hub and spoke system. In fact, single hub and spoke systems

with demand driven dispatch aircraft assignments are in use today in Europe. While the

simulation runs only accounted for differences in flight operating costs, there is no

reason to believe that ground and/or system operating costs will rise with demand driven

dispatch. The major issue to be resolved in a large scale implementation would be the

scheduling of flight and cabin crews. Ultimately this question comes down to the

respective unions allowing for more work rule flexibility than exists in current contracts.
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Chapter 9: Directions for Future Research

Perhaps the most interesting extension of this research would be to incorporate the

ability to use demand driven dispatch not just once for a daily cycle, but for every

intervening point in the day when aircraft flying shorter legs have returned to the hub.

This would not require any great modification to the existing code but would necessitate

a greater number of market demand assumptions.

The utilization patterns of the aircraft suggest that the composition of the aircraft

pools might be altered so that the average capacity is reduced in such a way as to further

increase profits. Methods for finding the optimal composition under different demand

assumptions could explored.

There are also several leg assignment problems which could be addressed. For

instance, a method could be developed to decompose a highly connected network into a

set of either autonomous or linked hubs in such a way as to increase profit and while

maintaining as much as possible the original flight schedule. Allowing for spoke

switching among aircraft from different pools while maintaining overall fleet

composition in each hub is also an interesting problem.

Finally, simulations could be run with traffic demand based upon connecting

service for purposes of further realism. At present demands are only specified for each

directed leg between the hub and the spoke city. Origin-destination demands could be

specified on a spoke to spoke basis. More advanced revenue management techniques

could also be tested. From the demand driven dispatch perspective, these two particular

study directions would in all likelihood produce similar results to the cases in this study,

but one never knows for sure without testing.
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