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ABSTRACT

Airlines have recently realized the importance of an effective seat inventory con-
trol system on revenues and profits. Yet, at the same time, there is a lack of practical
optimization models for determining the number of seats to allocate to each origin-

destination and fare class itinerary in an airline's network. In this thesis, several
different mathematical models and optimization techniques for origin-destination
seat inventory control are evaluated and compared.

Each technique is applied to a small network with assumed demand levels and

fares for each O-D/fare class combination. The techniques are then compared with

respect to the differences in seat allocations and booking limits, fare class nesting

order and total potential system revenue. The "optimal" seat allocation solution is
found by the probabilistic linear programming technique, but actual use of such a
method is impractical due to the size of its formulation and its distinct inventory

solution, which is not compatible with the nested reservations systems of most major
airlines today. The technique that seems to have the most potential as an efficient
origin-destination seat inventory control method is a network based deterministic

linear programming technique, with seat allocations nested according to shadow
prices.
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Chapter 1

Introduction

1.1 Motivation for Thesis

In the airline industry today it is common practice for a carrier to offer a wide

range of fares for any given seat in the same cabin. On a nonstop flight from Boston

to Miami it is possible to find a passenger traveling on a round-trip discounted ticket

for $228, and at the same time, a passenger sitting in the very next seat paying a full

coach fare of $548, round trip. Occurrences such as this have become commonplace

since deregulation of the U.S. airline industry.

Prior to deregulation, fares were set by the Civil Aeronautics Board (CAB) for

the ii dustry as a whole. Fares were established according to in lustry average costs

and based on a dollars per passenger mile structure. Carriers that operated at

lower costs were not permitted to offer a lower fare which would be uneconomical

to the rest of the industry. Besides determining the industry's prices, the CAB also

governed each carrier's route structure, controlling which carriers could and could

not serve a given market.

With deregulation in the U.S. in 1978, both pricing and market entry changed



immensely. Carriers began offering seats that would otherwise be empty to low-

fare passengers. Ticketing and travel restrictions were imposed on these low fares

in order to limit diversion of those passengers willing to pay higher fares. These

restrictions included such requirements as advance purchase, minimum stays, and

round-trip travel. More recently, total and partial non-refundability restrictions

have also been affixed to low-fare seats.

Through the practice of differential pricing, airlines have been able to increase

total revenue. The marginal cost of carrying an additional passenger in an otherwise

empty seat is very low. Therefore, seats can be offered at low fares in order to

induce extra demand. As long as the lower fares are more than the marginal cost of

carrying the extra passenger, these passengers will be contributing to the fixed costs

of operating the flight and to profits. Not only do the airlines benefit, but high fare

passengers may also benefit. With the extra revenue from the additional low fare

passengers, airlines may actually be able to reduce the fares of the higher full fare

passengers who would be travelling regardless of the cost.

Restrictions on the purchase and use of the low fare tickets limited the diversion

of high fare passengers, but airlines were soon faced with another problem. The

seats sold to low fare passengers were not necessarily seats which would otherwise

be empty. Besides the restrictions on the low fare tickets, capacity controls, or

limits, on the number of available seats were needed. It was important to determine

the number of seats which would be empty on a flight. These seats could then be

made available for low-fare passengers while leaving an adequate number of seats

for full-fare passengers so they would not be displaced.

Once restrictions and regulations on market entry were removed through dereg-

ulation, regional carriers, formerly limited to certain routes by the CAB, expanded



into high density markets, offering lower fares on multi-stop and connecting flights.

At the same time, many new airlines began operating across the country. These

airlines were not tied to labor union agreements, meaning their labor costs, which

make up as much as 35% of an airline's operating costs, were much lower. In turn,

these new low-cost carriers could afford to provide service at much lower prices.

In order for the major airlines to compete with the lower fares offered by the

regional and new carriers, they had to offer a limited number of seats at these low

fares. By offering seats at low fares, major airlines were able to advertise low prices

and compete with low fare carriers. At the same time, by limiting the number of

low fare seats available, these higher cost airlines would still be able to cover direct

operating costs on a flight. This made the capacity control problem much more

complex. Rather than simply determining the number of seats that would otherwise

remain empty, seats had to be provided for a range of different low-fare passengers,

as well as higher-fare passengers. In order to control capacities effectively, demands

for each fare class had to be forecasted and seats allocated to each depending on the

overall contribution to total revenue and the chances that seats would ultimately go

unsold.

This concept of capacity control is also known as seat inventory control. Seat

inventory control is the process of balancing the number of seats sold at each fare

level so as to maximize total system revenues. The problem has become more

complicated for several reasons:

1. The number of different fares offered for any given origin-destination pair has

increased dramatically, creating a multitude of fare class/O-D combinations.

For each combination, the expected demand level needs to be forecasted, the
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number of seats made available to each O-D/fare class needs to be determined,

and the respective booking limits need to be calculated.

2. The number of connecting flight segments operated by a single airline has in-

creased. This makes it possible for passengers to get to their destination over

a wide variety of routes and combinations of routes. Not only is a carrier's

network itself bigger, but due to the number of interacting flights and connec-

tion options which must be considered, the process of determining the number

of seats to allocate to a particular fare class and O-D pair is very large and

complicated.

3. The level of demand varies over time. Demand is a function of the season of

the year, the day of the week, the time of the day, the number of ultimate

destinations which can be reached by a particular flight, whether the flight is

non-stop or one-stop, and the alternative flights offered by the same carrier or

competitive carriers. With the number of variables that can affect demand, it

can be difficult to derive good forecasts of expected demand levels needed to

determine booking limits.

Complexity has increased even more with the development of hub-and-spoke

networks. A hub-and-spoke system is an efficient way to provide service to many

different markets while minimizing the resources needed to do so. In such a network,

an airline picks a centrally located city to serve as a connecting hub for its flights.

Then, instead of flying an aircraft between each individual city pair the airline serves,

aircraft from cities around the country converge into and out of the hub airport as

seen in Figure 1.1, which illustrates the basic concept of a point-to-point network

versus a hub-and-spoke network. A hub-and-spoke system reduces the number of
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HUB AND SPOKE

Figure 1.1: Point-to-Point versus Hub-and-Spoke



aircraft needed to provide service between a set of cities since any given flight in

the network can be a part of many origin-destination itineraries. The demand for a

flight is no longer simply the number of passengers traveling from city A to city Z,

but includes passengers going from A to city V, to city W, and so on, as well as to

such cities as B and C.

A seat inventory control system designed to maximize total revenues for the

airline thus involves more than simple decisions about which seats to sell to which

fare classes. For a given flight into a hub, the number of alternatives for selling

a specific seat is significantly greater that the comparatively small number of fare

classes offered on the flight. Thus, in the process of allocating seats in a cabin,

decisions as to which seats should be sold to which origin-destination pair as well

as fare class can also be included. In order to make such decisions, total system

revenue generated from selling a seat on a flight to a multi-leg passenger at a higher

fare should be compared to the system revenue which could be generated by selling

that same seat to a single-leg passenger, but at a lower fare. Selling the seat to

the single-leg passenger may make it possible to sell the seat on the second leg of

the multi-leg passenger's itinerary to another single-leg passenger. The combined

revenue of the two single-leg, lower fare passengers may be greater than the revenue

of the multi-leg passenger who is paying a higher fare than each of the single-leg

passengers individually.

Most airline reservations systems currently maintain seat inventories and manage

seat availability by fare class for each individual flight leg. If a seat is available in the

low fare class, it can be reserved regardless of ultimate destination, overall itinerary

and total revenue contribution. Because of the development of hub-and-spoke sys-

tems with many different itineraries on any given flight, there is a great amount
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of interest in the possibility of practicing inventory control in an origin-destination

based environment. Methods are being explored to control seat inventories by pas-

senger itinerary and/or origin-destination revenue. That is, on any given flight leg

from some point P to some other point Q, it is possible to take passengers who are

travelling to point Q or continuing on and connecting to a variety of other destina-

tions, all with different revenue potential for the carrier. Airlines would like to be

able to determine which of the many passenger itineraries should have seats allo-

cated to them on the initial flight leg (P to Q) in order to maximize system-wide

revenues.

1.2 Objective of Thesis

Airlines have recognized that there are advantages in using statistical tools and

mathematical analysis in controlling seat inventories and, in turn, managing revenue.

Most airlines have decision support tools which retrieve, summarize and analyze his-

torical reservations and traffic data. The more advanced airlines in seat inventory

control are in a transitional phase between a system dependent on human judge-

ment and some form of automated booking limit system. Automated booking limit

systems use historical reservations data and actual bookings to forecast demands.

The demand estimates are then used as inputs, along with revenue information, in a

seat allocation model, which determines optimal booking limits. The seat allocation

model can include mathematical approaches and algorithms for setting and revising

booking limits.

Most of the seat allocation models currently used by airlines are leg based ap-

proaches directed at maximizing flight leg revenues. Some models try to account



for differences in passenger itinerary revenues by using "virtual" inventory classes,

although the model itself is leg based. A virtual inventory class is a seat inventory

allocation category which can be used to control the number of seats available for

sale within a given fare range. Although the virtual inventories are based on total

passenger itinerary ticket revenue, seat allocations for the virtual classes are deter-

mined on the basis of maximizing revenues on individual flight legs. The interaction

of different flight legs in a network system is not taken into account.

Maximizing flight leg revenues is not necessarily the same as maximizing total

system revenues. An origin-destination optimization approach is needed to overcome

such problems. True O-D approaches are network formulations which determine

optimal seat allocations based on distinct fare class and itinerary combinations, yet

such formulations can be quite complex. At the same time, a solution from such an

O-D model is not directly compatible with the nested leg-based structure of most

airline reservations systems today.

Critical questions for airlines considering the development of origin-destination

seat inventory control systems are: How effective are different approaches to con-

trolling seat inventories and maximizing revenues? Is the potential revenue of an

origin-destination approach greater than that of leg-based approaches? If so, is the

difference in potential revenue significant enough to offset the ease and simplicity

of using a leg-based approach? How do the different methods currently being con-

sidered for use vary? Is it possible to effectively use origin-destination methods and

their solutions in existing airline reservations systems?

The objective of this thesis is to compare several different mathematical models

and optimization techniques relevent to airline seat inventory control. The eval-

uation is based on a small hub-based network of connecting flights. Six different



techniques, which include both leg based and origin-destination approaches, are

applied to the network. O-D demand levels and fares for a four coach fare class

structure are assumed and the alternatives are compared with respect to the differ-

ences in seat allocations and booking limits, fare class nesting order and total system

revenues. Through this comparison, the issues mentioned above are addressed and

discussed.

The intent here is to present a comparison of inventory management systems. A

number of factors such as overbooking, probabilities of passenger upgrade, diversion,

and loss of denied requests are ignored. Such factors must be considered in a seat

inventory management system, but by not including them in this analysis it will be

possible to identify more clearly the differences between the methods themselves.

Once a basic seat inventory control system is developed, these factors can be dealt

with and incorporated into the system.

1.3 Structure of Thesis

The remainder of this thesis is divided into five chapters. Chapter Two serves

as a formal introduction to the seat inventory control problem. The character-

istics of airline operations and reservations systems which contribute to the size,

complexity, and definition of the problem are discussed. The second section of the

chapter summarizes current methods and practices used by major domestic airlines

for controlling seat inventories.

Chapter Three is a brief overview of past research. Mathematical approaches

that have been considered for use on the seat inventory control problem are pre-

sented. Methods for solving simple representations of the problem, as well as oper-



ations research models which determine "optimal" seat allocations are introduced

and reviewed.

The techniques being evaluated as origin-destination seat inventory control al-

ternatives are decribed in Chapter Four. Six techniques are presented, including

leg-based and origin-destination network formulations, as well as deterministic and

probabilistic optimization algorithms. The concepts behind each technique are de-

scribed in detail.

Chapter Five presents the analysis of the six alternatives. Each alternative is

applied to a small network model. The actual steps involved in the application of

each technique are explained and the results from these applications are provided.

Comparisons of the different alternatives, in terms of seat allocations, nesting order

and total system revenues, are discussed.

Chapter Six concludes this thesis by presenting an overview of findings and con-

tributions from this research analysis. Finally, further research and work stemming

from the results of this thesis are outlined. In particular, direction for additional

analysis with respect to a nested network seat inventory control system, which is

presented in this thesis, is outlined.



Chapter 2

Seat Inventory Control

2.1 Definition of the Problem

Airline seat inventory control is the practice of limiting the number of seats

made available to different fare classes that share a common cabin on an aircraft.

The objective of seat inventory control is to balance the number of passengers in

each fare class in order to maximize total flight revenues. By offering more seats at

discounted fares, an airline can capture extra passengers who otherwise would not

travel, in turn providing additional revenue. Too many seats offered at lower fares

will cause a diversion of high-fare passengers to the available low fares and may also

displace some high-fare passengers altogether, therefore lowering total revenues.

Airlines use differential pricing to increase total revenues, as well as to be com-

petitive. By offering a limited number of low-fare tickets, an airline can appear to

be competitive with other carriers that offer deeply discounted fares. At the same

time, it may also be able to fill otherwise empty seats by stimulating demand. Given

the differential pricing strategy used by most airlines, the seat inventory problem is

to determine the optimal booking limits, the maximum number of reservations that



should be accepted, for each fare class for a future scheduled flight departure that

will maximize the airline's total revenue.

The need for seat inventory control stems from a basic economic problem: supply

does not equal demand. In air transportation, supply and demand seldom match

exactly. In the first place, demand for future flights is probabilistic and cannot

be forecasted precisely. But the problem is due, to a greater extent, to the actual

scheduling of the aircraft. Because of route structure constraints, constraints on

the number and size of aircraft, scheduling constraints and the lack of balance in

passenger demands over a network, it is not always possible to have the aircraft

size equal demand. Therefore, when there are either more seats on an aircraft than

demand or more demand than the given number of seats, it is the control over the

number of discounted seats made available which can allow the airline to achieve a

closer match between supply and demand.

The seat inventory control problem is not simply one of allocating seats to four,

five, six, seven or even ten fare classes on a single flight leg. Today, more often

than not, a single flight involves passengers with many different origin-destination

itineraries, each of which have different revenue contributions. Therefore, seat in-

ventory control decisions are not just the number of seats to allocate to each fare

class, but decisions may need to be made as to whether a seat should be sold to a

higher-yield fare class on a single leg itiernary, or to a lower-yield fare class, but at

a higher total revenue, on a multi-leg or connecting itinerary.

The complexity of the problem has grown tremendously with the development

of large hub-and-spoke operations. On a given flight departure into a major hub,

there can be passengers heading towards as many as 40 possible destinations. With



major U.S. airlines currently offering seven coach cabin fare classes, that makes over

280 possible fare class/destination combinations on a single flight leg, each having

a different level of attractiveness, in terms of revenue, for the airline. As carriers

continue to expand the number of fare classes offered on a flight and hub operations

continue to grow, offering increasing numbers of connecting possibilities, they can

benefit more and more from an effective seat inventory control system.

The seat inventory problem can be approached from a variety of perspectives.

Seat inventories can be controlled over individual flight legs, over the entire network

or over separate sub-sets of the network. Most airlines currently manage seat inven-

tories by flight leg. It is by far the simplest method to use and can be implemented

into the airline reservations system without major revisions to current practices.

Using a leg-based seat inventory control method, efforts are made to maximize

revenue on each flight leg. This does not necessarily mean total system revenues

are maximized. For example, consider a simple linear two flight leg network from

Boston to Atlanta and from Atlanta to Miami with low priced Q-class fares of $69,

$89, and $59 for BOSATL, BOSMIA, and ATLMIA, respectively. With a leg-based

inventory system, passengers on either a BOSATL or BOSMIA itinerary can reserve

a Q seat on the BOS-ATL flight leg if one is available. This makes it possible to

book all Q seats to the BOSATL passengers while denying higher revenue BOSMIA

passengers. If demand for local travel from Atlanta to Miami is low, seats could go

unsold on the ATL-MIA flight leg, and a reduced total revenue for the two flight

legs combined could be obtained.

In the above example the exact opposite can also happen. The Q seats on the

BOS-ATL flight leg can all be booked to the higher itinerary revenue passengers



going from Boston to Miami. If short-haul demand is high for both the BOS-ATL

flight and the ATL-MIA flight, total revenues can be increased by selling the Q seats

on the BOS-ATL flight leg to BOSATL local passengers. With high demand on the

ATL-MIA flight for local travel, the total revenue for a Q seat will be the sum of

$69 and $59, or $128, from Boston to Atlanta and Atlanta to Miami, versus $89

which would be received from a BOSMIA through passenger.

In the first example, by protecting some Q-class seats on the first flight leg, BOS-

ATL, for the longer haul Miami passengers, total revenues could have been increased.

But when short-haul demands are high, by limiting seats to multi-leg passengers,

higher revenues can be obtained. In order to maximize revenue over an entire

route network, a seat inventory control system must be based on origin-destination

(O-D) itineraries rather than flight leg. In an O-D method, seats are allocated to the

fare class/passenger itinerary combinations which generate the greatest revenue and

maximize total system revenues. Solutions from such an approach involve making

decisions about which fare class/O-D combinations are the most desirable. For a

network in which there are a large number of connections and flights with a multitude

of passenger options, an O-D method can become very complex.

Mathematical algorithms for O-D seat inventory control are usually based on

network formulations. For each O-D/fare class combination, the expected revenue of

each additional seat sold must be determined. Seats are then allocated according the

expected revenue of a single O-D/fare class or combination of O-D/fare classes. The

solution from such network formulations is based on distinct, separate inventories.

Once the number of seats which should be allocated to each fare class/passenger

itinerary is determined, an important question is how to use these results in the leg-

based, nested fare class structures of current airline reservations systems without

totally reconfiguring them.



An additional problem in seat inventory control is that air transportation de-

mand is probabilistic. Demand for a future flight has both cyclical and stochastic

variations. Both may be forecasted, but stochastic variations are less predictable.

There will always be some uncertainty as to the number of requests for a future

flight- and fare class. An optimal seat inventory control model needs to take into

account the uncertainty associated with stochastic variations by incorporating the

variances of estimated demand, along with the revenue values and expected levels of

demand for each fare class. A decision model that fails to consider the probabilistic

nature of demand will overestimate expected revenues and may not allocate seats

optimally. As the actual variations in demand increase, the greater the differences

will be between the expected revenues and recommended seat allocation levels of a

deterministic decision model and those of the optimal solution.

Demand for a future flight is also dynamic. From one day to the next the total

number of requests changes continuously due to new demand as well as cancella-

tions. As time passes and the departure day of the flight approaches, the number

of bookings changes and the estimates of demand for each fare class and passenger

itinerary also change. These changes can affect the optimal allocation of remaining

seats for the flight. Therefore, it is important to be able to monitor the flight and

make acjustments in seat allocations and booking limits when needed. In order to

do this, the mathematical algorithms used in a seat inventory control system should

not be overly- complicated and take too much time in running in order to make

frequent revisions possible.

Another complication involved in optimally solving the seat inventory control

problem is the nested fare class reservations systems which many airlines use. Nested

fare class inventories are structured so that as long as there is a seat available on the



plane, a high-fare class request will not be denied. Each discounted, low-fare class

inventory is nested within the next higher fare class. For example, take a four fare

class structure-Y, M, B and Q-with Y being the highest fare class and Q being

the lowest. The Q-class seat inventory is nested within B-class, and in turn B-class

is nested within M, and M within Y. If there were 25 seats allocated to Y-class, 30

to M, 25 to B and 20 to Q-class, there would actually be a maximum of 100 seats

available for Y-class requests, while a maximum of 75 seats and 45 seats would be

available to M and B classes, respectively. Q-class availability will remain at 20

seats.

In a nested system such as this, if there is a demand for 50 seats in the highest

fare class, Y-class, the passengers would be allowed to book on the particular flight

as long as there were 50 seats still available. The passengers would not be turned

away because only 25 seats were actually allocated to Y-class. On the other hand,

in a distinct fare class system, only 25 seats could be sold in Y-class regardless

of the extra demand at the high-fare level. Once a seat has been allocated to a

distinct fare class inventory, it can be booked only in that fare class or remain

unsold. That is why airlines prefer a nested system. If there are requests for the

highest fare, and seats are available, these requests will be accepted and not turned

down becaues of expected lower-fare demand. The problem with a nested system

is that most traditional mathematical optimization techniques determine solutions

for distinct classes. Such distinct inventory class solutions may not be the optimal

seat allocations for a nested system.

Besides the problem with a nested system, the size and complexity of a method

which finds an "optimal" network solution makes it unrealistic for use in current



airline seat inventory control and reservations processes. However, simpler leg-

based methods, which allocate seats by fare class alone and maximize revenue on

individual flight legs, do not take into account the interaction between flight legs

across an entire network. A seat inventory control approach is needed which is

somewhere between the two extremes. It needs to be aggregated enough to make

the problem manageable since making seat allocation decisions for each individual

seat on every flight across an entire network is impractical. At the same time, the

approach needs to be disaggregated enough to allow control of passenger itineraries

over the route network and not just flight leg by flight leg.

Airlines have begun to see the importance of revenue management, which in-

volves pricing as well as seat inventory control. Since prices are almost entirely

dependent on the pricing strategy of an airline's competitors, emphasis is put on

the seat inventory control component of revenue management with the hope of in-

creasing total expected revenues. There is a great interest through-out the airline

industry in seat inventory control methods. Current practices vary in sophistication

and the area of seat inventory control is evolving fast, but overall there is still a

strong emphasis on human judgement in determining seat allocations.

2.2 Current Practices

Initially, airline practices in seat inventory control were based exclusively on hu-

man judgement rather than systematic analysis. Over the past several years seat

inventory control has entered into a transitional stage throughout the industry, with

some airlines further ahead than others. Carriers are moving away from control-

ling seat inventories on the basis of human expertise alone and moving towards



automated systems which use mathematical techniques and algorithms, as well as

data management systems. Analysts who are responsible for controlling seat in-

ventories have been able to achieve increased control over revenues. However, as

networks become larger and more complicated due to hub-and-spoke operations,

and as competition continues to dictate fare levels, making the margin between

bottom-line revenues and operating expenses minimal, methods are needed which

are more rigourous, consistent and comprehensive.

The simplest approach to seat inventory control is a one-time setting of booking

limits based on booking histories. More complicated approaches use historical data,

competitors' actions and current trends to set initial booking limits and to make

adjustments. As actual bookings are made, past data and future forecasts are used

to adjust the booking limits. Many airlines have the beginnings of such a computer-

based automated system. Yet, for the most part the capabilities of these systems

extend as far as setting initial booking limits, while making adjustments to the

initial limits as reservations are accepted is done by humans.

Airlines today employ seat inventory control analysts who are responsible for

monitoring and adjusting booking limits throughout the reservations process [13.

The number of analysts and the extent of their responsibilities vary from airline

to airline, and the number of analysts is not necessarily proportional to the size

of the airline itself. It also is not proportional to the number of flights per day.

However, the higher the number of analysts, proportionally, the more effective the

seat inventory control system seems to be.

Airlines with relatively few analysts use an ad hoc process of seat inventory

control. Only certain flights and markets are selected for detailed review. These are



usually markets which are highly competitive or are specific flights which operate

during peak demand periods. Airlines with more analysts use a more systematic

process. Teams of analysts are assigned to groups of markets and flight legs for

which they are made responsible. Carriers with the most analysts, proportionally,

allot to each analyst all the flights that serve a particular market or a set of routes.

These analysts are totally responsible for the mix of passengers and the revenue

achieved on their flights.

Most carriers use some type of decision support system in the form of statistical

data management and analysis functions for seat inventory control. A data manage-

ment system collects and stores historical data from reservations systems and can

then estimates demand based on historical patterns and forecasting models. These

systems can provide data in a form which can help an analyst to respond to changes

in booking patterns as departure time approaches.

Airlines owning larger computer systems have developed, or are in the process

of developing, their own decision support and data management systems. Such

systems are tied into and used along with their reservations systems. There are also

a small number of computer packages which have been made available by software

companies particularly for seat inventory control. Most of these software packages

are strictly data management packages. Carriers with limited computer facilities

are interested.in such data management capabilities and are either investing in an

existing package or developing their own version for the purpose of decision support

in seat inventory control.

There are a few new developments in software packages which actually allocate

seats and determine booking limits. However, seat allocation solutions from such



packages are not always easy to implement and use in a current airline reservations

system. Also, the algorithms used in these systems are not necessarily "optimal".

It may be easier for an airline to develop its own automated system which can be

structured to fit into its existing system.

The seat inventory control systems of most airlines limit fare class bookings by

flight leg. As mentioned before, maximizing revenue on individual flight legs is not

the same as maximizing total revenues on an entire system. Some carriers have

advanced as far as being able to limit local passenger sales in favor of through and

connecting passengers with higher total revenue. For example, American Airlines'

seat inventory control system is based on itinerary revenues as well as fare classes.

However, no airline controls seat inventories on the basis of a passenger's origin and

destination over their entire network system.

Practices of setting initial fare class limits, monitoring actual reservations and

making adjustments to booking limits vary throughout the industry. The first step

in seat inventory control is setting initial booking limits. The simplest approach

involves setting initial booking limits with default values across every flight. While

such a system does not take much effort, developing a more complex system which

differentiates initial booking limits according to markets and flights can reduce the

amount of intervention required later on in the reservations process. A more complex

method in setting initial booking limits is to set lower fare class limits based on

market, day of the week and time of the day. Such a method requires substantial

effort but is better than not differentiating initial booking limits at all. Most airlines

use a combination of the two methods, depending on the degree of competition and

the level of demand for a given flight.



Rather than improving initial booking limit accuracy, greater benefits can be

obtained from developing reservations monitoring systems and adjusting booking

limits. A more sophisticated monitoring system can offset weaknesses in a simple

initial booking limit method. Major carriers have realized this and have advanced

beyond merely setting initial booking limits. Nonetheless, the different approaches

used in monitoring actual bookings relative to the pre-set initial limits vary in

sophistication.

The simplest approach used in the monitoring step of seat inventory control is

merely listing flights for which reservations approach the booking limit for any given

fare class. All major carriers have monitoring systems which can at least do this.

Some carriers have systems that are a little more advanced where flights are selected

and listed on the basis of several parameters. Computer routines in these systems

will flag flights in which actual reservations meet or approach a number of different

booking limit criteria.

Once reservations monitoring systems have flagged a flight, booking limit adjust-

ment decisions must be made. This is the most important aspect of seat inventory

control but is the least sophisticated. Decisions must be made whether to increase

the number of seats allocated to a fare class and make it available for additional

bookings or to leave the booking limit as i- and allow the fare class to close dov-n. In

the past these decisions, for the most part, have been made by analysts on the basis

of experience and judgement. Airlines have lacked practical models to calculate

optimal booking limits.

If optimization algorithms and models are developed and used, they need to

consider the probabilistic nature of demand. They also need to make use of fore-

casts based on historical data. Still, human judgement cannot be eliminated totally.



Optimization algorithms cannot take into account such things as occurrences of un-

expected events and changes in competition and competitive strategies. Models can

only be used to help analysts and to make seat inventory control more systematic.

Few airlines are well advanced in the redesign of their reservations system and

seat inventory control system. Changes in reservations systems are hindered by the

need to remain consistent with the rest of the industry. An airlines' reservations

system must be in keeping with the standards of the industry because of carriers

dependence on other airlines and travel agents to make bookings. For example,

Delta Air Lines accepts 150,000 to 180,000 reservations a day, but 70% of these

bookings come from other airlines' reservations systems.

Existing reservations systems do not differentiate between passengers on the

same flight leg and within the same fare class, and there are many different origin-

destination itineraries on most flights today. An ultimate goal for many airlines

is to develop an O-D based reservations system. Still, an upgrade such as this

must remain compatible with other reservations systems. The current objective

for most airlines is to continue making improvements to decision support tools in

order to make more useful infomation available to analysts who make booking limit

decisions. Some airlines have advanced to the stage of researching and implementing

automated systems to make the booking limit revision process less ad hoc.

Overall, there is a wide range of approaches used by airlines to control seat inven-

tories. There are still many improvements which could be made in the seat inventory

control system, but the industry as a whole is progressing in the sophistication of its

methods and tools. With the increased importance of revenue management to airline

profitability, emphasis is being placed on better and more effective seat inventory

control systems.



Chapter 3

Overview of Past Research

The main reason behind the low sophistication of seat inventory control systems

is the fairly recent realization by airlines of its importance to revenues and profits. At

the same time, there is also a lack of practical optimization models for determining

the number of seats to allocate to each origin-destination and fare class itinerary

in a network. There has been a substantial amount of theoretical research done

in the field, but such research has been devoted, for the most part, to large-scale

optimization techniques which solve a simplified version of the seat inventory control

problem.

The following is an overview of mathematical concepts and models relating to the

seat inventory control problem. The discussion is based on past work which started

in the early 1970's. The models reviewed range from simple two-class, single flight

leg seat inventory control methods to multi-class multi-leg network optimization

methods.

An approach based on equating marginal seat revenues was used by Little-

wood [2] in 1972. Taking into account the probabilistic nature of demand, Littlewood

developed a method to control low yield fares, in a two fare pricing structue, based



on the objective of maximizing revenues by flight leg. He suggests that low fare

passengers, paying a mean revenue of r, should be accepted on a flight as long as:

r > P - R (3.1)

where R is the higher yield revenue and P the maximum risk that acceptance of a

low fare passenger will result in the subsequent rejection of a high yield passenger. In

other words, total flight revenue will be maximized by accepting low yield passengers

up to the point where the probability of selling all remaining seats to high yield

passengers is equal to the ratio of the mean revenues of low yield and high yield

passengers, r/R.

Bhatia and Parekh [3] of TWA and Richter [4] of Lufthansa expanded on Lit-

tlewood's model in 1973 and 1982, respectively. In each case, the formulas derived

where in essence equivalent to Littlewood's. Through a rather lengthy differentiation

and transformation process, Bahatia and Parekh were able to derive the formula:

F 0  f2(y)dy (3.2)
F2

where F1 and F2 are the average low and high fare revenues, respectively, C is the

aircraft capacity, f2(y) is the high-fare demand distribution and T is the optimal

allotment for low-fare passengers.

Richter, on the other hand, approaches the problem by looking at changes in

the expected total revenue of the flight as additional seats are offered to low-fare

passengers. He derives an equality for what he calls differential revenue, defined as

the additional low-fare (LF) revenue obtained from offering an extra low-fare seat

minus the high-fare (HF) revenue lost:



DR = (additional LF revenue) - (HF revenue lost) (3.3)

= ARPL - Prob[1 additional LF seat] - ARPH -

Prob[1 additional LF seat displacing 1 HF passenger] (3.4)

where ARPL and ARPH are Average Revenue per Passenger, low-fare and high-fare,

respectively. By equating DR to zero, Richter's formula for the optimal low-fare

seat allotment, ALO, becomes:

ALO = C - H(ARPL/ARPH) (3.5)

where H(x) is the high-fare demand value which is exceeded with risk probability

of z. This is equivalent to formulas 3.1 and 3.2. Through Richter's formulation, it

can easily be seen that the low-fare seat allotment, ALO, is a function of the fare

ratio, capacity, and high-fare demand distribution, but is not influenced by the low-

fare demand distribution. However, the low-fare demand distribution does have an

influence on the total expected revenue of a flight.

In 1982, Buhr [5] of Lufthansa extended the seat allocation problem to a two-

leg flight, where decisions as to whether seats should be allocated to local versus

through passengers come into play. Buhr considers only one fare class on a linear A

to B to C flight. He defines expected residual revenue, E, as being the probability

of getting additional passengers, P, multiplied by the corresponding revenue per

passenger, R:

EAc = PAc(z) - RAC (3.6)

Local and through passenger demand is assumed to be independent, and the number

of seats allocated to segment AB is equal to that of segment BC. Under these



assumptions, Buhr states that total revenue is maximized when:

I EAC(x) - [EAB(y) + EBC(y))I -+ minimum (3.7)

subject to the capacity constraint. An iterative solution method is used to find the

optimal seat allotments. These seat allotments are based on distinct buckets.

For multiple class situations, Buhr suggests that strict O-D itinerary booking

limits be determined first, based on average O-D revenues. Once these limits are

known they can be divided and allocated among different fare classes offered for

an O-D itinerary. In the process of determining low fare seat allocations versus

high fare allocations for an O-D itinerary, the average revenue used in determining

the itinerary seat allotments will change, affecting expected revenue levels. Buhr

recognizes this problem but does not address it in his paper.

Wang [6] of Cathay Pacific Airways addressed the problem of optimizing seat

allocations for multi-leg flights with multiple fare types in 1983. He develops a model

based on expected marginal revenue which can handle up to six fare types for each

O-D pair on flights of up to four legs. The model determines the O-D combination

which gives the highest expected revenue and allocates a seat to that combination. It

then computes the expected revenue for the next seat of each O-D/fare combination

and allocates the seat to the highest. This process continues until all seats have

been allocated.

The expected revenue for each combination is computed by multiplying the

marginal probability of obtaining a given passenger by the fare of the respective

O-D/fare combination. That is:

E(R1.) = 2 Pr(xzk > Syk) - YjA (3.8)



where Yyk is the O-D/fare combination revenue. The marginal probability,Pr(x-k Syk),

is actually the probability of receiving more than spy requests.

In his model, Wang assumes independence of market and fare class demands

and seat inventories. His approach is to rank O-D/fare combinations by expected

revenues and allocate seats one by one. This is feasible for six fare classes and four

flight legs, giving as many as ten O-D itineraries and 60 O-D/fare class combina-

tions, but for a typical multi-leg multi-class seat inventory problem faced by major

airlines today, where a large number or flights are being fed into and out of a hub,

each of which can have as many as 35 or more different O-D passenger itineraries

aboard, this model is not very efficient. Network optimization and mathematical

programming techniques which find optimal seat allocation solutions, also based on

distinct, non-nested inventories, are more pratical.

In 1982 Glover, Glover, Lorenzo and McMillan [7] worked on the O-D/fare class

seat inventory control problem using a network flow formulation. Their method was

designed to find the "optimum" passenger mix, that is the number of passengers for

each fare class/O-D itinerary on each flight segment that would optimize revenue.

They formulated the problem as a minimum cost/maximum profit network flow

problem with special side constraints. Forward arcs represented the aircraft capacity

on a flight leg, while backward arcs represented the number of passengers for each

O-D/fare class itinerary.

An actual system was built using this network flow model for Frontier Airlines.

The network contained 600 flights, 30,000 passenger itineraries, and 5 fare classes.

Running times were brief compared to a linear programming formulation of the

problem which would take several hours. The main disadvantage to this method is



that it is based on demand estimates which are entirely deterministic. It is also a

non-nested system which is not compatiable with nested airline reservations systems.

Wollmer [8] of McDonnell Douglas Corporation developed a mathematical pro-

gramming technique which takes into account probabilistic demands for the multi-leg

multi-class problem. In his formulation, Wollmer uses an zjk variable to represent

each O-D/fare class combination j and seat k on a flight leg. Associated with each

zXj is a value mj(k) which is the expected marginal revenue of the kth booking

request for the O-D/fare class combination j. The objective in his model is to max-

imize total network revenue by choosing the right combination of zjk values to set

to one, and all others to zero, such that the sum of all zjk values associated with in-

dividual flight leg is equal to the aircraft capacity of the leg. Total network revenue

is given as the sum of all [xk -mj(k)] products.

In maximizing revenue, Wollmer's algorithm computes the total network ex-

pected revenue without a given O-D/fare class reservation and then computes this

revenue quantity for the reduced seating capacity that results from accepting the

reservation. By comparing the difference of these two expected revenue values with

the actual revenue of the O-D/fare class itinerary under consideration, the model

determines whether the O-D/fare class should be closed to further bookings. The

drawback of this model, like the other models, is that the optimization solution is

based on distinct, non-nested O-D/fare class inventories. Another drawback is the

size of the formulation itself. An zjk variable is needed for every seat available to

every O-D and fare class combination for every flight in a given network.

In 1983, Boeing did a study of seat inventory management at the itinerary

level [9]. Boeing's method uses a non-linear integer program to find optimal seat



assignments for O-D itineraries based on fares and demand distributions. These

seat assignments are then aggregated into buckets by flight leg to conform to the

current structure of reservations systems in the airline industry. For each leg, the

different O-D itineraries which use the leg are partitioned into buckets based on fare

value. The sum of the seat allocations for each O-D itinerary in a bucket is the total

seat allocation for the nested bucket. Any number of buckets may be defined, and

buckets may have different fare ranges for each leg. The drawback of this method,

as Boeing itself admits, is the fact that although a sophisticated assignment process

is used, seats are then clumped together and nested in a somewhat ad hoc manner.

The optimal solutions found by these mathematical programming and network

formulations are based on non-nested systems. Such solutions are not necessarily

optimal for a nested system. Optimization models, which produce seat allocations

for distinct inventories, may be re-run frequently to take into account a nested type

of system. However, an additional problem with multi-class multi-leg optimization

models is the size of their formulations, especially for models which incorporate

probabilistic demand behavior. Therefore, simple nested leg-based models may be

more pratical than huge probabilistic network formulations which generate non-

nested solutions. The best solution, though, may be some type of compromise

approach.

None of the models discussed here include overbooking, up-grade potential or

correlation in demand. Such considerations can have an effect on. the optimality

of determined seat allocations. A realistic seat inventory control system should

consider these factors. It also needs to conform to the practical constraints of

the seat inventory control problem, such as reservations system capabilities, data

availablities, and airline competition.



Chapter 4

Techniques Evaluated For Seat
Inventory Control

This chapter presents six alternative techniques for origin-destination seat in-

ventory control. Seat inventory control is the allocation of seats among different

passenger itineraries and/or fare classes in order to maximize the expected revenues

of future scheduled flights. The rationale behind seat inventory control is not to

limit seats for low-fare passengers, but rather to protect seats for higher-fare pas-

sengers. Effective seat inventory control results in additional revenue being obtained

by selling otherwise empty seats to low-fare passengers. At the same time, revenue is

not lost from displacing higher-fare passengers if enough seats have been protected

for these passengers.

The six different approaches which are discussed in this chapter and later eval-

uated and compared are:

1. Leg Based Expected Marginal Seat Revenue (EMSR)

2. Prorated EMSR

3. Virtual Nesting EMSR

4. Deterministic Linear Program (LP)



5. Probabilistic Linear Program

6. Deterministic LP Nested on Shadow Prices.

Each of these is an alternate methodology for a seat inventory control system. The

approaches range from simple leg-based models to more complex origin-destination

techniques. They also include both probabilistic and deterministic optimization

algorithms.

Leg-based methods allocate seats on a flight leg by fare class in an effort to max-

imize revenue on each individual flight leg, independent of other flight legs. On the

other hand, origin-destination methods take into account the revenue contribution

of different passenger itineraries. Seats are allocated not only on the basis of fare

class, but also on the basis of different passenger itineraries on the flight leg. In a

complete O-D optimization approach, revenue is maximized over the entire system,

not by individual flight legs. An origin-destination approach takes into account the

interaction of the many flight legs in a network.

Both probabilistic and deterministic methods are discussed and considered in

this evaluation. The probabilistic techniques take into account the uncertainty in

air traffic demand, which is necessary to model the the seat inventory control prob-

lem accurately. However, with the introduction of origin-destination approaches,

the size and complexity of the problem grows almost exponentially. Therefore, a

deterministic representation makes the problem much more manageable. Although

the probabilistic nature of demand is not included, the interaction between flight

legs is considered and a system-wide revenue maximization solution can be obtained.

In this chapter, the six techniques to be evaluated are described in detail. Results

from the application of each technique to a small hypothetical hub connecting bank



are presented in Chapter 5. The methods, with their various attributes of leg-

based versus O-D based and probabilistic versus deterministic, are evaluated to

give a comparison of the revenue potential and booking limits obtained from each.

The different techniques have been chosen for this analysis to determine which are

"better", given the complexity of each method and its compatibility with current

reservations systems.

4.1 EMSR Model

The three EMSR methods are based on the Expected Marginal Seat Revenue

model developed by Belobaba [10] in conjunction with Western Airlines. It is a

probabilistic revenue optimization model which can be used to set and revise fare

class booking limits for a future flight leg departure. It is a leg-based approach to

seat inventory control which maximizes expected revenue by flight leg for a nested

fare class reservations system. The EMSR model determines the number of seats

which should be authorized for sale in each fare class by using historical demand

data, average fares, and current bookings.

4.1.1 Probabilistic Demand and Expected Marginal Revenue

As the name suggests, the EMSR model is based on expected marginal seat

revenues. Seats for a given fare class are protected over lower fare classes by equating

the expected marginal revenue of protecting an additional seat in the higher fare

class with the expected marginal revenue of not protecting the seat and selling it in

the lower fare class. The expected marginal revenue of allocating, or protecting, a

seat to a fare class inventory is simply the probability of being able to fill the seat
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Figure 4.1: Normal Probability Density Function of Demand

multiplied by the average revenue which would be obtained by selling the seat. The

average revenue of selling the seat is the same as the average fare of the respective

fare class.

As mentioned before, total demand for a particular flight, and for a fare class on

that flight, is probabilistic. From past analysis it has been found that this demand

can be assumed to have a normal distribution [11]. Therefore, the probability density

function, p(r), for tne total number of requests, r, rece ved by an airline, and the

demand for a given fare class, is a normal curve as shown in Figure 4.1. Given

that demand is normally distributed, the probability function of demand for a fare

class can be derived. From a sample of historical data of the same or similar flights,

the average, or mean, expected future demand, y, and the standard deviation of

the expected demand for the flight, a, can be calculated. From this the probability

distribution of the demand can easily be found.



In order to sell S seats in a given fare class, the number of requests for seats

in the particular fare class must be greater than or equal to S. Therefore, the

probability of selling S seats is the probability of having S or more requests, that is

P[r > S]. In a continuous probability distribution such as the normal distribution,

the probability of having S or more requests is:

P[r 2 S] = s p(r)dr = 1 - P(S) = P(S) (4.1)

P(S) in the above equation is the cumulative probability of having S requests. P(S)

is equivalent to Pjr < s], the probability that the number of requests will be less

than or equal to S.

The probability of having S or more requests, 3(S), is equivalent to the proba-

bility of selling at least S seats, as mentioned before. This probability is equal to the

area under the probability distribution curve for requests, as shown in Figure 4.1.

From the fundamental property of a probability distribution function:

f (y)dy = 1 (4.2)

we know the area under the probability distribution is 1. We also know that the

probability distribution curve will lie completely above r = 0 since it is impossible

to have a negative number of requests.

Because of this, the probability of selling the first seat in a particular fare class is

approximately equal to 1. This can be found from either determining the probability

of having 1 or more requests or from finding the area under the probability curve

from 1 to oo. The probability of selling p seats, the mean expected demand, is equal

to 0.50. As the number of seats increases, the probability of selling them decreases.

This decreasing probability curve of selling the Sth seat is shown in Figure 4.2.



P (s)

1.0

.5 - - - - - -

CAP

S, SEATS

Figure 4.2: Probability Distribution Function of Selling the Sth Seat

Once the probability of selling the Sth seat, P(S), is known, the expected

marginal revenue of the seat is simply:

EMSR(S) = f x 7(S) (4.3)

That is, the expected marginal revenue of the Sth seat is the average fare level

of the seat, f, multiplied by the probability of selling the Sth seat. EMSR(S) is

directly dependent on 7(S). Thus, the expected marginal revenue curve has the

same shape as the probability distrubution function of selling the Sth seat, but the

curve is scaled up by the constant f, the fare. (Figure 4.3)

4.1.2 Leg Based EMSR

The EMSR model was developed as a leg based model. This model is being eval-

uated as an "origin-destination" seat inventory control system in order to see how
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a basic leg-based solution compares to network-based solutions. The idea behind

the EMSR model is to protect seats for a higher fare class as long as the expected

marginal revenue of the seats is greater than the expected marginal revenue of the

seats at a lower fare class. As formulated by Belobaba [12], the expected marginal

revenue for the Sth seat made available to class i is:

EMS Ri(S,) = fi x P5i(S) (4.4)

The number of seats which should be protected for class 1, a higher fare class, over

class 2 is SI. S' is found by equating the expected marginal revenue of the Sjth

seat in class 1 with the expected marginal revenue of the first seat made available

in class 2,

EMSR1(S') = EMSR 2(1) (4.5)

The expected marginal revenue of selling the first seat in class i is simply fi,

the fare in class i, since the probability of selling the first seat in a particular fare

class is approximately equal to 1. Therefore, the number of seats which should be

protected, S1, can be derived from the relationship:

f, x Pi(S2
1) = f2 (4.6)

This is shown graphically in Figure 4.4. At the point S2, the airline is indifferent

between the revenue f2 and the expected revenue EMSR(S') for the S2th seat

made available in class 1.

In order to determine the booking limits for each fare class, the EMSR model

requires inputs of the probability distribution function of expected future demand,

for each class, from the point in time when the model is run to flight departure time.

The probability distribution of demand for each class can be determined simply from
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the mean (average) expected future demand and the standard deviation of expected

future demand. Also needed is the average revenue in each class and the capacity

(the number of seats) in the coach cabin which must be shared among the fare

classes.The EMSR model can also be used for making adjustments in booking limits

by taking into account the number of seats booked in each class at the time the

model is run. For a complete discussion of this process see 1131.

Once the above information is inputted into the EMSR model, the model deter-

mines protection levels. In a four fare class system-Y, M, B, and Q-six protection

limits are calculated. Protection limits for Y class over M class, M over B, and B

over Q are calculated. Also needed are the number of seats to protect for Y class

over B and Q, and M class over Q class. These protection levels are calculated as

in equations 4.5 and 4.6. Once the protection levels are determined, the booking

limits for each class i are simply the capacity of the cabin minus the total number

of seats protected for higher fare classes over the given class. That is:

i-1

BL; = CAP - E S| (4.7)
j=1

where Y class is equivalent to class 1, M class to class 2, etc. The optimal protection

levels and booking limits for a four class system are illustrated in Figure 4.5.

Note that for each class i, the seats protected in each higher fare class over class

i are individually summed and protected from class i. For example, in B class the

booking limit is dependent on the number of seats which are protected for Y class

over B and the number of seats protected for M class over B. In determining the

B class booking limit, the problem involves first protecting seats for Y class and

then protecting seats for M class separately. These protected seats are then used

in a nested system. The seats which were separately protected for Y class over B
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class and then M class over B are put together and made available to Y and M class

jointly, with no distinction made between them (except for those seats previously

protected for Y only).

When applying the leg based EMSR model as an origin-destination seat inven-

tory control technique, protection levels and booking limits are determined by fare

class on each individual flight leg. On a flight leg there may be many different

passenger itineraries in each fare class, but there is no distinction made between

these different itineraries. The itineraries are aggregated together according to fare

class. Mean expected demands and standard deviations are combined and fares are

averaged in order to obtain joint fare class demands and fares for the EMSR model.

In this model, the fare values for a particular itinerary on any given flight leg are

based on total non-prorated ticket revenue value.

Once the fare class mean demands, standard deviations of demand and average

fares have been determined, the EMSR model is applied seperately to each individual

flight leg. Expected marginal revenues are equated to obtain the seat allocations

and booking limits for each fare class. These allocations and limits are based on

fare classes alone. Differences in origin-destination itinerary do not matter. If

there is a seat available in a given fare class on a flight, it can be booked by any

passenger, regardless of destination. In addiion to being leg-based, the optimal

solutions obtained are based on a nested reservations system and take into account

the stochastic behavior of demand.

4.1.3 Prorated EMSR

The prorated EMSR approach is a slight variation of the standard leg-based

EMSR method described above. The model itself is not changed and is applied to



the network leg by leg, as above. The only difference is in the fares used in the

model. Instead of averaging fares for the four fare classes of each flight leg based on

the total origin-destination fares, average fares are based on the prorated fares for

the flight leg.

A previous study done on prorated versus non-prorated fares in October 1987

found that ratios between fare classes of prorated and non-prorated fares appeared

to be significantly different in many cases. The prorated EMSR method is being

evaluated here to compare overall network results in revenues and seat allocations

with that of the non-prorated seat inventory control approach, as well as network-

based approaches. Since the basic methodology behind the prorated technique is the

same as that of the non-prorated technique, any differences in the network solution

should be due to the assumed fare structure inputs.

The fares in the prorated EMSR approach are prorated by flight leg. The total

origin-destination fares are allocated to each appropriate flight leg according to the

proportion of total itinerary miles the flight leg contributes. For example, the Y

class fare for a Boston to Miami itinerary of 1541 miles is $403.00. If the passenger

connects through Atlanta on his way from Boston to Miami, the O-D itinerary is

made up of two flight legs, the first being the BOS-ATL leg at 946 miles and the

second being the ATL-MIA leg at 595 miles. In a prorated fare structure, the fare

for the BOSMIA passenger on the BOS-ATL flight leg will be 946/1541 of $403, or

$246.40. At the same time, the Y fare for the same BOSMIA passenger on the ATL-

MIA flight leg is 595/1541 of $403, or $155.60. In a non-prorated fare structure,

the Y fare used for a BOSMIA passenger on both the BOS-ATL flight leg and the

ATL-MIA flight leg is $403.00.



Once the fares have been prorated by leg, these prorated fares are averaged

according to the mix of passenger O-D's on each leg in order to find the respective

flight leg fares. The averaged prorated fares, along with the aggregate mean demands

and standard deviations for each fare class, are used as inputs into the EMSR model.

The model is run on each flight leg as before, and booking limits are obtained for

each class on every flight leg in the network. Like the standard EMSR approach,

this approach does not account for the interaction of traffic between flight legs in

the system. By using prorated fares, higher

yield fares are distinguished from lower yield, but higher total revenue, fares.

4.2 Virtual Nesting EMSR

The virtual nesting EMSR method is a modified EMSR approach which controls

seat inventories on the basis of passengers' itinerary revenues. Total itinerary ticket

revenues are "virtually nested" by flight leg and the EMSR model is then applied to

these "virtual classes" on each flight leg. The objective of a virtually nested system

is to allow the airlines to take into account requests for different fare class/passenger

itinerary combinations on an individual flight leg which generate different revenue

levels. The methcd is a leg-based approach, as are the other EMSP approaches.

Booking limits are determined and expected revenue is maximized by individual

flight leg, but seat allocations are controlled on the basis of fare class and passen-

ger itinerary. Although this is not an optimal system-wide solution, it is a more

sophisticated approach to seat inventory control.

In a virtual seat inventory system, each origin-destination/fare class combination

is identified with a virtual, or hidden, seat inventory class based on total itinerary



ticket value. The virtual inventory classes are defined by a dollar range, with the

dollar range corresponding to total passenger itinerary ticket revenue. The approach

is labeled "virtual" because the inventory classes themselves are classes in essence,

but they are not formally recognized classes in that the virtual fare classes are not

offered by the airline. The airlines offer the standard fare classes of service. In a

four fare class system those classes might be Y, M, B, and Q. Each of these fare

classes are in turn assigned to a virtual inventory class according to the respective

origin-destination itinerary and ticket revenue. Booking limits are then set for each

of the virtual classes on each flight leg. The seat availabilities for the virtual classes

are then related back to the standard fare classes offered in the O-D markets. Fare

class availabilities are displayed by O-D itinerary and flight leg, as opposed to flight

leg only, as in the other EMSR methods. The virtual classes exist only within the

seat inventory system itself, they are not apparent to the users of the system.

The virtual inventories are defined on the basis of actual fares, no proration

is involved. Each possible O-D itinerary and fare class combination that can use a

given flight leg is assigned a virtual inventory class. From previous work done on fare

basis distributions and ticket usage, a virtual inventory of eight classes was defined

on the basis of O-D ticket fare ranges. The fare ranges for the virtual inventory

classes are listed in Table 4.1. These fare ranges were derived based on Delta Air

Lines fare quota data and ticket sales data from a sample period in May 1987.

Ticket.counts by fare basis and fare level were used to determine dollar intervals

of equal frequency in terms of ticket usage. Clustering of ticket sales at the lower

fare levels requires much narrower fare range definitions at low dollar values than

at high dollar values.

Once the fare ranges for the virtual inventory classes have been defined, each

origin-destination and fare class combination is assigned to a virtual class. Figure 4.6



VIRTUAL CLASS FARE RANGE

8 0.00 - 74.99

7 75.00 - 94.99

6 95.00 - 109.99

5 110.00 - 129.99

4 130.00 - 159.99

3 160.00 - 254.99

2 255.00 - 399.99

1 350.00 - -

Table 4.1: Fare Ranges for the Virtual Inventory Classes

demonstrates how these assignments can be made for a Boston-Atlanta flight leg.

Note how different Q class fare/itinerary possibilities can fall into different virtual

inventory classes depending on their respective O-D ticket revenue. The BOSATL

and BOSSAV Q class itineraries fall into the lowest virtual class while the BOSMIA

Q class itinerary is assigned to the 7th virtual class and the BOSLAX Q class

itinerary is as high as the 4th virtual class. This makes it possible to close down the

Q class for local BOSATL passengers while Q class seats for BOSMIA passengers

on the same initial flight leg remain available.

Although O-D itineraries are distinguished on a given flight leg, the overall

method is leg-based. Therefore, availabilities for multi-flight itineraries depend on

the relevant virtual inventories being available for all flight legs involved in the O-D

itinerary. In our example and analysis, the defined fare ranges for each virtual

inventory are the same across the different flight legs in a network. If the BOSMIA

Q class itinerary falls into the 7th virtual inventory class on the BOS-ATL flight leg,

it will also fall into the 7th virtual class on the ATL-MIA flight leg. In order to have
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a seat available for a BOSMIA passenger in the Q class, the 7th virtual inventory

class on both the BOS-ATL and the ATL-MIA flight legs must be open.

The application of the probabilistic EMSR decision model to set booking limits

on the virtual inventories is straightforward. The mean expected demands, standard

deviations and average fares for each virtual class are derived as they were for each

fare class before. An eight class EMSR model is then run on each flight leg. The

EMSR model protects seats for each upper-ranked virtual inventory class from lower

virtual inventories on a flight leg. Booking limits are determined on the premise

of maximizing total expected revenue on each flight leg, but on the basis of O-D

itinerary revenues.

Once booking limits are found for each virtual inventory class, the virtual classes

are disaggregated back to the specific O-D itineraries. The booking limit for each

O-D itinerary/fare class is simply the booking limit of its corresponding virtual

class. The process of assigning these booking limits is done internally within the

seat inventory system, such that reservations and travel agents only have access to

the fare class/O-D itinerary booking limits.

The application of the EMSR model to virtual inventory classes represents

an attempt to take into account total revenue contribution of different passenger

itineraries on a flight leg. It does not take into account int racticn between passen-

ger flows on different flight legs. The algorithm represents a "greedy" approach to

seat inventory control producing potentially non-optimal solutions. A single long-

haul passenger will be favored over combinations of short-haul passengers, in spite

of the possibility that taking the latter could result in a higher total revenue.

The virtual nesting concept used in this way comes from our knowledge of how

at least two major carriers have designed their seat inventory control systems. The



virtual nesting EMSR approach to seat inventory control is used in this evaluation

to compare this "more sophisticated" approach with that of the purely leg based

methods. Also of interest is the question of whether the "greediness" of this method

on each flight leg has a significant impact over an entire network.

4.3 Deterministic Linear Program

The first three seat inventory control techniques described have been leg based

optimization algorithms which maximize revenue over individual flight legs. The

next three techniques are network based. These techniques are true origin-destination

seat inventory control methods which optimize entire system-wide revenues. Al-

though a network optimization problem can be formulated in a variety of ways, a

linear programming formulation is used in each of the following network seat inven-

tory control techniques, making them solvable by the linear programming computer

software package, LINDO [14).

The deterministic linear programming method is a traditional mathematical pro-

gramming technique. It is a constrained optimization method which can deal with

problems involving thousands of variables and thousands of constraints. The deter-

ministic linear programming method is a network formulation of the seat inventory

control problem based on origin-destination combinations. As the name suggests,

this method is deterministic, it does not incorporate probabilistic demand. Unlike

leg-based methods, interaction between flight legs is taken into account.

The standard linear program consists of two parts, an objective function and

constraints. The objective of the linear programming method is to maximize total

revenue over the entire network. That is, the number of seats allocated to each fare



class/O-D itinerary multipied by the respective itinerary revenue is to be maximized.

This objective is subject to certain constraints. The first set of constraints are based

on capacity, with a capacity constraint on each flight leg. The second set are the

demand constraints. For each fare class/passenger itinerary, there is a demand

constraint which is based on a deterministic estimate of demand, usually the mean

expected demand.

The variables in the deterministic linear programming seat inventory control

problem are individual seats, or groups of seats, which are to be allocated among

the many different possible fare class/O-D combinations on a flight leg. The problem

is actually a linear integer-programming problem. Each decision variable is required

to be an integer value, a fractional number of seats is unrealistic. In the formulation,

the integer decision variable for the number of seats allocated to a given fare class i

and O-D combination is designated by zi,O.D. The fare associated with the respective

fare class and origin-destination is fi,o.D, making the objective function:

Maximize Z Z fi,O-D * Xi,O.D (4.8)
O-D i

This maximization is constrained by two types of constraints. The total number

of seats allocated to the different fare classes and O-D combinations on each flight

leg j must be less than the aircraft capacity, CAP,. Also, the number of seats

allocated to each O-D/fare class must be less than or equal to a fixed expected

demand which is chosen to be the mean demand, pi,o)r. Therefore, the second part

of the linear programming formulation is:

subject to:

Z: Z XiO.D CAP, for all O-D itineraries and i fare classes on flight j,
O-D i

for all flights j.

zi,o.1 pi,o., for all O-D itineraries and i fare classes.



The solution from this deterministic LP formulation is a set of integer values

assigned to each zio.D, which correspond to the optimal number of seats to be al-

located to the respective O-D/fare class. Seats are allocated on the basis of total

revenue contribution to the system-wide network, taking into consideration the in-

teraction of traffic flow over different flight legs. In such a network approach, if a

seat is made available on one flight leg for a specific multi-leg passenger, a seat has

also been allocated for that passenger on other flights included in the passenger's

itinerary. In leg-based methods, availability for a multi-leg passenger is dependent

on the separate availabilities on each flight leg. There is no guarantee that if a

passenger can book a seat on the first leg of his itinerary, the second will also be

available.

The deterministic LP solution is an optimal network solution which requires

demand to be forecasted exactly, with no provision for uncertainty. Since demand

is probabilistic, there will be many times when demand will not reach the expected

deterministic value and other times when it will exceed this value. The solution

obtained from the LP formulation is optimal only when actual demand is equal to

the expected deterministic value used in the formulation's demand constraints. The

chances of actual demand being exactly as forecasted is very small, therefore the

recommended seat allocations will not be optimal most of the time. Nonetheless,

the LP approach is based on an airline's entire network and the interaction of flights

within the network. The interesting question is how such "non-optimal" network

solutions compare to leg-based solutions.

An additional problem with the deterministic LP approach is that seat alloca-

tions are based on distinct inventories. Each fare class and O-D combination is

treated as separate. Since most reservations systems today are both leg-based and



nested, this creates a major problem in implementing the non-nested O-D solution

obtained from the LP model. Once the airline industry overcomes the initial hurdle

of converting reservations systems from leg-based to O-D based, there is still the

need to find a way to nest the different fare class/O-D inventories effectively. In the

process of nesting fare class and O-D combinations, the accuracy of an O-D seat

inventory control method does not want to be lost. Also of consideration is the fact

that "optimal" seat allocations for a distinct system are not necessarily optimal for

a nested system.

4.4 Probabilistic Linear Program

The probabilistic linear programming method is a traditional mathematical pro-

gramming technique, like the deterministic LP method, for an entire network. The

difference is that the probabilisitic LP approach takes into account the uncertainty

of demand, producing a mathematically optimal solution to the multi-leg origin-

destination problem. The downfall of this method is that the required network

formulation rapidly becomes very large.

The probabilistic LP approach is a binary integer programming problem, where

the decision variables, zio.,j, represent every possible seat j which cot ld potentially

be available on a flight leg for each fare class i and itinerary O-D combination. The

decision variables are taken to be ziO.Dj = 0 or 1. These (0,1) decision variables

indicate whether the jth seat is rejected or accepted for allotment to fare class i

and itinerary O-D. The total number of decision variables which are set equal 1 for

a given fare class and O-D itinerary will represent the number of seats to allocate

to the O-D/fare class inventory.



In the probabilistic LP formulation, total system-wide expected revenue is maxi-

mized subject to certain capacity constraints. In the objective function each decision

variable, zi,O.D,j, is multiplied by its own expected marginal revenue coefficient to

reflect the probability of selling seat j to the specific fare class/O-D combination.

The expected marginal revenue for the jth seat in fare class i and itinerary O-D is:

EMSR(ji,o.o) = fi,o.o x P(ji,o.O) (4.9)

as derived in Section 4.1.1. The only difference here is that the probability of selling

the jth seat, P(ji,o.D), is dependent on the expected demand of the respective fare

class/O-D itinerary, and not the fare class alone. The probability density function of

demand for fare class i and itinerary O-D is also assumed to be a normal distribution.

Based on the mean demand and standard deviation of historical data, the normal

probability curve for each fare class/O-D combination can be found.

In the probabilistic LP formulation, the objective function is limited by only one

true set of constraints. The total number of seats alloted to each fare class and

itinerary combination on a given flight leg k must be less than or equal to the ca-

pacity of the aircraft servicing the flight leg, CAPk. The demand constraints, which

are found in the deterministic LP problem, are incorporated within the objective

function itself and are probabilistic in nature. The other constraints associated with

the problem are the zero/one constraints on each of the individual decision variables.

The probabilistic optimization problem formally stated is:

CAPh

Maximize E [ EMSR(ji,o.) - i,o-D,j (4.10)
O-D i j=1

subject to:



CAPh

(Z Zio.Dj C k for all O-D itineraries and i classes on flight k,
O-D i j=1

for all flights k

zgo.rj = 0 or 1 for all O-D itineraries, i classes,

and j= 1, 2,.. ., CAP,.

As can be seen, the number of decision variables expands exponentially with the

size of the network involved. Certain cutoff points can be included to keep the size

of the problem down, but the problem is still very large.

The probabilistic LP approach chooses those decision variables, or combination

of decision variables, which are associated with the greatest expected revenues, and

sets them equal to 1. Note that it is impossible to have a j+ 1th seat allocated to a

specific fare class/O-D itinerary without the allocation of the jth seat because of the

monotonically decreasing nature of the EMSR curve. Protection levels and booking

limits are found on the basis of distinct seat inventories, such that the EMSR(jg.OD)

values for different fare class and O-D combinations are equated based on the last

seat allocated to each inventory. This is illustrated in Figure 4.7 for a two fare

class/O-D inventory example. Notice how the seat allocations in the probablistic

LP approach differs from the protection levels of the EMSR approach shown in

Figure 4.4.

The solution to such an approach incorporates probabilistic demand and is a

network based solution, as opposed to leg-based. It is an optimal solution which is

not nested. The solution is the "correct" allocation of seats for the given network and

should not be nested. The problem is to determine how this optimal system-wide

revenue solution can be implemented into nested reservations systems. Although it

is the "correct" solution, it is not a very realistic approach to seat inventory control
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because of the size of the probabilistic LP formulation. Setting initial booking limits

with such a method itself takes huge amounts of computer power. Even if an airline

had the computer capabilities to accomplish this, continually making adjustments

to these limits as reservations are accepted would be almost impossible.

4.5 Deterministic LP Nested on Shadow Prices

The solution from the deterministic LP is for a distinct, non-nested fare class

structure. Most reservations systems in the airline industry today are nested, mak-

ing it difficult to use the deterministic LP solution directly. If the results from this

approach were nested, the deterministic LP technique could be a viable alternative

for origin-destination seat inventory control. The problem is how to nest the fare

class/O-D inventories. There are many simple ways in which this might be done,

such as nesting the inventories by fare class or ticket revenue but these methods do

not distinguish which specific fare class/O-D combinations are preferred in terms of

generating revenue.

After disaggregating and solving the problem on the basis of O-D and fare class,

reaggregating the solution into the original fare class inventories seems contradictive.

A given fare class is a conglomeration of a range c 'different revenues obtained from

long-haul and short-haul itineraries, and within the fare class there is no distinction

between these itineraries. Therefore, using the less complicated leg-based EMSR

method, which does not differentiate between origin-destination itineraries, but de-

termines optimal booking limits for a nested system on the basis of fare class alone,

taking into account probabilistic demand, is as good an approach, if not better, than

the aggregation of the deterministic LP network solution.



Nesting the fare class/O-D inventories by ticket revenue leads to the same type

of situation as in the virtual inventory technique. Individual ticket revenue does

not take into account the network revenue generated by a combination of low-fare

single-leg passengers versus a higher fare multi-leg passenger. A nesting order based

on maximum ticket revenue is not the same as maximum system-wide revenue.

Another approach to nesting the O-D/fare class seat allocations derived from

this deterministic network optimization technique is to use marginal revenue infor-

mation, such as shadow prices and reduced costs. The shadow price or reduced

cost associated with each decision variable gives the amount the optimal system

revenue would change if one more unit of the variable were used in the solution. For

a variable that is limited by a demand constraint, the shadow price is the amount

the objective function will increase in value if the demand constraint were increased

by one unit. A reduced cost is affixed to a variable which is not being used in the

optimal solution. This reduced cost value gives the amount the optimal value of the

objective function would decrease if the variable were forced into the solution.

Using shadow prices and reduced costs as nesting variables allows the fare

class/O-D combination that will increase the overall network revenue the most (if

increased by one unit) to be nested above variables with lower marginal revenue

impacts. By using such nesting variables, problems associated with other nest-

ing techniques can be avoided. The disaggregate solution of the deterministic LP

method is not reaggregated. Each fare class/O-D inventory is kept separate in the

process of nesting and not grouped together. The nesting order is also based on

maximum network revenue, not individual ticket revenue. The deterministic LP

approach nested on shadow prices takes into account situations in which two lo-

cal passengers should be ranked higher, in revenue terms, than a single through or

connecting passenger.



With the use of shadow prices, it might be possible for the deterministic linear

programming solution to be implemented in a nested system without undermining

the overall objective of this seat inventory control approach, which is to find an

optimal origin-destination network solution. Nesting the optimal fare class/O-D

allocations provides the airline with potentially higher expected revenues than using

the same allocations in a non-nested fare class structure. Nesting also makes this

solution compatible with nested reservations systems. Yet, the practical problem of

a limited number of nested fare classes in the reservations system still remains.

When the different inventories, with their respective deterministic LP seat al-

lotments, are nested, the results are not necessarily optimal. First, the optimal

non-nested seat allocations are not usually the optimal nested seat allocations. Sec-

ondly, the shadow prices give information about the initial increases in network

revenue based on one additional seat alloted to a fare class/O-D combination, but

not for seat allocation changes beyond that. Even though the end result may not be

"optimal", the deterministic LP approach nested on shadow prices may provide a

better overall solution to the origin-destination seat inventory contol problem than

the leg-based and non-nested network approaches.



Chapter 5

Analysis and Comparisons

This chapter contains an analysis of the six different alternatives described in

Chapter 4 which are being evaluated for origin-destination seat inventory control.

The techniques have been applied to a small network with assumed demand lev-

els and fares for a four class coach system. From each alternative and demand

scenario, seat allocations, booking limits, nesting orders and system revenues were

determined. On the basis of these attributes, the different techniques are compared

and the results are discussed in this chapter.

5.1 Network Model and Data

The network used for the evaluation is a small hypothetical hub connecting

bank involving eight different flights. It is an Atlanta-based hub with service to

four airports: Boston, Los Angeles, Miami, and Savannah (Figure 5.1). In this

network there are 10 possible city pairs: ATLBOS, ATLSAV, BOSMIA, BOSLAX,

etc.). Traffic flows in both directions, for example BOS-ATL and ATL-BOS, making

a total of 20 directional O-D markets (itineraries). In each of these O-D markets

there are four fare classes offered, Y, M, B, and Q, in descending order of fare level,
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which results in a total of 80 different fare class/O-D combinations for the given

network.

For each fare class and O-D itinerary, a fare, mean demand and standard devi-

ation of demand are assumed. The different techniques have been evaluated under

three different scenarios of demand-low, medium, and high. The medium demand

assumption is a total mean demand per leg of approximately 150. For example, on

the BOS-ATL leg, the mean demand for all four classes, Y, M, B, and Q, of all

origin-destination pairs BOSATL, BOSSAV, BOSMIA, and BOSLAX must sum to

150. This represents an average demand of 37 or 38 per O-D pair. The low demand

is set at about 67% of the medium demand, or a total of 100, and the high demand

is 133% of the medium level, or about 200. The fares for each O-D/fare class com-

bination reflect actual published fares in November 1987. Tables 5.1, 5.2, and 5.3

give the mean demand, the standard deviation of demand and the fare for each fare

class/O-D itinerary for the low, medium, and high demand scenarios, respectively.

In this analysis it has been assumed that each leg of the network, ATL-BOS,

ATL-SAV, ATL-MIA, and ATL-LAX, is served with one flight, making this situation

similar to a single connecting bank at a hub airport. To keep the model simple,

each flight is operated by the same size aircraft, which is assumed to have a coach

cabin capacity of 150 seats. This is true for both directions of each link in the the

network. Therefore, the capacity constraint on the ATL-BOS flight leg is 150, and

the constraint on the BOS-ATL flight leg is also 150.
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BOSSAV/SAVBOS

BOSMIA/MIABOS

BOSLAX/LAXBOS

MIASAV/SAVMIA

MIALAX/LAXMIA

LAXSAV/SAVLAX

Table 5.3: Fares, Means, and Standard Deviations for High Demand Level
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5.2 Applications and Results

The six techniques were applied to the above network at the three different

levels of demand. The first step in applying the different models to the network

was to determine the necessary inputs from the data given for the fare class/O-D

combinations in the network. The basic steps needed in the application of each

technique are explained below along with sample origin-destination results from

the six techniques. A complete set of nesting and booking limit results for each

origin-destination seat inventory control technique is provided in Appendix A.

5.2.1 Leg Based EMSR

In the leg based EMSR approach, the model is applied to individual flight legs.

For each leg, the EMSR model requires a mean demand, standard deviation, and a

fare estimate for each class. In order to obtain this information, all origin-destination

itineraries which flow over a particular flight leg must be identified, and aggregate

means, standard deviations and fares derived by fare class. For example, the Y class

demand information from the ATLBOS, SAVBOS, MIABOS, and LAXBOS origin-

destination pairs is used to obtain the Y class ATL-BOS flight leg EMSR inputs.

Demand information of the same O-D pairs for other fare classes is also combined

to find the ATL-BOS flight leg M class, B class, and Q class demand quantities.

The mean expected demand for each fare class on a flight leg is simply the

sum of the means from the appropriate O-D itineraries. The calculation of the

standard deviations of demand for a flight leg is not as straightforward. An aggregate

standard deviation is determined from the sum of the O-D variations. Each O-D

variance is simply found by squaring its respective standard deviation. Variances of



independent variables, like means, can be summed to obtain an aggregate variance.

Therefore, to determine the fare class demand variance for a given flight leg, the

O-D variances are summed. By taking the square root of this total variance, the

standard devation of demand for the given fare class on the flight leg is estimated.

The final fare class input that needs to be derived for the EMSR flight leg analysis

is the average fare of each class. These flight leg fares are not a simple average of

O-D itinerary fares, but rather a weighted average. The weighted average is based

on the magnitude of the mean expected demands of the O-D itineraries. If the

demand for a given fare class on a specific flight leg consists primarily of long-haul

high ticket revenue O-D demand rather than short-haul low revenue demand, the

associated fare level of the class should be typical of the long-haul revenue amount

more than the short-haul revenue. For example, a particular flight leg is made up

of two sets of passengers, the first set traveling from A to B and the second set

from A to F. On the flight leg AB there are 50 AB passengers paying a fare of $75

and 100 more passengers who are continuing on to point F at a fare of $150. The

average fare on this flight is [(50 x $75) + (100 x $150)] + 150, or $125. Since more

passengers are traveling on AB at a ticket revenue of $150, the average flight leg

fare is weighted more heavily towards this higher revenue. When deriving average

flight seg fares using mean expected demands, the O-D fares are averag'd in this

same way to reflect the overall fare class averages for the flight leg on the basis of

total (non-prorated) ticket revenue.

The flight leg mean, standard deviation and fare were determined as described

above for each leg in the network. Table 5.4 lists these inputs for the Y, M, B, and Q

fare classes on the ATL-BOS and ATL-MIA flight legs. These leg based EMSR input

values were derived from the respective medium demand O-D passenger segment



0 - D
CLASS SEGMENT MEAN SDLEG

ATL-BOS Y ATLBOS
SAVBOS
MIABOS
LAXBOS

M ATLBOS
SAVBOS
MIABOS
LAXBOS

B ATLBOS
SAVBOS
MIABOS
LAXBOS,

Q ATLBOS
SAVBOS
MIABOS
LAXBOS

Y ATLMIA
BOSMIA
SAVMIA
LAXM IA

M ATLMIA
BOSMIA
SAVMIA
LAXMIA

B ATLMIA
BOSMIA
SAVM IA
LAXMIA

Q ATLMIA
BOSMIA
SAVMIA
LAXMIA

FARE

$310
$319
$403
$575

$290
$250
$314
$380

$95
$109
$124
$159

$69
$69
$89

$139

$280
5403
$226
$477

$209
$314
$168
$239

194
$124
S84

S139

$59
$89
$59

$119

Table 5.4: Leg Based EMSR Inputs - Medium Demand Level

FLIGHT LEG
MEAN SD FARE

28 4.58 $404.11

21 4.58 $306.48

35 6.56 $121.94

66 8.37 592.64

46 6.56 5345.33

22 5.10 5233.41

26 4.24 $113.42

56 6.48 $78.82

ATL-MIA



CLASS SEGMENT

Y ATLBOS
SAVBOS
MIABOS
LAXBOS

M ATLBOS
SAVBOS
MIABOS
LAXBOS

B ATLBOS
SAVBOS
MIABOS
LAXBOS

Q ATLBOS
SAVBOS
MIABOS
LAXBOS

MEAN

12
5
11
9

9
7
5
7

11
11
14
11

17
27
20
24

0 - D
SD

3
3
3
3

3
3
2
3

4
5
4
3

4
8
4
5

FARE

$310
$319
$403
$575

S290
5250
S314
5380

$95
$109
$124
$159

$69
$69
$89

5139

FLIGHT
MEAN SD

37 6.00

LEG
FARE

$403.32

28 5.57 $306.79

47 8.12 5121.89

88 11.00 $92.64

Table 5.5: Leg Base EMSR Inputs - High Demand Level

data shown. Table 5.5 shows the inputs for an example in which the demand for

the ATL-BOS flight leg is high. Notice how the average flight leg fares vary slightly

from those in the medium demand example (Table 5.4). This is due to the slightly

different ratios of the O-D mean demands between the two demand levels. In actual

practice, different combinations of long-haul versus short-haul demand could result

in greater differences.

Once the flight legs' demand and fare quantities were derived for all classes, the

EMSR model was applied to each flight leg. The EMSR model determines booking

limits for the flight leg classes based on a completely nested fare class structure,

with Q class on bottom and Y class on top. The individual booking limit for a

Q-class origin-destination itinerary on a given flight leg is the total Q-class limit.

Also, in order tobook a seat from Miami to Boston in a particular class, say B-

LEG

ATL-BOS



class, a B seat must be available on the MIA-ATL leg as well as the ATL-BOS leg.

Examples of the booking limits at the medium demand level for three legs of the

network (ATL-BOS, ATL-MIA and MIA-ATL) and the implied O-D segment limits

are shown in Table 5.6. Since the EMSR model is leg based and does not take into

account interaction between flight legs in the network, the booking limits for flight

legs which have the same O-D demands and fare values will be the same. In this

particular Atlanta-based network, where demand is equivalent in both directions,

the booking limits for opposite direction flight legs are the same, as is the case for

the ATL-MIA and MIA-ATL legs. Note also how the booking limits from the EMSR

method are grouped and nested entirely by fare class.

Tables 5.7 and 5.8 show the leg based EMSR booking limits for ATL-BOS under

low and high demand levels, respectively. In cases where demand is low, all extra

seats are made available to the lowest fare class. However, through nesting, these

seats are not only available to the lowest fare class, but are also available to all other

fare class passengers. When demands are high, the EMSR model protects additional

seats for the top classes, Y and M, and fewer seats are allocated to the lower priced

classes, B and Q. This can be seen particularly well from the high demand booking

limits for the ATL-MIA flight leg, also shown in Table 5.8.

5.2.2 Prorated EMSR

The application of the prorated EMSR method to the small Atlanta hub network

is the same as the standard leg based EMSR method with one exception. The first

step in determining the flight leg fares is to calculate the prorated fares for each

origin-destination/fare class combination on each of its respective flight legs. As

described in section 4.1.3, the prorated fare for a O-D/fare class combination on a



MEAN STD
LEG SEGMENT CLASS DEMAND DEVI FARE BK LIMIT

ATL-BOS LAXBOS Y 7 2 S575 150
MIABOS Y 8 3 8403 150
SAVBOS Y 4 2 8319 150
ATLBOS Y 9 2 S310 150
LAXBOS M 5 3 S380 125
MIABOS M 4 2 S314 125
ATLBOS M 7 2 £290 125
SAVBOS M 5 2 5250 125
LAXBOS B 8 3 S159 96
MIABOS B 11 3 S124 96
SAVBOS B 8 4 £109 96
ATLBOS B 8 3 895 96
LAXBOS Q 18 4 S139 63
MIABOS Q 15 3 589 63
ATLBOS Q 13 . 3 869 63
SAVBOS Q 20 6 S69 63

ATL-MIA LAXMIA Y 13 3 $477 150
BOSMIA Y 8 3 S403 150
ATLMIA Y 15 3 8280 150
SAVMIA Y 10 4 8226 150
BOSMIA M 4 2 £314 106
LAXMIA M 8 3 8239 106
ATLMIA M 7 3 5209 106
SAVMIA M 3 2 £168 106
LAXMIA B 5 1 8139 78
BOSMIA B 11 3 8124 78
ATLMIA B 5 2 S94 78
SAVMIA B 5 2 884 78
LAXMIA Q 11 2 S119 50
BOSMIA Q 15 3 889 50
ATLMIA Q 11 2 559 50
SAVMIA Q 19 5 559 50

MIA-ATL MIALAX Y 13 3 S477 150
MIABOS Y 8 3 £403 150
MIAATL Y 15 3 8280 150
MIASAV Y 10 4 8226 150
MIABOS M 4 2 8314 106
MIALAX M 8 3 S239 106
MIAATL M 7 3 S209 106
MIASAV M 3 2 8168 106
MIALAX B 5 1 8139 '78
MIABOS B 11 3 £124 78
MIAATL B 5 2 894 78
MIASAV B 5 2 £84 78
MIALAX Q 11 2 8119 50
MIABOS Q 15 3 889 50
MIAATL Q 11 2 859 50
MIASAV Q 19 5 $59 50

Table 5.6: Leg Based EMSR Booking Limits - Medium Demand Level



MEAN STD
LEG SEGMENT CLASS DEMAND DEVI FARE BK LIMIT

ATL-BOS LAXBOS Y 5 1 S575 150
MIABOS Y 5 2 $403 150
SAVBOS Y 3 1 $319 150
ATLBOS Y 6 2 5310 150
LAXBOS M 3 2 $380 133
MIABOS M 3 1 £314 133
ATLBOS M 5 1 $290 133
SAVBOS M 3 2 $250 133
LAXBOS B 5 2 $159 114
MIABOS B 7 2 $124 114
SAVBOS B 5 2 $109 114
ATLBOS B 5 2 595 114
LAXBOS Q 12 2 5139 92
MIABOS Q 10 2 $89 92
ATLBOS Q 9 2 £69 92
SAVBOS Q 13 4 569 92

Table 5.7: Leg Based EMSR Booking Limits - Low Demand Level

given flight leg is based on the proportion of the flight leg's mileage relative to the

total O-D itinerary mileage. The prorated fares for each O-D/fare class by flight leg

are given in Table 5.9.

Once the fares have been prorated, these prorated fares are averaged to find the

respective leg based fares. The average leg based fares are weighted according to

mean expected demands as before, and the flight leg means and standard deviations

are calculated as in the standard leg based EMSR application. An example of the

prorated fares for the medium demand level, along with the demand means and

standard deviations, is provided in Table 5.10. The flight leg means and standard

deviations are the same as those in Table 5.4, but the average fares are significantly

different.

The EMSR model is applied to each flight leg as in the standard leg based EMSR

method and flight leg booking limits are determined by fare class. Table 5.11 gives



MEAN STD
LEG SEGMENT CLASS DEMAND DEVI FARE BK LIMIT

ATL-BOS LAXBOS Y 9 3 $575 150
MIABOS Y 11 3 5403 150
SAVBOS Y 5 3 $319 150
ATLBOS Y 12 3 5310 150
LAXBOS M 7 3 5380 117
MIABOS M 5 2 $314 117
ATLBOS M 9 3 $290 117
SAVBOS M 7 3 $250 117
LAXBOS B 11 3 $159 79
MIABOS B 14 4 $124 79
SAVBOS B 11 5 $109 79
ATLBOS B 11 4 $95 79
LAXBOS Q 24 5 S139 35
MIABOS Q 20 4 $89 35
ATLBOS Q 17 4 $69 35
SAVBOS Q 27 8 $69 35

ATL-MIA LAXMIA Y 17 4 $477 150
BOSMIA Y 11 3 $403 150
ATLMIA Y 20 4 $280 150
SAVMIA Y 13 6 $226 150
BOSMIA M 5 2 5314 92
LAXMIA M 11 4 $239 92
ATLMIA M 9 4 $209 92
SAVMIA M 4 2 $168 92
LAXMIA B 7 2 $139 55
BOSMIA B 14 4 $124 55
ATLMIA B 7 2 594 55
SAVMIA B 7 3 $84 55
LAXMIA Q 14 3 $119 17
BOSMIA Q 20 4 $89 17
ATLMIA Q 14 3 $59 17
SAVMIA Q 25 7 $59 17

Table 5.8: Leg Based EMSR Booking Limits - High Demand Level



ORIG - DEST
(MILES)

ATLBOS/BOSATL
946

ATLSAV/SAVATL
215

ATLMIA/MIAATL
595

ATLLAX/LAXATL
1946

BOSSAV/SAVBOS
1161

TOTAL

BOSMIA/MIABOS
1541

TOTAL

BOSLAX/LAXBOS
2892

TOTAL

MIASAV/SAVM IA
810

TOTAL

MIALAX/LAXMIA
2541

TOTAL

LAXSAV/SAVLAX
2161

TOTAL

(MILES)

ATLBOS
946

ATLSAV
215

ATLMIA
595

ATLLAX
1946

ATLBCS
946

ATLSAV
215

ATLBOS
946

ATLMIA
595

ATLBOS
946

ATLLAX
1946

ATLMIA
595

ATLSAV
215

ATLMIA
595

ATLLAX
1946

ATLLAX
1946

ATLSAV
215

Y M

$310.00 $290.00

B

$95.00

0

S69.00

$159.00 $140.00 $64.00 $49.00

$280.00 $209.00 $94.00 $59.00

S455.00 $391.00 $142.00 $122.00

$259.93

$59.07

$319.00

$247.40

$155.60

$403.00

$188.09

$386.91

$575.00

$166.01

$59.99

$226.00

$111.69

$365.31

$477.00

S452.06

$49.94

S502.00

$203.70

$46.30

$250.00

$192.76

$121.24

$314.00

$124.30

$255.70

$380.00

$123.41

S44.59

S168.00

$55.96

$183.04

$239.00

S405.23

544.77

$450.00

$88.81

$20.19

$109.00

$76.12

$47.88

S124.00

$52.01

$106.99

$159.00

$61.70

$22.30

$84.00

$32.55

$106.45

$139.00

$138.68

$15.32

$154.00

$56.22

$12.78

$69.00

$54.64

$34.36

$89.00

S45.47

S93.53

$139.00

S43.34

$15.66

$59.00

$27.86

$91.14

$119.00

$120.67

$13.33

$134.00

Table 5.9: Prorated Fares



LEG CLASS SEGMENT

ATL-BOS Y ATLBOS
SAVBOS
MIABOS
LAXBOS

M ATLBOS
SAVBOS
MIABOS
LAXBOS

B ATLBOS
SAVBOS
MIABOS
LAXBOS

Q ATLBOS
SAVBOS
MIABOS
LAXBOS

ATL-MIA Y ATLMIA
BOSMIA
SAVMIA
LAXMIA

M ATLMIA
BOSMIA
SAVMIA
LAXMIA

B ATLMIA
BOSMIA
SAVMIA
LAXMIA

Q ATLMIA
BOSNIA
SAVMIA
LAXMIA

0 - D
MEAN SD

FLIGHT
FARE MEAN SD

$310.00
5259.93
$247.40
$188.09

S290.00
S203.70
S192.76
$124.30

$95.00
$88.81
S76.12
$52.01

$69.00
$56.22
S54.64
$45.47

$280.00
$155.60
5166.01
S111.69

$209.00
$121.24
$123.41

$55.96

$94.00
$47.88
$61.70
S32.55

s5.00
$34.36
$43.34
S27.86

LEG
FARE

28 4.58 $254.48

21 4.58 5211.48

35 6.56 $77.83

66 8.37 $55.45

46 6.56 $186.02

22 5.10 $125.72

26 4.24 $56.46

56 6.48 $40.97

Table 5.10: Prorated EMSR Inputs - Medium Demand Level



an example of the recommended booking limits using prorated fares. Comparing

these booking limits with the limits found using the standard leg based EMSR

method (with non-prorated fares), Table 5.6, there is almost no difference. Since

the basic methodology behind the two methods is the same, one would not expect

the limits to be significantly different. Yet, to have so little difference is noteworthy

since prorated and non-prorated fare class ratios were judged to be significantly

different in a previous analysis of fare levels.

From Equation 4.6, we know that the number of seats protected for a higher

fare class over a lower fare class is directly proportional to the fare ratio between

the two classes. In turn, the booking limit for a lower fare class is dependent on

the seats protected for the higher fare classes. Since there is very little difference

between booking limits obtained from the leg based EMSR method and the prorated

EMSR method, the difference in the ratios between the non-prorated and prorated

fares does not appear to have a significant impact on booking limits. From the

comparison of the two EMSR methods, we find that by averaging the O-D fares from

an overall network application, any significant difference in the prorated and non-

prorated fare ratios is lost. Even when the demand is high, corresponding to higher

aggregate standard deviations (Table 5.5), the difference between the prorated and

non-prorated average fare ratios is still not significant enough to effect the booking

limits substantially, as can be seen by comparing the prorated EMSR limits for the

high demand scenario given in Table 5.12 with those of the leg based EMSR method

in Table 5.8. Using prorated versus non-prorated fares does not appear to make a

significant difference in fare class booking limits when averaging fares and equating

expected marginal revenues by flight leg for an entire network. This might not be

true for sets of O-D itinerary demand levels that have a very high proportion of

long-haul or short-haul itineraries.



MEAN STD
LEG SEGMENT CLASS DEMAND DEVI FARE BK LIMIT

ATL-BOS LAXBOS Y 7 2 S575 150
MIABOS Y 8 3 5403 150
SAVBOS Y 4 2 5319 150
ATLBOS Y 9 2 5310 150
LAXBOS M 5 3 5380 126
MIABOS M 4 2 5314 126
ATLBOS M 7 2 5290 126
SAVBOS M 5 2 5250 126
LAXBOS B 8 3 5159 96
MIABOS B 11 3 5124 96
SAVBOS B 8 4 5109 96
ATLBOS B 8 3 595 96
LAXBOS Q 18 4 5139 62
MIABOS Q 15 3 589 62
ATLBOS Q 13 3 569 62
SAVBOS Q 20 6 569 62

ATL-MIA LAXMIA Y 13 3 5477 150
BOSMIA Y 8 3 5403 150
ATLMIA Y 15 3 5280 150
SAVMIA Y 10 4 5226 150
BOSMIA M 4 2 5314 106
LAXMIA M 8 3 5239 106
ATLMIA M 7 3 5209 106
SAVMIA M 3 2 5168 106
LAXMIA B 5 1 5139 77
BOSMIA B 11 3 5124 77
ATLMIA B 5 2 594 77
SAVMIA B 5 2 584 77
LAXMIA Q 11 2 5119 49
BOSMIA Q 15 3 589 49
ATLMIA Q 11 2 559 49
SAVMIA Q 19 5 559 49

Table 5.11: Prorated EMSR Booking Limits - Medium Demand Level



MEAN STD
LEG SEGMENT CLASS DEMAND DEVI FARE BK LIMIT

ATL-BOS LAXBOS Y 9 3 5575 150
MIABOS Y 11 3 $403 150
SAVBOS Y 5 3 $319 150
ATLBOS Y 12 3 S310 150
LAXBOS M 7 3 $380 118
MIABOS M 5 2 $314 118
ATLBOS M 9 3 S290 118
SAVBOS M 7 3 $250 118
LAXBOS B 11 3 $159 79
MIABOS B 14 4 5124 79
SAVBOS B 11 5 $109 79
ATLBOS B 11 4 $95 79
LAXBOS Q 24 5 $139 33
MIABOS Q 20 4 $89 33
ATLBOS Q 17 4 $69 33
SAVBOS Q 27 8 $69 33

Table 5.12: Prorated EMSR Booking Limits - High Demand Level

5.2.3 Virtual Nesting EMSR

The virtual nesting EMSR technique, like the other EMSR methods, focuses on

the individual flight leg, determining seat allocations to maximize revenue on each

separate leg. The difference is that instead of being applied to the fare classes on

a flight leg, the EMSR model is applied to a set of virtual inventory classes. These

virtual classes are based on dollar ranges corresponding to passenger itinerary ticket

revenue. In this analysis, the virtual nesting EMSR model is based on eight virtual

inventory classes. These virtual classes were defined in section 4.2, Table 4.1.

Once the virtual class fare ranges are determined, each O-D itinerary and fare

class combination is assigned to a virtual class. The O-D/fare class combinations

are listed according to their assigned virtual classes for each flight leg in Table 5.13.

Each O-D/fare class combination is listed using a three letter code. The three letters

correspond to the city origin, the destination, and the fare class code. For example,



SlUaUlUSISS-Vr X.IOIUZAUI IenjITA snID a-IeJ/CI-0 :gl-g alqvl

Ows/Osw
bas/oss
Ovs/Osv
Svs/Ssv

MAN

gas/ess

osw/ows ose/oss
bvw/bwv bve/bev

SSW/aws
oew/ows
evw/ewv owe/baw

sse/ess
EVS/99V

awe/gaw
MAN OIW/OWI

OVI/OIV SSW/ewe

OSI/ols
asi/als
awl/91W
021/019
eel/gig
qVI/Siv

01SASI
als/asl
Wvs/Wsv
AVS/Asv

WWs/WsW
Aws/Asw
Was/WSS

018/081
qlW/SWl 818/ssl

W W/wwl
WSW/WWs
Asw/Aws

WWI/wiw WvW/WWv Wse/was

wig/wsl
Wwq/Wgw

sa/Ags
MIMS WqW/wWq wvg/wsv

Ags/Ass Wvl/Wlv AVW/Awv Ave/Aev

Wsl/wIs
ASI/Als
Awl/Alw

Wls/Wsl ASI/Ala
Als/Asl AVIAIV

AIWAWI AlgAsi
AqwAws Awe/Aaw

ssvio
ivnn I A

IIV-AVS IIV-XVI liV-VIW liV-SO9
AVS-IiV XVI-IiV VIW-liV SOO-IiV

931 iliOIIJ



MBY stands for Miami-Boston Y class and SLQ for Savannah-Los Angeles Q class.

Note that the defined fare ranges for each virtual inventory class do not change

between flight legs, although this could also be possible.

After the O-D/fare classes have been assigned to their respective virtual classes,

the actual seat inventory control process begins. The EMSR algorithm is applied to

the virtual classes, and recommended booking limits are determined for each virtual

class. Before applying the EMSR model, the mean demand, standard deviation, and

average fare must be derived for each virtual class. This is done in the same manner

as for the leg based EMSR, but instead of combining demand and fare data from

the O-D itineraries based on a common fare class, the means, standard deviations,

and fares of the different O-D/fare class combinations assigned to a virtual class are

aggregated. Table 5.14 gives an example of the make-up of the virtual classes and

the derived means, standard deviations, and average fares for the ATL-BOS and

BOS-ATL flight legs.

There are some cases in which there is no O-D/fare class associated with a virtual

inventory class for a given flight leg, such as in the 6th, 7th, and 8th virtual classes

on the ATL-LAX and LAX-ATL flight legs. When such a situation arises, although

there is no demand (i.e. the mean and standard deviation are 0), an average fare

must be determined for input into the EMSR model. The EMSR model requires

these fares in order to determine seat protection between classes, although it is

actually only a formality needed in implementing the EMSR model. In the case

were there is no demand in the lowest classes, as on the ATL-LAX and LAX-ATL

flight legs, all seats which are not protected for higher virtual classes can simply be

"dumped" into the lowest virtual inventory which is offered on the flight leg, which

in this example is the 5th virtual class. In cases where there is no demand in a



ATL-BOS/BOS-ATL

MEDIUM DEMAND

VIRTUAL 0-0 CLASS
CLASS MEAN SD FARE

8 AB0/BAQ 13 3 $69
SBQ/BSQ 20 6 $69

7 MBQ/BMQ 15 3 $89

6 ABB/BAB 8 3 $95
SBB/BSB 8 4 $109

5 MBB/BMB 11 3 $124

4 LBB/BLB 8 3 $159
LBQ/BLQ 18 4 $139

3 SBM/BSM 5 2 $250

2 ABY/BAY 9 2 $310
ABM/BAM 7 2 $290
SBY/BSY 4 2 $319
MBM/BMM 4 2 s514
LBM/BLM 5 3 $380

1 MBY/BMY 8 3 s403
LBY/BLY 7 2 $575

VIRTUAL CLASS o-D
MEAN SD FARE MEAN

33 6.71 $69.00 9
13

15 3.00 $89.00 10

16 5.00 $102.00 5
5

11 3.00 $124.00 7

26 5.00 $145.15 5
12

5 2.00 $250.00 3

29 5.00 $319.03 6
5
3
3
3

15 3.61 $483.27 5
5

CLASS
SD FARE

2 $69
4 $69

2 $89

2 $95
2 $109

2 $124

2 $159
2 $139

2 $250

2 $310
1 $290
1 $319
1 $314
2 $380

2 $403
1 $575

VIRTUAL CLASS O-D CLASS VIRTUAL CLASS
MEAN SD FARE MEAN SD FARE MEAN SD FARE

22 4.47 $69.00 17 4 $69 44 8.94 $69.00

10 2.00 $89.00

10 2.83 $102.00

7 2.00 $124.00

17 2.83 $144.88

3 2.00 $250.00

20 3.32 $317.45

10 2.24 $489.00

169

$89

$95
$109

$124

$159
$139

$250

$310
$290
S319
$314
$380

$403
$575

20 4.00 $89.00

22 6.40 $102.00

14 4.00 $124.00

35 5.83 $145.29

7 3.00 $250.00

38 6.32 $319.87

20 4.24 $480.40

Table 5.14: Virtual Nesting EMSR Inputs For ATL-BOS/BOS-ATL

LOW DEMAND HIGH DEMAND



middle virtual class, such as the 6th virtual class on the ALT-MIA and MIA-ATL

flight legs, any seats which have not been allocated to the higher virtual classes-1,

2, 3, 4, or 5, but should be protected for these classes over the 7th and 8th virtual

classes, can be added to seats allotted to the 5th virtual class. The EMSR model, on

the other hand, would allocate such seats to the 6th virtual class, which is actually

not offered on the flights.

In the EMSR model, the number of seats to protect for a higher class is dependent

on the fare ratio between the two classes being evaluated. In cases where there is

no O-D itinerary assigned to a given virtual class, the average fare for the virtual

finventory class is assumed to be the mean of the respective fare range, except for

the lowest virtual class, Virtual Class 8. For this virtual class, the average fare is

based on the mean between $50 and $74.99. Table 5.15 shows an example of the

inputs for the situation where there are no O-D fares to aggregate.

In determining the average fare for the 8th virtual class, the range is assumed

to have a lower limit of $50 instead of $0 when finding the range mean. This is

because there are only a few fares below $50, and at the same time, there are a

disproportionate amount of O-D itinerary fares on the higher side of the $50 to

$74.99 range which counter-balances the fares below $50. Previous analysis of fare

data frequency distributions resulted in an overall mean fare of $63.83 for the 8th

virtual class, very close to the $62.50 mean fare value assumed.

Based on the virtual class means, standard deviations, and average fares, an

eight class EMSR model is run on each leg of the network. The outcome of this

procedure is a recommended booking limit for each virtual class on each flight leg.

Table 5.16 shows these virtual inventory limits for the medium demand scenario.



ATL-LAX/LAX-ATL

MEDIUM DEMAND

VIRTUAL
CLASS

O-D CLASS
MEAN' SD FARE

5 AL/LAQ 20 5 $122
MLO/LMQ 11 2 $119

4 ALB/LAB
BLB/LBB
1L0/1B0
MLB/LMB
SLB/LSB
SLO/LSQ

$142
$159
$139
$139
$154
$134

VIRTUAL CLASS
MEAN SD FARE

0 0.00 $62.50

0 0.00 $85.00

0 0.00 $102.50

31 5.39 $120.94

68 9.11 $141.04

0-D CLASS
MEAN SD FARE

13 3 $122
7 2 $119

$142
$159
$139
$139
$154
$134

VIRTUAL CLASS
MEAN SD FARE

0 0.00 $62.50

0 0.00 $85.00

0 0.00 $102.50

20 3.61 $120.95

44 6.24 $140.82

O-D CLASS
MEAN SD FARE

27 7 $122
14 3 $119

$142
$159
$139
$139
$154
$134

VIRTUAL CLASS
MEAN SD FARE

0 0.00 $62.50

0 0.00 $85.00

0 0.00 $102.50

41 7.62 $120.98

92 11.49 $141.15

3 MLM/LMM 8 3 $239

2 ALM/LAM 3 2 $391
BLM/LBM 5 3 $380

1 ALY/LAY
BLY/LBY
MLY/LMY
SLY/LSY
SLM/LSM

$455
$575
$477
$502
$450

8 3.00 $239.00

8 3.61 $384.12

35 5.48 $491.83

5 2 $239 5 2.00 $239.00

2 2 $391
3 2 $380

$455
$575
$477
$502
$450

5 2.83 $384.40

24 3.74 $493.50

11 4 $239 11 4.00 $239,00

4 3 $391
7 3 $380

$455
$575
$477
$502
$450

11 4.24 $384.00

46 6.86 $490.96

Table 5.15: Virtual Nesting EMSR Inputs For ATL-LAX/LAX-ATL

LOW DEMAND HIGH DEMAND



VIRTUAL
LEG CAPACITY CLASS

ATL-BOS
BOS-ATL

ATL-MIA
MIA-ATL

ATL-LAX
LAX-ATL

ATL-SAV
SAV-ATL

150

150

150

150

STD AVERAGE SEATS
DEMAND DEVI REVENUE ALLOC

3.61
5.00
2.00
5.00
3.00
5.00
3.00
6.71

4.24
3.61
6.16
1.00
3.61
0.00
4.12
5.39

5.48
3.61
3.00
9.11
5.39
0.00
0.00
0.00

3.61
2.00
4.90
8.12
0.00
4.00
2.00
8.43

$483.27
5319.03
$250.00
S145.15
$124.00
5102.00
$89.00
$69.00

$448.81
$287.16
$219.25
$139.00
5121.50
$102.50
$89.00
$59.00

$491.83
$384.12
$239.00
$141.04
$120.94
$102.50
$85.00
$62.50

$473.11
S319.00
$223.00
$145.42
$120.00
$109.00
$84.00
$61.26

Table 5.16: "Virtual Class" Booking Limits - Medium Demand Level

BK LIMIT

150
136
109
98
74
61
47
26

150
130
111
80
74
51
49
17

150
119
107
93
34
1
0
0

150
142
137
117
69
66
53
42



Notice how two seats have been allocated to the unused, 6th virtual class on the

ATL-MIA and MIA-ATL flights. This is a situation in which these two seats have

not been allocated to the five highest virtual classes, but should be protected for

these classes over the 7th and 8th virtual classes. Therefore, the seats have been

allotted to the 6th class, when in actuality they belong to the expected demand for

the top five virtual classes, since there is no demand in the 6th class.

The booking limits in Table 5.16 are not the limits which are shown in availability

displays to reservations agents. Once the virtual class booking limits are determined,

they are matched back to the O-D/fare class combinations offered to the public.

The booking limit for each O-D itinerary/fare class is simply the booking limit of

its corresponding virtual class. Table 5.17 gives an example of the disaggregated

passenger itinerary possibilities with their respective booking limits under medium

demand levels for the ATL-BOS and ATL-MIA flight legs. Notice how the O-D

pairs are nested entirely by fare amount. By applying the EMSR model to virtual

classes, long-haul passengers with higher itinerary ticket revenue are always favored

over short-haul passengers, in spite of the possibility that the combined revenue of

two short-haul passengers could result in a higher total revenue.

Table 5.18 gives O-D/fare class booking limits for the ATL-BOS and SAV-ATL

flight legs under high demand conditions. By using the virtual nesting EMSR

method, some O-D itineraries within a given fare class can be distinguished be-

tween others. Under high demand, two Q class O-D itineraries on the ATL-BOS

flight leg, ATLBOS and SAVBOS, are closed to any bookings, while the other Q

class O-D itineraries, LAXBOS and MIABOS, are open. At the same time, the

booking limit on the LAXBOS Q class itinerary is 81 while the MIABOS Q class



MEAN STD
LEG SEGMENT CLASS DEMAND DEVI FARE BK LIMIT

ATL-BOS LAXBOS Y 7 2 5575 150
MIABOS Y 8 3 5403 150
LAXBOS M 5 3 $380 136
SAVBOS Y 4 2 5319 136
MIABOS M 4 2 $314 136
ATLBOS Y 9 2 5310 136
ATLBOS M 7 2 5290 136
SAVBOS M 5 2 5250 109
LAXBOS B 8 3 $159 98
LAXBOS Q 18 4 $139 98
MIABOS B 11 3 $124 74
SAVBOS B 8 4 5109 61
ATLBOS B 8 3 595 61
MIABOS Q 15 3 $89 47
ATLBOS Q 13 3 569 26
SAVBOS Q 20 6 $69 26

ATL-MIA LAXMIA Y 13 3 5477 150
BOSMIA Y 8 3 5403 150
BOSMIA M 4 2 5314 130
ATLMIA Y 15 3 5280 130
LAXMIA M 8 3 5239 111
SAVMIA Y 10 4 5226 111
ATLMIA M 7 3 5209 111
SAVMIA M 3 2 5168 111
LAXMIA B 5 1 $139 80
BOSMIA B 11 3 5124 74
LAXMIA Q 11 2 5119 74
ATLMIA B 5 2 594 49
BOSMIA Q 15 3 589 49
SAVMIA B 5 2 584 49
ATLMIA Q 11 2 559 17
SAVMIA Q 19 5 559 17

Table 5.17: Virtual Nesting Booking Limits - Medium Demand Level



MEAN STD
LEG SEGMENT CLASS DEMAND DEVI FARE BK LIMIT

ATL-BOS LAXBOS Y 9 3 $575 150
MIABOS Y 11 3 $403 150
LAXBOS M 7 3 $380 131
SAVBOS Y 5 3 5319 131
MIABOS M 5 2 $314 131
ATLBOS Y 12 3 $310 131
ATLBOS M 9 3 $290 131
SAVBOS M 7 3 $250 96
LAXBOS B 11 3 $159 81
LAXBOS Q 24 5 $139 81
MIABOS B 14 4 $124 50
SAVBOS B 11 5 $109 34
ATLBOS B 11 4 $95 34
MIABOS Q 20 4 $89 14
ATLBOS Q 17 4 $69 0
SAVBOS Q 27 8 $69 0

SAV-ATL SAVLAX Y 5 3 $502 150
SAVLAX M 7 3 $450 150
SAVBOS Y 5 3 $319 139
SAVBOS M 7 3 $250 133
SAVMIA Y 13 6 $226 133
SAVMIA M 4 2 $168 133
SAVATL Y 25 5 $159 107
SAVLAX B 7 2 $154 107
SAVATL M 7 2 $140 107
SAVLAX Q 32 9 $134 107
SAVBOS B 11 5 $109 38
SAVMIA B 7 3 $84 23
SAVBOS Q 27 8 $69 5
SAVATL B 5 2 $64 5
SAVMIA Q 25 7 $59 5
SAVATL Q 13 3 $49 5

Table 5.18: Virtual Nesting Booking Limits - High Demand Level



limit is only 14. Nonetheless, this is still a leg based method which does not take

into consideration interaction between flight legs.

Although this is a leg-based system which is consistent with current airline reser-

vations systems, substantial internal re-programming is needed to use such a virtual

inventory system. Internal processes need to be developed which aggregate O-D/fare

class combinations by virtual class and then disaggregate the O-D/fare class booking

limits from virtual class booking limits. The reservations systems must also be re-

programmed to make and cancel requests by O-D itineraries. Currently reservations

agents are able to book and cancel pieces of a passenger's travel plans, leg by leg.

In a virtual inventory system, availabilities are not based simply on fare classes, but

on O-D itinerary fare amounts. If seats are available for a multi-leg O-D itinerary

on a given flight, seats may not be available for the single-leg local itinerary on the

flight leg. Currently, if a seat is available on a flight leg, any passenger can book

the seat regardless of his O-D itinerary.

5.2.4 Deterministic Linear Program

The deterministic linear program is a network based formulation. Since it is

deterministic, O-D/fare class demand is based on a single value. The mean expected

demand of each fare class itinerary demand distribution is used as the deterministic

value in this analysis. Since the expected demands are assumed to be normal, the

mean value has the highest probability of occurring, and the probability that the

actual demand will be less than the mean is the same as the probability of the actual

demand being greater than the mean, each being 50%.

Formulating the deterministic linear programming problem is straightforward.

Total network revenue is maximized subject to the capacity and demand constraints



as in section 4.3, equation 4.8. At the medium level of demand, this formulation

becomes:

Maximize

310 ABY + 290 ABM + 95 ABB+ 69 ABQ +

159ASY+140ASM+ 64ASB+ 49ASQ+

502 SLY + 450 SLM + 154 SLB + 134 SLQ (5.1)

subject to:

ABY + SBY + MBY + LBY + ABM + --- + LBQ < 150

ALY + BLY + MLY + SLY + ALM + -- -+ SLQ < 150

ABY < 9

ABM < 7

ABB < 8

ABQ < 13

BAY < 9

ASY < 19

Using a linear programming computer software package to solve this determin-

istic LP network, the solution obtained is a maximum revenue value based on the



best combination of values for each decision variable, ABY, ABM, etc, which com-

ply with the given constraints. By specifying that all decision variables must be

integer values, since it is impossible to have a fraction of a seat or a fraction of a

passenger, the solution is the optimal number of seats to allocate to each O-D/fare

class itinerary on every flight leg in the network.

Table 5.19 gives these seat allocations for each O-D itinerary and fare class

under medium demand conditions. Below each seat allocation is the mean demand,

standard deviation and fare for each O-D/fare class combination. In this case, where

the level of demand on each flight leg equals capacity, the number of seats allocated

to each O-D/fare class is the same as the mean demand.

When the demand level is high, the assumed mean demand for each leg is 133%

of the medium demand level, or approximately 200 per flight leg. In this situation,

the 150 best O-D/fare class itineraries per flight leg, in terms of system-wide rev-

enue, are chosen. These O-D/fare class seat allocations are given in Table 5.20. In

order to determine these seat allocations, the same objective function and capacity

constraints hold, as described in the medium demand level problem. The only dif-

ference in the formulation is the demand constraints, in which the O-D/fare class

variables are set less than or equal to the high mean demand values rather than the

medium values. In the process of selecting the best O-D/fare class combinations,

the interaction between flight legs is taken into account.

In the seat allocations for the high demand level, the BOSSAV and SAVBOS Q

class allocations are not the same, even though the network is symmetrical, both in

physical routing as well as demand distribution. For the BOSSAV Q class itinerary,

3 seats are allocated, while 8 seats are allocated to the SAVBOS Q class itinerary.



Y M B Q

ATLBOS/BOSATL

ATLSAV/SAVATL

ATLMIA/MIAATL

ATLLAX/LAXATL

BOSSAV/SAVBOS

BOSMIA/MIABOS

BOSLAX/LAXBOS

MIASAV/SAVMIA

MIALAX/LAXMIA

LAXSAV/SAVLAX

Table 5.19: Deterministic LP Seat Allocations - Medium Demand Level

9
9
2

$310

19
19
3

$159

15
15
3

$280

6
6
2

$455

4
4
2

$319

8
8
3

$403

7
7
2

$575

10
10
4

$226

13
13
3

$477

4
4
2

S502

7
7
2

$290

5
5
2

$140

7
7
3

$209

3
3
2

$391

5
5
2

$250

4
4
2

S314

5
5
3

S380

3
3
2

$168

8
~8

3
S239

5
5
3

$450

8
8
3

$95

4
4
1

$64

5
5
2

$94

8
8
2

$142

8
8
4

$109

11
11
3

$124

8
8
3

$159

5
5
2

584

5
5
1

$139

5
5
2

$154

13
13
3

$69

10
10
3

$49

11
11
2

$59

20
20

.5
$122

20
20
6

$69

15
15
3

$89

18
18
4

$139

19
19
5

$59

11
11
2

$119

24
24
7

$134



Y M B Q

ATLBOS/BOSATL

ATLSAV/SAVATL

ATLMIA/MIAATL

ATLLAX/LAXATL

BOSSAV/SAVBOS

BOSMIA/MIABOS

BOSLAX/LAXBOS

MIASAV/SAVMIA

MIALAX/LAXMIA

LAXSAV/SAVLAX

Table 5.20: Deterministic LP Seat Allocations - High Demand Level

12
12
3

$310

25
25
5

S159

20
20
4

S280

8
8
2

$455

5
5
3

S319

11
11
3

$403

9
9
3

$575

13
13
6

$226

17
17
4

$477

5
5
3

5502

9
9
3

$290

7
7
2

S140

9
9
4

$209

4
4
3

$391

7
7
3

$250

5
5
2

$314

7
7
3

$380

4
4
2

$168

11
11
4

$239

7
7
3

$450

11
11
4

$95

5
5
2

$64

7
7
2

$94

11
11
3

$142

11
11
5

S109

14
14
4

$124

11/6
11
3

$159

7
7
3

$84

0
7
2

$139

7
7
2

$154

17
17
4

$69

13
13
3

$49

14
14
3

$59

27
27
7

$122

3/8
27
8

$69

18
20
4

$89

0
24
5

$139

0
25
7

$59

0
14
3

$119

31/26
32
9

$134



This situation also arises in the LAXSAV/SAVLAX Q class seat allocations and in

the BOSLAX/LAXBOS B class allotments. This is because the deterministic LP

solution to this network problem is not unique. There are many different sets of seat

allocations which give the same optimal revenue value. In the solution shown here,

6 seats are allocated to LAXBOS B class, 11 to BOSLAX B class, 8 to SAVBOS Q

class, 3 to BOSSAV Q class, 31 to .LAXSAV Q class and 26 to SAVLAX Q class.

Another solution which would give the same revenue amount would be to allocate

7 seats to LAXBOS B class, 10 to BOSLAX B class, 7 to SAVBOS Q class, 4 to

BOSSAV Q class, 30 to LAXSAV Q class and 27 to SAVLAX Q class. Note how

the LAXBOS B class increased from 6 to 7 seats allocated, while the BOSLAX B

class decreased from 11 to 10 seats allocated. The opposite situation, LAXBOS B

class being allocated 5 seats while BOSLAX B class increasing to 12 seats, is not

possible since BOSLAX B class is constrained by a mean demand of 11.

In the latter solution, an extra seat was allocated to three of the O-D/fare class

combinations, while one less seat was allocated to the opposite direction O-D/fare

class combinations. This could continue happening until LAXBOS B class was

allocated 11 seats and BOSLAX B class 6, and then the LAXBOS B class would

be constrained from increasing any further because of its demand constraint. All of

the,e different seat allocation solutions -ive the same optimal revenue. There is also

a symmetrical solution for these six O-D/fare class combinations, but this solution

is not an integer solution, and therefore is not feasible.

Because of the demand constraints affixed to each O-D/fare class combination,

when the mean demand on a flight leg is not as great as the capacity of the leg, the

seats in excess of the demand are not allocated to any O-D/fare class combination

and are left to go empty. This is the case in the low demand scenario where the



mean expected demand is 67% of the medium level. Under this demand scenario, as

many seats as the mean demand level, and no more, are allocated to each O-D/fare

class itinerary. Even if the actual demand, which is probabilistic in nature, happens

to be greater than the mean demand level of 100 per flight leg, only 100 seats will be

allocated to specific O-D/fare classes on each flight leg, while the remaining 50 seats

will be left empty, In practice, these unallocated seats could be used to accommodate

excess demand.

The deterministic LP method is a network based solution in which the optimal

seat allocations maximize total system revenue, rather than individual flight leg

revenue. The problem is that these seat allocations are not nested. This in turn

means that if the demand level low, all seats will not be allocated, and the booking

limits associated with an O-D/fare class inventory will actually limit the number of

reservations which can be accepted, while seats go empty. Because this method is

deterministic, requests for an O-D/fare class will be refused on an average of 50%

of the flights since the number of seats which can be made available to an O-D/fare

class is constrained by the mean expected demand.

5.2.5 Probabilistic Linear Program

The probabilistic linear programming method is also a network based seat inven-

tory control technique, but unlike the deterministic LP approach, the probabilistic

LP method accounts for the uncertainty of demand. The probabilistic LP technique

allocates seats by optimizing expected marginal revenue over the entire network.

In the most detailed approach to the problem, each individual seat on every flight

is examined. The O-D/fare class combinations, which contribute the highest ex-

pected revenue to the system based on the probability of selling each given seat to

an O-D/fare class, are chosen for the solution.

100



In formulating the probabilistic LP, an integer zero/one variable is used for

every seat which could potentially be sold to a fare class and origin-destination

pair. Expected revenue is maximized by finding the optimal combination of (0,1)

variables. Each (0,1) variable, which represents the option of allocating or not

allocating the seat being considered to a given O-D/fare class, is multiplied by

the expected marginal revenue of the seat. The sum of all the expected marginal

revenues, which are multiplied by either 0 or 1, is maximized subject to flight leg

capacity constraints. This probabilistic LP is formulated in equation 4.10. The

shortcoming of this appoach is that the required number of binary decision variables

becomes very large, very fast. For this small network which connects five different

cities with eight flight legs offering four coach classes, the complete probabilistic LP

formulation contains 12,000 variables.

There are a number of ways in which to cut down the number of variables needed

in the formulation. One cutoff point can be to have j, the number of seats available

to each itinerary and fare class combination, range from 1 to pi,o.o + 3 0i,o.D, the

mean demand plus 3 times the standard deviation, assuming this is less than the

capacity of the aircraft on a given flight leg. The number of decision variables can

be limited in this way since the probability of selling more than p + 3 seats in a

given O-D/fare class is 0.00..35, which is negligible. In turn, the expected marginal

revenue of a seat which has a probability of 0.00135 of selling is very small.

Another cutoff point which lowers the number of decision variables required in

the probabilistic LP formulation can be to eliminate any decision variable with an

expected marginal seat revenue below a certain dollar amount. The higher the

demand, the greater the dollar amount can be. In using this technique to cut down

on the number of variables, one must be careful not to set the dollar amount cutoff
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level too high. Even when the cutoff amount for the expected marginal revenue

of one O-D/fare class combination is quite high, other O-D/fare class cutoff levels

may be much lower. For example, under the medium demand scenario, the cutoff

point of the expected marginal revenues for the BOSLAX Y class itinerary in the

network is somewhere between $177.42 and $91.22. The 9th seat of the BOSLAX Y

class itinerary is accepted with an expected marginal revenue of $177.42 while the

10th seat at $91.22 is not. At the same time, a seat is allocated to the BOSATL

Y class at an expected marginal revenue of $48.18, at least half of the BOSLAX Y

class cutoff level. This is possible because the combined expected revenue of the last

seats allocated in the BOSATL Y class and ATLLAX Y class is $48.18 + $140.39,

or $188.57, which is above the cutoff level for the BOSLAX Y class inventory.

By using different methods to eliminate decision variables in the probabilistic

LP formulation, the 12,000 variables needed for this Atlanta-based hub network

evaluation were reduced to between 501 and 684 variables, depending on the demand

level assumed. Although the reduction methods made this probabilistic LP problem

manageable, the size of a typical major airline's network is far to large to make a

full-scale probabilistic LP, with reductions, practical to solve with current airline

computer capabilites.

The first step in applying the probabilistic LP to the given network is to find the

expected revenue for O-D/fare class seat. The expected marginal revenue for each

seat is the probability of selling the seat times the revenue obtained from selling the

seat, as derived in section 4.1.1. Table 5.21 shows the probability of selling S seats

and the expected marginal revenue associated with selling each of the seats in the

ATLBOS Y class inventory.
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SEAT

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

ATLBOS Y - 5310

P(S)

1.00000
0.99997
0.99977
0.99865
0.99378
0.97724
0.93320
0.84135
0.69145
0.50000
0.30855
0.15865
0.06680
0.02276
0.00622

EMSR(S)

S310.00
S309.99
$309.93
5309.58
5308.07
$302.94
$289.29
$260.82
5214.35
5155.00

$95.65
$49.18
$20.71
$7.06
51.93

Table 5.21: P(S) and EMSR(S) For ATLBOS Y Class

Using these expected marginal revenues and those associated with other O-D/fare

class itineraries, the reduced probabilistic LP formulation for the medium demand

level becomes:

Maximize

310.OOABY01 + 309.99 ABYO2 + - -- + 7.06 ABY14 +

289.93 ABM01 + 289.61 ABMO2 + - - - + 6.60 ABM12 +

133.96 LSQ01 + 133.93 LSQ02 + - -- + 2.15 LSQ40

subject to:

ABY01+---+SBY01+---+MBY01+---+LBY01+--- < 150

ASY01+---+BSY01+---+MSY01+---+LSY01+--- < 150

(5.2)
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ABY01 = 0 or 1

ABY02 = 0 or 1

ABY14 = 0 or 1

ABM01 = 0 or 1

ASY01 = 0 or 1

The capacity constraints are simply a limit on the total number of decision variables

accepted (set equal to one) on each flight leg of 150, the aircraft capacity. Note that

there are no demand constraints as in the deterministic LP formulation. This is

because the objective function includes the demand estimates through the expected

marginal revenue values.

Each five character variable in the formulation designates the origin, the desti-

nation, the fare class, and the Sth seat (a two digit number) which may be allocated

to the O-D/fare class combination. For example, ABY01 is the first seat which can

be allocated to the ATLBOS Y class itinerary, while ABY10 would be the tenth seat

which could be allocated to the itinerary. ABY10 cannot be accepted and allocated

to the ATLBOS Y class itinerary without ABY01, ABY02, and up through ABY09

being accepted.

The solution to the probabilistic LP problem is simply a list of values, 0 or 1,

for each of the decision variables. From this list, the number of seats to be allocated

to each O-D/fare class combination can be found. This number is either the sum of

all the similar O-D/fare class (0,1) decision variables, or it is the seat number of the
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last decision variable which is equal to 1 for any set of O-D/fare class variables. For

example, if ABY11 = 1 but ABY12 = 0 and ABY13 = 0, etc., then the number

of seats allocated to the ATLBOS Y class inventory is 11. The results from the

medium demand scenario probabilistic LP seat inventory control method are given

in Table 5.22.

The probabilistic LP is a network based formulation which takes into account

the uncertainty of demand. However, these results assume a non-nested inventory

system. The seat allocations are based on distinct inventories, where lower fare

class seat allocations are not open to higher fare class bookings, therefore more

seats are protected for higher fare class inventories than are required for a similar

nested system. For example, the number of seats protected on the ATL-BOS flight

leg for Y class under the leg based EMSR model, which is a nested, probabilistic

model, is 25 seats. These 25 seats are available to LAXBOS, MIABOS, SAVBOS,

and ATLBOS Y class passengers, which have a combined mean demand of 28. Using

the non-nested probabilistic LP method, the combined number of seats protected

for the four O-D Y class passenger itineraries is 38. The non-nested solution is more

conservative and consistently allocates more seats to higher fare classes since there

is no chance for high class demand to be accommodated in lower classes, as there

is in a iested system which allows any available seat to be booked by a high fare

passenger.

Although the probabilistic LP is non-nested, all seats are allocated. Seats are

not left empty as in the situation of a low level of demand in the deterministic

LP method. The probabilistic LP does not have strict demand constraints on each

O-D/fare class. In low demand conditions, the probability of selling every last seat

in the given O-D/fare class inventories becomes small, thus making the expected
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Y M B Q

ATLBOS/BOSATL 12 10 9 12
9 7 8 13
2 2 3 3

$310 $290 $95 $69

ATLSAV/SAVATL 23 8 5 ii
19 5 4 10
3 2 1 3

$159 $140 $64 $49

ATLMIA/MIAATL 19 10 6 11
15 7 5 11
3 3 2 2

$280 $209 $94 $59

ATLLAX/LAXATL 8 5 8 19
6 3 8 20
2 2 2 5

$455 $391 $142 $122

BOSSAV/SAVBOS 6 7 8 12
4 5 8 20
2 2 4 6

$319 $250 $109 $69

BOSMIA/MIABOS 11 6 10 11
8 4 11 15
3 2 3 3

$403 $314 $124 $89

BOSLAX/LAXBOS 9 7 6 14
7 5 8 18
2 3 3 4

$575 $380 $159 $139

MIASAV/SAVMIA 13 4 5 9
10 3 5 19
4 2 2 5

$226 $168 $84 $59

MIALAX/LAXMIA 16 9 4 6
13 8 5 11
3 3 1 2

$477 $239 $139 $119

LAXSAV/SAVLAX 6 8 5 20
4 5 5 24
2 3 2 7

$502 $450 $154 $134

Table 5.22: Probabilistic LP Seat Allocations - Medium Demand Level
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marginal revenue associated with these seats small. Nonetheless, the seats continue

to contribute some revenue to the system and will be allocated to an O-D/fare

class inventory. The final results obtained are considered to be the "correct" seat

allocations for the given network. The problem is determining how this optimal

network solution can be implemented in nested reservations systems.

5.2.6 Deterministic LP Nested on Shadow Prices

The deterministic LP method nested on shadow prices is simply the non-nested

deterministic LP solution incorporated into a nested fare class structure. The net-

work is formulated exactly as in the deterministic LP approach. The linear pro-

gramming formulation is then solved and the integer value assigned to each decision

variable is the number of seats allocated to the corresponding O-D/fare class combi-

nation. In the output of most software packages for linear programming problems,

not only are values, which optimize the network formulation, assigned to the deci-

sion variables, but for each decision variable a shadow price or reduced cost is also

given.

As decribed in Section 4.5, a shadow price (or reduced cost) associated with a

decision variable is the amount the optimal system revenue value would increase (or

decrease) if one more unit of the variable is used. Variables with the highest shadow

prices will increase the overall network revenue the most if their value is allowed to

be incremented by one unit. Therefore, these shadow prices can be used as nesting

variables. The O-D/fare class combinations with the highest shadow price nesting

variables, based on a network formulation, will rank above other O-D/fare class

combinations in the nesting order of a flight leg.
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Once the nesting order is determined for a given flight leg, the nested booking

limits can be found for each O-D/fare class combination on the flight leg. The

booking limit for an Q-D/fare class inventory is simply the capacity of the aircraft

minus the total number of seats allocated to O-D/fare class combinations nested

above the O-D/fare class inventory. Table 5.23 gives examples of the nesting order

and booking limits, under the medium demand scenario, for three flight legs of the

Atlanta-based network.

Table 5.23 also gives examples of the nesting variables (shadow prices) for the

O-D itineraries on the ATL-BOS, BOS-ATL and MIA-ATL flight legs. On the BOS-

ATL flight leg, the nesting variable for the BOSSAV Y class itinerary is 250. This

means that by increasing the number of seats allocated to the BOSSAV Y class

from 4 to 5, the optimal network revenue will increase by $250. Only 4 seats were

initially allocated to BOSSAV Y class in this deterministic LP formulation because

of the mean demand constraint of 4. Since actual demand is probabilistic in nature,

the BOSSAV Y demand may be 5, 6 or even more. In situations when demand is

greater than the mean expected value of 4, extra seats can be made available to

BOSSAV Y class passengers through nesting, allowing additional bookings to be

accepted and a potentially higher network revenue obtained.

Table 5.23 shows an example of the nesting order determined from using shadow

prices. The origin-destination segments are listed in order of their booking limits.

The fares for each O-D segment are also given. It is evident that the nesting order is

not determined solely by fares or classes. For example, on the BOS-ATL flight leg,

the BOSATL M class itinerary (with a fare of $290) is ranked above the BOSLAX M

class and BOSSAV Y class itineraries with respective fares of $380 and $319. This

is because the shadow price of the next seat sold to a BOSATL M class itinerary is
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MEAN SEATS NESTING
LEG SEGMENT CLASS DEMAND ALLOC VARIABLE FARE BK LIMIT

ATL-BOS LAXBOS Y 7 7 446 $575 150
MIABOS Y 8 8 324 5403 143
LAXBOS M 5 5 251 $380 135
SAVBOS Y 4 4 250 $319 130
ATLBOS Y 9 9 241 $310 126
MIABOS M 4 4 235 $314 117
ATLBOS M 7 7 221 $290 113
SAVBOS M 5 5 181 5250 106
MIABOS B 11 11 45 $124 101
SAVBOS B 8 8 40 $109 90
LAXBOS B 8 8 30 $159 82
ATLBOS B 8 8 26 $95 74
LAXBOS Q 18 18 10 $139 66
MIABOS Q 15 15 10 $89 48
SAVBOS Q 20 20 0 $69 33
ATLBOS Q 13 13 0 $69 13

BOS-ATL BOSLAX Y 7 7 446 $575 150
BOSMIA Y 8 8 324 $403 143
BOSATL Y 9 9 290 $310 135
BOSATL M 7 7 270 $290 126
BOSLAX M 5 5 251 $380 119
BOSSAV Y 4 4 250 $319 114
BOSMIA M 4 4 235 $314 110
BOSSAV M 5 5 181 $250 106
BOSATL B 8 8 75 595 101
BOSATL Q 13 13 49 $69 93
BOSMIA B 11 11 45 $124 80
BOSSAV B 8 8 40 $109 69
BOSLAX B 8 8 30 $159 61
BOSLAX Q 18 18 10 $139 53
BOSMIA Q 15 15 10 $89 53
BOSSAV Q 20 20 0 569 20

MIA-ATL MIALAX Y 13 13 358 $477 150
MIABOS Y 8 8 324 $403 137
MIAATL Y 15 15 270 S280 129
MIABOS M 4 4 235 S314 114
MIAATL M 7 7 199 $209 110
MIASAV Y 10 10 167 $226 103
MIALAX M 8 8 120 $239 93
MIASAV M 3 3 109 5168 85
MIAATL B 5 5 84 $94 82
MIAATL Q 11 11 49 $59 77
MIABOS B 11 11 45 $124 66
MIASAV B 5 5 25 $84 55
MIALAX B 5 5 20 $139 50
MIABOS Q 15 15 10 $89 45
MIALAX Q 11 11 0 $119 30
MIASAV Q 19 19 0 $59 30

Table 5.23: Nested Deterministic LP Booking Limits - Medium Demand Level
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270, versus 251 and 250 for the next seats sold to a BOSLAX N class itinerary or

a BOSSAV Y class itinerary, respectively.

In this deterministic LP method, the entire network's revenue is considered in

allocating seats, not just each individual leg's revenue. The nesting order can be

different for each leg and direction as can be seen by the difference between the

nesting of the ATL-BOS leg and the BOS-ATL leg in Table 5.23. Another important

difference in the nesting order of this deterministic LP method is how short-haul

markets (which usually have a lower ticket revenue than long-haul markets in the

same class) can rank above some long-haul market pairs. For example, on the BOS-

ATL leg, the short-haul BOSATL M class is ranked above the BOSSAV Y class as

well as the other O-D M class pairs, and the BOSATL B class and Q class are both

ranked above all the other O-D B class pairs. The MIA-ATL flight leg shows the

same type of nesting order.

Table 5.24 gives an example of the nesting for the MIA-ATL flight leg using the

high demand assumptions. With the change of demand level, the nesting order also

changes. Ths MIAATL M class is no longer ranked above the MIASAV Y class, but

the MIABOS Q class is ranked above the MIALAX B class.

The deterministic LP nested on shadow prices is a network based method. By

using shadow prices, the non-nested solution of the deterministic LP method is made

more compatible with nested reservations systems. Also, by nesting the different

O-D/fare class inventories, the probabilistic behavior of demand can be dealt with

more readily. If demand for a one O-D/fare class is lower than expected, the seats

allocated to the O-D/fare class will not necessarily go empty, as in a distinct in-

ventory system, but can be booked by excess demand for another O-D/fare class.
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MEAN SEATS NESTING
LEG SEGMENT CLASS DEMAND ALLOC VARIABLE FARE BK LIMIT

MIA-ATL MIALAX Y 17 17 323 $477 150
MIABOS Y 11 11 314 $403 133
MIAATL Y 20 20 228 5280 122
MIABOS M 5 5 225 $314 102
MIASAV Y 13 13 162 $226 97
MIAATL M 9 9 157 $209 84
MIASAV M 4 4 104 $168 75
MIALAX M 11 11 85 $239 71
MIAATL B 7 7 42 $94 60
MIABOS B 14 14 35 $124 53
MIASAV B 7 7 20 $84 39
MIAATL Q 14 14 7 $59 32
MIABOS Q 20 18 0 $89 18
MIASAV Q 25 0 -5 $59 0
MIALAX B 7 0 -15 $139 0
MIALAX Q 14 0 -35 $119 0

Table 5.24: Nested Deterministic LP Booking Limits - High Demand Level

If demand is higher than expected, extra seats may be obtained from lower nested

O-D/fare class itineraries, potentially increasing network revenues. By nesting the

O-D/fare class inventories the situation of having seats completely unallocated does

not occur. If the level of demand is low, seats that have not been assigned to specific

O-D/fare class combinations are added to the lowest nested inventory, making the

extra seats available to all O-D/fare classes.

5.3 Network Revenue Comparisons

The major interest of a origin-destination seat inventory control system is the

increase in total revenue the system will provide. It is hard to determine the exact

amounts of revenue obtained from each of the above techniques because of the

stochastic nature of demand, especially in the case of nested reservations systems.

Two different methods of approximating revenue were applied to the six techniques
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to provide some basis for comparison of the different methods.

The first method approximates system revenue based on the mean demand for

each O-D/fare class. It is assumed that the lowest class books first, with the high-

est class booking last. In many cases the total mean demand from the O-D/fare

class itineraries in a common booking inventory is greater than the number of seats

available. In such situations, the seats are booked proportionally to the O-D/fare

class mean demands, as long as space is available on the different legs. A multi-

leg itinerary must have seats available on each leg of its itinerary in order to have

a seat booked in it. If seats are available on one leg, but not on a second leg of

the itinerary, the seats on the first leg are divided up proportionally between the

remaining O-D/fare combinations in the particular inventory.

The second revenue approximation method used is based on the number of seats

protected for a given class. Nesting is not taken into account in this method, and

inventories are treated as distinct buckets. The revenue estimates from this method

compare the maximum "exposure" of the airline under high demand conditions. All

seats protected for an inventory class over the next lower inventory class are booked

in the higher class. Once again, if the total demand of the respective O-D/fare classes

is more than the number of seatsprotected, the seats are booked proportionally to

the O-D/fare class mean demands. However, the number of seats booked for any

O-D/fare class itinerary cannot exceed three standard deviations over its mean

demand value. If the total number of seats protected for a class is more than the

total maximum possible demand for the class, the excess seats are left empty.

An indication of the differences in these approximations of system revenues is

provided in Table 5.25. This table summarizes the potential revenue estimates for
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MEDIUM HIGH

LEG BASED EMSR
MEAN DEMAND $92,690 $136,870 $159,602
SEATS PROTECTED $106,688 $136,592 $159,252
PROTECTED & BOOKED UP $112,730 $145,496 $171,972

PRORATED LEG BASED EMSR
MEAN DEMAND S92,690 $136,858 $159,418
SEATS PROTECTED $112,380 $143,276 $167,624

VIRTUAL NESTING EMSR
MEAN DEMAND $92,690 $134,860 $155,280
SEATS PROTECTED 597,514 $135,242 $154,162

DETERMINISTIC LP
MEAN DEMAND $92,690 $139,054 $164,858
SEATS PROTECTED 592,690 $139,054 $164,858

PROBABILISTIC LP
MEAN DEMAND $92,690 $131,140 $155,190
SEATS PROTECTED 5150,276 $163,844 $191,460
EXPECTED REVENUE $100,561 $131,717 $154,094

DETERMINISTIC LP NESTED ON SP
MEAN DEMAND $92,690 $139,054 $164,858
SEATS PROTECTED $98,960 $139,054 $164,858

Table 5.25: Revenue Summary

each of the alternative seat inventory control approaches under the three demand

level assumptions, low, medium, and high.

The system revenue for the virtual nesting EMSR technique is the lowest for both

revenue estimation methods. This "greedy" method of favoring a single long-haul

passenger on a given leg over a short-haul passenger does not produce maximum

revenues when the entire system is considered. One reason revenues are so low for

the virtual nesting technique is because quite often multi-leg itineraries do not have

seats available on both legs of the itinerary. This is an additional problem with a

leg based method. To complicate the matter, many virtual classes do not have a

short-haul O-D/fare class combination assigned to it. When the multi-leg itineraries

cannot be booked because of lack of seats available for the virtual class on other

legs, there are not single-leg itineraries in the virtual class to fill the seats on the
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flight leg and the seats go empty.

The leg based EMSR and prorated leg based EMSR techniques are very similar

for the mean demand-method, but not for the seats protected method. The revenue

based on seats protected for the leg based EMSR technique is not a good indication

of the system revenue. In the process of calculating the weighted average fare for

the ATL-SAV leg in the small hub network with the given demand assumptions and

fare levels, the M class average fare was higher than the Y fare. Therefore, in the

standard EMSR method, no seats are protected for the Y class O-D itineraries over

the M class O-D itineraries. This in turn means that by using the "seats protected"

method to determine expected revenues, the seats allocated to the Y class on the

ATLSAV leg, and protected from the M class, are zero. At the same time, the

number of seats available to the M class is much higher than the total maximum

demand.

A better indication of the potential revenue for the leg based EMSR technique,

based in part on the protected seat method, is to book ATLSAV Y class itineraries

in seats left over after completely booking the maximum number of M class seats

possible. In a typical nesting environment, this type of booking would occur. Using

this extended protected seats method where revenue is based on seats protected,

and booked up in the case of the ATL-SAV flight leg, the potential revenue amounts

are higher than that of the prorated leg based EMSR seats protected revenue. This

concept of booking the maximum number of seats possible under the protected seat

method and then booking any remaining seats in the next highest class does not

effect the prorated EMSR seat inventory control revenue estimates. This is because

seats are protected for the Y class on the ATL-SAV flight leg in the prorated EMSR

method and are-not left to be allotted to the M class, as in the non-prorated leg
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based EMSR method. Also, all seats available to the M class can be booked in

the class. There are no remaining seats which can be booked up to the Y class.

Therefore, the idea of a "protected and booked up" revenue estimate is equivalent

to the seat protected estimate.

In the deterministic linear programming technique, the revenue from both the

mean demand and the seats protected methods are the same, except in the low

demand scenario where all seats are not initially allocated and through nesting,

excess seats are amade available to all O-D/fare class combinations through the

lowest fare class inventory. The two revenue estimates are the same because the

number of seats allotted to each O-D/fare class combination, based on the demand

constraints, is equal to or less than the mean demand. Therefore, in any O-D/fare

class inventory there are not excess seats which ultimately go empty. Seats are

allocated only if there is expected demand and every seat allocated to an O-D/fare

class inventory is booked by the respective O-D/fare class demand.

The revenue estimates for the deterministic LP method nested on shadow prices

are the same as the non-nested deterministic LP estimates, with one exception. This

is true for the same reasons as above. The deterministic LP solution is based on

mean demands and these mean demands are determining the revenue potentials.

The one exception is the low demand seats protected revenue estimate. In this

case, the mean demand does not fill the capacity on each flight leg. In the non-

nested deterministic LP method, excess seats are not allocated to any O-D/fare

class combinations, and therefore are left empty. In the nested deterministic LP

method, excess seats are added to the the lowest O-D/fare class inventory, making

them available to all O-D/fare class requests. Estimating revenues according to

the seat protection method, the excess seats in the lowest nested inventory can be
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booked by the respective O-D/fare class up to the limit of three standard deviations

over its mean demand. These additional bookings, over the mean demand bookings,

account for the additional revenue estimated by the seats protected method.

The deterministic linear programming techniques appear to give the highest

system revenue a majority of the time, yet this revenue value is an overestimate

of average potential revenue. This occurs because the determined seat allocation

solution for the deterministic LP methods is the optimal solution for the given mean

demands, and the revenue estimates are based on this mean demand. Actual demand

will be lower than the mean demand 50% of the time. A more accurate estimate

of system revenue for the deterministic LP seat inventory control methods would

be an overall average revenue of a number of estimates based on randomly selected

demand values taken from the respective O-D/fare class demand distributions.

We see that the probabilistic linear programming technique gives us a very high

system revenue for the method based on seats protected. This stems from the fact

that in a non-nested system the number of seats protected for higher fare classes

is greater than in a nested system, such as in the EMSR technique. Therefore,

more seats have been protected for the higher fare itineraries, giving a high system

revenue. A more realistic estimate, as well as an estimate for the overall long-

term average revenue for the network system, is the expected revenue given by the

probabilistic LP solution. This revenue estimate is much more consistent with the

other revenue estimates.
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Chapter 6

Conclusion

6.1 Research Findings

The optimal solution for the network seat inventory control problem is given

by the probabilistic linear programming technique. This technique incorporates

both the stochastic nature of demand as well as the interaction of flight legs which

occurs in a network system. The seat protection revenue, which is basically the

maximum possible revenue obtainable given the determined seat allotments, is by

far the highest for the probablistic linear programming seat allocation solution.

Although the mean demand revenue value for this method is the lowest among

the alternatives, it is more realistic to use the expected revenue, or overall average

revenue, of the system.

Even though the probabilistic linear program gives the "optimal" solution, it

is not a practical seat inventory control method. As mentioned before, the size

of the network formulation grows extremely large making frequent solution runs

impractical to solve on current computer systems. If solutions can be obtained,

they will be based on a distinct inventory structure, rather than the nested structure
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which is common throughout the airline industry today. Also, changes in demand

forecasts and incoming bookings would make frequent revisions necessary to ensure

optimal seat allocations. An initial solution itself would require excessive computer

facilities and long processing times; frequent revision would be impossible.

The three different EMSR techniques also take into account the of uncertainty

of demand, as does the probabilistic LP method, yet they are all leg based tech-

niques which do not take into consideration the system-wide network effects when

maximizing revenue and allocating seats. The revenue-driven virtual nesting EMSR

method shows the lowest revenue estimates out of all the leg-based techniques. It

seems to be the worst method overall in this network example for all three assumed

demand scenarios, although it is conceived by many to be a more sophisticated leg-

based method. When applying the virtual nesting method to a complete network,

it is too greedy to maximize system revenue. Yet, this method may be useful on

limited segments and sub-networks of a system which is made up of basically short-

haul origin-destination itineraries, such as in the situation of a feeder carrier's route

structure.

The leg based EMSR and prorated EMSR methods are both very similar in

terms of revenue potential, as well as seat allocations and nesting order. The opti-

mal seat allocation solution obtained from these two methods match so closely that

the "better" method, in terms of seat inventory control optimality, cannot be deter-

mined. Since the prorated EMSR technique is an extended version of the standard

EMSR model, the leg based EMSR method can be chosen over the prorated EMSR

method due to simplicity alone. Also, the fact that the standard method is based

on total ticket revenue means the O-D mix is better repesented.
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The drawback of the leg based EMSR model, and leg based models as a whole,

is the lack of consideration for the network and the interaction of flight legs within

the network when determining seat allocations and booking limits. Revenues are

maximized by individual flight leg, and not based on the entire network. Yet the leg

based EMSR model is the simplest to implement. Recommended seat allocations

are not only based on the probabilistic nature of demand, but they are also based

on a nested system. The output solution from this method gives individual flight leg

availabilities, making the leg based EMSR method easily implementable in current

airline reservations systems.

Like the probabilistic LP technique, the deterministic linear programming tech-

nique is a network based method which takes into account the interaction of pas-

senger flows on different flight legs. Network revenue is maximized based on de-

terministic demand values, taken to be the means of the origin-destination/fare

class demand distributions. As in the probabilistic LP approach, seat allocations

are determined on the basis of distinct, non-nested inventory buckets. Such solu-

tions are not directly compatible with the nested inventory class structure of airline

reservations systems.

A vari?.tion of the non-nested deterministic LP method is the deterministic LP

nested on shadow prices. It seems as if this method may have the most potential as

an efficient origin-destination seat inventory control method. To begin with, it is a

nested approach, and it is also a network based optimization method. Although the

problem formulation is large, it does not expand exponentially like the probabilistic

LP method. A vulnerability of this method is that it does not consider probabilistic

demand.
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In the formulation of the deterministic LP nested on shadow prices, O-D/fare

class seat allocations are limited by the mean demand. Actual demand will be in

excess of this mean value 50% of the time and the other 50% of the time demand will

be below the value used in the optimization method. Through nesting, the problem

of too little or too much demand for any specific O-D/fare class combination can be

alleviated. Some O-D/fare class itineraries will have more demand than planned for,

while others will have less. In a distinct inventory system, seats must be booked in

their respective O-D/fare class inventories or remain empty. However, in a nested

system, seats are allowed to be sold to inventories in which the seats were not

originially allocated, as long as the O-D/fare class inventory is nested above other

inventories. By using shadow prices, these O-D/fare class inventories are nested

according to the extra network revenue obtained from selling one additional seat

than initially allotted to the respective O-D/fare class combination.

The different revenue estimates presented in the previous chapter are not nec-

cessarily a good basis of comparison for the nested deterministic LP method since

both the optimization model and the revenue approximation methods are based on

mean expected demand. On the other hand, the nesting order of this determinis-

tic LP method shows how O-D/fare class inventories are not nested solely on the

basis of fare class or itinerary revenue, as the different leg based EMSR methods

are. Since the nesting order is not dictated by fare class and ticket revenue, there

are possibilities for multi-leg high revenue itineraries to be nested below a single-leg

lower revenue itinerary, which combined with another single-leg itinerary may give

a greater combined revenue than the single multi-leg itinerary.

The one major problem with this seat inventory control method is that seat

availabilities are 'based on origin-destination pairs. This is not compatible with
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existing leg based reservations systems. Current major reservations systems show

seat availabilites by flight leg rather than origin-destination. At the same time,

agents book and cancel reservations based on flight legs. It is possible to get around

this problem by displaying the O-D itinerary availabilities, as opposed to individual

flight leg availabilities, for each flight leg in the itinerary. The obstacle of agents

canceling individual flight leg reservations versus O-D itinerary reservations could

be overcome simply by re-programming reservations systems to prevent this. The

barrier to such an O-D/fare class inventory system is the problem of communicating

the multitude of seat availabilities to other airline's reservations systems. For an

airline such as Delta, there can be 35 to 40 O-D's per flight, 2500 flights per day

and 7 different coach fare classes. This makes 612,500 to 700,000 different seat

availability values for a single day's worth of flights. With bookings being accepted

as far as 11 months in advanced, other airlines do not have storage space for such

O-D availabilities in their reservations systems. The only way to communicate these

availabilities is through direct access between reservations systems.

6.2 Further Work

There is extensive work which can be done as a continuation of this evaluation.

As mentioned above, the virtual nesting EMSR method may be an effective method

for short-haul, sub-network types of systems, similar to route structures of feeder

carriers. An evaluation such as this one, based on a feeder-type route structure into

a major hub, needs to be performed to see if the virtual nesting idea is beneficial in

some applications for a seat inventory control system.

Of major interest is an expansion on the analysis of the deterministic linear

programming method which is nested on shadow prices. Using shadow prices in
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the nesting of a network based solution is a new concept and needs to be explored

in depth. Shadow prices are a measure of increased revenue potential based on

one additional unit allotted to a given decision variable. Once an additional seat

is allocated to a given O-D/fare class inventory, the original shadow price is not

necessarily valid any longer. Shadow prices are based on one extra unit of allotment,

not necessarily a second, third, or fourth. Also, a shadow price associated with a

given decision variable is based on all other problem data remaining unchanged.

Once an additional seat is allocated to one O-D/fare class combination, all shadow

prices are in essence outdated. A sensitivity analysis of what happens to shadow

prices as the actual number of seats allocated to different inventories change is

of particular interest. Although shadow prices are not fixed, as described here,

this does not make the concept of using shadow prices ineffective. As substantial

changes occur in bookings, affecting initial seat allotments, revisions should be made

to the booking limits (which is necessary for any effective seat inventory control

system). This would be done by rerunning the deterministic LP with new demand

expectations and available seats, thereby updating optimal seat allocations and

shadow prices.

The overall evaluation in this thesis could be expanded in an effort to analyze

the different seat inventory control alternatives in greater detail. The results and

conclusions found here could be in a large part dependent on the network model

and fare and demand data. Different types of hub networks, which could include

feeder type networks, regional networks, and larger country-wide connecting hubs,

could be evaluated to see if the basic results found with this Atlanta-based network

change. Also a variety of different demand assumptions, which vary proportionally

within O-D/fare class combinations, as well as in overall level of demand, could

122



be tested with booking limits, nesting order and revenue estimates compared with

those found here.

The major interest of different seat inventroy control systems is the increase in

potential revenue the system will provide for an airline. Exact levels of revenue

obtained from a system are difficult to determine analytically due to the uncer-

tainty of demand, especially when nested inventories are involved. Although lower

fare passengers often book first, it is not usually the case that bookings are made

completely in the order of inventory classes.

In this evaluation, revenue estimates were based on mean demand. This does

not necessarily give realistic results, especially in the deterministic LP seat inven-

tory control techniques in which the network formulation was also based on mean

demands. It would be much more interesting to include some sort of probabilis-

tic behavior of demand when determining revenue potential. Although it would

be difficult to realistically simulate the behavior of booking orders, the possibility

of extending the revenue analysis to include a simulation of randomly generated

O-D/fare class demands themselves would make revenue estimates more of a true

measure of seat inventory control optimality.

Overall average expected revenues could be found using a Monte Carlo type

of simulation. The first step in determining average revenue obtained from a seat

inventory control system would be to use a random number generator under a normal

probability distribution assumption and arbitrarily determine the demand for each

O-D/fare class combination. Once the demands for each O-D/fare class have been

randomly selected, the revenues for each of the six seat inventory control methods

can be determined for the given demand levels. Repeating this process a number of
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times, each time with new randomly determined demand levels, and averaging the

revenue estimates will give an overall average expected revenue. Such an expected

revenue value would be a true estimate for a seat inventory control system's revenue

potential.

Another important issue to consider in greater detail is the implementation re-

quirements of each alternative in airline reservations systems. This has been dis-

cussed briefly, but not to the extent of its importance. Several practical considera-

tions in a seat inventory control system involve the limitations imposed by existing

reservations systems, the importance of data availability, and the need for human

intervention. The implementation and compatibility of a seat inventory control sys-

tem can dictate the actual method which is best for any given airline. Also, ways

of incorporating such factors as overbooking, up-grade potential, and loss of denied

requests into a seat inventory control system must be looked at. These factors can

have a considerable impact on optimal inventory booking limits.

The potential benefits to the airline industry in an effective network-based origin-

destination seat inventory control could be quite great, especially in the highly

competitive environment of air transportation today. There is an extensive amount

of work which could be done ii this area of seat inventory control, simply as a

continuation of this analysis, or as a completely new extension to it. Regardless, the

emphasis in further research should be in accordance with the practical limitations

posed by reservations systems, data availabilities and airline competition.
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SEGMENT CLASS FARE BK LIMIT

ATL-BOS LAXBOS Y 5575 150
MIABOS Y $403 150
SAVBOS Y 5319 150
ATLBOS Y $310 150
LAXBOS M 5380 133
MIABOS M 5314 133
ATLBOS M $290 133
SAVBOS M $250 133
LAXBOS B $159 114
MIABOS B $124 114
SAVBOS B 5109 114
ATLBOS B S95 114
LAXBOS Q $139 92
MIABOS Q $89 92
ATLBOS Q $69 92
SAVBOS Q $69 92

BOS-ATL BOSLAX Y $575 150
BOSMIA Y $403 150
BOSSAV Y 5319 150
BOSATL Y $310 150
BOSLAX M S380 133
BOSMIA M 5314 133
BOSATL M $290 133
BOSSAV M $250 133
BOSLAX B $159 114
BOSMIA B $124 114
BOSSAV B $109 114
BOSATL B $95 114
BOSLAX Q $139 92
BOSMIA Q $89 92
BOSATL Q $69 92
BOSSAV Q $69 92

ATL-MIA LAXMIA Y $477 150
BOSMIA Y $403 150
ATLMIA Y $280 150
SAVMIA Y $226 150
BOSMIA M $314 121
LAXMIA M $239 121
ATLMIA M $209 121
SAVMIA M $168 121
LAXMIA B $139 100
BOSMIA B $124 100
ATLMIA B $94 100
SAVMIA B $84 100
LAXMIA Q $119 83
BOSMIA Q $89 83
ATLMIA Q $59 83
SAVMIA Q $59 83

Table A.1: Leg Based EMSR Booking Limits - Low Demand Level
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MIA-ATL MIALAX Y $477 150
MIABOS Y 5403 150
MIAATL Y S280 150
MIASAV Y $226 150
MIABOS M $314 121
MIALAX M $239 121
MIAATL M $209 121
MIASAV M $168 121
MIALAX B $139 100
MIABOS B $124 100
MIAATL B $94 100
MIASAV B $84 100
MIALAX Q $119 83
MIABOS Q $89 83
MIAATL Q 559 83
MIASAV Q $59 83

ATL-LAX BOSLAX Y $575 150
SAVLAX Y $502 150
MIALAX Y $477 150
ATLLAX Y $455 150
SAVLAX M $450 130
ATLLAX M $391 130
BOSLAX M 5380 130
MIALAX M $239 130'
BOSLAX B $159 113
SAVLAX B $154 113
ATLLAX B $142 113
MIALAX B 5139 113
BOSLAX Q $139 98
SAVLAX Q $134 98
ATLLAX Q $122 98
MIALAX Q $119 98

LAX-ATL LAXBOS Y $575 150
LAXSAV Y $502 150
LAXMIA Y $477 150
LAXATL Y $455 150
LAXSAV M $450 130
LAXATL M $391 130
LAXBOS M $380 130
LAXMIA M $239 130
LAXBOS B $159 113
LAXSAV B $154 113
LAXATL B $142 113
LAXMIA B $139 113
LAXBOS Q $139 98
LAXSAV Q $134 98
LAXATL Q $122 98
LAXMIA Q $119 98

Table A.1: Continued
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ATL-SAV LAXSAV Y $502 150
LAXSAV Y S450 150
BOSSAV Y 5319 150
BOSSAV Y 5250 150
MIASAV M S226 150
MIASAV M 5168 150
ATLSAV M $159 150
ATLSAV M $140 150
LAXSAV B 5154 110
BOSSAV B 5109 110
MIASAV B 584 110
ATLSAV B S64 110
LAXSAV Q $134 97
BOSSAV Q $69 97
MIASAV Q $59 97
ATLSAV Q $49 97

SAV-ATL SAVLAX Y $502 150
SAVLAX Y $450 150
SAVBOS Y $319 150
SAVBOS Y $250 150
SAVMIA M $226 150
SAVMIA M $168 150
SAVATL M $159 150
SAVATL M $140 150
SAVLAX B $154 110
SAVBOS B $109 110
SAVMIA B $84 110
SAVATL B $64 110
SAVLAX Q $134 97
SAVBOS Q $69 97
SAVMIA Q $59 97
SAVATL Q $49 97

Table A.1: Continued
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SEGMENT CLASS FARE BK LIMIT

ATL-BOS LAXBOS Y 5575 150
MIABOS Y 5403 150
SAVBOS Y 5319 150
ATLBOS Y 5310 150
LAXBOS M 5380 125
MIABOS M 5314 125
ATLBOS M $290 125
SAVBOS M $250 125
LAXBOS B $159 96
MIABOS B $124 96
SAVBOS B 5109 96
ATLBOS B 595 96
LAXBOS Q 5139 63
MIABOS Q $89 63
ATLBOS Q 569 63
SAVBOS Q $69 63

BOS-ATL BOSLAX Y $575 150
BOSMIA Y $403 150
BOSSAV Y $319 150
BOSATL Y $310 150
BOSLAX M $380 125
BOSMIA M $314 125
BOSATL M $290 125
BOSSAV M $250 125
BOSLAX B $159 96
BOSMIA B $124 96
BOSSAV B $109 96
BOSATL B 595 96
BOSLAX Q $139 63
BOSMIA Q 589 63
BOSATL Q 569 63
BOSSAV Q 569 63

ATL-MIA LAXMIA Y $477 150
BOSMIA Y 5403 150
ATLMIA Y 5280 150
SAVMIA Y 5226 150
BOSMIA M $314 106
LAXMIA M $239 106
ATLMIA M $209 106
SAVMIA M 168 106
LAXMIA B $139 78
BOSMIA B 5124 78
ATLMIA B $94 78
SAVMIA B $84 78
LAXMIA Q $119 50
BOSMIA Q $89 50
ATLMIA Q $59 50
SAVMIA Q $59 50

Table A.2:- Leg Based EMSR Booking Limits - Medium Demand Level
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MIA-ATL MIALAX Y S477 150
MIABOS Y 5403 150
MIAATL Y S280 150
MIASAV Y S226 150
MIABOS M $314 106
MIALAX M $239 106
MIAATL M S209 106
MIASAV M $168 106
MIALAX B $139 78
MIABOS B $124 78
MIAATL B $94 78
MIASAV B $84 78
MIALAX Q $119 50
MIABOS Q $89 50
MIAATL Q 559 50
MIASAV Q $59 50

ATL-LAX BOSLAX Y $575 150
SAVLAX Y $502 150
MIALAX Y $477 150
ATLLAX Y $455 150
SAVLAX M $450 122
ATLLAX M S391 122
BOSLAX M $380 122
MIALAX M $239 122
BOSLAX B $159 95
SAVLAX B $154 95
ATLLAX B $142 95
MIALAX B $139 95
BOSLAX Q $139 72
SAVLAX Q $134 72
ATLLAX Q $122 72
MIALAX Q $119 72

LAX-ATL LAXBOS Y S575 150
LAXSAV Y $502 150
LAXMIA Y 5477 150
LAXATL Y $455 150
LAXSAV M $450 122
LAXATL M $391 122
LAXBOS M $380 122
LAXMIA M $239 122
LAXBOS B $159 95
LAXSAV B $154 95
LAXATL B $142 95
LAXMIA B $139 95
LAXBOS Q $139 72
LAXSAV Q $134 72
LAXATL Q $122 72
LAXMIA Q $119 72

Table A.2: Continued
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ATL-SAV LAXSAV Y S502 150
LAXSAV Y S450 150
BOSSAV Y $319 150
BOSSAV Y $250 150
MIASAV M $226 150
MIASAV M $168 150
ATLSAV M $159 150
ATLSAV M $140 150
LAXSAV B $154 91
BOSSAV B 5109 91
MIASAV B $84 91
ATLSAV B $64 91
LAXSAV Q $134 71
BOSSAV Q $69 71
MIASAV Q 559 71
ATLSAV Q $49 71

SAV-ATL SAVLAX Y 5502 150
SAVLAX Y $450 150
SAVBOS Y $319 150
SAVBOS Y $250 150
SAVMIA M $226 150
SAVMIA M $168 150
SAVATL M $159 150
SAVATL M $140 150
SAVLAX B $154 91
SAVBOS B $109 91
SAVMIA B $84 91
SAVATL B $64 91
SAVLAX Q $134 71
SAVBOS Q $ 569 71
SAVMIA Q $59 71
SAVATL Q $49 71

Table A.2: Continued
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SEGMENT CLASS FARE BK LIMIT

ATL-BOS LAXBOS Y 5575 150
MIABOS Y $403 150
SAVBOS Y 5319 150
ATLBOS Y 5310 150
LAXBOS M S380 117
MIABOS M $314 117
ATLBOS M $290 117
SAVBOS M $250 117
LAXBOS B $159 79
MIABOS B $124 79
SAVBOS B 5109 79
ATLBOS B $95 79
LAXBOS Q $139 35
MIABOS Q $89 35
ATLBOS $69 35
SAVBOS Q $69 35

BOS-ATL BOSLAX Y $575 150
BOSMIA Y $403 150
BOSSAV Y $319 150
BOSATL Y $310 150
BOSLAX M $380 117
BOSMIA M $314 117
BOSATL M $290 117
BOSSAV M $250 117
BOSLAX B $159 79
BOSMIA B $124 79
BOSSAV B $109 79
BOSATL B $95 79
BOSLAX Q 5139 35
BOSMIA Q $89 35
BOSATL Q $69 35
BOSSAV Q $69 35

ATL-MIA LAXMIA Y 5477 150
BOSMIA Y 5403 150
ATLMIA Y $280 150
SAVMIA Y $226 150
BOSMIA M $314 92
LAXMIA M $239 92
ATLMIA M $209 92
SAVMIA M $168 92
LAXMIA B $139 55
BOSMIA B $124 55
ATLMIA B $94 55
SAVMIA B $84 55
LAXMIA Q $119 17
BOSMIA Q 589 17
ATLMIA Q $59 17
SAVMIA Q $59 17

Table A.:3: Leg Based EMSR Booking Limits - High Demand Level
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MIA-ATL MIALAX Y $477 150
MIABOS Y $403 150
MIAATL Y $280 150
MIASAV Y $226 150
MIABOS M $314 92
MIALAX M $239 92
MIAATL M $209 92
MIASAV M $168 92
MIALAX B $139 55
MIABOS B $124 55
MIAATL B 594 55
MIASAV B S84 55
MIALAX Q $119 17
MIABOS Q $89 17
MIAATL Q 559 17
MIASAV Q $59 17

ATL-LAX BOSLAX Y $575 150
SAVLAX Y $502 150
NIALAX Y $477 150
ATLLAX Y $455 150
SAVLAX M $450 114
ATLLAX M $391 114
BOSLAX M $380 114
MIALAX M $239 114
BOSLAX B $159 76
SAVLAX B $154 76
ATLLAX B $142 76
MIALAX B $139 76
BOSLAX Q $139 44
SAVLAX Q $134 44
ATLLAX Q $122 44
MIALAX Q $119 44

LAX-ATL LAXBOS Y $575 150
LAXSAV Y $502 150
LAXMIA Y $477 150
LAXATL Y $455 150
LAXSAV M S450 114
LAXATL M $391 114
LAXBOS M $380 114
LAXMIA M $239 114
LAXBOS B $159 76
LAXSAV B $154 76
LAXATL B $142 76
LAXMIA B $139 76
LAXBOS Q $139 44
LAXSAV Qe $134 44
LAXATL Q $122 44
LAXMIA Q $119 44

Table A.3: Continued
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ATL-SAV LAXSAV Y $502 150
LAXSAV Y 5450 150
BOSSAV Y $319 150
BOSSAV Y $250 150
MIASAV M $226 150
MIASAV M $168 150
ATLSAV M $159 150
ATLSAV M $140 150
LAXSAV B $154 72
BOSSAV B $109 72
MIASAV B $84 72
ATLSAV B $64 72
LAXSAV 0 $134 44
BOSSAV Q $69 44
MIASAV Q 559 44
ATLSAV Q $49 44

SAV-ATL SAVLAX Y $502 150
SAVLAX Y $450 150
SAVBOS Y $319 150
SAVBOS Y $250 150
SAVMIA M $226 150
SAVMIA M $168 150
SAVATL M $159 150
SAVATL M $140 150
SAVLAX B $154 72
SAVBOS B $109 72
SAVMIA B $84 72
SAVATL B S64 72
SAVLAX Q $134 44
SAVBOS Q $69 44
SAVMIA Q $59 44
SAVATL Q $49 44

Table A.3: Continued
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SEGMENT CLASS FARE BK LIMIT

ATL-BOS LAXBOS Y $575 150
MIABOS Y $403 150
SAVBOS Y S319 150
ATLBOS Y S310 150
LAXBOS M $380 134
MIABOS M $314 134
ATLBOS M $290 134
SAVBOS M $250 134
LAXBOS B $159 113
MIABOS B $124 113
SAVBOS B $109 113
ATLBOS B 595 113
LAXBOS Q $139 91
MIABOS Q $89 91
ATLBOS Q $69 91
SAVBOS Q $69 91

BOS-ATL BOSLAX Y $575 150
BOSMIA Y $403 150
BOSSAV Y $319 150
BOSATL Y $310 150
BOSLAX M $380 134
BOSMIA M $314 134
BOSATL M $290 134
BOSSAV M $250 134
BOSLAX B $159 113
BOSMIA B $124 113
BOSSAV B $109 113
BOSATL B $95 113
BOSLAX Q $139 91
BOSMIA Q $89 91
BOSATL Q 569 91
BOSSAV Q $69 91

ATL-MIA LAXMIA Y $477 150
BOSMIA Y $403 150
ATLMIA Y S280 150
SAVMIA Y $226 150
BOSMIA M $314 121
LAXMIA M $239 121
ATLMIA M $209 121
SAVMIA M $168 121
LAXMIA B $139 100
BOSMIA B $124 100
ATLMIA B $94 100
SAVMIA B $84 100
LAXMIA Q $119 83
BOSMIA Q $89 83
ATLMIA Q 559 83
SAVMIA Q $59 83

Table A.4: Prorated EMSR Booking Limits - Low Demand Level,
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MIA-ATL MIALAX Y $477 150
MIABOS Y 5403 150
MIAATL Y $280 150
MIASAV Y $226 150
MIABOS M S314 121
MIALAX M $239 121
MIAATL M S209 121
MIASAV M $168 121
MIALAX B $139 100
MIABOS B S124 100
MIAATL B S94 100
MIASAV B $84 100
MIALAX Q $119 83
MIABOS Q $89 83
MIAATL Q $59 83
MIASAV Q $59 83

ATL-LAX BOSLAX Y $575 150
SAVLAX Y $502 150
MIALAX Y $477 150
ATLLAX Y S455 150
SAVLAX M $450 130
ATLLAX M $391 130
BOSLAX M $380 130
MIALAX M $239 130
BOSLAX B $159 113
SAVLAX B $154 113
ATLLAX B S142 113
MIALAX B $139 113
BOSLAX Q $139 99
SAVLAX Q $134 99
ATLLAX Q S122 99
MIALAX Q $119 99

LAX-ATL LAXBOS Y $575 150
LAXSAV Y $502 150
LAXMIA Y S477 150
LAXATL Y S455 150
LAXSAV M $450 130
LAXATL M $391 130
LAXBOS M $380 130
LAXMIA M $239 130
LAXBOS B $159 113
LAXSAV B $154 113
LAXATL B $142 113
LAXMIA B $139 113
LAXBOS Q $139 99
LAXSAV Q $134 99
LAXATL Q $122 99
LAXMIA Q $119 99

Table A.4: Continued
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ATL-SAV LAXSAV Y $502 150
BOSSAV Y $319 150
MIASAV Y $226 150
ATLSAV Y 5159 150
LAXSAV M $450 125
BOSSAV M $250 125
MIASAV M $168 125
ATLSAV M 5140 125
LAXSAV B $154 109
BOSSAV B $109 109
MIASAV B $84 109
ATLSAV B $64 109
LAXSAV Q $134 94
BOSSAV Q $69 94
MIASAV Q 559 94
ATLSAV Q $49 94

SAV-ATL SAVLAX Y $502 150
SAVBOS Y $319 150
SAVMIA Y $226 150
SAVATL Y $159 150
SAVLAX M $450 125
SAVBOS M $250 125
SAVMIA M $168 125
SAVATL M $140 125
SAVLAX B 5154 109
SAVBOS B $109 109
SAVMIA B $84 109
SAVATL B $64 109
SAVLAX Q $134 94
SAVBOS Q $69 94
SAVMIA Q 559 94
SAVATL Q $49 94

Table A.4: Continued
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LEf- G SEGMENT CLASS FARE BK LIMIT

ATL-BOS LAXBOS Y 5575 150
MIABOS Y 5403 150
SAVBOS Y 5319 150
ATLBOS Y 5310 150
LAXBOS M S380 126
MIABOS M S314 126
ATLBOS M $290 126
SAVBOS M 5250 126
LAXBOS B 5159 96
MIABOS B 5124 96
SAVBOS B $109 96
ATLBOS B 595 96
LAXBOS Q $139 62
MIABOS Q $89 62
ATLBOS Q 569 62
SAVBOS Q 569 62

BOS-ATL BOSLAX Y $575 150
BOSMIA Y 5403 150
BOSSAV Y $319 150
BOSATL Y $310 150

BOSLAX M $380 126
BOSMIA M £314 126
BOSATL M $290 126
BOSSAV M 5250 126
BOSLAX B $159 96
BOSMIA B 5124 96
BOSSAV B $109 96
BOSATL B 595 96
BOSLAX Q $139 62
BOSMIA Q . $89 62
BOSATL Q $69 62
BOSSAV Q 569 62

ATL-MIA LAXMIA Y S477 150
BOSMIA Y S403 150
ATLMIA Y $280 150
SAVMIA Y 5226 150
BOSMIA M $314 106
LAXMIA M $239 106
ATLMIA M S209 106
SAVMIA M $168 106
LAXMIA B $139 77
BOSMIA B 5124 77
ATLMIA B $94 77
SAVMIA B S84 77
LAXMIA Q $119 49
BOSMIA Q $89 49
ATLMIA Q $59 49
SAVMIA Q $59 49

Table A.5: Prorated EMSR Booking Limits - Medium Demand Level
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MIA-ATL MIALAX Y 5477 150
MIABOS Y 5403 150
MIAATL Y 5280 150
MIASAV Y S226 150
MIABOS M 5314 106
MIALAX M 5239 106
MIAATL M 5209 106
MIASAV M S168 106
MIALAX B 5139 77
MIABOS B 5124 77
MIAATL B 594 77
MIASAV B 584 77
MIALAX Q 5119 49
MIABOS Q $89 49
MIAATL Q 559 49
MIASAV Q £59 49

ATL-LAX BOSLAX Y 5575 150
SAVLAX Y 5502 150
MIALAX Y 5477 150
ATLLAX Y 5455 150
SAVLAX M $450 122
ATLLAX M $391 122
BOSLAX M 5380 122
MIALAX M $239 122
BOSLAX B £159 95
SAVLAX B £154 95
ATLLAX B £142 95
MIALAX B £139 95
BOSLAX Q £139 73
SAVLAX Q 5134 73
ATLLAX Q $122 73
MIALAX Q £119 73

LAX-ATL LAXBOS Y £575 150
LAXSAV Y £502 150
LAXMIA Y £477 150
LAXATL Y 5455 150
LAXSAV M 5450 122
LAXATL M £391 122
LAXBOS M £380 122
LAXMIA M £239 122
LAXBOS B $159 95
LAXSAV B $154 95
LAXATL B £142 95
LAXMIA B $139 95
LAXBOS Q £139 73
LAXSAV Q $134 73
LAXATL Q £122 73
LAXMIA Q £119 73

Table A.5: Continued
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ATL-SAV LAXSAV Y $502 150
BOSSAV Y 5319 150
MIASAV Y 5226 150
ATLSAV Y 5159 250
LAXSAV M 5450 115
BOSSAV M $250 115
MIASAV M 5168 115
ATLSAV M $140 115
LAXSAV B 5154 89
BOSSAV B $109 89
MIASAV B $84 89
ATLSAV B $64 89
LAXSAV Q $134 66
BOSSAV Q 569 66
MIASAV Q S59 66
ATLSAV Q $49 66

SAV-ATL SAVLAX Y $502 150
SAVBOS Y 5319 150
SAVM1A Y $226 150
SAVATL Y $159 150
SAVLAX M 5450 125
SAVBOS M $250 115
SAVMIA M $168 115
SAVATL M $240 115
SAVLAX B $154 89
SAVBOS B $109 89
SAVMIA B $84 89
SAVATL B $64 89
SAVLAX Q 5134 66
SAVBOS Q $69 .66
SAVMIA Q $59 66
SAVATL Q $49 66

Table A.5: Continued
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SEGMENT CLASS FARE BK LIMIT

ATL-BOS LAXB0S Y 5575 150
MIABOS Y 5403 150
SAVBOS Y 5319 150
ATLBOS Y 5310 150
LAXBOS M 5380 118
MIABOS M 5314 118
ATLBOS M 5290 118
SAVBOS M 5250 118
LAXBOS B 5159 79
MIABOS B 5124 79
SAVBOS B 5109 79
ATLBOS B 595 79
LAXBOS Q 5139 33
MIABOS Q 589 33
ATLBOS Q 569 33
SAVBOS Q 569 33

BOS-ATL BOSLAX Y 5575 150
BOSMIA Y 5403 150
BOSSAV Y 5319 150
BOSATL Y 5310 150
BOSLAX M 5380 118
BOSMIA M 5314 118
BOSATL M 5290 118
BOSSAV M 5250 118
BOSLAX B 5159 79
BOSMIA B 5124 79
BOSSAV B 5109 79
BOSATL B 595 79
BOSLAX Q 5139 33
BOSMIA Q $89 33
BOSATL Q 569 33
BOSSAV Q 569 33

ATL-MIA LAXMIA Y 5477 150
BOSMIA Y $403 150
ATLMIA Y $280 150
SAVMIA Y 5226 150
BOSMIA M 5314 92
LAXMIA M. 5239 92
ATLMIA M 5209 92
SAVMIA M 5168 92
LAXMIA B 5139 54
BOSMIA B 5124 54
ATLMIA B 594 54
SAVMIA B 584 54
LAXMIA Q 5119 18
BOSMIA Q 589 i8
ATLMIA Q 559 18
SAVMIA Q 559 18

Table A.6: Prorated EMSR Booking Limits - High Demand Level
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MIA-ATL MIALAX Y $477 150
MIABOS Y 5403 150
MIAATL Y $280 150
MIASAV Y $226 150
MIABOS M 5314 92
MIALAX M 5239 92
MIAATL M 5209 92
MIASAV M $168 92
MIALAX B S139 54
MIABOS B 5124 54
MIAATL B 594 54
MIASAV B 584 54
MIALAX Q 5119 18
MIABOS Q 589 18
MIAATL Q 559 18
MIASAV Q $59 18

ATL-LAX BOSLAX Y 5575 150
SAVLAX Y 5502 150
MIALAX Y 5477 150
ATLLAX Y 5455 150
SAVLAX M $450 114
ATLLAX M $391 114
BOSLAX M $380 114
MIALAX M $239 114
BOSLAX B $159 76
SAVLAX B $154 76
ATLLAX B $142 76
MIALAX B $139 76
BOSLAX Q £139 46
SAVLAX Q $134 46
ATLLAX Q £122 46
MIALAX Q $119 46

LAX-ATL LAXBOS Y S575 150
LAXSAV Y $502 150
LAXMIA Y 5477 150
LAXATL Y $455 150
LAXSAV M $450 114
LAXATL M $391 114
LAXBOS M 5380 114
LAXMIA M $239 114
LAXBOS B 5159 76
LAXSAV B $154 76
LAXATL B $142 76
LAXMIA B $139 76
LAXBOS Q $139 46
LAXSAV Q $134 46
LAXATL Q $122 46
LAXMIA Q 5119 46

Table A.6: Continued
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ATL-SAV LAXSAV Y 5502 150
BOSSAV Y 5329 150
MIASAV Y 5226 150.
ATLSAV Y 5159 150
LAXSAV M 5450 105
BOSSAV M 5250 105
MIASAV M 5168 105
ATLSAV M 5140 105
LAXSAV B 5154 68
BOSSAV B 5109 68

MIASAV B 584 68
ATLSAV B 564 68
LAXSAV Q 5134 37
BOSSAV Q 569 37
MIASAV Q 559 37
ATLSAV Q 549 37

SAV-ATL SAVLAX Y 5502 150
SAVBOS Y 5319 150
SAVMIA Y 5226 150
SAVATL Y 5259 150
SAVLAX M 5450 105
SAVBOS M 5250 105
SAVMIA M 5168 105
SAVATL M 5140 105
SAVLAX B 5154 68
SAVBOS B 5109 68
SAVMIA B 584 68
SAVATL B 564 68
SAVLAX Q 5134 37
SAVBOS Q 569 37
SAVMIA Q 559 37
SAVATL Q 549 37

Table A.6: Continued
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SEGMENT CLASS FARE BK LIMIT

ATL-BOS LAXBOS Y 5575 150
MIABOS Y 5403 150
LAXBOS M S380 140
SAVBOS Y 5319 140
MIABOS M 5314 140
ATLBOS Y 5310 140
ATLBOS M 5290 140
SAVBOS M 5250 122
LAXBOS B 5159 114
LAXBOS Q 5139 114
MIABOS B $124 99
SAVBOS B £109 90
ATLBOS B 595 90
MIABOS Q 589 81
ATLBOS Q 569 66
SAVBOS Q 569 66

BOS-ATL BOSLAX Y 5575 150
BOSMIA Y £403 150
BOSLAX M £380 140
BOSSAV Y $319 140
BOSMIA M S314 140
BOSATL Y £310 240
BOSATL M £290 140
BOSSAV M £250 122
BOSLAX B 5159 114
BOSLAX Q 5139 114
BOSMIA B S'124 99
BOSSAV B $109 90
BOSATL B 595 90
BOSMIA Q £89 81
BOSATL Q 569 66
BOSSAV Q $69 66

ATL-MIA LAXMIA Y S477 150
BOSMIA Y £403 150
BOSMIA M 5314 137
ATLMIA Y 5280 137
LAXMIA M $239 124
SAVMIA Y £226 124
ATLMIA .M £209 124
SAVMIA .M £168 124
LAXMIA B £139 102
BOSMIA B £124 99
LAXMIA Q $119 99
ATLMIA B £94 81
BOSMIA Q £89 81
SAVMIA B 584 81
ATLMIA Q 559' 61
SAVMIA Q £59 61

Table A.7:,Virtual Nesting EMSR Booking Limits - Low Demand Level
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MIA-ATL MIALAX Y 5477 150
MIABOS Y 5403 150
MIABOS M 5314 137
MIAATL Y 5280 137
MIALAX M $239 124
MIASAV Y $226 124
MIAATL M $209 124
MIASAV M $168 124
MIALAX B $139 102
MIABOS B $124 99
MIALAX Q $119 99
MIAATL B $94 81
MIABOS Q $89 81
MIASAV B 584 81
MIAATL Q 559 61
MIASAV Q S59 61

ATL-LAX BOSLAX Y $575 150
SAVLAX Y 5502 150
MIALAX Y 5477 150
ATLLAX Y 5455 150
SAVLAX M 5450 150
ATLLAX M $391 128
BOSLAX M $380 128
MIALAX M $239 120
BOSLAX B $159 112
SAVLAX B $154 112
ATLLAX B $142 112
MIALAX B $139 112
BOSLAX Q $139 112
SAVLAX Q $134 112
ATLLAX Q 5122 73
MIALAX Q $119 73

LAX-ATL LAXBOS Y 5575 150
LAXSAV Y $502 150
LAXMIA Y $477 150
LAXATL Y S455 150
LAXSAV M $450 150
LAXATL M $391 128
LAXBOS M $380 128
LAXMIA M $239 120
LAXBOS B $159 112
LAXSAV B $154 112
LAXATL B $142 112
LAXMIA B $139 112
LAXBOS Q $139 112
LAXSAV Q $134 112
LAXATL Q $122 73
LAXMIA Q $119 73

Table A.7: Continued
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ATL-SAV LAXSAV Y $502 150
LAXSAV M 5450 150
BOSSAV Y 5319 145
BOSSAV M $250 140
MIASAV Y 5226 140
MIASAV M 5168 140
ATLSAV Y 5159 127
LAXSAV B 5154 127
ATLSAV M $140 127
LAXSAV Q 5134 127

BOSSAV B $109 92
MIASAV B $84 85
BOSSAV Q $69 76
ATLSAV B $64 76
MIASAV Q $59 76
ATLSAV Q 549 76

SAV-ATL SAVLAX Y $502 150
SAVLAX M $450 150
SAVBOS Y 5319 145
SAVBOS M 5250 140
SAVMIA Y $226 140
SAVMIA M $168 140
SAVATL Y $159 127
SAVLAX B $154 127
SAVATL M 5140 127
SAVLAX Q $134 127
SAVBOS B $109 92
SAVMIA B $84 85
SAVBOS Q $69 76
SAVATL B $64 76
SAVMIA Q 559 76
SAVATL Q $49 76

Table A.7: Continued
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SEGMENT CLASS FARE BK LIMIT

ATL-BOS LAXBOS Y 5575 150
MIABOS Y 5403 150
LAXBOS M 5380 136
SAVBOS Y 5319 136
MIABOS M 5314 136
ATLBOS Y 5310 136
ATLBOS M 5290 136
SAVBOS M 5250 109
LAXBOS B 5159 98
LAXBOS Q 5139 98
MIABOS B 5124 74
SAVBOS B 5109 61
ATLBOS B 595 61
MIABOS Q 589 47
ATLBOS Q 569 26
SAVBOS Q 569 26

BOS-ATL BOSLAX Y 5575 150
BOSMIA Y 5403 150
BOSLAX M 5380 136
BOSSAV Y 5319 136
BOSMIA M 5314 136
BOSATL Y 5310 136
BOSATL M 5290 136
BOSSAV M 5250 109
BOSLAX B 5159 98
BOSLAX Q 5139 98
BOSMIA B 5124 74
BOSSAV B 5109 61
BOSATL B 595 61
BOSMIA Q 589 47
BOSATL Q 569 26
BOSSAV Q 569 26

ATL-MIA LAXMIA Y 5477 150
BOSMIA Y 5403 150
BOSMIA M 5314 130
ATLMIA Y 5280 130
LAXMIA M 5239 111
SAVMIA Y 5226 111
ATLMIA M 5209 111
SAVMIA M 5268 111
LAXMIA B 5139 80
BOSMIA B 5124 74
LAXMIA Q 5119 74
ATLMIA B 594 49
BOSMIA Q 589 49
SAVMIA B 584 49
ATLMIA Q 559 - 17
SAVMIA Q 559 17

Table A.8: Virtual Nesting EMSR Booking Limits - Medium Demand Level
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MIA-ATL MIALAX Y 5477 150
MIABOS Y 5403 150
MIABOS M 5314 130
MIAATL Y 5280 130
MIALAX M 5239 111
MIASAV Y 5226 111
MIAATL M 5209 111
MIASAV M $168 111
MIALAX B 5139 80
MIABOS B 5124 74
MIALAX Q $119 74
MIAATL B 594 49
MIABOS Q 589 49
MIASAV B 584 49
MIAATL Q 559 17
MIASAV Q $59 17

ATL-LAX BOSLAX Y 5575 150
SAVLAX Y $502 150
MIALAX Y 5477 150
ATLLAX Y 5455 150
SAVLAX M 5450 150
ATLLAX M 5391 119
BOSLAX M $380 119
MIALAX M 5239 107
BOSLAX B $159 93
SAVLAX B $154 93
ATLLAX B $142 93
MIALAX B $139 93
BOSLAX Q $139 93
SAVLAX Q 5134 93
ATLLAX Q $122 34
MIALAX Q $119 34

LAX-ATL LAXBOS Y 5575 150
LAXSAV Y $502 150
LAXMIA Y 5477 150
LAXATL Y 5455 150
LAXSAV M $450 150
LAXATL M $391 119
LAXBOS M $380 119
LAXMIA M $239 107
LAXBOS B $159 93
LAXSAV B $154 93
LAXATL B 5142 93
LAXMIA B $139 93
LAXBOS Q $139 93
LAXSAV Q $134 93
LAXATL Q $122 34
LAXMIA Q $119 34

Table A.8: Continued
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ATL-SAV LAXSAV Y 5502 150
LAXSAV M 5450 150
BOSSAV Y 5319 142
BOSSAV M 5250 137
MIASAV Y 5226 137
M1ASAV M $168 137
ATLSAV Y 5159 117
LAXSAV B $254 117
ATLSAV M S140 117
LAXSAV Q $134 117
BOSSAV B $109 66
MIASAV B $84 53
BOSSAV Q $69 42
ATLSAV B $64 42
MIASAV Q 559 42
ATLSAV Q $49 42

SAV-ATL SAVLAX Y 5502 150
SAVLAX M $450 250
SAVBOS Y 5319 142
SAVBOS M $250 137
SAVM1A Y $226 137
SAVMIA M $168 137
SAVATL Y $159 117
SAVLAX B $154 117
SAVATL M $140 117
SAVLAX Q $134 117
SAVBOS B $109 66
SAVMIA B $84 53
SAVBOS Q $69 42
SAVATL B $64 42
SAVMIA Q $59 42
SAVATL Q $49 42

Table A.8: Continued
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SEGMENT CLASS FARE BK LIMIT

ATL-BOS LAXBOS Y 5575 150
MIABOS Y 5403 250
LAXBOS M $380 131
SAVBOS Y 5319 131
MIABOS M $314 131
ATLBOS Y S310 131
ATLBOS M 5290 131
SAVBOS M 5250 96
LAXBOS B $159 81
LAXBOS Q $139 81
MIABOS B 5124 50
SAVBOS B S109 34
ATLBOS B 595 34
MIABOS Q 589 14
ATLBOS Q 569 0
SAVBOS Q $69 0

BOS-ATL BOSLAX Y 5575 150
BOSMIA Y 5403 150
BOSLAX M $380 131
BOSSAV Y $319 131
BOSMIA M $314 131
BOSATL Y $310 131
BOSATL M $290 131
BOSSAV M $250 96
BOSLAX B $159 81
BOSLAX Q $139 81
BOSMIA B $124 50
BOSSAV B 5109 34
BOSATL B $95 34
BOSMIA Q 589 34
BOSATL Q 569 0
BOSSAV Q $69 0

ATL-MIA LAXMIA Y 5477 150
BOSMIA Y $403 150
BOSMIA M S314 123
ATLMIA Y 5280 123
LAXMIA M $239 99
SAVMIA Y $226 99
ATLMIA M $209 99
SAVMIA M $168 99
LAXMIA B $139 58
BOSMIA B $124 51
LAXMIA Q $119 51
ATLMIA B $94 17
BOSMIA Q $89 27
SAVMIA B $84 17
ATLMIA Q $59 0
SAVMIA Q 559 0

Table A.9: Virtual Nesting EMSR Booking Limits - High Demand Level
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MIA-ATL MIALAX Y 5477 150
MIABOS Y 5403 150
MIABOS M £314 123
MIAATL Y 5280 123
MIALAX M 5239 99
MIASAV Y 5226 99
MIAATL M S209 99
MIASAV M 5168 99
MIALAX B 5139 58
MIABOS B $124 51
MIALAX Q 5119 51
MIAATL B 594 17
MIABOS Q 589 17
MIASAV B 584 17
MIAATL Q 559 0
MIASAV Q 559 0

ATL-LAX BOSLAX Y 5575 250
SAVLAX Y 5502 150
MIALAX Y $477 150
ATLLAX Y $455 250
SAVLAX M 5450 150

ATLLAX M S391 109
BOSLAX M $380 109
MIALAX M $239 93
BOSLAX B $159 76
SAVLAX B $154 76
ATLLAX B $142 76
MIALAX B $139 76
BOSLAX Q $139 76
SAVLAX Q $134 76
ATLLAX Q $122 0
MIALAX Q $119 0

LAX-ATL LAXBOS Y 5575 150
LAXSAV Y S502 150
LAXMIA Y $477 150
LAXATL Y 5455 150
LAXSAV M $450 150
LAXATL M $391 109
.AXBOS M £380 209
LAXM1A M $239 93
LAXBOS B $159 76
LAXSAV B $154 76
LAXATL B $142 76
LAXMIA B $139 76
LAXBOS Q 5139 76
LAXSAV Q $134 76
LAXATL Q $122 0
LAXMIA Q $119 0

Table A.9: Continued
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ATL-SAV LAXSAV Y 5502 150
LAXSAV M 5450 250
BOSSAV Y S319 239
BOSSAV M 5250 133
MIASAV Y 5226 133
MIASAV M 5168 133
ATLSAV Y 5159 107
LAXSAV B $154 107
ATLSAV M $140 107
LAXSAV Q 5134 107
BOSSAV B 5109 38
MIASAV B 584 23
BOSSAV Q $69 5
ATLSAV B $64 5
MIASAV Q S59 5
ATLSAV Q 549 5

SAV-ATL SAVLAX Y $502 150
SAVLAX M $450 150
SAVBOS Y 5319 139
SAVBOS M 5250 133
SAVMIA Y 5226 133
SAVMIA M $168 133
SAVATL Y $159 107
SAVLAX B $154 107
SAVATL M $40 107
SAVLAX Q $134 107
SAVBOS B £109 38
SAVMIA B 584 23
SAVBOS Q 569 5
SAVATL B $64 5
SAVMIA 'Q. $59 5
SAVATL Q $49 5

Table A.9: Continued
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Y M B Q

ATLBOS/BOSATL 6 5 5 9

ATLSAV/SAVATL 13 3 3 7

ATLMIA/MIAATL 10 5 3 7

ATLLAX/LAXATL 4 2 5 13

BOSSAV/SAVBOS 3 3 5 13

BOSMIA/MIABOS 5 3 7 10

BOSLAX/LAXBOS 5 3 5 12

MIASAV/SAVMIA 7 2 3 13

MIALAX/LAXMIA 9 5 3 7

LAXSAV/SAVLAX 3 3 3 16

Table A.AO: Deterministic LP Seat AllocatioLs - Low Demand Level
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Y M B Q

ATLBOS/BOSATL 9 7 8 13

ATLSAV/SAVATL 19 5 4 10

ATLMIA/MIAATL 25 7 5 11

ATLLAX/LAXATL 6 3 8 20

BOSSAV/SAVBOS 4 5 8 20

BOSMIA/MIABOS 8 4 11 25

BOSLAX/LAXBOS 7 5 8 18

MIASAV/SAVMIA 10 3 5 29

MIALAX/LAXMIA 13 8 5 11

LAXSAV/SAVLAX 4 5 5 24

Table A.11: Deterministic LP Seat Allocations - Medium Demand Level
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Y M B Q

ATLBOS
BOSATL

ATLSAV
SAVATL

ATLMIA
MIAATL

ATLLAX
LAXATL

BOSSAV
SAVBOS

BOSMIA
MIABOS

BOSLAX
LAXBOS

MI ASAV
SAVMIA

MIALAX
LAXMIA

LAXSAV
SAVLAX

Table A.12: Deterministic LP Seat Allocations - High Demand Level
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Y M B Q

ATLBOS/BOSATL 11 8 8 12

ATLSAV/SAVATL 17 5 5 9

ATLMIA/M1AATL 25 10 5 10

ATLLAX/LAXATL 6 6 8 17

BOSSAV/SAVBOS 5 7 8 17

BOSMIA/MIABOS 9 5 10 23

BOSLAX/LAXBOS 7 7 8 15

MIASAV/SAVMIA 22 4 5 16

MIALAX/LAXMIA 13 8 5 10

LAXSAV/SAVLAX 7 7 5 21

Table A.13: Probabilistic LP Seat Allocations - Low Demand Level
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Y M B Q

ATLBOS/BOSATL 12 10 9 12

ATLSAV/SAVATL 23 8 5 11

ATLMIA/MIAATL 19 10 6 12

ATLLAX/LAXATL 8 5 8 19

BOSSAV/SAVBOS 6 7 8 12

BOSMIA/MIABOS 11 6 10 11

BOSLAX/LAXBOS 9 7 6 14

MIASAV/SAVMIA 13 4 5 9

MIALAX/LAXMIA 16 9 4 6

LAXSAV/SAVLAX 6 8 5 20

Table A.14: Probabilistic LP Seat Allocations - Medium Demand Level
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Y M B Q

ATLBOS/BOSATL 16 13 12 16

ATLSAV/SAVATL 30 9 6 13

ATLMIA/MIAATL 24 13 7 22

ATLLAX/LAXATL 10 7 10 22

BOSSAV/SAVBOS 8 9 9 0

BOSMIA/MIABOS 14 7 12 5

BOSLAX/LAXBOS 12 9 8 0

MIASAV/SAVMIA 16 5 4 0

MIALAX/LAXMIA 20 11 0 0

LAXSAV/SAVLAX 8 9 6 18

Table A.15: Probabilistic LP Seat Allocations - High Demand Level
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SEGMENT CLASS FARE BK LIMIT

ATL-BOS LAXBOS Y S575 150
MIABOS Y 5403 145
LAXBOS M S380 140
SAVBOS Y S319 137
MIABOS M S314 134
ATLBOS Y S310 131
ATLBOS M $290 125
SAVBOS M S250 120
LAXBOS B $159 117
LAXBOS Q $139 112
MIABOS B $124 100
SAVBOS B $109 93
ATLBOS B 595 88
MIABOS Q 589 83
ATLBOS Q 569 73
SAVBOS Q $69 73

BOS-ATL BOSLAX Y $575 150
BOSMIA Y $403 145
BOSLAX M S380 140
BOSSAV Y £319 137
BOSMIA M $314 134
BOSATL Y S310 131
BOSATL M S290 125
BOSSAV M £250 120
BOSLAX B £159 117
BOSLAX Q $139 112
BOSMIA B $124 100
BOSSAV B £109 93
BOSATL B 595 88
BOSMIA Q $89 83
BOSATL Q $69 73
BOSSAV Q $69 73

ATL-MIA LAXMIA Y $477 150
BOSMIA Y $403 241
BOSMIA M 5314 136
ATLMIA Y £280 133
LAXMIA M 5239 123
SAVMIA Y S226 118
ATLMIA M 209 111
SAVMIA t £ 5168 106
LAXMIA B S139 104
BOSMIA B $124 101
LAXMIA Q £119 94
ATLMIA B $94 87
BOSMIA Q 589 84
SAVMIA B £84 74
ATLMIA Q 559 71
SAVMIA Q 559 71

Table A.16: Nested Deterministic LP Booking Limits - Low Demand Level
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MIA-ATL MIALAX Y 5477 150
MIABOS Y 5403 141
MIABOS M 5314 136
MIAATL Y $280 133
MIALAX M 5239 123
MIASAV Y 5226 118
MIAATL M 5209 111
MIASAV M 5168 106
MIALAX B 5139 104
MIABOS B $124 101
MIALAX Q 5119 94
MIAATL B 594 87
MIABOS Q 589 84
MIASAV B $84 74
MIAATL Q $59 71
MIASAV Q 559 71

ATL-LAX BOSLAX Y 5575 150
SAVLAX Y 5502 145
M-IALAX Y 5477 142
ATLLAX Y 5455 133
SAVLAX M 5450 129
ATLLAX M S391 126
BOSLAX M $380 124
MIALAX M 5239 121
BOSLAX B $159 116
ATLLAX B 5142 108
MIALAX B S139 103
BOSLAX Q 5139 103
SAVLAX B $154 111
SAVLAX Q $134 88
ATLLAX Q 5122 72
MIALAX Q $119 59

LAX-ATL LAXBOS Y S575 150
LAXSAV Y 5502 145
LAXMIA Y 5477 142
LAXATL Y 5455 133
LAXSAV M 5450 129
LAXATL M $391 126
LAXBOS M $380 124
LAXMIA M S239 121
LAXBOS B $159 116
LAXSAV B 5154 111
LAXATL B $142 108
LAXMIA B $139 103
LAXBOS Q 5139 103
LAXSAV Q $134 88
LAXATL Q $122 72
LAXMIA Q $119 59

Table A.16: Continued
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ATL-SAV LAXSAV Y 5502 150
LAXSAV M S450 247
BOSSAV Y S319 244
MIASAV Y 5226 141
BOSSAV M £250 134
MIASAV M 5268 131
ATLSAV Y 5159 129
LAXSAV B £154 116
ATLSAV M £140 113
LAXSAV Q £134 110
BOSSAV B £109 94
MIASAV B £84 89
BOSSAV Q £69 86
ATLSAV B £64 73
MIASAV Q 559 70
ATLSAV Q £49 57

SAV-ATL SAVLAX Y 5502 150
SAVLAX M £450 147
SAVBOS Y £319 244
SAVBOS M £250 141
SAVMIA Y £226 138
SAVMIA M £168 131
SAVATL Y £159 129
SAVLAX B 5154 116
SAVATL M £140 113
SAVLAX Q £134 110
SAVBOS B £109 94
SAVMIA B £84 89
SAVBOS Q £69 86
SAVATL B £64 73
SAVMIA Q 559 70
SAVATL Q $49 57

Table A.16: Continued

163



SEGMENT CLASS FARE BK LIMIT

ATL-BOS LAXBOS Y $575 150
MIABOS Y $403 143
LAXBOS M 5380 135
SAVBOS Y 5319 130
ATLBOS Y 5310 126
MIABOS M £314 117
ATLBOS M S290 113
SAVBOS M 5250 106
MIABOS B 5124 101
SAVBOS B 5109 90
LAXBOS B 5159 82
ATLBOS B £95 74
LAXBOS Q 5139 66
MIABOS Q 589 48
SAVBMS Q $69
ATLBOS Q 569 13

BOS-ATL BOSLAX Y 5575 150
BOSMIA Y 5403 143
BOSATL Y 5310 135
BOSATL M 5290 126
BOSLAX M £380 119
BOSSAV Y £319 114
BOSMIA M £314 110
BOSSAV M £250 106
BOSATL B t95 101
BOSATL Q $69 93
BOSMIA B S124 80
BOSSAV B $109 69
BOSLAX B $159 61
BOSLAX Q 5139 53
BOSMIA Q £89 53
BOSSAV Q $69 20

ATL-MIA LAXMIA Y 5477 150
BOSMIA Y 5403 137
BOSMIA M $314 129
ATLMIA Y £280 125
SAVMIA Y £226 110
ATLMIA M £209 100
LAXMIA M 5239 93
SAVMIA M £168 85
BOSMIA .B 5124 82
ATLMIA B £94 71
SAVMIA B SB4 66
LAXMIA B $139 61
BOSMIA Q £89 56
LAXMIA Q $119 41
ATLMIA Q 559 41
SAVMIA Q S59 41

Table A.17: Nested Deterministic LP Booking Limits - Medium Demand Level
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MIA-ATL MIALAX Y 5477 150
MIABOS Y 5403 137
MIAATL Y $280 129
MIABOS M $314 114
MIAATL M 5209 110
MIASAV Y $226 103
MIALAX M $239 93
MIASAV M $168 85
MIAATL B 594 82
MIAATL Q 559 77
MIABOS B 5124 66
MIASAV B $84 55
MIALAX B $139 50
MIABOS Q 589 45
MIALAX Q $119 30
MIASAV Q $59 30

ATL-LAX BOSLAX Y $575 150
SAVLAX Y $502 143
MIALAX Y $477 139
ATLLAX Y $455 126
SAVLAX M $450 120
ATLLAX M $391 115
BOSLAX M $380 112
MIALAX M $239 107
SAVLAX B $154 99
ATLLAX B $142 94
ATLLAX Q $122 49
BOSLAX B $159 86
SAVLAX Q $134 78
MIALAX B $139 54
BOSLAX Q $139 29
MIALAX Q $119 11

LAX-ATL LAXBOS Y 5575 150
LAXATL Y $455 143
LAXSAV Y $502 137
LAXMIA Y 5477 133
LAXSAV M $450 120
LAXATL M $391 115
LAXBOS M $380 112
LAXMIA M $239 107
LAXATL B $142 99
LAXATL .0 $122 91
LAXSAV B $154 71
LAXBOS B $159 66
LAXSAV Q $134 58
LAXMIA B $139 34
LAXBOS Q $139 29
LAXMIA Q $119 11

Table A.17: Continued
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ATL-SAV LAXSAV Y 5502 150
LAXSAV M S450 246
BOSSAV Y 5319 141
BOSSAV M 5250 137
MIASAV Y S226 132
ATLSAV Y $159 122
MIASAV M $268 103
ATLSAV M $140 100
BOSSAV B 5109 90
LAXSAV B $154 95
LAXSAV Q S134 82
MIASAV B $84 82
ATLSAV B 564 53
BOSSAV Q $69 49
MIASAV Q 559 49
ATLSAV Q S49 49

SAV-ATL SAVLAX Y 5502 150
SAVLAX M $450 146
SAVBOS Y £319 141
SAVBOS M 5250 137
SAVMIA Y $226 132
SAVATL Y $159 122
SAVATL M £140 103
SAVMIA M $168 98
SAVATL B $64 95
SAVATL Q $49 91
SAVLAX B S154 81
SAVBOS B $109 76
SAVLAX Q $134 68
SAVMIA B S84 68
SAVBOS Q $69 39
SAVMIA Q $59 39

Table A.17: Continued
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SEGMENT CLASS FARE BK LIMIT

ATL-BOS LAXBOS Y 5575 150
MIABOS Y $403 141
ATLBOS Y 5310 130
ATLBOS M 5290 118
SAVBOS Y 5319 109
MIABOS M 5314 104
LAXBOS M 5380 99
SAVBOS M $250 92
ATLBOS B 595 85
SAVBOS B $109 74
MIABOS B $124 63
ATLB0S Q $69 49
LAXBOS B $159 32
MIABOS Q 589 32
SAVBOS Q $69 32
LAXBOS Q $139 0

BOS-ATL BOSLAX Y $575 150
BOSMIA Y 5403 141
BOSATL Y $310 130
BOSSAV Y $319 118
BOSATL M $290 113
BOSMIA M $314 104
BOSLAX M $380 99
BOSSAV M $250 92
BOSSAV B $109 85
BOSATL B S95 74
BOSMIA B $124 63
BOSATL Q $69 49
BOSLAX B $159 32
BOSMIA Q $89 32
BOSSAV Q $69 32
BOSLAX Q $139 0

ATL-MIA LAXMIA Y 5477 150
BOSMIA Y $403 133
ATLM1A Y 5280 122
BOSMIA M $314 102
ATLMIA M $209 97
SAVMIA Y $226 88
SAVMIA M $168 75
LAXMIA M $239 71
ATLMIA B 594 60
BOSMIA B $124 53
ATLMIA Q $59 39
SAVMIA B $84 25
BOSMIA Q 589 18
SAVMIA Q $59 0
LAXMIA B $139 0
LAXMIA Q $119 0

Table A.18: Nested Deterministic LP Booking Limits - High Demand Level
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MIA-ATL MIALAX Y 5477 150
MIABOS Y $403 133
MIAATL Y 5280 122
MIABOS M £314 102
MIASAV Y 5226 97
MIAATL M 5209 84
MIASAV M £168 75
MIALAX M 5239 71
MIAATL B 594 60
MIABOS B 5124 53
MIASAV B 584 39
MIAATL Q £59 32
MIABOS Q 589 18
MIASAV Q 559 0
MIALAX B £139 0
MIALAX Q $119 0

ATL-LAX BOSLAX Y £575 150
SAVLAX Y £502 141
ATLLAX Y 5455 136
MIALAX Y 5477 128
SAVLAX M £450 111

ATLLAX M £391 104
BOSLAX M $380 100
MIALAX M £239 93
ATLLAX B £142 82
SAVLAX B £154 71
ATLLAX Q £122 71
BOSLAX B 5159 37
SAVLAX Q £134 37
MIALAX B £139 0
BOSLAX Q 5139 0
M1ALAX Q £119 0

LAX-ATL LAXBOS Y £575 150
LAXSAV Y £502 141
LAXATL Y £455 136
LAXMIA Y 5477 128
LAXSAV M 5450 111
LAXATL M £391 104
LAXBOS M £380 100
LAXMIA M 5239 93
LAXSAV B £154 82
LAXATL ~B 142 82
LAXBOS B £159 64
LAXSAV Q 5134 64
LAXATL Q $122 64
LAXMIA B $139 0
LAXBOS Q £139 0
LAXMIA Q $119 0

Table A.18: Continued
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ATL-SAV LAXSAV Y 5502 150
LAXSAV M 5450 145
BOSSAV Y 5319 138
BOSSAV M S250 133
MIASAV Y 5226 126
ATLSAV Y 5159 113
ATLSAV M 5140 88
MIASAV M 5168 81
ATLSAV B 564 77
BOSSAV B 5109 72
ATLSAV Q 549 61
LAXSAV B £154 48
MIASAV B £84 48
LAXSAV Q 5134 34
BOSSAV Q 569 34
MIASAV Q 559 0

SAV-ATL SAVLAX Y 5502 150
SAVLAX M £450 145
SAVBOS Y 5319 138
SAVBOS M 5250 133
SAVMIA Y 5226 126
SAVATL Y 5159 113
SAVATL M 5140 88
SAVMIA M £168 81
SAVBOS B 5109 77
SAVATL B 564 66
SAVMIA B 584 61
SAVLAX B 515.- 61
SAVATL Q 549 47
SAVLAX Q 5134 34
SAVBOS Q £69 34
SAVMIA Q 559 0

Table A.18: Continued
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