
FTL REPORT R82-1

COMPUTER PROGRAM DEVELOPMENT SPECIFICATION

FOR THE

AIR TRAFFIC CONTROL SUBSYSTEM

OF THE

MAN-VEHICLE SYSTEMS RESEARCH FACILITY

by the

Flight Transportation Laboratory

Massachusetts Institute of Technology

Cambridge, Massachusetts 02139

January 1982

CPDS for the ATC Subsystem Software

T R A N S P O R T A T ION L O

Page 202/01/82

L A B 0 R A T 0 R YF L I G H T

CPDS for the ATC Subsystem Software

T A B L E O F C O N T E N T S

1.0 SCOPE 8

'1.1 Identification 8
1.2 Functional Summary 8

2.0 APPLICABLE DOCUMENTS 10

3.0 REQUIREMENTS 11

3.1 Computer Program Definition 13

3.1.1 System Capacities 14
3.1.2 Interface Requirements 15

3.2 Detailed Functional Requirements 16

3.2.1 Simulation Control (SIMCON) 17

3.2.1.1 Initialize Execution 17
3.2.1.1.1 Inputs 17
3.2.1.1.2 Processing 18
3.2.1.1.3 Outputs 19

3.2.1.2 Command Interpreter 19
3.2.1.2.1 Inputs 19
3.2.1.2.2 Processing 19
3.2.1.2.3 Outputs 20

3.2.1.3 Execution Timer 20
3.2.1.3.1 Inputs 20
3.2.1.3.2 Processing 21
3.2.1.3.3 Outputs 22

3.2.1.4 Script Control 22
3.2.1.4.1 Inputs 22
3.2.1.4.2 Processing 22
3.2.1.4.3 Outputs 24

3.2.1.5 Audio Control 24
3.2.1.5.1 Inputs 24
3.2.1.5.2 Processing 24
3.2.1.5.3 Outputs 26

T R A N S P O R T A T ION L O

Page 302/01/82

L A B O R A T 0 R YF L I G H T

CPDS for the ATC Subsystem Software

T A B L E O F C O N T E N T S (Continue)

3.2.1.6 Mailbox Driver 26
3.2.1.6.1 Inputs 26
3.2.1.6.2 Processing 26
3.2.1.6.3 Outputs 27

3.2.1.7 Data Recording 27
3.2.1.7.1 Inputs 27
3.2.1.7.2 Processing 28
3.2.1.7.3 Outputs 28

3.2.1.8 Terminate Execution 28
3.2.1.8.1 Inputs 28
3.2.1.8.2 Processing 29
3.2.1.8.3 Outputs 29

3.2.2 Position Generator (POSGEN) 30

3.2.2.1 Initialize Execution 30
3.2.2.1.1 Inputs 30
3.2.2.1.2 Processing 30
3.2.2.1.3 Outputs 30

3.2.2.2 Mailbox Driver 31
3.2.2.2.1 Inputs 31
3.2.2.2.2 Processing 31
3.2.2.2.3 Outputs 32

3.2.2.3 Cab I/O Interface 32
3.2.2.3.1 Inputs 32
3.2.2.3.2 Processing 32
3.2.2.3.3 Outputs 33

3.2.2.4 Aircraft Generator 33
3.2.2.4.1 Inputs 33
3.2.2.4.2 Processing 33
3.2.2.4.3 Outputs 35

3.2.2.5 Command Queue Management 35
3.2.2.5.1 Inputs 35
3.2.2.5.2 Processing 35
3.2.2.5.3 Outputs 35

3.2.2.6 Aircraft Dynamics Update 36
3.2.2.6.1 Inputs 36
3.2.2.6.2 Processing 36
3.2.2.6.3 Outputs 37

TRANSPORTATION ' LABORATORY

Page 402/0-1/82

F L I G H T

CPDS for the ATC Subsystem Software

F L I G H

T A B L E O F C O N T E N T S (Continue)

3.2.2.7 Navigation Equipment Update 37
3.2.2.7.1 Inputs 37
3.2.2.7.2 Processing 37
3.2.2.7.3 Outputs 37

3.2.2.8 Surveillance Equipment Update 38
3.2.2.8.1 Inputs 38
3.2..2.8.2 Processing 38
3.2.2.8.3 Outputs 38

3.2.2.9 Aircraft Status Update 38
3.2.2.9.1 Inputs 38
3.2.2.9.2 Processing 39
3.2.2.9.3 Outputs 40

3.2.2.10 Weather Update 40
3.2.2.10.1 Inputs 40
3.2.2.10.2 Processing 40
3.2.2.10.3 Outputs 40

3.2.2.11 Conformance Monitor . 41
3.2.2.11.1 Inputs 41
3.2.2.11.2 Processing 41
3.2.2.11.3 Outputs 42

3.2.3 ATC Sector (SECTOR) 43

3.2.3.1 Initialize Execution 43
3.2.3.1.1 Inputs 43
3.2.3.1.2 Processing 43
3.2.3.1.3 Outputs 44

3.2.3.2 Command Processor 44
3.2.3.2.1 Inputs 44
3.2.3.2.2 Processing 44
3.2.3.2.3 Outputs 45

3.2.3.3 Mailbox Driver 46
3.2.3.3.1 Inputs 46
3.2.3.3.2 Processing 46
3.2.3.3.3 Outputs 47

3.2.3.4 Sector Initialization 47
3.2.3.4.1 Inputs 47
3.2.3.4.2 Processing 47
3.2.3.4.3 Outputs 48

T T R A N S P O R T A T IO N L A B O R A T O R Y

Page 502/01/82

CPDS for the ATC Subsystem Software

T A B L E O F C O N T E N T S (Continue)

3.2.3.5 Display Driver 48
3.2.3.5.1 Inputs 48
3.2.3.5.2 Processing 49
3.2.3.5.3 Outputs 49

3.2.4 Pseudo-pilot (PPILOT) , 52

3.2.4.1 Initialize Execution 52
3.2.4.1.1 Inputs 52
3.2.4.1.2 Processing 52
3.2.4.1.3 Outputs 53

3.2.4.2 Command Processor 53
3.2.4.2.1 Inputs 53
3.2.4.2.2 Processing 53
3.2.4.2.3 Outputs 54

3.2.4.3 Mailbox Driver 54
3.2.4.3.1 Inputs 54
3.2.4.3.2 Processing 55
3.2.4.3.3 Outputs 56

3.2.4.4 Pseudo-Pilot Initialization 56
3.2.4.4.1 Inputs 56
3.2.4.4.2 Processing 56
3.2.4.4.3 Outputs 56

3.2.4.5 Display Driver 57
3.2.4.5.1 Inputs 57
3.2.4.5.2 Processing 57
3.2.4.5.3 Outputs 57

3.3 Special Requirements 59

3.3.1 Expandability 59
3.3.2 Portability 59
3.3.3 Machine/Hadware Dependencies 60

T R A N S P O R T A T I O NR

Page 602/01/82

L A B O R A T 0 R YF L I G H T

CPDS for the ATC Subsystem Software

T A B L E O F C 0 N T E N T S (Continue)

3.4 Human Performance

3.5 Data Base Requirements
3.5.1 Sources and Types of Data Base Inputs
3.5.2 Internal Tables and Parameters

3.6 Externally Developed Software

4.0 QUALITY ASSURANCE PROVISIONS

T R A N S P O R T A T ION O

64
67

68

Page 702/01/82

L A B 0 R A T 0 R YF L I G H T

CPDS for the ATC Subsystem Software

1.0 SCOPE

1.1 Identification

This specification establishes the requirements for performance,
design, test, and qualification of a computer program identified
as ATCSIM Release 0.

1.2 Functional Summary

The Air Traffic Control (ATC) Subsystem of the Man-Vehicle
System Research Facility (MVSRF) is a hardware/software complex
which provides the MVSRF with the capability of simulating the
multi-aircraft, multi-controller Air Traffic Control environment
required to perform full-mission flight simulations. The ATCSIM
CPCI is the software component of this complex.

The ATCSIM operates in three modes:

1) Standalone, that is, without the required
participation of the rest of the MVSRF.

2) Single-cab mode, with either the conventional (727)
or advanced cab.

3) Dual-cab mode, with both simulated cabs.

The ATCSIM is capable of simulating up to three simultaneous
ATC radar positions and up to 40 aircraft (called
"pseudo-aircraft" to differentiate them from the cab
aircraft(s)). The ATC subsystem performs the following
functions:

1) Simulates the movements of up to 40 pseudo-aircraft.

2) Simulates the navigational and surveillance
equipment in the area.

3) When in the single or dual cab mode, it communicates
with the host computer and the cab computer(s) to
receive data concerning the cab positions as well as
directives regarding the management and control of
the ATC environment.

T R A N S P O R T A T ION A O

Page 802/01/82

L A B 0 R A T 0 R YF L I G H T

CPDS for the ATC Subsystem Software

4) Drives up to three simulated ATC positions, each
equipped with a calligraphic display scope and a
keyboard. The human operator of each ATC position
(called the air traffic controller) can monitor the
aircraft movements on the calligraphic display and
can control them through clearances communicated to
the pseudo-pilots (see next item) via audio channels
provided for this purpose. The keyboard can be used
to enter aircraft clearances and to modify the
information displayed on the radar screen.

5) Drives up to three pseudo-pilot positions, each
equipped with a video terminal and a keyboard. The
operator of each pseudo-pilot position (called the
pseudo-pilot) will at any point be responsible for
"piloting" up to 12 aircraft. He is responsible for
responding to clearances received from the air
traffic controller regarding any aircraft under his
control. To accomplish this task, the pseudo-pilot
will have complete status information on all the
aircraft under his control displayed on the video
screen at all times. To initiate the execution of
the clearance received by the air traffic
controller, a repertoire of piloting commands will
be available to him. Those will have to be entered
on the keyboard along with appropriate
identification of the target aircraft.

T R A N S P O R T A T ION L R

Page 902/01/82

L A B O R A T O R YF L I G H T

CPDS for the ATC Subsystem Software

2.0 APPLICABLE DOCUMENTS

1) MVSRF: ATC Subsystem Preliminary Design Document, FTL
Report Rxx-x, Flight Transportation Laboratory, M.I.T.,
Cambridge, Ma, October 1981.

2) MVSRF ATC Subsystem: SIMCON Process Preliminary Design
Document, FTL Report Rxx-x, Flight Transportation
Laboratory, M.I.T., Cambridge, Ma, January 1982. ,

3) MVSRF ATC Subsystem: POSGEN Process Preliminary Design
Document, FTL Report Rxx-x, Flight Transportation
Laboratory, M.I.T., Cambridge, Ma, January 1982.

4) MVSRF ATC Subsystem: SECTOR Process Preliminary Design
Document, FTL Report Rxx-x, Flight Transportation
Laboratory, M.I.T., Cambridge, Ma, January 1982.

5) MVSRF ATC Subsystem: PPILOT Process Preliminary Design
Document, FTL Report Rxx-x, Flight Transportation
Laboratory, M.I.T., Cambridge, Ma, January 1982.

6) MVSRF: Host computer - ATC subsystem Interface Control
Document, (in preparation).

7) MVSRF: ATC subsystem - Audio subsystem Interface Control
Document (in preparation).

8) Heinz, V. Stochastic Simulation of Terminal Area
Airspace, S.M. Thesis, M.I.T. Department of Aeronautics
and Astronautics, Cambridge, Ma, September 1976.

9) Hoffman, W.C., Hollister, W.M., and Simpson, R.W.,
Functional Error Analysis for ATC Concepts Evaluation,
DOT-TSC-212-72-1, Aerospace Systems Inc., Burlington,
MA., May 1972.

T R A N S P O R T A T ION L O

Page 1002/01/82

L A B O R A T 0 R YF L I G H T

CPDS for the ATC Subsystem Software

3.0 REQUIREMENTS

The ATCSIM CPCI consists of a number Computer Program
Components (CPC's), which execute in a concurrent fashion in a
VAX-11/750 virtual memory single processor computer. These CPC's
rely on the standard VMS Operating System supplied by the
computer manufacturer for dispatching and communications. In VMS
terminology, each CPC that competes for resources concurrently
with other CPC's is termed a "Process"; thus, each ATCSIM CPC is
a VMS Process.

The ATCSIM CPCI is made up of four types of CPC's:

1) The SIMCON process. This CPC performs
initialization and overall simulation coordination
functions, such as timing and host computer I/O. It
is the first to be activated (from the ATC command
console). Once activated, and given minimal
information about the configuration of the system
(e.g. how many radar controllers, how many
pseudo-pilots, standalone, one-cab or two-cab
configuration), this process initiates all other
processes, and accepts subsequent command lines from
either the ATC console or the main host processor.
Reference 2.2 contains the Development
Specifications for this CPC.

2) The POSGEN process. This CPC is responsible for the
pseudo-aircraft, from creation to deletion,
including flight maneuvers. It maintains the true,
onboard estimated, and ground (radar) estimated
position of these aircraft. Reference 2.3 contains
the Development Specifications for this CPC.

3) The SECTOR process. This CPC is responsible for
maintaining the simulated radar display, including
processing the keystrokes that the air traffic
controller may type at the attached keyboards, with
immediate servicing of "local" requests (such as
changing the display scale), and routing of the rest
to the CPC that may satisfy them (such as sending a
handoff message to another SECTOR process). There
will be one such CPC per radar display position
desired, i.e up to three can be active at any given
time. Reference 2.4 contains the Development
Specifications for this CPC.

4) The PPILOT process. This CPC is responsible for
communications between the POSGEN process and the
simulation actors which "control" the

T R A N S P O R T A T ION L O

Page 1102/01/82

L A B 0 R A T 0 R YF L I G H T

CPDS for the ATC Subsystem Software

pseudo-aircraft (pseudo-pilots). This includes
displaying pseudo-aircraft data and messages from
other parts of the CPCI, as well as accepting
pseudo-pilot commands. There will be one such CPC
per pseudo-pilot position, i.e. up to three can be
active at any given time. Reference 2.5 contains
the Development Specifications for this CPC.

TG T TRANS PORTAT I ON

Page 1202/01/82

L A B 0 R A T 0 R YF L I G H T

CPDS for the ATC Subsystem Software

3.1 Computer Program Definition

The hardware used by the ATC subsystem consists of:

1) One DEC VAX-11/750 processor, with one 67MB disk
drive, console printer, tape drive, and 1M of real
memory. This processor is dedicated to the ATC
simulation task.

2) One Sanders System 7 graphics controller, driving
three calligraphic display stations. Each station
has an attached alphanumeric keyboard with lighted,
programmable function keys. These screens are used
to simulate ATC radar displays.

3) Three TI 940 alphanumeric terminals (132 columns, 24
lines) with multiple scroll region capability.
These screens are used to assist the pseudo-pilots
in flying the pseudo-aircraft.

When in the standalone mode, the ATC subsystem is a self-
sufficient program and does not interact with any other MVSRF
components.

When in the single or dual cab mode, the ATC subsystem
communicates with the cab computer(s), the Host computer(1) , and
the Audio subsystem software.

From the cab computers the ATC subsystem receives
information on the "state" of the cab simulators. This will
minimally consist of position, altitude, and identification for
each active cab. In addition changes in the frequency selection
on the voice channels will be sent to the ATC subsystem from the
cab computers.

The experimenter will be able to control the execution of
the ATC subsystem through commands entered on his console or sent
to the ATC computer by the Host computer.

The ATC subsystem provides the Audio Subsystem with
information regarding which micro/headphone position should be
linked to which audio loop, and which voice disguiser parameters
to be used. The audio subsystem provides the ATC subsystem with
mike PTT button closure information. This information is used by
the ATC subsystem to control (indirectly through the Audio

(1) The Host computer will be one of the cab computers but the
ATCSIM to Host computer communications are functionally
distinct from the ATCSIM to cab communications.

T R A N S P O R T A T ION L O

Page 1302/01/82

L A B O R A T 0 R YF L I G H T

CPDS for the ATC Subsystem Software

subsystem) the allocation of frequencies to audio loops as well
as the allocation of frequencies and voice disguising parameters
to pseudo-aircraft following their assignment to an air traffic
controller and a pseudo-pilot.

3.1.1 System Capacities

In its maximum configuration the ATC subsystem software will
consist of:

1) The SIMCON process

2) The POSGEN process

3) Three "copies" of the SECTOR process

4) Three "copies" of the PPILOT process

The capacities and design requirements in this section will,
unless stated otherwise, pertain to this maximum configuration.

The ATC subsystem will occupy approximately 400K bytes' of
code. The memory requirements for data storage will be
approximately 500K. This means that the entire program will be
able to be in memory at any given time. Therefore, paging of
code and data in and out of real memory will be avoided.

The periodic functions of the ATC subsystem(1) will require
about 50% of the available CPU time on the VAX-11/750 computer.
This estimate assumes that all 40 pseudo-aircraft are active in
the simulation. The non-periodic functions will, on the average,
consume another 15% of the CPU time. It is estimated therefore,
that the average CPU utilization rate will be 65%. This of
course does not preclude instances where saturation of the CPU
will occur. In cases like that, the periodic functions will have
priority access to the CPU so that the program timing will be
unaffected.

The six displays (three for the ATC stations and three or
the pseudo-pilot stations) will be the major output load for the
ATC subsystem.

Preliminary calculations, using the available data for the
SANDERS Graphic-7 system, show that the capacity of the graphics
controller is approximately 10,000 one inch vectors at a

(1) See references 2.2-2.5

T R A N S P O R T A T ION L O

Page 1402/01/82

L A B 0 R A T 0 R YF L I G H T

CPDS for the ATC Subsystem Software

flicker-free rate of 30Hz. Based on this estimate, each ATC
display will be capable of containing up to 20 aircraft This will
allow each radar display to contain up to 20 aircraft with their
alphanumeric tags, airway network display of up to 40 waypoints,
as well as the required alphanumeric (tabular) data. Note that
this adds up to a total of 60 aircraft displayed in all three
displays. This allows for an ample amount of duplications (i.e.
one aircraft displayed in more than one ATC screen). Such
duplications will occur often, for example when handoffs are
being made, etc.

Each pseudo-pilot display will be capable of displaying
information on 12 pseudo-aircraft. It is expected that this
number exceeds the maximum number of aircraft that can be handled
simultaneously by even an "experienced" pseudo-pilot. Note that
the simulation's capacity in terms of number of pseudo-aircraft
is limited by the maximum number that can be handled by
pseudo-pilots. In the current configuration up to 36
pseudo-aircraft can be active. The 9600 baud rate available for
the pseudo-pilot displays will be more than adequate to produce
almost instantaneous screen updates even if the majority of the
information on the video screen has to be modified.

3.1.2 Interface Requirements

The interface requirements between ATCSIM and the Host
computer are specified in the Host computer - ATC subsystem
Interface Control Document. (reference 2.6); the interface
requirements between ATCSIM and the Audio subsystem are specified
in the ATC subsystem - Audio subsystem Interface Control Document
(reference 2.7).

T R A N S P O R T A T ION L O

Page 1502/01/82

L A B 0 R A T 0 R YF L I G H T

CPDS for the ATC Subsystem Software

3.2 Detailed Functional Requirements

The following subsections describe in detail the functions
performed by ATCSIM. Each function is described within the
process it executes.

T R A N S P O R T A T ION A O

Page 1602/01/82

L A B 0 R A T 0 R YF L I G H T

CPDS for the ATC Subsystem Software

3.2.1 Simulation Control (SIMCON)

The SIMCON process is made up of 8 major functions: INITX,
MBXDRV, CMDINT, XTIMER, SCRIPT, AUDIO, RECDAT, and TERMX. With
the exception of INITX and TERMX which are only executed once for
each run, all SIMCON functions are designed for "parallel"
execution. Each of these is triggered by the occurrence of
internal or external events. Typical such "events" are the
expiration of a time interval, receiving a mailbox message,
receiving input from the ATC console or the host computer, etc.
All events are signaled by the VMS operating system through
software interrupts called Asynchronous System Traps (AST's).
When an AST is signaled VMS passes control to a routine
designated to respond to the particular event that caused it.
The AST routine can perform the required processing in its
entirety, set a flag which can be polled later by other modules
responsible for responding to the event, or perform partial
processing and set a flag to signal that further processing is
necessary.

The overall functional flowchart of SIMCON is shown in
figure 3.2.1-1. The execution starts by a call to INITX.
Subsequently the main loop of the program is executed repeatedly
as required by the flags polled in module GETFLG. If no flags
are set the program hibernates until some AST routine awakens it.
Each of the three functions (SCRIPT, CMDINT, and AUDIO) are then
called to process any pending functions. As each function is
called it first checks its flag. If it is not set the function
returns immediately Otherwise the flag is reset and the required
processing is performed. Note that XTIMER and MBXDRV are not
explicitly called since they are directly invoked by the AST
mechanism.

3.2.1.1 Initialize Execution (INITX)

3.2.1.1.1 Inputs

This function accepts the following inputs:

1) The mode for the run (i.e standalone, single cab,
dual cab).

2) The host computer identification (if the run is not
standalone).

3) The name of the file containing the script to be
used for the run.

T R A N S P O R T A T ION L O

Page 1702/01/82

L A B O R A T 0 R YF L I G H T

SIMCfoJ

AST WAKEue

quefe 3.2.1 - i

CPDS for the ATC Subsystem Software

4) The number of ATC (and pseudo-pilot) stations to be
used for the run. This is required only if fewer
than 3 such stations will be used.

3.2.1.1.2 Processing

This function is invoked once in the beginning of the run.
It takes as inputs the configuration selections made by the
experimenter and keyboarded through the ATC console. Based on
those, it initializes the ATC subsystem configuration. The
overall flowchart for this function is shown in figure 3.2.1-2.

The first step in the initialization procedure is to set up
the database for the ATC subsystem. Module CREGBL allocates the
memory required by all the global datasets. PRCIM, STAIM, and
DYNIN initialize the data in PROCESS, STATIC and DYNAM global
sections (see section 3.5 for description of the data in each of
these global sections). PRCIM and STAIM have subsidiary modules,
each responsible for reading in a specific data table. These are
listed in section 3.5. Run-independent data are fully
initialized here, while only the data structures (lists, queues
etc.) for run-specific data are initialized. Values for
run-specific data are assigned as the configuration setup
unfolds.

Other ATC processes required by the requested configuration
are loaded next. Minimally the ATC subsystem requires the POSGEN
process, one SECTOR process, and one PPILOT process. The-maximum
configuration for the current version will be the POSGEN process,
three (3) SECTOR processes, and three (3) PPILOT processes. The
required processes are created by module CREPRC.

I/O channels required for the internal communications of the
ATC subsystem processes are setup by module CREMBX. Each process
is assigned a mailbox for the reception of its messages.

Finally, module SCRPIM initializes the data in the SCRIPT
global section and sets up the communications with the
experimenter's console if the single or dual cab mode is
specified. A connection with the host computer is now
established and the ATC console can be disconnected. The
connection protocol includes clock synchronization and other such
coordination procedures. Before exiting, the INITX function sets
the. SCRIPT flag wh'ich will cause the SCRIPT function to be
invoked immediately in order to setup the run specific data
according to the script on which the run is going to be based.
The program now enters the normal execution loop waiting for the
message to start real-time operation of the ATC simulation.
During this time other script directives can be entered and
processed.

T R A N S PO R T A T ION L O

Page 1802/01/82

L A B O R A T 0 R YF L I G H T

(sistorj)

Fvite. 3.2, 1 - 2

CPDS for the ATC Subsystem Software

3.2.1.1.3 Outputs

The fully initialized ATC system is the output of this
function.

3.2.1.2 Command Interpreter (CMDINT)

3.2.1.2.1 Inputs

This functions accepts and parses an alphanumeric input
string placed in the command buffer. The list of possible
commands includes:

1) Commands to start and end the real time execution.

2) Commands to activate and deactivate ATC sectors and
pseudo-pilot stations.

3) Commands directing the generation of aircraft with
specified characteristics at specific points in the
simulated region.

4) Commands to modify the simulation data base.

5) Commands to send a message to one or more of the
simulation operators (including the experimenter).

The exact syntax of the allowable commands will be specified
in the ATC Subsystem User's Manual (to be provided upon
completion of the coding).

3.2.1.2.2 Processing

The command interpreter parses and acts upon commands
dispatched to it by SCRIPT (see section 3.2.1.4). In most cases
the commands will be script directives indicating modifications
to be made to the ATC environment. There is however a restricted
set of commands (notably START and END) that relate to

controlling the simulation execution environment.

Some of the script directives are acted upon directly by
this function. Such directives are ones that require the setup
of a new ATC sector or request changes in the average number of

aircraft generated per hour at specific airports of fixes. Other

T,R A N S P O R T A T ION L O

Page 1902/01/82

L A B 0 R A T O R YF L I G H T

02/01/82 CPDS for the ATC Subsystem Softwar%; Page 20

directives cause transfer of messages to other functions that are
then responsible for the further processing of the directive.
Such directives are the ones that force generation of specific
aircraft at specific locations and times, for the purpose of
creating an encounter or of causing other traffic complication to
occur.

In the flowchart of figure 3.2.1-3, TIMRIM initializes the
timing for the real time execution by causing an AST to be
generated for every timer chain. In the current configuration
there is only one such timer chain (see reference 2.2). ACTPRC
initializes the process specific data of the process (i.e.
SECTOR or PPILOT) that is to be activated. This module also
generates the message to be sent to the process. The data
initialized here include the sector name the frequency for the
audio communications, etc. Finally, MBXSND is a general purpose
module which sends the input alphanumeric string to the mailbox
of the process whose identification it also accepts as an input.
This module is used by all processes of the ATC subsystem for
dispatching mailbox messages.

3.2.1.2.3 Outputs

The outputs from the CMDINT function will depend on the

input command. Possible outputs are:

1) Initialization of the timer chains.

2) Setting of the exit flag which will cause the
simulation to end.

3) Dispatch of mailbox messages to other ATC processes.

4) Dispatch of messages or "cues" to the experimenter.

5) Modification of a variety of data in the simulation
database.

3.2.1.3 Execution Timer (XTIMER)

3.2.1.3.1 Inputs

The inputs to this function are:

T R A N S P O R T A T ION L OL A B 0 R A T 0 R YF L I G H T

CflDIWI
(S~.~Ohj)

STA -Zo

Ftru.r~ 3.2 . -3 (<xs e

Frrc 3 -21-3 (coZcLsaad)

CPDS for the ATC Subsystem Software

1) The identification number of the timer chain being
processed.

2) The identification number of the process that was
last invoked in this timer chain.

3) Supplementary data on the timer chain. These
include the period of the timer chain (in
milliseconds) and the sequence of processes that
make up the chain.

3.2.1.3.2 Processing

The execution timer is responsible -for invoking the periodic
functions of the ATC simulation. The timing is performed by
defining "timer chains" each composed of a list of ATC processes.
Each timer chain also has a chain identification number and a
specific time interval as its period. SIMCON associates a timer
alert with each of the defined timer chains. This function is
invoked either directly by a timer alert signaled through an AST,
or indirectly by the MBXDRV. The flowchart for XTIMER is shown
in figure 3.2.1-4.

In the first case the timer chain is being restarted and
the process identification (see inputs) will be zero. The
execution timer immediately requests a new timer alert to be
signaled at the end of the next time interval appropriate to the
timer chain that caused the alert. The process which is first in
the timer chain in question is then informed through a mailbox
message which will invoke the required function (or sequence of
functions) within that process.

Upon completion of the requested functions, the invoked
process sends a "task completed" message to SIMCON. MBXDRV (see
section 3.2.1.6) responds by invoking XTIMER in order for the
timer chain to be continued. This is the second method of
invoking XTIMER. The process identification is now non-zero and
XTIMER responds by invoking the next process in the timer chain
or terminating the chain if there is no other process in the
chain to be invoked. As always MBXSDN is used to transfer the
mailbox messages.

The logic is set up to handle any number of periodic timer
chains though the current design requires only one timer chain to
be implemented.

T R A N S P O R T A T ION L R

.Page 2102/01/82

L A B O R A T 0 R YF L I G H T

K -T"15" e

S 1A ? 1

UC2d C$4A

60T PAXL7S

Opco Q.i

6 c-7 P 9%y- 9
z V4r ofFi PT

10 J QAiRM

&W0L-C+4A ,M

lo"t - 3. 2. 1 - 4

tdo
I va

CPDS for the ATC Subsystem Software

3.2.1'3.3 Outputs

The function has two outputs:

1) Queueing of a new timer AST.
2) Mailbox messages sent to various ATC processes.

3.2.1.4 Script Control (SCRIPT)

3.2.1.4.1 Inputs

This function takes as input an alphanumeric string. The
string will be called "script directive" and is composed of one
or more "trigger directives" followed by one or more "action
directives" or commands. Each type of directive is separated
from the next directive of the same type by a semicolon (";").
The last trigger directive is separated from the first action
directive by a colon (":"). SCRIPT only processes trigger
directives, treating action directives as data.

The exact syntax of the trigger directives will be specified
in the ATC Subsystem User's Manual (to be provided upon
completion of the coding).

3.2.1.4.2 Processing

SCRIPT is responsible for the management of script
directives input from the host computer, the ATC console or the
script file. Inputs from all sources are in the same format so
that the origin of the script directive is of no significance to
its processing.

Trigger directives define simulation events which fall in
the following generic categories:

1) Events related to simulation time. Such events
assume the truth value of relational expressions
between the time specified in the event directive,
(ET), and the current simulation time, (ST). The
allowable forms for such expressions are:

a) ET = ST
b) ET > ST
c) ET < ST
d) ET <= ST
e)-ET >= ST

T R A N S P O R T A T ION L O

Page 2202/01/82

L A B O R A T 0 R YF L I G H T

02/01/82 CPDS for the ATC Subsystem Software rage 23

f) ET ;t ST

2) Events related to aircraft position or altitude.
The above 6 forms of relational expressions will be
allowable for -each of the three components
(latitude, longitude, and altitude). In
interpreting the relations "greater than" and "less
than", the projection of the aircraft ground speed
vector will be used to determine the positive
direction along the latitude and longitude axes.
Similarly, a discrepancy in any component that is
within the limits of error of the navigational
and/or surveillance equipment will be interpreted as
satisfying the equality relationship.

3) Events related to push-to-talk button activation at
a specified audio stations.

4) Events related to specific. key depression at
specific stations. 128 such events can be active at
any time. In essence these allow any operator the
define quick action keys in real time. They will be
referred to as "manually activated discrete events".

A significant event is a specific instance of one of the above
generic event types which, when it occurs will trigger some
action directive.

SCRIPT is invoked when a new command has been received, when
new entity (e.g aircraft or ATC sector) has been generated or
activated or when a significant event has occurred. The
flowchart of figure 3.2.1-5a depicts the three cases.

In the first case, the directive is passed to DIRPRS for
parsing. In the second case, SCANSF is called to scan the script
file and activate events related to the newly generated entity.
Finally, if the function has been invoked by the occurrence of a
significant event, the event is removed from the event list and
the associated script directive (i.e. the unparsed portion of
the original script directive) is sent to DIRPRS for further
parsing.

The processing detail within DIRPSR is show in figure
3.2.1-5b. The parser identifies the first trigger directive of
the input. If none is present the CMDINT is invoked by setting
the CMDRDY flag. If one is found, DIRPRS creates a new entry in
the significant event list, associates with it the remaining of
the input line, and invokes the function most appropriate for
monitoring the event. If the trigger directive is time related,
the appropriate function is DIRPRS itself. This will result in
the event to be entered in the list of time triggered events kept

TG T TRANS PORTAT I ON L A B 0 R A T 0 R YF L I G H T

SCtiPT

3.2.1 - Sof CO ar. C

r~t4 (C. 3o. 2. , 54

02/01/82 CPDS for the ATC Subsystem Software Page 24

by DIRPRS. In order to avoid having more than one time-triggered
event "active" at any time, DIRPRS is required to check the
reason it was invoked. If a time-triggered event has occurred
(i.e. in some instances of case 3 above), DIRPRS activates the
next (in terms of simulation time) event in the time-triggered
event list. The activation is done by requesting a timer AST to
e signalled at the appropriate moment.

The processing detail of SCANSF is shown in figure 3.2.1-5c.
It scans the script file, identifies script directives that
relate to the new entity and calls DIRPRS to process each such
directive.

3.2.1.4.3 Outputs

This function dispatches action directives to the command
interpreter, and sends messages to other processes required to
monitor simulation events.

3.2.1.5 Audio Control (AUDIO)

3.2.1.5.1 Inputs

This function receives the following inputs:

1) Messages dispatched to it by MBXDRV.
2) PTT closure information from the AUDIO subsystem.

Messages from MBXDRV can be one of the following:

1) Sector activation or deactivation message.
2) Pseudo-pilot activation or deactivation message.
3) Cab frequency selection change.
4) Pseudo-aircraft handoff acceptance message.
5) Pseudo-aircraft deactivation message

3.2.1.5.2 Processing

The Audio Control task (AUDIO) is responsible for
communications to and from the Audio Subsystem. The ATC
subsystem obtains frequency selector position information from
the host computer, indicating the frequency selected on each cab
radio. The frequencies in use by each simulated ATC position at
any time are stored as part of the ATC database, initialized and
modified by the script. Using this information, the AUDIO task

T R A N S P O R T A T ION L OL A B 0 R A T 0 R YF L I G H T

SCAdSF

FeyLef. 3..2. 1 -Sc

CPDS for the ATC Subsystem Software

periodically updates the Audio System with information regarding
which loop an audio station should be connected to (including no
loop at all, for unused frequencies), and which voice disguiser
parameters to use on each PTT button on each station.

In turn, the Audio System provides the ATC subsystem with
PTT closure information, which is logged by ATC, and also used to
generate script-driving events.

The AUDIO task therefore performs the following functions
(shown in figure 3.2.1-6):

1) Upon sector activation, call ATLOOP to determine the
next available audio loop and attach the ATC
controller and pseudo-pilot audio stations to that
loop (with the appropriate disguiser parameters, if
so specified by the script). Also call ATTPTT to
attach PTT switches to all pseudo-aircraft which may
be in the newly activated sector. Finally call
SWCABF to attach the cab to the new audio loop if
the frequencies match. The last operation is
executed as if the cab had switched radio frequency.

2) Upon acceptance of an aircraft by a controller (and
therefore inclusion on a pseudo-pilot's control
authority), call ATTPTT to determine which voice
disguiser parameters to use, and attach them to the
appropriate PTT box button (the position of the
button corresponds to the position of that
pseudo-aircraft's data in the pseudo-pilot's
screen). The same function is performed for every
aircraft on a pseudo-pilot's control authority upon
pseudo-pilot initialization.

3) Upon receiving a cab frequency selection change
signal, call SWCABF to update the internal table,
and determine what to do with that audio station:
connection to an audio loop (if the frequency
matches), or to none (if the frequency is not an ATC
frequency: the ATC/Audio System does not simulate
"fixed audio", such as VOR identification codes).

4) Upon deactivation of a pseudo-aircraft (handoff to
another sector or actual deletion), call DETPTT to
disable the corresponding PTT switch, and mark the
voice disguiser parameters used by that
pseudo-aircraft as available for further use. The
same function is performed for every aircraft on a
pseudo-pilot's control authority upon pseudo-pilot
termination.

T R A N S P O R T A T ION L O

Page 2.'02/01/82

L A B 0 R A T 0 R YF L I G H T

AUD iO

1?eTU~J

fcere . 2 \-

CPDS for the ATC Subsystem Software

5) Upon deactivation of a sector, call DTLOOP detach
all audio stations from that loop, and mark the
audio loop as available.

6) Upon receiving a PTT closure signal, call PTTCLS to
log the event and if closure of the PTT in question
is being monitored transmit the event to the script
dispatcher (SCRIPT task in the SIMCON process).

3.2.1.5.3 Outputs

This function provides the Audio subsystem of the MVSRF with
the current associations between audio loops and audio stations
and signals PPT closures to the script control function.

3.2.1.6 Mailbox Driver (MBXDRV)

3.2.1.6.1 Inputs

The mailbox driver receives messages from other ATC
processes. The message format minimally contains the message
identification, sending process identification and the message
length in the first 8 bytes transmitted (2 bytes are allocated
for each item and 2 bytes are reserved for future use). The
format of the remainder of the message will depend on the'message
type.

3.2.1.6.2 Processing

The mailbox driver is responsible for reading mailbox
messages received by SIMCON and invoking the function which is
responsible for its further processing. With the exception of
XTIMER which is invoked directly to insure quick response, the
invoking mechanism is to insert the message in an appropriately
setup buffer and set the flag which eventually trigger the proper
function. The mailbox driver centralizes mailbox message
reception and dispatching. The following types of messages are
recognized as shown in figure 3.2.1-7:

1) Task completed message. This message includes the
timer chain index (although it is not currently
needed) for purposes of identification. The
execution timer is invoked to process this message.

T R A N S P O R T A T ION L O

Pag .- 2602/01/82

L A B 0 R A T 0 R YF L I G H T

F4e4fe 3.2.1 -7

r r12 .

M UX'D R\/

CPDS for the ATC Subsystem Software

2) Event occurred message. This message includes the
index to the event that occurred as it is stored in
the event list. Script control is invoked for
processing of this message.

3) Sector activation or deactivation message. This
message includes the index of the SECTOR process.
The AUDIO function is invoked to process this
message.

4) Pseudo-pilot activation or deactivation message.
This message includes the index of the SECTOR
process. The AUDIO function is invoked to process
this message.

5) Pseudo-aircraft handoff message. This message
includes the identification of the pseudo-aircraft
that in the handoff process. The AUDIO function is
invoked to process this message.

3.2.1.6.3 Outputs

MBXDRV sets appropriate flags when necessary and puts the
received messages in the input buffers of various functions that
will be invoked for their further processing.

3.2.1.7 Data Recording (RECDAT)

3.2.1.7.1 Inputs

This function takes the following inputs:

1) Input strings from 'all communications channels (ATC
to Host, ATC to ATC stations, and ATC to PPILOT
stations).

2) Latitude, longitude, altitude, and velocity for all
aircraft in the system. Actual as well as ground
measured and airborne measured values for all the
above items are recorded.

3) ID's of sector and pseudo-pilot having control
authority for all aircraft in the system.

4) Disguiser parameters for all aircraft in the system.

F L I G H T T R A N S P O R T A T IO N L A B O R A T O R Y

Pag.- 2702/01/82

02/01/82 CPDS for the ATC Subsystem Software Aage 28

5) PTT closure events.

6) Wind direction and velocity.

7) Cab frequency selection.

8) ID's, frequencies, disguiser parameters, and audio
loop associations for all active sectors.

3.2.1.7.2 Processing

This function records the required data on magnetic tape.
Each entry is accompanied by the simulation time (time logging).
The function is invoked periodically, at the end of the main
simulation timer loop. Recording of items 2 and 6 above is done.
Subsequently this functions records any entries in the data
recording buffer. Entries in this buffer have been created by
other functions. I/O drivers create entries every time an input
string is received on the communications channel for which they
are responsible. The CMDPRC function of the SECTOR process
creates an entry after a handoff acceptance has been successfully
processed. The AUDIO function of the SIMCON process creates
entries when disguiser parameters are assigned to
pseudo-aircraft, when PTT closures are detected, when cab
frequency changes are detected, and when audio loops are assigned
to sector and pseudo-pilot audio stations.

3.2.1.7.3 Outputs

The items listed in section 3.2.1.7.1 as inputs are output
on magnetic tape accompanied by the simulation time associated
with them. The exact format for the outputs is specified in the
Host to ATC subsystem Interface Control Document (reference 2.6).

3.2.1.8 Terminate Execution (TERMX)

3.2.1.8.1 Inputs

NONE

T R A N S P O R T A T ION L OL A B O R A T 0 R YF L I G H T

CPDS for the ATC Subsystem Softwar. Pe

3.2.1.8.2 Processing

At the end of the run this task is activated and basically
performs all the functions that are needed for a smooth
completion of the program execution. The task's major function
is to insure that all ATC processes are stopped and unloaded
successfully. In addition it frees all unwanted resources that
the program was using (e.g. mailboxes, I/O channels, etc.),
closes open data sets, and stores all the data that are needed
for further analysis or for continuation of the current
experiment.

3.2.1.8.3 Outputs

NONE

T R A N S P O R T A T ION L O

Page 2902/01/8.2

L A B 0 R A T O R YF L I G H T

CPDS for the ATC Subsystem S3ftware

3.2.2 Position Generator (POSGEN)

POSGEN is made up of 11 tasks: INITX,- MBXDRV, CABIO, ACGEN,
COMAND, DYNAM, NAVUPD, SURVEY, ACSTAT, WINDS, and CNFRMC. INITX
is only executed once in the beginning of each run. MBXDRV is
invoked whenever a mailbox message sent by another ATC process.
CABIO manages the transfer of data to and from the cab(s) and
executes at the AST level. All other tasks are invoked by the
mailbox driver following a message from the XTIMER task of SIMCON
requesting the pseudo-aircraft position update to be performed.
The top level flowchart for this process is shown in figure
3.2.2-1. The mathematical formulas used in the various POSGEN
functions are described in great detail in references 2.8 and
2.9.

-3.2.2.1 Initialize Execution (INITX)

3.2.2.1.1 Inputs

This function uses as inputs the process specific data for
POSGEN as they have been prepared by the PRCIM module of SIMCON.

3.2.2.1.2 Processing

This function is invoked once in the beginning of the run.
Its flowchart is shown in figure 3.2.2-2. It is responsible for
mapping to the global data sets (MAPGBL), assigning I/O channels
to the mailboxes (ASNMBX), initializing communications with the
cab(s) (CABIM), initializing local data, and for setting the
appropriate AST routines so that the process is ready to go into
the normal execution phase. ASGMBX and CABIM are responsible for
initializing the AST delivery for the mailbox messages and the
communications with the cabs respectively. Prior to exiting
INITX calls MBXSND to send a ready message to SIMCON.

3.2.2.1.3 Outputs

The output of this function is the ready message sent to
SIMCON.

T R A N S P O R T A T ION L O

Page 3002/01/82

L A B 0 R A T 0 R YF L I G H T

Fe~ 3. 3. 2 -

IOMITX
ceo saM)

3.2.2-2fcc r

CPDS for the ATC Subsystem Sof'ware

3.2.2.2 Mailbox Driver (MBXDRV)

3.2.2.2.1 Inputs

The mailbox driver receives messages from other ATC
processes. The message format minimally contains the message
identification, sending process identification and the message
length in -the first 8 bytes transmitted (2 bytes are allocated
for each item and 2 bytes are reserved for future use). The
format of the remainder of the message will depend on the message
type.

3.2.2.2.2 Processing

The Mailbox Driver manages the messages that are sent to
POSGEN from other ATC subsystem processes. Messages request one
of the following (see figure 3.2.2-3):

1) Pseudo-aircraft position update. This request is
sent by the XTIMER function of the SIMCON process.
The mailbox driver responds by setting the POSUPD
flag waking the process and requesting a new AST to
be signalled upon reception of a subsequent mailbox
message.

2) Insert new event in the significant event list.
This request is sent by the SCRIPT task of the
SIMCON process. The ACSTAT function is invoked by
this message by setting the NEWEV flag and putting
the message in the ACSTAT buffer. Signalling the
occurrence of a significant event is left up to
various POSGEN tasks.

3) Insert new command in the pseudo-aircraft command
queue. This request is sent by the CMDPRC task of
the PPILOT process. The COMAND function is invoked
by this message by setting the NEWCOM flag and
putting the message in the COMAND buffer.

4) Pseudo-aircraft generation directive. This request
is sent by the CMDINT function of SIMCON. ACGEN is
invoked by setting the ACGEN flag and putting the
message in the ACGEN buffer.

5) Execution termination. This message is sent by the
CMDINT task of the SIMCON process. The EXIT flag is
set and the execution termination task will be

T R A N S P O R T A T ION A O

Page 3102/01/82

L A B O R A T 0 R YF L I G H T

H BX D!al
Ex acW)

3. 2.2--3fcr. c

CPDS for the ATC Subsystem Softwar P

invoked when all other pending tasks have completed
execution. When this request is received no further
mailbox messages are read.

3.2.2.2.3 Outputs

MBXDRV sets appropriate flags when necessary and puts the
received messages in the input buffers of various functions that
will be invoked for their further processing.

3.2.2.3 Cab I/O Interface (CABIO)

3.2.2.3.1 Inputs

The inputs to this function are data sent by the two cabs.
The data format and exact communication protocol and timing will
be specified in the Host Computer - ATC subsystem Interface
Control Document (reference 2.6). The data minimally required by
POSGEN will consist of:

1) Cab identification (Airline name, Flight number, etc)

2) true longitude, latitude and altimeter reading for each cab.

3) Cab radio frequency selections.

4) Cab IDENT button depression information.

Data item 1 will be required when each cab first enters the
simulation. Data item 2 will be required at regular intervals of
four (4) or ten (10) seconds depending on the radar which is
tracking the aircraft. Data items 3 will be required whenever a
frequency change occurs in the cab. Data item 4 is required
whenever the IDENT button on the transponder is depressed by the
cab pilot.

3.2.2.3.2 Processing

This function manages the data flow to and from the cab(s).
The function operates at the AST level. Depending on the inputs
the following functions will be performed (see figure 3.2.2-4):

T R A N S P O R T A T ION L O

Page 3202/01/82

L A B 0 R A T 0 R YF L I G H T

Cpm>

i tu .. 2 - 4

CPDS for the ATC Subsystem Software

1) When the periodic position information is received
from either cab, CABIO updates the appropriate
entries in the aircraft data tables maintained by
POSGEN.

2) When cab identification information is received,
CABIO initializes the aircraft data table.

3) When frequency selection changes or IDENT depression
messages are received, CABIO sends the information
to SIMCON or SECTOR respectively via a mailbox
message.

3.2.2.3.3 Outputs

The outputs of this function are:

1) Updated aircraft data tables for both cabs.
2) Messages to SIMCON concerning the Audio control

function.
3) Messages to SECTOR concerning IDENT button

depression.

3.2.2.4 Aircraft Generator (ACGEN)

3.2.2.4.1 Inputs

This function accepts as inputs:

1) The ACGEN buffer.
2) The data describing the generation process.

3.2.2.4.2 Processing

The aircraft generation task manages the generation of new
pseudo-aircraft that will participate in the simulation. Two
methods of generating aircraft will be available (see figure
3.2.2-5):

1) Random generation: This method will generate new
pseudo-aircraft at exponentially distributed time
intervals with some prespecified mean. The location
of the aircraft upon their generation will also be
randomly selected from a prespecified set of

T R A N S P O R T A T ION AO

Page 330?/01/82

L A B O R A T 0 R YF L I G H T

ACGEAJ

SrAR r

cm1A.

I- .

14r

3.2.Z-5

CPDS for the ATC Subsystem Software

"source" points according to some discrete
probability distribution. The same random procedure
will be used to generate the aircraft types, flight
ID's as well as other pertinent information. The
procedure will be independent for each simulated ATC
sector. Flight plans for such aircraft will be
generated by first randomly selecting an exit fix
among prespecified exit fixes appropriate for the
sector and then assigning a route from the source
point to the exit fix to the aircraft. If the exit
fix is at a boundary with a sector that is also
simulated, a new exit fix appropriate for that
sector will be generated and the process will
continue until the aircraft crosses to a sector that
is not simulated.

2) Deterministic generation: This method will generate
aircraft according to script directives. All or a
portion of the pertinent data (aircraft type flight
ID , etc.) can be specified by the script. As all
script directives, the generation of any or all
aircraft can be triggered by either reaching a
specific simulation time or by the occurrence of
some other significant event in the simulation.
Script driven aircraft generation allows better
control of the simulation environment provided by
the ATC subsystem.

Independent of how the aircraft was generated SIMCON is
informed through a mailbox message.

Since all newly generated aircraft "emerge" from inactive
ATC sectors, it is important that, when they are handed off to
the air traffic controller of an active sector, they are properly
spaced from other traffic in the area. The pseudo-aircraft
generator is responsible for providing the required separations
thus simulating the actions of the air traffic controller
responsible for the sector from which the newly generated
aircraft are presumed to emerge. Pseudo-aircraft are therefore
not immediately activated upon generation. Instead their status
is set to DORMANT and the earliest time the aircraft can be at
the source point without violating separation requirements with
other traffic in the area is determined. This time is called the
activation time of the aircraft. The actual activation of the
pseudo-aircraft is then left up to the pseudo-aircraft status
update task.

T R A N S P O R T A T ION L O

Page 3402/01/82

L A B O R A T 0 R YF L I G H T

CPDS for the ATC Subsystem Software

3.2.2.4.3 Outputs

New entries in the aircraft data tables are created and
messages signalling aircraft generation to SIMCON are sent.

3.2.2.5 Command Queue Management (COMAND)

3.2.2.5.1 Inputs

The primary input of this function is the command queue for
each pseudo-aircraft. When new commands are sent by PPILOT the
COMAND input buffer contains data to be inserted in the command
queue.

3.2.2.5.2 Processing

This task generates the commanded state for all
pseudo-aircraft which is used as input to the dynamics update
task. Piloting commands are received by POSGEN through mailbox
messages by PPILOT processes. The overall flowchart for this
function is shown in figure 3.2.2-6.

When a command has been received from a pseudo-pilot, INSERT
will insert the command in the command queue. The command is
inserted in its proper sequence depending on the activation time.
The commands sent by the pseudo-pilot are assumed to be
immediate.

During a normal update cycle, COMAND first checks if any of
the as yet inactive commands need to be activated (ACTCOM).
Command activation is done either when their activation time has
been reached, or when the aircraft has reached a point in space.
For example, intercepting a VOR radial is activated when the
aircraft is at the proper distance from the radial. The proper
distance, of course, will depend on the intercept angle.
Subsequently the commanded values for the aircraft are generated
based on the aircraft's current state (GENCOM). All values are
generated based on the noisy readings of the onboard instruments.

3.2.2.5.3 Outputs

The following commanded values are generated:

T R A N S P O R T A T I N

Page 3502/01/82

L A B O R A T 0 R YF L I G H T

CotAvn

u 0.vve. "3. ,% 2. -k G

CPDS for the ATC Subsystem Suftware

1) Bank angle
2) Vertical speed
3) Longitudinal acceleration

3.2.2.6 Aircraft Dynamic Update (DYNAM)

3.2.2.6.1 Inputs

This function takes as inputs:

1) The commanded bank angle
2) The commanded vertical speed
3) The commanded longitudinal acceleration-
4) The current aircraft state, including altitude,

latitude and longitude, airspeed and ground speed,
heading and ground track angle, vertical speed,
longitudinal and lateral accelerations, bank angle,
rate of turn, etc.

3.2.2.6.2 Processing

This task updates the true aircraft state based on the above
commanded values. The update is performed through a series of
calls to the following modules (see figure 3.2.2-7):

1) ALTCOM. This module updates the aircraft's altitude
and altitude rate.

2) ENRGRC. This module restricts the achievable values
for longitudinal acceleration based on the rate of
climb or descent.

3) LATACC. This module computes the aircraft's lateral
acceleration based on the bank angle.

4) SPDTRK. This module computes the aircraft's ground
speed and track angle.

5) VELHGD. This module updates the aircraft's velocity
and heading.

T R A N S P O R T A T ION L O

Page 3602/01/82

L A B 0 R A T 0 R YF L I G H T

DYW A M
(exce->

R FTur M

3.2.2 -7

CPDS for the ATC Subsystem Software

3.2.2.6.3 Outputs

Output from this function is the updated aircraft state.

3.2.2.7 Navigation Equipment Update (NAVUPD)

3.2.2.7.1 Inputs

The input to this function is the true state of all
pseudo-aircraft.

3.2.2.7.2 Processing

NAVUPD updates the readings of the
equipment. The functions performed are:

aircraft navigational

1) Determination of the indicated altitude.

2) Determination
rate.

3) Determination
airspeeds.

of the indicated climb or descent

of the indicated and corrected

4) Determination of the indicated Mach number.

5) Determination of the indicated heading.

6) Determination
VORTAC's.

of the radial and range from two

Equipment errors are modelled. For VOR and DME readings the
ground equipment errors are also modelled. The readings
generated by this task are used by the command queue management
task for pseudo-aircraft navigation.

3.2.2.7.3 Outputs

The output of this function is the indicated state of the
aircraft.

T R A N S P O R T A T ION L O

Page 3702/01/82

L A B 0 R A T 0 R YF L I G H T

CPDS for the ATC Subsystem Software

3.2.2.8 Surveillance Equipment Update (SURVEY)

3.2.2.8.1 Inputs

SURVEY takes as input the position and altitude of the
aircraft as well as the position and characteristics of the
radars in the simulated area.

3.2.2.8.2 Processing

This task updates the aircraft positions as measured by the
surveillance equipment. Measured positions of for cabs are also
generated by this task. It will be generally assumed that a
beacon radar system is available for surveillance with aircraft
being equipped with altitude encoding (mode C) transponder. The
two prevalent radar beacon systems (terminal area and enroute)
used today for air traffic control are being modelled. The
difference between them is in their range, (60 NM for terminal
area and 200 NM for enroute are typical values), their relative
accuracy and the sampling rate (4 seconds for terminal area radar
versus 10 seconds for enroute radar). Secondary surveillance
radars as well as the surveillance function of the new Discrete
Address Beacon System (DABS) can also be modelled.

Detailed algorithms for aircraft tracking will not be
developed at this stage. Such algorithms may be developed later
if their need arises.

3.2.2.8.3 Outputs

This function generates the tracked positions of all the
aircraft in the simulation.

3.2.2.9 Aircraft Status Update (ACSTAT)

3.2.2.9.1 Inputs

The current status and position of all the aircraft in the
simulation are input to ACSTAT.

T R A N S P O R T A T I O N

Page 3802/01/82

L A B 0 R A T 0 R YF L I G H T

CPDS for the ATC Subsystem Software

3.2.2.9.2 Processing

ACSTAT manages the changes in the status of pseudo-aircraft
as they move through the simulated airspace. It is also
responsible for signalling to the SCRIPT task of the SIMCON
process significant events that relate to aircraft passage
through some part of the simulated airspace. The following
functions are performed (see figure 3.2.2-8):

1) Activation of dormant aircraft when the time for
their activation is reached. Upon activation of a
pseudo-aircraft, simulate handoff initiation
procedure to the appropriate air traffic
controller.(1) Finally, send message to SIMCON
since activation of a new aircraft is a permanent
significant event.

2) Update aircraft passage information through selected
waypoint in the simulated region. For each aircraft
the expected time of passage through the next
waypoint in its flight plan is generally updated.
This information can be used for automatic flight
plan selection of randomly generated aircraft.

3) Simulate handoff acceptance of pseudo-aircraft
handed off from an active to an inactive ATC sector.
The status of such aircraft is not changed but a
deactivation time is set. This is done so that the
target remains on the radar displays for some time
after the handoff.

4) Deactivate pseudo-aircraft when their deactivation
time has been reached. At this time check if the
pseudo-aircraft is handed off to a sector that will
be activated in the future. If so, assign the
aircraft to that sector to insure that it is
reactivated when the sector is activated, and set
their activation time to infinity. If not, delete
the aircraft.

5) Reactivate deactivated pseudo-aircraft if the time
for their activation has been reached. The INITSC
task of the SECTOR process to which the aircraft has
been assigned upon their deactivation is responsible
for setting the activation time. The position in
which the aircraft are reactivated is determined
based on their position at the time of their

(1) See section 6.3 of this document.

T R A N S P O R T A T ION L O

Page 3902/01/82

L A B 0 R A T 0 R YF L I G H T

A CSTA T Ter

PST

AlA ((PT

* ~&~-r~jt~J

3.2.2-8

CPDS for the ATC Subsystem Software

deactivation, and on their flight plan. Finally,
send message to SIMCON since activation of a new
aircraft is a permanent significant event.

6) Scan the significant event list relating to aircraft
passage through particular points in the simulated
airspace and send appropriate message to the SIMCON
process for each ones that has occurred after
deleting them from the list.

3.2.2.9.3 Outputs

The outputs of this function are:

1) The new aircraft status.
2) Signalling of significant events to SIMCON.

3.2.2.10 Weather Update (WINDS)

3.2.2.10.1 Inputs

The inputs to this function are:

1) Probability distributions of wind direction and
velocity.

2) Weather reports.

3.2.2.10.2 Processing

This task is responsible for updating weather data. It
generates wind direction and velocity, each according to
prespecified probability distribution. It also maintains lists
of weather reports for various regions. These are dispatched to
the air traffic controllers when weather data is requested.

3.2.2.10.3 Outputs

The outputs are:

1) Instantaneous values of wind direction and velocity.
2) Dispatching of weather reports to SECTOR processes.

T R A N S P O R T A T ION AO

Page 4002/01/82

L A B O R A T 0 R YF L I G H T

CPDS for the ATC Subsystem Software

3.2.2.11 Conformance Monitor (CNFRMC)

3.2.2.11.1 Inputs

The inputs to the conformance monitor are:

1) The current aircraft position altitude and ground
speed as measured from the surveillance radar.

2) The flight plans and clearances for the aircraft.

3.2.2.11.2 Processing

This task is responsible for monitoring aircraft and
insuring that they are within conformance limits of their flight
plans and altitude clearances. Alerts will be generated for two
reasons.

1) An aircraft is not on the route specified by the
flight plan. This alert will be generated when
lateral deviation from the route exceeds some limit.
Along the route deviations will not be monitored
unless a 3 dimensional flight plan (i.e with time
specified at all waypoints) is followed by the
advanced cab. Since such alerts are not used in
today's ATC system, the air traffic controller will
not be informed of such deviations unless the
conformance monitor is put in this mode by the
experimenter. The experimenter will be able to
change the conformance monitoring mode at any time
during the run.

2) An aircraft is not at the proper altitude and the
altitude return provided by its transponder has not
changed for some specified time. Again this alert
will not be sent to the controller unless the
conformance monitor is in the proper mode.

A third function performed by the conformance monitor
relates to the information displayed on the air traffic
controller's radar display. Whenever the altitude clearance for
an aircraft is not the same (within say 50 feet) of the altitude
return provided by the aircraft transponder, both altitudes will
be displayed on the aircraft's data block. Otherwise the
altitude clearance will only be displayed with a "C" next to it

LTTRANS PORTAT I ON

Page 4102/01/82

L A B O R A T O R YF L I G H T

CPDS for the ATC Subsystem Software

to indicate that the aircraft is currently conforming to its
clearance. Note that this is similar but not exactly the same as
the second type of alert above.

3.2.2.11.3 Outputs

This function generates conformance alerts
them to the air traffic controller whenever
significantly deviated from their flight plan.

and dispatches
aircraft have

T R A N S P O R T A T ION L O

Page 4202/01/82

L A B 0 R A T 0 R YF L I G H T

CPDS for the ATC Subsystem Software

3.2.3 ATC Sector (SECTOR)

The SECTOR process is made up of 5 major tasks: INITX,
CMDPRC, MBXDRV, INITSC, and DSPDRV. With the exception of INITX
which is executed only once for each run, all SECTOR functions
are designed for "parallel" execution. Each is triggered by the
occurrence of internal or- external events. The process will
respond to the following asynchronous events:

1) Reception of a mailbox message. This causes the
MBXDRV to be invoked.

2) Reception of a character from the controller station
keyboard. This causes the CMDPRC to be invoked.-

The overall flowchart for the SECTOR process is shown in
figure 3.2.3-1.

3.2.3.1 Initialize Execution (INITX)

3.2.3.1.1 Inputs

The input to this function is the ATC station number with
which the process is going to be associated.

3.2.3.1.2 Processing

This function is invoked once in the beginning of the run.
Its flowchart is shown in figure 3.2.3-2. It is responsible for
mapping to the global data sets (MAPGBL), assigning I/O channels
to the mailboxes (ASNMBX), initializing communications with the
ATC station (DSPIM), initializing local data, and for setting the
appropriate AST routines so that the process is ready-to go into
the normal execution phase. ASGMBX and DSPIM are responsible for
initializing the AST delivery for the mailbox messages and the
communications with the ATC station respectively. Prior to
exiting INITX calls MBXSND to send a ready message to SIMCON.

T R A N S P O R T A T ION A O

Page 4302/01/82

L A B O R A T 0 R YF L I G H T

TN/IT K

(TAKT

HAPG6L

CAL L

ASN~x

CA L.L

LOCAL
DATA

(RE-rutN

Fete 3.,2.3 -z

CPDS for 'he ATC Subsystem Software

3.2.3.1.3 Outputs

The ready message sent to SIMCON is the output of this
function.

3.2.3.2 Command Processor (CMDPRC)

3.2.3.2.1 Inputs

This function accepts inputs from the ATC station keyboard.

3.2.3.2.2 Processing

The command processor has two distinct subtasks: the
Command Editor and the Command interpreter. The Command Editor
(shown in figure 3.2.3-3a) is responsible for the character by
character processing of the controller inputs. The Command
Interpreter (shown in figure 3.2.3-3b) is responsible for parsing
and acting upon commands after the character signalling the end
of the command line (i.e. the carriage return) has been
detected.

The character by character processing will increase somewhat
the data transfer load on the VAX-l1/750 to Sanders'display
controller I/O interface. Even so however the transfer rates
will be well below the capacity of the hardware. The advantage
of this approach is that a variety of editing functions may be
performed on the input string thus making the air traffic
controller's input task considerably easier. In addition special
function keys can be utilized to provide the controller with a
set of "quick action" commands which again should prove easier to
use. Both these features will be useful when simulation
participants playing the role of air traffic controllers are not
experienced typists. More importantly the editor will be an
indispensable tool for the air traffic controller when the
facility is upgraded and is capable of simulating the silent
world of the digital data link era.

The Command Editor distinguishes three different types of
characters:

1) Self-insert. These are normal input characters that
are inserted by the command editor in the input
buffer.

TG T TRANS PORTAT I ON

Page 4402/01/82

L A B O R A T 0 R YF L I G H T

TTWY'U I tie

rr i

S TA iZ T

I iPT'1C3 PU)Tfe C~~ J§ IAJPLU
CHMAI"? I7po com-. m(

IkRCC~~uFftv IQPA

(?vrL*pj -

C~OL
'~N~ Cu~1ZACflC?

* Ie FI75I " r -eu AM
ourSfJ tv o aftsr-

CUT, 144 '1e3- (CM'wc

Ilk) cL-Sept~

POT IU 1T

fsC age'

I? Cruf 0

3. 2.3fc L4fc

yj L
56T

MEWJie
?UAos

NO

E t 5,.2. 3-3 b

i

v~e~ 3~, ,3q-3~

GOkA AO t f ET

(59 To g

C A V-IL

CPDS for the ATC Subsystem Software

2) Control Characters. These are non-printable
characters that are interpreted as editing commands.
Typical editing commands will affect the active
"cursor position" allowing insertion and/or deletion
of characters in the middle of the input string.
Two control characters of particular importance are
the carriage return (octal code 015) and the ,Z
(octal code 032). The first signals the end of the
command line and cause the transfer of the input
buffer to the Command Interpreter for further
processing, while the second will cause the flushing
of the input buffer effectively cancelling the
command.

3) Quick action characters. These are really character
sequences of three or more characters that start
with a control character, typically the escape
character (octal code 033). They are treated like
one character however since they are generated by
the depression of a single key. These character
sequences will be sent to the Command Interpreter
immediately independent of the input buffer editing
function. This allows quick action commands to be
entered and executed when needed even if the air
traffic controller is in the midst of entering a
normal command.

The Command Editor executes at the AST level. When the
carriage return character is detected, the Command Editor wakes
the SECTOR process and sets the appropriate flag signalling that
input is available for the Command Interpreter which executes in
the normal level. While the Command Interpreter is processing
the command line, there is no active read request queued to the
controller keyboard. Input characters, if any is available
during that time, are however queued and each one will cause an
AST to be signalled when a new read request is queued to the
keyboard. The latter is done by the Command Interpreter when
processing of the input line is complete.

3.2.3.2.3 Outputs

A variety of outputs are possible from this function

depending on the inputs received.

F L I G H T TRANS PORTAT I ON L A B O R A T O R Y

Page 4502/01/82

CPDS for the ATC Subsystem Software

3.2.3.3 Mailbox Driver (MBXDRV)

3.2.3.3.1 Inputs

The mailbox driver receives messages from other ATC
processes. The message format minimally contains the message
identification, sending process identification and the message
length in the first 8 bytes transmitted (2 bytes are allocated
for each item and 2 bytes are res'erved for future use). The
format of the remainder of the message will depend on the message
type.

3.2.3.3.2 Processing

The Mailbox Driver manages the messages that are sent to
SECTOR from other ATC subsystem processes. Messages request one
of the following (see figure 3.2.2-4):

1) ATC display update. This request is sent by the
XTIMER function of the SIMCON process. The mailbox
driver responds by setting the NEWDSP flag waking
the process and requesting a new AST to be signalled
upon reception of a subsequent mailbox message.

2) Cab IDENT button depression signal. The mailbox
driver sets the IDENT flag for the corresponding
cab. This will be-reflected in the aircraft tag
displayed on the radar screen next time the DSPDRV
is invoked.

3) Script message. The mailbox driver puts the message
in the appropriate buffer and sets the NEWMSG flag
so that the message is processed by the display
driver.

4) Sector activation message. The mailbox driver sets
the NEWSCT flag and resets the PAUSE flag to invoke
the INITSC function.

5) Sector deactivation message. The mailbox driver
sets the PAUSE flag to suspend execution of the
SECTOR process.

6) Execution termination. This message is sent by the
CMDINT task of the SIMCON process. The EXIT flag is
set and the execution will terminate all other
pending tasks have completed execution. When this

T R A N S P O R T A T ION L R

Page 4602/01/82

L A B O R A T O R YF L I G H T

STAT (e-

CrfR-TLIL)

Cc I - ep eS F io I

7 - u~v

PA us
<AL ~ ~ r CIAX) 4JC

HEL(ACC
7,-

ReTuiestJ

le-T

CPDS for the ATC Subsystem Software

request is received no further mailbox messages are

read.

3.2.3.3.3 Outputs

MBXDRV sets appropriate flags when necessary and puts the
received messages in the input buffers of various functions that
will be invoked for their further processing.

3.2.3.4 Sector Initialization (INITSC)

3.2.3.4.1 Inputs I

The inputs to this function are:

1) The process specific data prepared by the CMDINT
function of SIMCON.

2) The sector data read in from the sector data file
(see section 3.5.1).

3.2.3.4.2 Processing

This function is invoked following a reception of a mailbox
message sent by SIMCON requesting the initialization of a new
sector. The top level data, including the sector's name and
frequency, necessary for the initialization of the sector have
already been set by SIMCON in the global data base.

INITSC is responsible for loading all remaining information
necessary for the ATC position. This includes sector boundaries,
entry and exit fixes, traffic rates associated with entry fixes
(if appropriate), location and frequencies of navigation aids
associated with the sector, waypoints within the sector. To
insure that the newly initialized sector does not require
extended period of "warm up" before it reaches a steady state in
terms of traffic flow, this function will also be capable of
reconstructing a "snapshot" of traffic within the sector taken
prior to the initialization of the real time run as part of the
script generation procedure. It will be assumed that all the
information required by INITSC will have been preprocessed so
that the initialization of a new sector will require as little
time as possible.

T R A N S P O R T A T ION L O

Page 4702/01/82

L A B O R A T 0 R YF L I G H T

CPDS for the ATC Subsystem Software

When all sector data is initialized, the list of deactivated
pseudo-aircraft is scanned and the activation time for all those
assigned to the sector is set to the current simulation time.
This will cause the reactivation of those aircraft by the ACSTAT
function of the POSGEN process.

Finally the NEWDSP flag is set and a mailbox message is sent
to the SIMCON process to advise that the sector has been
successfully initialized.

The flowchart for this function is shown in figure 3.2.3-5.

3.2.3.4.3 Outputs

INITSC loads the data base for the new sector, and causes
the display to be reset according to the new data.

3.2.3.5 Display Driver (DSPDRV)

3.2.3.5.1 Inputs

The display driver uses the following inputs:

1) The display parameters including the latitude and
longitude for the center of the display, the display
range, number of past tracker positions to be
displayed for each aircraft, number of minutes for
projecting future position for each aircraft.

2) The current radar measured position altitude and
ground speed for each aircraft.

3) The flight
aircraft.

plan and ATC clearances for each

4) The waypoint locations
the displayed range.

5) Alphanumeric data to
screen.

and airway structure within

be displayed on the radar

T R A N S P O R T A T ION A O

Page 4802/01/82

L A B 0 R A T 0 R 'YF L I G H T

II7\TTsc
(5ecuoiz)

sEr

lb £ie

fbit AIC

ft (AaVA-IWA

Ec~c--3 I. 23 -

CPDS for the ATC Subsystem Software

3.2.3.5.2 Processing

The display driver is responsible for updating the
information on the controller's display screen. It is composed
of three basic subfunctions (see figure 3.2.3-6): INITD, RADARD,
and ALPHAD.

INITD is responsible for initializing the display for each
sector. It generates all the parts of the display that will not
change at all during the life of the sector.

RADARD is responsible for updating the aircraft positions as
seen by the surveillance system, and displaying the waypoints and
airways in the sector. The position of airways and waypoints
change only when the display range or the center of the displayed
area changes.

ALPHAD manages the alphanumeric (tabular) data that appears
on the screen.

3.2.3.5.3 Outputs

The information displayed on the air traffic controller's
screen falls into the following 3 categories:

1) Radar information.
2) Maps.
3) Tabular data.

Radar information includes:

a) The tracked position of the aircraft. Special
symbols (TBD) are used to indicate the aircraft
position. The actual symbol used for some aircraft
will depend on whether the aircraft is uncontrolled,
controlled by some other controller or controlled by
the controller associated with the display.

b) Aircraft data block. Each aircraft symbol will be
accompanied by a data block (possibly empty). The
first line of the data block contains the aircraft
ID or the transponder code (if the ID is not
available), or is blank (if neither of the above is
available). The aircraft ID will generally not be
available for uncontrolled traffic. The transponder
code will not be available for uncontrolled traffic
which is not equipped with a transponder. The
second line of the data block will contain altitude
information. The last altitude clearance will

T R A N S P O R T A T ION L O

Page 4902/01/82

L A B O R A T 0 R YF L I G H T

vsepi\I

N -tz

CAL

1~J~9JD~$ Lfc ~CAL.L

NT" ,A f

CA' LL

LCP4iA

9 TF1

IF- 2. 36

CPDS for the ATC Subsytem Software

always be displayed (if available). If the current
altitude of the aircraft is known and it is not the
same as the altitude clearance it will be displayed
also. Information on the current aircraft altitude
will be available.if the aircraft is equipped with
mode-C transponder, or by verbal pilot report. In
the latter case of course the controller will have
to manually enter the actual aircraft altitude. The
third line of the data block displays the aircraft
ground speed and, if available, any pertinent
information on the aircraft status (e.g. when the
aircraft is being handed off from one sector to the
other).

c) Track history. The position of each aircraft during
the last 4 sweeps of the radar will be displayed.

d) Projected position. The future position of each
aircraft will be projected based on its current
ground speed. 'The interval used for the projection
will be selectable.

Three types of maps can be displayed depending on the ATC
position being simulated on the station.

a) Airport runway and taxiway maps will be displayed
for ground control sectors. These will include the
airport layout(as would be drawn in an
architectural drawing) as well as names of all the
displayed runways and taxiways.

b) Jetroute maps will be displayed for sectors whose
control area does not extend to altitudes below
18,000 feet (FL 180).

c) Airway maps will be displayed for sectors whose
control area is below 18,000 feet. Both jetroute
and airway maps will include position of navaids and
waypoints in the displayed area and their published
identifiers (names), the jetroute or airway
structure, and lines indicating the sector
boundaries as well as the names of all adjacent
sectors.

Tabular data will be displayed at the bottom of the screen and
will include:

T R A N S P O R T A T ION L R

Page 5002/01/82

L A B 0 R A T 0 R YF L I G H T

CPDS for the ATC Subsystem Software

a) Preview area,
echoed.

where controller inputs will be

b) ATC message area, where script commands and other
ATC messages will be displayed.

c) ATC data area, where optional ATC data will be
displayed upon controller request.

LTTRANS PORTAT I ON

Page 5102/01/82

L A B 0 R A T 0 R YF L I G H T

CPDS for the ATC Subsystem Software

3.2.4 Pseudo-pilot (PPILOT)

The PPILOT process is made up of 5 major tasks: INITX,
CMDPRC, MBXDRV, INITPP, and DSPDRV (see figure 3.2.4-1). With
the exception of INITX which is executed only once for each run,
all PPILOT tasks are designed for "parallel" execution. Each of
these tasks is triggered by the occurrence of internal or
external events. The process will respond to the following
asynchronous events:

1) Reception of a mailbox message. This causes the
MBXDRV task to be invoked.

2) Reception of a character from the pseudo-pilot
station keyboard. This causes the CMDPRC to be
invoked.

3.2.4.1 Initialize Execution (INITX)

3.2.4.1.1 Inputs

The input to this function is the pseudo-pilot station
number with which the process is going to be associated.

3.2.4.1.2 Processing

This function is invoked once in the beginning of the run.
Its flowchart is shown in figure-3.2.4-2. It is responsible for
mapping to the global data sets (MAPGBL), assigning I/O channels
to the mailboxes (ASNMBX), initializing communications with the
pseudo-pilot station (DSPIM), initializing local data, and for
setting the appropriate AST routines so that the process is ready
to go into the normal execution phase. ASGMBX and DSPIM are
responsible for initializing the AST delivery for the mailbox
messages and the communications with the pseudo-pilot station
respectively. Prior to exiting INITX calls MBXSND to send a
ready message to SIMCON.

LTTRANS PORTAT I ON

Page 5202/01/82

L A B 0 R A T O R YF L I G H T

PPILOT

tAIh~f~tJP
A~r

FcVie 3.2. 9 - I

INIT 's
(PricoT---

3. 2.4 -2
Fe e CI

CPDS for the ATC Subsystem Software

3.2.4.1.3 Outputs

The ready message sent to SIMCON is the output of this
function.

3.2.4.2 Command Processor (CMDPRC)

3.2.4.2.1 Inputs

This function accepts inputs from the pseudo-pilot station
keyboard.

3.2.4.2.2 Processing

The command processor has two distinct subtasks: the
Command Editor and the Command interpreter. The Command Editor
(see figure 3.2.4-3a) is responsible for the character by
character processing of the pseudo-pilot inputs. The Command
Interpreter (see figure 3.2.4-3b) is responsible for parsing and
acting upon commands after the character signalling the end of
the command line (i.e. the carriage return) has been detected.

The character by character processing will allow a variety
of editing functions to be performed on the input string thus
making the pseudo-pilot's input task considerably easier.
Special function keys will be utilized to provide the
pseudo-pilot with a set of "quick action" commands. Twelve
function keys (one for each aircraft) will be reserved to allow
the pseudo-pilot quick aircraft identification for the purpose of
entering piloting commands without having to enter the aircraft
ID. Both these features will be useful when simulation
participants playing the role of pseudo-pilots are not
experienced typists.

The Command Editor distinguishes three different types of
characters:

1) Self-insert. These are normal input characters that
are inserted by the command editor in the input
buffer.

2) Control Characters. These are non-printable
characters that are interpreted as editing commands.
Typical editing commands will affect the active
"cursor position" allowing insertion and/or deletion

T R A N S P O R T A T ION L O

Page 5302/01/82

L A B 0 R A T O R YF L I G H T

CO Ht~~~LOI~v
STA QT

s~t'o Seitl]

f'%C6&&M

- L.

lz C-LW- 4

u V- I JI PUT C,4* A e §fc 1"pa

CHp-Ch-' Nf AA IbP H-b cAAI
IkTA(X- ?UFRV PLA

r-W

110

Co~jfl2OL
'NNCHP~9~AC1V~?

N. 'eT VI k~f ej Akv

Iurf tiz i TOOTF

Cur tP4 fa C- c4Af~IL1 7
CIktc&Sv 14 A 7t

AS&T

TL'LLR

LC3.2.A - 3 a

~~1

FC V 11 C

C~ 14 NPr~)

NO

put MEssAk4f 14

%ufu'T tufvfE

Apr 3 5-T
Atyi W CA

' ttAy-t

CPDS for the ATC Subsystem Software

of characters in the middle of the input string.
Two control characters of particular importance are
the carriage return (octal code 015) and the -Z
(octal code 032). The first signal the end of the
command line and cause the transfer of the input
buffer to the Command Interpreter for further
processing, while the second will cause the flushing
of the input buffer effectively cancelling the
command.

3) Quick action characters. These are really character
sequences of three or more characters that start
with a control character, typically the escape
character (octal code 033). They are treated like
one character however since they are generated by
the depression of a single key. These character
sequences will be sent to the Command Interpreter
immediately independent of the input buffer editing
function. Quick action commands can thus be entered
and executed when needed, even if the pseudo-pilot
is in the midst of entering a normal command.

The Command Editor executes at the AST level. When the
carriage return character is detected, the Command Editor wakes
the PPILOT process and sets the appropriate flag signalling that
input is available for the Command Interpreter which executes in
the normal level. While the Command Interpreter is processing
the command line, there is no active read request queued to the
pseudo-pilot keyboard. Input characters, if any is available
during that time, are however queued and each one will cause an
AST to be signalled when a new read request is queued to the
keyboard. The latter is done by the Command Interpreter when
processing of the input line is complete.

3.2.4.2.3 Outputs

A variety of outputs can be produced by this function
depending on the inputs.

T R A N S P O R T A T ION L O

Page 5402/01/82

L A B 0 R A T 0 R YF L I G H T

CPDS for the ATC Subsystem Software

3.2.4.3 Mailbox Driver (MBXDRV)

3.2.4.3.1 Inputs

The mailbox driver receives messages from other ATC
processes. The message format minimally contains the message
identification, sending process identification and the message
length in the first 8 bytes transmitted (2 bytes are allocated
for each item and 2 bytes are reserved for future use). The
format of the remainder of the message will depend on the message
type.

3.2.4.3.2 Processing

The Mailbox Driver manages the messages that are sent
to PPILOT from other ATC subsystem processes. Messages request
one of the following (see figure 3.2.4-4):

1) Pseudo-pilot display update. This request is sent
by the XTIMER function of the SIMCON process. The
mailbox driver responds by setting the NEWDSP flag
waking the process and requesting a new AST to be
signalled upon reception of a subsequent mailbox
message.

2) Script message. The mailbox driver puts the message
in the appropriate buffer and sets the NEWMSG flag
so that the message is processed by the display
driver.

3) Pseudo-pilot activation message. The mailbox driver
sets the NEWSCT flag and resets the PAUSE flag to
invoke the INITPP function.

4) Pseudo-pilot deactivation message. The mailbox
driver sets the PAUSE flag to suspend execution of
the PPILOT process.

5) Execution termination. This message is sent by the
CMDINT task of the SIMCON process. The EXIT flag is
set and the execution will terminate all other
pending tasks have completed execution. When this
request is received no further mailbox messages are
read.

T R A N S P O R T A T ION L O

Page 5502/01/82

L A B 0 R A T 0 R YF L I G H T

3..2. 4-4

MxO R.V

"r, i 0,, k r-t

CPDS for the ATC Subsystem Software

3.2.4.3.3 Outputs

MBXDRV sets appropriate flags when necessary and puts the
received messages in the input buffers of various functions that
will be invoked for their further processing.

3.2.4.4 Pseudo-pilot Initialization (INITSC)

3.2.4.4.1 Inputs

The inputs to this function are:

1) The PPILOT process specific data prepared by the
CMDINT function of SIMCON.

2) The aircraft under the control of the associated ATC
sector.

3.2.4.4.2 Processing

This function is invoked following a reception of a mailbox
message sent by SIMCON requesting the association of the
pseudo-pilot to aircraft in a newly initialized ATC sector. The
top level data, including the sector's name and frequency,
necessary for the initialization, have already been set by SIMCON
in the global data base.

INITPP is responsible for determining which aircraft are
controlled by the ATC sector in question, and making the
association of these aircraft to the PPILOT process. SCREEN data
for these aircraft are also initialized by this function.
Finally a mailbox message is sent to the SIMCON process to advise
that the process has been successfully initialized.

3.2.4.4.3 Outputs

The pseudo-pilot display database is initialized to reflect
the new aircraft under the pseudo-pilot's control authority.

T R A N S P O R T A T ION LA

02/01/82 Page 56

L A B 0 R A T 0 R YF L I G H T

02/01/82 CPDS for the ATC Subsystem Software Page 57

3.2.4.5 Display Driver (DSPDRV)

3.2.4.5.1 Inputs

The display driver takes as inputs the state of all the
aircraft under the pseudo-pilot's control authority. It also
processes script messages sent to the pseudo-pilot.

3.2.4.5.2 Processing

The display driver is responsible for updating the
information on the pseudo-pilot's display screen. It is composed
of two subfunctions: INITD, and ALPHAD. INITD is responsible
for initializing the display for each pseudo-pilot. It generates
all the parts of the display that will not change at all. This
includes setting up scrolling regions within the screen. each of
which will contain data for one aircraft. ALPHAD is invoked by
the .SIMCON process through the normal timer loop and is
responsible for updating the state information for all the
aircraft controlled by the process.

3.2.4.5.3 Outputs

The pseudo-pilot display has 24 lines, each containing 80
characters. The display will be divided into 4 sections:

1) Pseudo-aircraft data area (lines 1-12). This area
is further subdivided into 12 "aircraft slots", one
for each aircraft under the pseudo-pilot's control
authority. In each aircraft slot data pertaining to
a single aircraft are displayed. These include:

a) Aircraft identification,
b) indicated altitude and altitude clearance,
c) indicated and corrected airspeed,
d) indicated heading,
e) bearing and range from the next waypoint along

the aircraft flight plan.

2) ATC message area (lines 14-19). This area will
display script messages (usually aircraft commands)
addressed to the pseudo-pilot. Up to 6 messages
will be visible at any given time. If more messages
are available, they can be displayed by scrolling
the ATC message area.

T R A N S P O R T A T ION L OL A B O R A T 0 R YF L I G H T

CPDS for the ATC Subsystem Software

3) Preview area (line 21). This area will be used for
echoing the pseudo-pilot inputs.

4) Computer response area (lines 22-23). This area
will be reserved for messages from the computer
regarding the input line. The messages will usually
be due to use of illegal or undefined commands, or
to illegal command syntax.

T R A N S P O R T A T ION L O

Page 5802/01/82

L A B 0 R A T 0 R YF L I G H T

CPDS for the ATC Subsystem Software

3.3 Special Requirements

3.3.1 Expandability

The ATCSIM CPCI is going to be part of an experimental
facility. It is therefore expected that a variety of additional
capabilities will be needed in the future. Some have been
anticpated (e.g. digital data link to the advanced cockpit,
addition of more air traffic control and-pseudo-pilot stations,
etc.). Others, however, are sure to arise depending on the
future use patterns of the facility for research and
experimentation. It has been a major goal from the very
beginning of the software design to maintain the flexibility
required in order to allow the system to grow.

To insure correct and easily identifiable program logic, a

top-down approach to software development was adopted. Composite
design techniques were used to produce a system consisting of
highly independent functional parts (in the adopted terminology
CPC's functions and CPM's) interconnected through clearly defined
interfaces and performing clearly defined functions. This will
allow modifying the existing functions, adding functions to a
particular CPC, or adding new CPC's, to be done with minimal
changes in other software components. As an example, advanced
terminal area functions, such as runway scheduling and flight
plan generation, could be added in the future as a totally new
CPC.

Current memory and CPU availbility on the VAX-11/750
computer will allow a 50% increase in the data and computational
requirements before the capabilities of the ATC computer are
seriously stressed. On the other hand, the system in its current
configuration will be operating very close to the capacity of the
Graphic-7 display controller. Further upgrading of the ATC
display capabilities will almost certainly require a second
Graphic-7 controller.

3.3.2 Portability

Coding of the ATCSM CPCI will be done in standard ANS177
FORTRAN. This fact should greatly enhance the portability of the
software. It is, however, unrealistic to expect any large
software system, and especially one designed for real-time
operation, to be totally independent of the hardware environment
on which it was designed to operate. The most important hardware
dependencies of the ATCSIM CPCI are listed in the following
section.

T R A N S P O R T A T ION L O

Page 5902/01/82

L A B O R A T 0 R YF L I G H T

CPDS for the ATC Subsystem Software

In order to maintain the maximum hardware independence, the
code which is not transportable will be clearly identified and,
whenever possible, isolated. Identification will be in the form
of comments in the source code itself. An appropriate note will
also be included in the documentation of each hardware dependent
module. Isolating hardware dependent code will be achieved by
making callable modules out of such code. This will be done
whenever the same or similar hardware dependent operations are
executed by various software components. The queued I/O
operations, used by almost all software components, are a good
candidate for isolation.

The final result will be that, even though the CPCI will not
be transferable immediatelly to other hardware environments, the
required changes will be concentrated in relatively few parts of
the code and will be easily identified.

3.3.3 Machine/Hadware Dependencies

The following is a list of hardware dependencies for the
ATCSIM CPCI:

1) The software driving the ATC displays will be
specific to the SANDERS Graphic-7 display
controller.

2) The pseudo-pilot displays will be dependent on the
characteristics of the TI-940 video terminal insofar
as the cursor positioning and setting of other
display characteristics require control sequences
that are not part of the existing ANSI standard for
video terminals.

3) All queued I/O operations will be dependent on the
VAX/VMS operating system.

4) The timing of the simulation will be dependent on
the VAX/VMS operating system.

5) The management of shared (global) data will be
dependent on the VAX/VMS operating system.

TIGATTRANSPORTATION LABORATORY

Page 6002/01/82

F L I G H T

CPDS for the ATC Subsystem Software

3.4 Human Performance

There are no strict requirements for the responce time or
any other aspect of the system operators' performance. Air
traffic controller and pseudo-pilot positions can be filled by
personnel that has no prior experience with controlling traffic
or navigating an aircraft. The level of competency for the
operators will, by and large, be reflected by the conversation
carried over the audio loops rather than by the operation of the
hardware available to them. Generally, the air traffic
controllers and the speudo-pilots should be familiar with the
available commands and the capabilities provided to them by the
system. Most importantly however, they should be familiar with
the ATC terminology and the "jargon" used by pilots and
controllers over the audio communications channels.

T R A N S P O R T A T ION L O

Page 6102/01/82

L A B 0 R A T 0 R YF L I G H T

CPDS for the ATC Subsys'em Software

3.5 Data Base Requirements

This section describes 'the database required for the ATC
subsystem. With few exceptions all major data required by the
ATC subsystem will reside in global sections which are shared by
all ATC subsystem processes. This allows processes to share data
without imposing extensive I/O requirements among processes.
There is one major requirement imposed by the use of global
sections. The data in each global section have to be contiguous
and the section should be page aligned. The data is made
contiguous by assigning all tables (arrays) in each section to a
COMMON (in the FORTRAN- meaning of the word) block. By page
alignment we mean that the starting address of each common block
has to be on a page boundary. In the VAX/VMS operating system a
page is a memory unit consisting of 512 bytes. The starting
address of all global sections has to be a multiple of 512 (i.e.
its last 9 binary digits have to be zero). Each such COMMON
block can be page aligned by the VAX Linker during the linking of
each ATC subsystem process. Command procedures that will be
developed to link each ATC subsystem process will also include
the required syntax to achieve the alignment of the global
sections.

The global data is divided into groups each containing
related information:

1) Process Data contain information required by SIMCON
to control and monitor the operation of various
process functions as well as data specific to each
process that SIMCON must also have access to. The
former include process ID, process name, execution
priorities (current and default), status and
privilege flags, CPU usage statistics, etc. The
latter vary depending on the process in question.
POSGEN maintains information on the number of
aircraft in the system, the current simulation time,
random number seeds used by various functions, etc.
SECTOR specific data include the sector name,
pointers to data defining the sector boundaries,
sector audio frequency, etc. PPILOT specific data
include the pointer to the sector controlling the
pseudo-aircraft represented by the process, etc.

2) Dynamic data consist of aircraft datasets and radar
datasets. Radar datasets contain surveillance
information provided by each radar in the simulated
area. The data include azimuth and range
information, as well as tracking information (when a
tracker is incorporated in the surveillance model.
Aircraft datasets contain pertinent information on

T R A N S P O R T A T ION L O

02/01/82 Page 62

F L I G H T L A B 0 R A T O R Y

CPDS for the ATC Subsystem Software

active aircraft in the simulation including: (i)
Aircraft ID data such as aircraft type, flight
number, airline name, and other such data typically
found in the flight strip as well as pointers to the
SECTOR and PPILOT processes controlling the
aircraft, and pointers to the aircraft's audio
disguiser parameters, (ii) Aircraft state data such
as position, altitude, airspeed, and similar
information describing the aircraft's instantaneous
state, (iii) Aircraft command data describing the
clearances that the aircraft received from the air
traffic controller and the commands the pseudo-pilot
has initiated, Aircraft scheduling and flight plan
data describe the scheduled time to take-off or land
at an airport (if the approach and departure control
sectors are active, and the IFR flight plan
clearance as received by the aircraft with possible
clearance updates that have been made enroute.

3) Static data consist of reference information which
describes the simulation environment and remains
unchanged throughout the run. This group includes
data describing the simulation airspace (control
centers, sector boundaries, names, and frequencies,
location of airports, navigational aids, and radars,
the characteristics of the pseudo-aircraft
simulated, traffic levels at various sectors, etc.).
Static data is very extensive and by necessity
cannot all reside in memory at any given time.
Sector data, for example, are read in at sector
initialization time and remain in memory while the
sector is active. Similar procedures are used for
navigational aids and other large datasets.

4) Screen data consist of data especially formatted for
display on the PPILOT video screen or alphanumeric
data displayed on the air traffic controller's radar
screen. This group contains some information found
elsewhere in the simulation database. Here however
the information is in a format suitable for output.
Even though the procedure requires additional
computer memory it is adopted since it results in
considerable savings in CPU time.

5) Script data include information necessary to
activate and control the script. The list of
significant events is shared by all ATC processes.
Each however has a separate list pointing to the
events in the list (if any) it is responsible for
monitoring.

T R A N S P O R T A T ION L O

Page 6302/01/82

L A B 0 R A T 0 R YF L I G H T

CPDS for the ATC Subsystem Software.

Global data are automatically saved at the end of the run by the
VMS operating system.

3.5.1 Sources and Types of Data Base Inputs

The following is a list of files that contain data required
by the ATC subsystem:

1) PROCESS.DAT

2) STATIC.DAT

3) DYNAMIC.DAT

4) SCRIPT.DAT

5) NODES.DAT

This file contains raw data pertaining to all
processes in the ATC subsystem. The data in
this file are processed by module PRCIM and its
subordinate modules into table PROCESS. This
is a fixed length, formatted, readonly file and
occupies approximately one block of disk
storage.

This file contains raw data controlling the
processing of the static tables of the ATC
subsystem. Its contents are processed by
module STAIM into table INCSTA. This is a
fixed length, formatted readonly file and
occupies one block of disk storage.

This file contains raw data controlling the
processing of the dynamic tables of the ATC
subsystem. Its contents are processed by
module DYNIM into table INCDYN. This is a
fixed length, formatted readonly file and
occupies one block of disk storage.

This file contains raw data defining the script
which will control the ATC subsystem execution.
Its contents are processed by SCRIPT and its
subordinate modules during the real time run
into the event list tables of the process
appropriate to monitor each event. Each
process in the ATC subsystem has its own event
list table. This is a random access read and
write file. Its length will vary from one run
to the next. The file will be constructed
prior to the real time run by the script
generation software and can be augmented during
the run by script directives entered in real
time by the experimenter.

This file contains raw data defining all the
published waypoints in the airspace of
interest. Ultimately this file will contain
all the published waypoints in the continental

T R A N S P O R T A T ION L O

Page 6402/01/8?

L A B O R A T 0 R YF L I G H T

CPDS for the ATC Subsystem Software

6) ATTRIB.DAT

7) WIND.DAT

8) ALNAME.DAT

9) ACDESC.DAT

10) DYNAM.DAT

US. This is a formidable task that should be
accomplished over a period of several years.
The best approach (other than using existing
waypoint tables, if such are available) will be
to start with a relatively small region (e.g.
the state of California) and adding regions as
they are needed for specific experiments. This
is a fixed length readonly file and will
ultimately be very large. At some point off
line software should be developed to prepare a
smaller file from the master which will contain
only waypoints in the region of interest for
each particular experiment. The contents of
this file are processed by module NODEIM of
POSGEN and SECTOR into their respective NODES
tables, during the real time run.

This file contains raw data pertaining to the
attributes of the various aircraft types that
are used in the simulation. This is a fixed
length, formatted, readonly file. It occupies
2 blocks of disk storage. Its contents are
processed by module ATTRIM into table ATTRIB.

This file contains raw data pertaining to the
weather conditions in various simulated regions
in the simulation. This is a fixed length,
formatted, readonly file. It occupies 2 blocks
of disk storage. Its contents are processed by
module WINDIM into table WIND.

This file contains raw data pertaining to the
attributes of the various airlines that are
used in the simulation. This is a fixed
length, formatted, readonly file. It occupies
2 blocks of disk storage. Its contents are
processed by module ALNMIM into table ALNAME.

This file contains raw data associating
aircraft makes (e.g. B747) to aircraft types
in terms of performance. This is a fixed
length, formatted, readonly file. It occupies
2 blocks of disk storage. Its contents are
processed by module ACDIM into table ACDESC.

Thi's file contains raw data pertaining to the
performance of the various aircraft types that
are used in the simulation. This is a fixed
length, formatted, readonly file. It occupies
2 blocks of disk storage. Its contents are
processed by module ACDYIM into table DYNAM.

T R A N S P O R T A T ION L O

Page 6502/01/82

L A B O R A T 0 R YF L I G H T

CPDS for the ATC Subsystem Software

11) SOURCE.DAT

12) FIXES.DAT

13) NAVDIM.DAT

14) RADAR.DAT

15) ACSEP.DAT

13) SECTOR.DAT

This file contains raw data describing the
sources that generate aircraft in each sector.
This data is used only if pseudo-aircraft are
generated stochastically. The sources are
airports generating arrivals or departures if
the sector is a terminal area. For enroute
sectors the sources are dummy points and
generate through traffic. This is a fixed
record length, formatted, readonly file. Its
length will depend on the number of sectors
that will be simulated in a single run.
Sources appropriate to each sector are
activated upon sector initialization. This is
done by module SRCIM. Active sources are put
in table SOURCE.

This file contains raw data describing the
fixes at which new pseudo-aircraft are
generated. The data in this file are processed
by SRCIM along with source data and are stored
in table FIXES.

This file contains raw data describing the
navigational aids (VORTAC's) in the simulated
regions. This is a fixed length, formatted,
readonly file. The comments for the NODES.DAT
(see item 5 above) apply to this file also.
The data in this file are processed by module
NAVDIM into table NAVAID.

This file contains raw data describing
surveillance radars in the simulated regions.
This is a fixed length, formatted, readonly
file. The comments for the NODES.DAT (see item
5 above) apply to this file also. The data in
this file are processed by module SSDIM into
table RADAR.

This file contains raw data describing the
required separations between aircraft in the
simulation. This is a fixed length, formatted,
readonly file. The data in this file are
processed by module ACSRIM into tables AIRAIR,
ARRARR, ARRDEP, DEPARR and DEPDEP.

This file contains raw data describing the
various sectors that are going to be simulated
during a run. This is a fixed length,
formatted, readonly file. The comments for the
NODES.DAT (see item 5 above) apply to this file
also. The data in this file are processed by
function INITSC of the SECTOR process.

T R A N S P O R T A T ION L O

Page 6602/01/82

L A B 0 R A T 0 R YF L I G H T

02/01/82 ' CPDS for the ATC Subsystem Software - Page 67

3.5.2 Internal Tables and Parameters

The detailed variable and parameter definitions and their
storage allocation are included in the program listings which
have been supplied.

T R A N S P O R T A T ION A OL A B 0 R A T 0 R YF L I G H T

CPDS for the ATC Subsystem Software

3.6 Externally Developed Software

The ATCSIM CPCI requires only the standard VAX/VMS software
provided by the vendor with the VAX-11/750 computer.

T R A N S P O R T A T ON LAT

Page 6802/01/82

L A B 0 R A T 0 R YF L I G H T

CPDS for the ATC Subsystem Software

4.0 QUALITY ASSURANCE PROVISIONS

TBD

T R A N S P O R T A T ION LO

02/01/82 Page 69

L A B 0 R A T O R YF L I G H T

