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CHAPTER 1

INTRODUCTION

The threat of midair collisions is one of the most serious problems

facing the air traffic control system and has been studied by many

researchers. The gas model is one of the models which describe the

expected frequency of midair collisions. In this paper, the gas model

which has been used, so far, to deal only with simple cases is extended

to a generalized form, and some special types of collision models, such

as the overtaking model, are deduced from this generalized model. The

effects of the probability distributions of aircraft direction and

altitude on the frequency of collisions are also analyzed.

The results in this paper can be applied to evaluate the frequency

of conflicts as well as that of collisions. In this paper, an aircraft

is represented as a circular cylinder, and a collision is described as

an overlap of two cylinders. If the size of the cylinder is expanded

to the volume of the protected airspace of an aircraft, an overlap of

two cylinders means a conflict. Therefore, with a slight modification,

the results can be used to analyze the frequency of conflicts.

This flexibility gives the models of this paper an important

potential for application to a future air traffic control system. The

FAA is currently developing a new type of air traffic control system

called AERA (automated en route air traffic control). AERA is expected

to reduce the workload of human controllers and expand the capacity of

airspace using new computer systems and better communication links. When

this system is fully implemented, aircraft will be able to fly under

fewer restrictions. However, if many aircraft are flying on random routes,



the frequency of potential conflicts the computer system should handle

becomes high. Therefore, the frequency of potential conflicts under

various circumstances should be calculated in order to estimate the

computer workload before full implementation of the system. The models

developed in this paper may be helpful in this evaluation.

The consequences of actual collisions are, of course, grave.

Fortunately, the average number of such collisions per year has remained

relatively small. According to an FAA Report (Report of the FAA Task

Force on Aircraft Separation Assurance, Jan. 1979), the average number-

of midair collisions reported to NTSB from 1974 through 1978 was 33 per

year. Most midair collisions have occurred between small general aviation

aircraft operating under VFR. However, the report also states that there

were 227 near midair collision reports in 1975 alone, and that air

carriers were involved in 68 of these cases. (According to the report,

a near midair collision is an incident which would probably have resulted

in a collision if no action had been taken by either pilot. Closest

proximity of less than 500 ft would usually be required for a near midair

collision report.) Although the number of conflicts is not available

in the report, it is clearly far greater than the number of near midair

collisions considering the difference of airspace volumes involved.

The outline of this thesis is as follows. In Chapter 2, we present

an overview of two aircraft collision models, the Reich model and the

gas model, which have been the most important ones in this field. In

Chapter 3, we develop some extensions of the gas model including a

generalized two-dimensional gas model, an overtaking model and a three-

dimensional gas model. In Chapter 4, we develop an aircraft collision

model which does not assume the uniformity of aircraft distribution.

The conclusions of this thesis are summarized in Chapter 5.



CHAPTER 2

AIRCRAFT COLLISION MODELS

In this chapter, an overview of the Reich model is first presented,

and then the gas model is briefly described. These models have been

the most important ones in estimating collision risks.

2.1 The Reich Model

Many models have been developed to estimate aircraft collision

rates under various circumstances. Probably the best-known among them

is the Reich model which was employed to assess the collision risk to

flights over the North Atlantic Ocean as part of efforts to reduce the

lateral separation between North Atlantic air routes.2 ,3

In the Reich model, an aircraft is represented by a box,, and a

collision is described as an overlap of two boxes. The occurrence of

this overlap is equivalent to the event that a point enters a box which

has dimensions twice as large as those of the original box.

The collision rate is expressed as

- 1,Xt FY -t- Yy jz,( (2-1)

where

is the expected frequency per unit of time with which the along-

track separation shrinks to less than .x.

and E are similarly defined.

is the probability that the along-track separation is less

than K at a random instant of time.

Fand ? are similarly defined.
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If we are calculating the collision rate between a pair of aircraft

assigned to the same flight altitude and flying on parallel flight tracks

separated by the lateral separation S Y , (2-1) becomes

FX Py (SY) P' (0) ? {() ( y) -yO ( )ZP(0) (2-2)

where

Py(s,) is the probability that the across-track separation between
a pair of aircraft, nominally spaced at the lateral standard

seperation S, , is less- than 1y .

j(0) is the probability that the across-track separation between

a pair of aircraft, assigned to the same track, is less than

(s) is the expected frequency per unit of time with which the

across-track separation between a pair of aircraft, nominally

spaced at the lateral standard separation , shrinks to

less than Xy .

O') is the expected frequency per unit of time with which the across-

track separation between a pdir of aircraft, assigned to the

same track, shrinks to less than

P (0) and ( are similarly defined for the vertical

dimension.

If aircraft on the same track are spaced with the along-track

separation ,

5x
and,

Fv (2-3)



where

X is the relative along-track velocity of a pair of aircraft

E,(o) and FX(O) depend upon the vertical dynamics and vertical

station keeping of aircraft. Reich presented numerical examples for

(D) and (0) in his paper. They are

0z() = 40/ ~hr

0) = 0.26

can be calculated if the probability distribution for

the lateral deviation of aircraft from the center line of the track is

known.

_PY(Y)(2-4)

where

f(y) is the probability distribution of lateral deviation of

aircraft from the center line of the track.

T(y) is estimated through the first Laplacian distribution.

Fz O V-2(2-5)

where

G\ is the standard devaition, and is the mean of lateral

deviation.

F(S ) is estimated in Reich's paper as



Ty (Sy) = EC Py F(Sy) (2-6)

where

is the relative across-track velocity of a pair of aircraft.

This completes a brief mathematical description of the Reich model.

This model was employed to estimate the collision risk to flights over

the North Atlantic Ocean in the 1960's. The number of flights over the

North Atlantic Ocean increased dramatically in the 1950's and the early

1960's, and the traffic became seriously congested by the mid-1960's.

The lateral separation between the center lines of adjacent air routes

over the North Atlantic Ocean was 120 n.m. at that time, and the airlines

suggested thatthe lateral separation be lowered to 90 n.m.. The FAA

agreed with the suggestion, and ICAO adopted it. However, airline

pilots were strongly against it, and the separation standard tentatively

returned to the 120n.m. standard as a result of a hearing. Then the

study of the collision risk over the North Atlantic Ocean started. First

data for lateral deviation from the center line of the air route were

collected through the use of radars on land and on ships. Then the

collision risk was determined using the Reich model. The conclusion

was that the lateral collision risk at 90n.m. lateral separation was

about six times a great as at 120 n.m. separation. It also became obvious

that the. lateral collision risk far exceeded the risk of collisipn with

one's vertical and longitudinal neighbors. The final solution to this

problem was what is called staggered separation which is shown in

Figure 2-2,

The Reich model was originally developed to estimated the collision
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risk over the ocean. Some more recent studies have attempted to estimate

the collision risk to continental flights. Polhemus and Livingston

collected data for lateral deviations of aircraft flying in the VOR

airways system.4 They concluded that the deviation distribution varies

considerably with position with respect to the VOR. Based on this data,

Polhemus calculated the collision rate of aircraft flying on two parallel

air tracks within the VOR system.5

2.2 The Gas Model

Another well-known collision model is the gas model. The reason

for this name is that its basic concept is essentially the same as that

of a gas molecular collision model. A brief description of the two

dimensional gas model is given below, and the generalized gas model will

be developed in Chapter 3.

The two-dimensional gas model assumes that N aircraft operate in

an area A. Each aircraft i, travels in a straight line with velocity

Vi, and direction distributed uniformly between 0 and 27T. Aircraft

are uniformly and independently positioned over A.

The magnitude of the relative velocity of two aircraft i and j, is

Vr; (vvi ik~() (2-7)

where

Vrii = relative velocity of two aircraft i and j.

(3 = relative directional angle of the two aircraft.

If an aircraft is represented as a disk with diameter g, the

probability of a collision between i and j during a period of time t

is given by



El

2-5 Vr;ij (2-8)
A

If E\Vr is the expected relative velocity, the expected number

of collisions during a period of time t is

H2  2g E~y) t
2 A E(2-9)z A

In a three-dimensional problem, (2-9) gives the number of horizontal

overlaps during a period of time t assuming that aircraft are flying

only horizontally. If the traffic density is uniform in an altitude layer

H thick, and an aircraft has the vertical dimension h, then the three-

dimensional collision rate can be obtained by multiplying (2-9) by H-
This model has been used to estimate the collision rate in terminal

area. 6 ,7  In reference 7, Flanagan and Willis developed a three-dimensional

gas model which allowed aircraft to have a vertical velocity component

as well. However, this model assumed that directions of aircraft velocity

are randomly distributed over three-dimensional angle. This assumption

is obviously unrealistic because airplanes do not have the capability

to fly vertically like helicopters.

The gas model described above can deal only with simple cases. In

the next chapter, the gas model is extended to a generalized form, and

the probability distributions of aircraft direction and altitude are

analyzed in connection with the collision rate.



CHAPTER 3

SOME EXTENSIONS OF THE GAS MODEL

Some extensions of the gas model are presented in this chapter.

First, a generalized two-dimensional gas model is developed. Then, the

definition of expected relative velocity is examined, and some special

cases are analyzed. The overtaking problem is briefly discussed as a

special case of collision. The horizontal overlap rate and the proba-

bility of vertical overlap are also discussed. Finally, a three-

dimensional gas model is developed.

3.1 Generalized Two-Dimensional Gas Model

This model assumes that N aircraft are flying in the volume with

horizontal area A and height H (Figure 3-1).

Horizontally, aircraft are uniformly and independently distributed,

and vertically, they are independently but not necessarily uniformly

distributed. The horizontal distribution and the vertical distribution

are independent of each other. All the distributions in this model are

time-invariant. The assumption that the density of aircraft is time-.

invariant can be justified considering that the collision rate is small

and so is the rate of aircraft loss.

Each aircraft travels only horizontally. It is not assumed that

each aircraft travels only in a straight line. No collision avoidance

maneuver is taken, however. The assumption of no collision avoidance

maneuver is obviously not realistic, and leads to an overestimated

collision rate. However, as explained in Chapter 1, with a slight

modification, the rate of conflicts can be calculated under the same
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assumption, and that rate may be helpful in estimating the workload of

pilots and air traffic controllers in avoiding conflicts. Therefore, the

result with this assumption may be useful both in obtaining a conservative

estimate of the collision rate and in estimating the workload of pilots

and air traffic controllers in preventing collisions.

Each aircraft is represented as a right circular cylinder, shown

in Figure 3-2. A collision is described as an overlap of two cylinders.

The occurrence of this overlap is equivalent to the event that a point

representing a center of one aircraft enters the cylinder of another

aircraft which is twice in length and eight times in volume as large

as the original aircraft (Figure 3-3).

The collision rate is expressed as follows.

C TH XP (3-1)

where

= the rate of collisions per unit of time

= the rate of horizontal overlap per unit of time

= probability that two aircraft overlap vertically given they

overlap horizontally

= P (vertical overlap/horizontal overlap)

Horizontal overlap means that, neglecting the vertical axis, the

horizontal coordinate of the center of one aircraft enters within a

range of g from the horizontal coordinate of the center of another

aircraft (Figure 3-4). Vertical overlap is similarly defined.

Let us consider P, first.

Because of independence of the horizontal and vertical distribution
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of aircraft,

Pv VertieW\ overtoA jor tw Aircrat) (3-2)

Let (Z) be the probability density function for the altitude of

aircraft. f )dz is the probability that an aircraft is

flying at an altitude between Z and Z - Then,

4tHiv

Py =I du dV C; ~c~d (3-3)

where G is the altitude of the lowest surface of the airspace under

consideration.

Let us calculate

H

0

Crttj1(i

for the uniform (Z)

Otherw/ise,

2h H - hz

If H >> h, then

.2h 1-1 (3-4)

This shows that if aircraft are uniformly distributed over an altitude

layer H, with H much greater than the aircraft height h, the collision

rate is approximately

Next, let us consider the rate of horizontal overlap Tl . As

explained earlier, a horizontal overlap takes place when the center of an

T-H X;!
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aircraft enters within a range of g from the center of another aircraft.

Let E(\r) be the expected relative velocity. Then, during a very

short period of time dt , each aircraft encounters .2.1 (Vr)cit f
overlaps on the average, where I is the horizontal density of

aircraft.

Since is N/A and there are N aircraft, the total number of

horizontal overlaps in dt is

Ix six (2 E(r tX

A (3-5)

The reason for the multiplier 1/2 in (3-5) is that each overlap

would otherwise be counted twice. Then,

H F(3-6)A
From (3-1), (3-3) and (3-6), the collision rate is

C N- _ _ _ E(rC-A EVr) ) (3-7)

where

C = collision rate per unit of time

A = horizontal area of the airspace under consideration

G = altitude of the lowest surface of the airspace

G + H = altitude of the highest surface of the airspace

N number of aircraft in the airspace

g = horizontal dimension of aircraft

h = vertical dimension of aircraft



(, NO= expected relative velocity

= probability density functipn of altitude of aircraft

If aircraft are uniformly distributed over altitude and

(3-8)

Below and in Section 3.3, we shall calculate EN ) for some

special cases. At this point, we shall assume that each aircraft travels

in a straight line. This is to simplify the calculation of E(Vr) .
Suppose then that two aircraft are flying at velocities V, and \/ '

Then, the relative velocity is

V V,Vj- 2 V Vz t-0 ) (3-9)

where

/y. = relative velocity

(S = relative directional angle of two aircraft

Then,

v,4v-y)V, V((3) f (v)vA)c3 AVAvy 2  (3-lo)

where

= probability density function of

v) = probability density function of V

If directions of aircraft velocity are uniformly distributed between
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0 and 27(, and the magnitude of velocity is constant,

Z TG O 1 '<2 7L

Then,

E (Vr) = (v"- 1v' cosp) dI

.~ALVD

[Numerical Example]

Twenty aircraft are flying in the airspace shown in Fiqure 3-7.

Each aircraft is flying horizontally at 300 kt in a random direction.

Aircraft are represented by a circular cylinder with diameter of 150 ft.

and thickness of 50 ft. Aircraft are uniformly and independently

distributed in the airspace both horizontally and vertically.

-4
(V) Vo

=382 kt

2h

H

.I

I00

A
=0.31n/

(3-11)

P .
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This may seem surprisingly large. This is because the expected

relative velocity is large in this case.

3.2 Expected Relative Velocity

A brief discussion of the meaning of "expected relative velocity" will

be useful at this stage. It seems simple at first to define the expected

relative velocity. However, the concept creates some difficulty in

estimating the collision rate in the gas model. For simplicity, only

two-dimensional problems are dealt with in this section.

It is sometimes maintained not only in the field of air traffic

control6 but also in the field of statistical mechanics8 that the collision

rate is given by the following formula

N(N- I) 2$E1 (Vr)
C . A (3-12)

2 A

where E r) is the expected relative velocity taken over all

possible pairs of aircraft. This equation is different from (3-6), which

uses as its first term. If we are dealing with molecular

collisions, N is a very large number and the difference between the

two formulae is very small. Therefore, there is no practical problem

in that field. But, in the case of aircraft collisions, the difference

may be of some significance as the density of aircraft is usually low.

We shall discuss the difference between the two formulae below.

The argument for (3-12) goes as follows. The probability that one



El _______

pair of aircraft will meet each other during a very short period of

time dt is 2a E'Cv) ct . Since there are N aircraft,

there are KI(N- I A possible pairs of aircraft. Then, the expected
2 . _____- 2~.'61t )dt

number of collisions during dt is A

Therefore, the collision rate is given by (3-12).

Let us assume, at first, that (3-12) gives the correct collision

rate.

Consider the situation shown in Figure 3-8. Suppose that there are

M aircraft in the large area (10 1 x l0Q.) and the probability

distribution for the position of each aircraft is uniform over the area.

The expected number of aircraft in the small area (kxk) is . Let us

calculate the two collision rates in the large area and in the small area.

According to (3-12), the collision rate in the large area L is given

by *

CL- M( -v)) (3-13)

Similarly, the collision rate in the small area is

S 2. (3-14)

Since the large area can be sub-divided into 100 small areas, CL should

be 100 times as large as S . However,

_ 00 v D__ _ i a '(W) (3-15)z 100ok
Then,

. $OC% (3-16)



This is a contradiction. The explanation for this contradiction lies

in the definition of the expected relative velocity (Vr)
In (3-13) and (3-14), it is implicitly assumed that E'(Vr) is the -

same in both areas. But E(\r) is a function of N if we are to

use (3-12).

E'(Vr) in (3-12) is the expected relative velocity taken over

all possible pairs of aircraft. Therefore, if the number of aircraft

changes, so does 'E(Vr) . In order to make this problem clear,

let us consider some examples.

Suppose that two'aircraft are flying in opposite directions at

speed V The probability distribution of their positions is uniform

over the area A, (Figure 3-9). The number of possible pairs is one,

and (v\/.) is l2fV . The collision rate is given by (3-12).

2 A,
4t Vo

Next, suppose that four aircraft are flying at speed "o in the

area . . Two of them are flying in the same direction, and the

other two are flying in the opposite direction. The probability

distribution of their positions is uniform over the area (Figure 3-10).

is defined as the expected relative velocity taken over

all possible pairs aircraft. Viewed from any one of the four aircraft,

two other aircraft are moving at speed 1V, and the other one is

at rest,
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2V6tVO + 4VO (3-18)
3 3

This value is different from E(Vy) in (3-17), although the

probability distribution of directions of velocity is the same in both

cases. The collision rate in this case is

N(N- 2a E'vt

.2 l

- - , - ( 3 -1 9 )
2ZAi A,

Therefore, the collision rate in the area : is twice as large as

the collision rate in the area A,,

These examples show that .'(Vy) , which is defined in (3-12)

as the expected relative velocity taken over all possible pairs of

aircraft, is a function of the number of aircraft. Next, the relation

between E(Vr) in (3-6) and V(Vr in (3-12) is analyzed,

and the mathematical expression for E'(/r) in terms of E() is

derived. is defined as follows .

E(v) ~ V -Vi \T( ) ) ddV (3-20)

where

= velocity vector of aircraft i

= probability density function of velocity vector

Let us calculate the average relative speed based on (3-20).

Suppose that there are N aircraft, and aircraft i has the velocity

vector \. . Then, the average relative velocity is

\ - \ (3-21)

MMNIMMIMIMMM



However, the average relative velocity taken over all possible pairs

of aircraft, which is defined as , is

- . (3-22)

Since - 0 ,(3-22) becomes

L

\ )(3-23)

Then,

- _ _ 

( 3 - 2 4 )

N -

Therefore, if the expected number of aircraft is N(N > 1), the

relation between f(V,') and is as follows.

N \/y) (3-25)

where

£(Vr) = expected relative velocity defined by (3-20)

= expected relative velocity taken over all possible

pairs of aircraft

Therefore, (3-6) and (3-12) used in this way give the same collision rate.

The reason for the difference between E(Vy.) and 5(/r) is that

when VV. is averaged over all pairs of aircraft, all pairs do not

include the pairs consisting of an aircraft paired with itself.

Let us examine the difference between and in the

examples shown in Figure 3-9 and 3-10. \ in Figure 3-9 is

tIr

whereas

V, in Figure 3-10 is , and V =



The collision rate in Figure 3-9 is

C = z Ai
laVO 41V,

This is the same as (3-17).

The collision rate in Figure 3-10 is

-N 2 W
Z A

2.Ai At

This is the same as (3-19).

These examples show that EL'(Vr) is a function of the expected

number of aircraft. If this fact is recognized; the formula

2N 2-a E'(v)
2 A offers no problem. However, this

fact has been overlooked in the past in using the formula, and it is

inconvenient to use E'(Vr) because F(V,) is a function of the

expected numbers of aircraft. Therefore, from now on the preferred

iN E(Vr)formula () A

N(04-1) .A ETVO )
2 A

rates in this paper.

3.3 Special Cases

will be used (and

1 not be used) to estimate collision

The gas model developed by Graham6 and Flanagan7 assumes that

directions of aircraft velocity are uniformly distributed between 0 and

(3-26)

(3-27)



21(,.[see also (3-11)]. However, this assumption is not necessarily a good

one because destinations of aircraft are not uniformly distributed.

In this section, the general formula for the collision rate for

non-uniform probability distributions of aircraft direction is developed,

and the collision rates for constant velocity (i.e., for when the magni-

tude of velocity is constant) are calculated for some special

distributions of aircraft direction. Some numerical examples for cases

in which the magnitude of velocities is a random variable are also given.

The general formula for the collision rate is given by (3-7).

C A7(Z) (3-7)

where

= directional angle of velocity of aircraft i

= magnitude of velocity of aircraft -i

- = probability density function of G

=probability density function of V/
The collision rate for any distribution of direction and magnitude of

aircraft velocity is given by (3-7) and (3-28).

We calculate first the collision rate for constant velocity (the

magnitude of aircraft velocity is constant).



Suppose that the magnitude of aircraft velocity is a constant

Then,

2 VO E( (96)2 (3-29)
0

E(vr) for some special probability density functions of

direction is tabulated in Table 3-1. It is assumed that horizontally

aircraft are Uniformly distributed. The corresponding collision rate

is given by (3-7). If positions of aircraft are uniformly distributed

over altitude and the height of aircraft is negligibly small compared

with the thickness of the altitude layer under consideration, the

corresponding collision rate is given by (3-8).

A (3-8)

For distributions other than the uniform vertical distribution,

the collision rates can be calculated numerically.

Table 3-1 shows the values of the expected relative velocities for

some interesting probability density functions of velocity direction.

For example, the third case in Table 3-1 is the one in which a fraction K

of aircraft are flying in the same direction, while the directions of

the other (1 - K) fraction are uniformly distributed over 0 and .27.

In the fourth case, aircraft are flying only in two directions.

Table 3-1 shows E(Vr) only for the cases when the magnitude of the

velocity is constant. If the magnitude of velocity is a random variable,

the integral of (3-28) can be calculated numerically.



Expected Relative Velocity

e~Lo

( ) vI = constant)Tabl e 3-1

00 e d*) S (0) is Ane Adtt ito-n



35

[Numerical Example]

We now illustrate these results through numerical examples: assume

that 20 aircraft are flying horizontally in the airspace shown in

Figure 3-7. Each aircraft is represented by a circular cylinder with a

diameter of 150 ft. and a thickness of 50 ft.

3.3.1 Example 1

Aircraft are uniformly distributed over altitude. All aircraft are

flying in the same direction and at the same velocity.

E (V ) = 0
C(~) 0
C ( colhsio, rcte) =0

3.3.2 Example 2 (Overtaking)

Aircraft are uniformly distributed over altitude. All aircraft are

flying in the same direction. Fifty percent of the aircraft are flying

at 250 kt, and 50% at 350 kt.

"E (Vr (, V -V, V2.),2f V (v)f y(v.) dy, d

x 2 (35--2 ) = gO kt-4

M*3 N(r)(rate -of horizontal overlaps) =
A

oo x =oo 0-. 04-3/hr

MMMWM IMMMIIMMMMIIIIWI IMINIA11HU I IIIAIIA 11,11MI, , 1161110M



V (probability of vertical overlap) 2.

I 0 0

2H
H

C (collision rate)

4.13 x \0~4 /r

= 1 collision/2,027 hours

(The overtaking problem can be treated as a special case of the

generalized collision problem. A brief discussion will be presented in

the next section.)

3.3.3 Example 3

Aircraft are uniformly distributed over altitude.

aircraft velocity are uniformly distributed over 0 a

Directions of

nd 2T% . Fifty

percent of the aircraft are flying at 250 kt, and 50% at 350 kt.

COs ()X tx (,v)r(v2.) dc a VdV 2

is relative directional angle of velocity)

1 4 x 2-0 I4-~ U
If

-4x 3S-

50 - l-x33py.)30 x Coys

= 389 (this integral is numerically calculated)

VE l ~- 4 0

X, x ?v

(V4i-V - V, V,

+ LX 2X 'X



A

1.10fx 3L x
to0

= 0.1%4

10o

3.84 xK 10 /h,

3.3.4 Example 4

Aircraft are uniformly distributed over altitude. Directions of

aircraft velocity are uniformly distributed over 0 and llL. Magnitudes

of aircraft velocity are uniformly distributed over 250 kt and 350 kt.

3Q 50 C v, 2S ."
0.vt

= 384 (this integral is numerically calculated)

N T. E(Vr)
A

(20)xc (IS )X384
100 x 100

FE NV)

\00 x
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3.3.5 Example 5

The probability distribution of aircraft altitude is triangular

as shown in Figure

Example 4.

\0,000

?V

3-11. The other assumptions remain the same as in

S.

10,000

\00

is the same as

~rzzcz

in Example 4.

5.05 x I( - /

~(z) P7 (dA av Az

/
7 5-

= T" x ?v
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3.4 Overtaking

The overtaking problem in which aircraft are flying on a single route

but not at the same velocity can be treated as a special case of the

generalized collision problem. Suppose that aircraft are flying on an

airway. For simplicity, the width of the airway is assumed to be zero.

Then, the collision rate is the same as the overtaking rate. In this

case, the expected relative velocity is

V, - Val ],) fy(%V 11Vic\/ (3-30)
V, V

Let us calculate the overtaking rate within the segment L of the

airway, assuming N aircraft are uniformly and independently distributed

over the segment.

~T =~E (v) (3-31)

where

T = overtaking rate within the segment L of the airway

N = expected number of aircraft within the segment L of the

airway

It should be noted that the probability density function of velocity

?,(V) is defined here in the domain of space. In other words,

if one aircraft is randomly picked up from the airspace at a certain

moment, the probability that its velocity is within V and V + dV

is given by ry(v) dv . If fy(V) is uniform between \y, and

V, (V , \,) , the expected number of aircraft with velocity range



between V, and \,+dV which enter the segment is less than the

expected number of aircraft with velocity range between Va-- dy and VZ
which enter the segment. Let ty(V) be the probability density

function for the velocity of each aircraft entering or departing the

segment. Let us consider the short portion VqO~t from the end of the

segment (Figure 3-12). The expected number of aircraft with velocity

range V and VtdaV in this portion is given by

X yJ - - Y , (vo) d v (3-32)

During the period of time dt, these aircraft will depart the

segment. Then, the expected total number of aircraft departing the

segment ...uring dt is given by

N a
akdt 7VS ayt(Yo)4VP (3-33)

where / is the expected number of aircraft entering or departing the

segment during one unit of time.

Since the expected number of aircraft with velocity range \/Q and

V 4V which pass the end of the segment during dt is given by

(3-32), Jy dt
v(v) dV

- t,(v)dv = d vlj~1

~-L V v(V) dl V

Y()(3-34)
T V rf yV i

Therefore, the overtaking rate in terms of t'V)is



T~ N( QV '(v)dv) . I V, ~. -- v (V)Vw\e cV-T~ - VX V (V,) jyVV) dV,d a 22L Vi v

IV(Vy_ vvd _, v2 (3-35)
2 , y V , ya

When the overtaking rate is calculated, we should recognize which

probability density.function is given. If 1y(v) is given, (3-30)

and (3-31) should be-used. On the other hand, (3-35) gives the overtaking

rate when I is employed. 1Oy(v) is defined in the domain of

space, whereas -1y(V) is defined in the domain of time. In order to

illustrate the result of this section, a numerical example is presented

below.

[Numerical Example]

The probability density function of velocity defined in the domain

of space, py(y) is uniform from 200 kt to 300 kt.

y = .00. V 300

0 otherwise

Aircraft are uniformly distributed along an airway, and the expected

number of aircraft is 1/10 n.m.

From (3-31), the overtaking rate within a 100 n.m.-segment of the

airway is

ago .3oo
-Fx-10-~j--0  -V. x xy

200 a.oo

:!1G. 1 /,,.



43

Next, the overtaking rate is calculated using (3-35).

v(v)

5
v ey(V)

V y (V)dV

V

90v xtoo

From (3-33),

K
00-+i: ~od

From (3-35),

00 300
IV,-V-21 V,

V V X2, 00 X dv, dv,
25,000

This value agrees with the value by (3-31).

3.5 Probability Density Function for the Direction of Aircraft Which

Maximizes the Collision Rate

Assuming that aircraft are flying horizontally and that the density

of aircraft is uniform, the probability density function which maximizes

the collision rate is the uniform probability density function between

0 and 27E . In other words, collisions happen most frequently when

(2-00. V 300)



destinations of aircraft are uniformly distributed, assuming the density

of aircraft is uniform. The proof of this statement is presented below.

Since the collision rate is proportional E(Vt/) , the

probability density function for aircraft direction which maximizes

E(V) gives the maximum collision rate.

Let 91

aircraft and

& and( .S

/ , be the directional angles of velocity of two

the angle between the two vectors (Figure 3-13).

and - () are the probability

is given by

1%(O ±~g)de *

density functions-for

S7 (3-36)

( L - (

For convenience of calculation,

~e)

J~

Then, ( )

1F' (Q)
Vr) is given in terms of

is also defined as follows

0&9 < IT
(3-37)

(3-38)

ro (0 ) by

T'O w3P1V(Vi) y(w £) dVdV.,

Let us examine Since (' has a cycle of ..TL ,

it can be expressed as a Fourier series.

01i

-E~)

(3-lo)

,

Ve ( ) -

(0)
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0 .6< 4TL

From (3-39) and (3-40),

(9) I . t
.7m

Then,

ItIL
(c ± ) 03Co's3

From (3-10) and (3-42).

(v,) &(V2)dVdIV

of

V V24v.vV, c -

Cos

( . ( Q ts n

where

(3-39)

2-TL

IM I

QO

\= 0,\2

(3-40)

(3-41)

(3-42)

E (VIr )
, v

)(0) Cos -n\6 dG

r(o) siY\ -no A19

(n, cos v9+6,si-n no)

271L
Op

FO (0)0(i )W

0 SO <176



tU (Q[ tQ )1 (VAPlvyo y e (3-43)
0

It can be shown that \ \s n ( is always

negative for any set of positive values of -n , \, OQA V The proof

is given in Appendix A. Then, E (Vr) is maximum when and

are zeroes for all n. This means that E(Vr) is maximum when

1e(e) = %:i
From (3-37) and (3-40),

( ~0 L ::.. .- (Cl0 t:5TYi) 0 9<.T,(-44)

If

(3-45)

This result may be contrary to our intuition. It would seem that

if 50% of aircraft were flying in the same direction and 50% in exactly

the opposite direction, the expected relative speed would be maximum.

This is not true, however, because among each 50% of the aircraft flying

in the same direction, the relative velocity is zero.



If the magnitude of velocity is constant V , the expected relative

velocity in this case is V0 , whereas the expected relative velocity

for the uniform distribution of direction is * Therefore, the

collision rate becomes maximum when directions of aircraft velocity are

uniformly distributed between 0 and 17 .

(NOTE) If directions of aircraft are discrete, the probability density

function of %(p) consists of impulses. For example, when 50% of

aircraft are flying in the direction 0=0 and 50% in the direction

9 = L , the probability density function consists of one impulse at

= 0 and the other at 9 = T . In this case, f(&) cannot be

expressed as a Fourier series. However, eveni if such cases are

considered, the uniform continuous (not discete) probability distri-

bution maximizes the expected relative velocity. In other words, the

uniform probability distribution (the probability density function is

between 0 and D76) maximizes the expected relative velocity

for any continuous and discrete probability distributions. The proof is

given in Appendix B.

3.6 Probability of Vertical Overlap

The collision rate is given by (3-1) and (3-2).

CH (3-1)

where

C = collision rate

FH = rate of horizontal overlap

V = probability of vertical overlap (3-2)



The maximization of F, was discussed in Section 3.5. In this section,

Py is briefly discussed. Py is given by (3-3) (see Figure 3-5).

(3-3)
C, -

where

= probability density function of altitude of aircraft

h = height of aircraft

= lowest altitude of the airspace under consideration

Ct H = highest altitude of the airspace under consideration

I- = thickness of the airspace

If H >> h and

within an altitude

can be regarded approximately constant

range 2h, PV can be approximated by

?z(Z) d Z (3-46)

Through this approximation, it can be shown that the probability of

vertical overlap becomes minimum when aircraft are uniformly distributed

over altitude.

SA

If ( )R

Is p ) -W~z~~ 1
If (Z) (

(3-47)

(3-48)
2

~

hI

C-4 -t Vi

pz(u ) 4w dz

) (Fa oo



From (3-47), (3-48) and (3-49),-

Gto

(3-50)

Then,

CA V, 4(3-51)

Therefore, is minimum when

It is obvious that the probability of overlap is maximum ( ?v = )
when the vertical distribution of aircraft is concentrated within the

altitude range h. (All aircraft are flying with altitude between

Zo and Z, * .)

The result that the probability of overlap is minimum when the

distribution of aircraft altitude is uniform contrasts with the result

in Section 3.5 that the horizontal overlap rate is maximum when the

distribution of aircraft velocity direction is uniform. However, this

is not a surprising result, intuitively.



51

3.7 Collision Rate between VFR Aircraft and Aircraft on an Airway

So far, collision rates have been calculated for one type of aircraft.

In other words, it has been assumed that all aircraft have the same

probability distribution with respect to velocity, direction and space.

In this section, a special case of collision between two different types

of aircraft is analyzed. Consider the situation described below.

Assume that there are two types of aircraft. Type 1 aircraft are

similar to the aircraft which have been analyzed so far. In this

section, it is further assumed that type 1 airciraft are uniformly and

independently distributed in the airspace. (In Section 3.1, uniformity

is assumed only horizontally.) Type 1 aircraft can be regarded as

"VFR aircraft". Type 2 aircraft are flying on an airway at constant

velocity, and in a direction parallel to the ainay. They are flying at

a constant separation distance t from each other (see Figure 3-14).

The expected relative velocity of type 1 and type 2 aircraft,

is then given by

where

VI = velocity of type 1 aircraft

V2 = velocity of type 2 aircraft = constant

= angle of direction of type 1 aircraft

( 9 = 0 in the direction of type 2 aircraft)

~v (V )= probability density function of V,
= probability density function of
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The width of the airway is a, and the thickness of the airway

(the altitude layer in which type 2 aircraft are flying) is b, as

shown in Figure 3-15.

Each aircraft is represented as a circular cylinder with diameter g

and height h as before. The occurrence of a collision is equivalent

to the event that the center of an aircraft enters the cylinder of another

aircraft which is twice in length and eight times in volume as large as

the original cylinder, as explained in Section 3.1. Therefore, the

number of collisions one type 2 aircraft is expected to have during one

unit of time is the density of type 1 aircraft multiplied by the volume

which the cylinder moving at the expected relative velocity generates

during one unit of time (Figure 3-16).

The volume generated by the movement of the cylinder during one

unit of time is given by

4 3 h E ( vrm) (3-53)

Then, the number of collisions one type 2 aircraft is expected to have

during one unit of time is

4 1 h E(Vr),f (3_54)

where P is the expected number of type 1 aircraft in one unit of

volume.

Since there are L type 2 aircraft within the segment L of
the airway, the collision rate is

4Th L.PE(Vrix)
-A (3-55)



It should be noted that no assumption has been made with regard

to the probability distribution of the lateral and vertical position of

type 2 aircraft within the airway. The rate of collisions between

type 1 aircraft and type 2 aircraft is thus independent of the

probability distribution of position of type 2 aircraft on the cross-

section of the airway and the dimension of the airway (C is independent

of a and b). The reason is that no matter where a type 2 aircraft

is flying, the expected density of aircraft 1 and the expected relative

velocity are constant.

[Numerical Example]

Velocity of type 1 aircraft, V, , is constant 300 kt.

Velocity of type 2 aircraft, V , is constant 300 kt.

Horizontal dimension of aircraft, g, is 150 ft.

Vertical dimension of aircraft, h, is 50 ft.

Length of the segment of the airway, L, is 100 nm.

Separation of type 2 aircraft, I , is 10 n.m.

Density of type 1 aircraft is the same as in Figure 3-7.

( f2O/ (o0,ooo-n-rn x lo,000 jt))

Directions of type 1 aircraft are uniformly distributed between

0 and 2TX. Then

7F Vr~) ~ X~ kt0



4h LP E(vrix)

= 3'~A' x 1

3.8 Collision Rate at the Intersection of Two Airways

In this section, we shall discuss the collision rate at the inter-

section of two airways. Consider the two intersecting airways shown

in Figure 3-17. Both airways have the same width a and the same

height b. The probability distribution of aircraft position on the

cross-section is uniform. At first, it is assumed that aircraft on the

same airway are flying at the same velocity and with the same

separation. The case in which separations between aircraft are given by

Poisson processes will be discussed later. The separations on airway 1

and 2 are t3, and k% , respectively. The velocities of aircraft

on airways 1 and 2 are \ and V2  respectively. The angle

between the two airways is .

Consider one aircraft on airway 2 which enters the intersection

shown as the shaded area in Figure 3-17. The expected number of aircraft

on airway 1 which the above aircraft encounters during one unit of time

is given by

E X (3-56)

B,ab .
The first term of (3-56) represents the rate of horizontal overlap,

and the second term is the probability of vertical overlap, assuming

that a and b are sufficiently large compared with g and h which

are the horizontal and vertical dimensions of aircraft. Since F.(Q
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is constant and given by ( y, X+/2- - Cos j ) , (3-56)

becomes

4 h ('v-+ Va'- . v o (3-57)

a b B,

The expected number of aircraft 2 in the intersection is given by

)( (3-58)
61 B Sim a B, S i-A

From (3-57) and (3-58), the collision rate is given by

h~,+li~ts Q
4 bVL Vx -, Basd

V C(3-59)

6, BB. i'ied

This is the collision rate with fixed separations. Next, we shall

discuss the situation in which separations between aircraft are given

by Poisson processes. Aircraft on airway 1 enter the airway with

velocity \/i according to a Poisson process with intensity X .

and are similarly defined. Then, the .average separations

on airway 1 and 2 are given by V' and - . Since the two

processes are independent, the collision rate is given by (3-59)

substituting and- for BI and Then, the

collision rate is

4 X h , Xz (V2+ V2- -AV, Va.tos d
b , v42 s i-ya (3-60)

More gnerally, the collision rate at the intersection is given by

the following formula.



4 C (v Va IV, VX Cos ek (3-61)
b 0E(8 F (s8,) -s %n d

where

'(E ) = the expected separation distance between two

consecutive aircraft on airway 1

"F ) is similarly defined.

It is assumed that the processes of aircraft flows on the two

airways are independent of each other.

Section 3.7 and this section have dealt with the rate of collisions

between two different types of aircraft. The general formula for these

cases will be derived in the next section.

[NOTE]

In Reference 9, Dunlay developed a conflict model which is similar

to the model in this section. However, there is some difference between

the two models. First, the Dunlay model assumes that the width of an

airway is equal to zero, which can be treated as a special case of the

model in this section. The second difference concerns the volumes

involved in a collision and in a conflict. A collision is described as

an event in which the volume of an aircraft overlaps the volume of

another aircraft.. A conflict happens when an aircraft penetrates the

outer surface of the protected airspace of another aircraft. Therefore,

as long as the density of aircraft is uniform in airspace, the rate of

conflicts can be obtained from a collision model simply by making the



appropriate change for the volume involved. In the case of the

intersection problem, however, the density of aircraft is not uniform

in airspace. Therefore, the collision model in this section cannot be

directly applied to the rate of conflicts at the intersection because

of the boundary problem (Figure 3-18). However, the rate of conflicts

can be deduced from the collision model in this section.

Consider a portion of the airspace shaped like a parallelogram

with the length of a side L shown in Figure 3-19. Aircraft fly

only in the two directions parallel to the sides of the airspace. The

probability distribution of aircraft in the airspace is uniform. L is

chosen so large that the diameter of the conflict volume can be regarded

as negligibly small. The conflict rate in this case is directly

calculated from (3-61), substituting the dimensions of conflict for g

and h. Let us consider the cases shown in Figure 3-20. First all the

aircraft flying in one direction are concentrated on an airway parallel

to the aircraft direction.

Since the number of conflicts each aircraft on the airway is

expected to have during one unit of time is equal to that of each

aircraft flying in the direction in the original case (Figure 3-19).,

the conflict rates in both cases are the same. Next, all the aircraft

in the other direction are concentrated on another airway parallel to

the aircraft direction. Since the number of conflicts each aircraft on

the second airway is expected to have during one unit of time is the same

as in the previous case, the conflict rate of the last case is the same

as that of the original case. Then, the conflict rate at the inter-

section can be obtained from (3-61) because the conflict rate of the
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original case is directly calculated from (3-61). It should be

noted that no assumption has been made with regard to the probability

distribution of cross-airway position of aircraft. Therefore, (3-61)

gives the conflict rate as well as the collision rate for any

probability distribution of cross-airway position of aircraft. The

result of the Dunlay model can be derived as a special case of (3-61).

3.9 Three-Dimensional Gas Model - - -

So far, it has been assumed that each aircraft travels only

horizontally. In this section, the limitation is removed. The three-

dimensional gas model presented here assumes that N aircraft are

flying in the airspace volume B. Aircraft are uniformly'and

independently distributed in the airspace. The vertical velocity and

the horizontal velocity of an aircraft are assumed independent of each

other. No collision avoidance maneuver is taken. Each aircraft is

represented as a right circular cylinder, as shown in Figure 3-2. It

is assumed that this cylinder does not tilt even if its velocity has

a vertical component,

A collision takes place when the center of one aircraft enters the

cylinder of another aircraft shown in Figure 3-3. Therefore, the number

of collisions an aircraft is expected to have during one unit of time

is the density of aircraft multiplied by the volume which the cylinder

moving at the relative velocity generates during one unit of time.

Let V be the relative velocity. Vrv is the vertical

relative velocity or the vertical component of Vr . \/h is the

horizontal relative velocity or the horizontal component of \/ .



The volume the cylinder generates can be divided into two parts.

One part is generated by y@ ,_ and the other by Vh . The Vr

part is generated by the movement of the disk, as shown in Figure 3-22.

The V/, part is generated by the movement of the half cylinder, as

shown in Figure 3-23. Then, the number of collisions an aircraft is

expected to have during one unit of time is given by

Since there are N aircraft, the total collision rate is

k1Z( 7. 'z - rYI)+t h E Vrh0)

(3-62)

(3-63)

where

= number of aircraft

B = volume of the airspace

= horizontal dimension of aircraft

= vertical dimension of aircraft

= expected vertical relative velocity

7f(lVrh\)= expected horizontal relative velocity

This is the formula for the rate of collisions between the same

type of aircraft. When there are two different types of aircraft, the

rate of collisions between different types of aircraft is similarly

derived. The rate of collisions between two different types of

aircraft is

(3-64)

where

C (V41E~ y +4 E(I ' )tVr *1))
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= rate of collisions between two different types of

aircraft

= number of type 1 aircraft

= number of type 2 aircraft

=

E(Vli) =

expected vertical relative velocity of type 1 and type 2

aircraft

expected horizontal relative velocity of type 1 and

type 2 aircraft

[Numerical Example] [Rate of Collisions between the Same Type of Aircraft]

The conditions are the same as in the example of Section 3.1 except

that aircraft velocity has a vertical component, as well. The

probability distribution of vertical velocity is uniform between

+ 30 kt (climbing) aid -30 kt (descending).

E(V~> ~Xo~~34K

E.( \Vrv\) =o2
3

Sx 4th E val) - 41h

N1E(Ikiv)i A - 1 /.
A

TL E (0 VvyI)-( Vv

ot IIA %I

II

c'z
N2

Nw2

E(\O V-l)



This value is greater than the value of the two-dimensional model

due to the contribution of the expected vertical relative velocity.

This example shows that (3-63) can also be expressed as follows:

0 =. X ~± XE(IVrI I (3-65)

where

A = horizontal area of the airspace

H = height of the airspace (Figure 3-1)

This means

C = (horizontal overlap rate) x (probability of vertical overlap)

+ (vertical overlap rate) x (probability of horizontal overlap)

(3-66)

This way of presenting C corresponds to Reich's formula (2-1).

However, it should be noted that this relationship relies on the

assumption that the cylinder representing an aircraft does not tilt.
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CHAPTER 4

TERMINAL AREA COLLISION MODEL

The basic assumption of the gas model is that, horizontally, aircraft

are uniformly and independently distributed and the expected relative

velocity is constant in airspace. This assumption may be a good one if

the airspace under consideration is distant from airports. If, however,

we are considering the airspace near an airport, this assumption is a poor

one. Generally speaking, the farther the airspace is from an airport, the

lower the density of aircraft is likely to be. The expected relative

velocity may also not be constant with distance from the airport.

Furthermore, the density of aircraft and the expected relative velocity

may change considerably with the time of the day. In this section, a

general model for airspace close to an airport is developed, and the

collision rates are calculated for a few special cases.

The rate of collisions between the same type of aircraft associated

with the three-dimensional gas model is given by (3-63). (3-63) assumes

that aircraft are uniformly and independently distributed and the expected

relative velocities are constant. Lets, and r be the

expected density of aircraft, the expected vertical relative velocity

and the expected horizontal relative velocity. Then, (3-63) becomes,

C - I . (4-1)

where

C. = collision rate (expected number of collisions during one unit of

time)

= volume of the airspace
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= horizontal dimension of aircraft

= vertical dimension of aircraft

In section 3.8,? , and if were assumed to be constant.

However, these are generally functions of the space coordinates and of

time. Let x, y and z be the space coordinates shown in Figure 4-1,

and let t be time. Then,

=r Vr X, 0 Y L (4)2

Since , and V/g are almost constant in a very small

volume dB , the expected number of collisions from time t to time t

is given by

L tX

Z (?£ X, ,~t) M1 Vrv (XI,t~t) +

(4-3) gives the expected number of collisions near an airport between t,

and tr.-

If there are two different types of aircraft, the formula for the

expected number of collisions between the different types of aircraft is

similarly derived from (3-64). The expected number of collisions between

two different types of aircraft between tj and tz is

4 k t V L at(4-4)
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where

/X, ( , ~2, t ) = density of type 1 aircraft

/a(x, 1, z,t = density of type 2 aircraft

v ,X , t) = expected vertical relative velocity of type 1

and type 2 aircraft

(X,'., t) = expected horizontal relative velocity of type 1

and type 2 aircraft

In order to calculate these integrals, the densities of aircraft

and the expected relative velocities should be calculated first. We now

illustrate the above concepts through analysis of some special cases.

First a few special cases for the rate of collisions between the same

type of aircraft are presented. One example of collisions between

different types of aircraft will be shown later.

4.1 Special Cases: Collisions between the same type of aircraft

4.1.1 Case 1

Aircraft are approaching an airport at constant horizontal velocity

The aircraft arrival at the airport is a Poisson process with

intensity X. The airspace under consideration is shown in Figure 4-2.

The airspace is the circular cylinder with diameter R, and height H

from which the inner circular cylinder with diameter R. and height H

is excluded.

Each aircraft is supposed to fly in the exact direction of the

airport. However, due to the imperfect precision of the navigational

instruments, the real direction may deviate from the supposed direction.

Let the probability density function of this deviation angle be uniform

from -Y to+y . Steady state is assumed.



For convenience of calculation, the cylindrical coordinate system

is chosen. (Figure 4-3) The aircraft density is assumed to be a function

of r and independent of e and Z.

Consider a ring with width of dr. (Figure 4-4)

Assuming that all aircraft are flying through the ring, the expected

number of aircraft entering the ring during a short period of time dt is

Kdt. dr is chosen as V'dt, where V is the average velocity

component in the direction of the airport. Since the expected number of

aircraft leaving the ring during dt is equal to the expected number of

aircraft in the ring,

Xd~t = fx2.Hxr

2%H Vl'Yf dt
A (4-5)

.T H v'r

VO so 4

(4-6)

From (4-5) and (4-6).

2cH vo smg r
can be obtained from Table 3-1 for our case.

4 V

From (4-3), the collision rate is then given by

C. = I- f 24 x VhX ZTVYH ar
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Numerical Example

A. = 10/hr

= 150ft

h= 50 ft

= 5000 ft

VO = 200 kt = 1,216,000 ft/hr

= 50 = 0.0873 rad.

= 100nm

50 nm

(4-7)

. I.5i x 10~'/hr.

4.1.2 Case 2

Aircraft are approaching and departing from an airport at a constant

horizontal velocity V0  The arrival and departure proces-ses are two

independent Poisson processes with intensity k and --d . The

airspace under consideration is the same as in Case 1. Each aircraft is

flying in the direction straight to or away from the airport. Steady

state is assumed. It is also assumed that all aircraft are to go through

the airspace of interest. 1 is constant for a given r.



From (4-5),

2.LH V,r

From (3-30),

is equal to

(because all aircraft fly at the same velocity Vo )

y(V ) in this case, where and m(V)

the probability density functions of velocity defined in the domain of

space and time, respectively. Then,

V-7

(4-9)

._ 2Aa~ X2~ x -a *K

From (4-3), (

[Numerical

= )

4-8) and (4-9),

-. V0

Example]

A = 5/hr

= 150 ft

- 50 ft

= 5,000 ft

= 200 kt = 1,216,000 ft/hr

100 n.m.

50 n.m.

10 hy

'f
(4-8)

are

I~
(4-10)

VO

Vro -IM r H Ar



4.1.3. Case 3

Aircraft are approaching an airport with horizontal velocity V,

which now is a random variable. The arrival process is Poisson with

intensity X. The probability density functions of V in the space

domain and time domain are I(v) and y(V) . (see section 3.4)

The other assumptions are the same as in Case 2.

The relation between R(V) and yv(V) is given by

v (V) (3-34)

- v(v)dv

9vv~v)
-PY (v)V) (4-11)

v V A
The expected number of aircraft entering the ring in Figure 4-4 during

a period of time dt is X dt. Since it takes V for aircraft at

velocity V to go through the ring, the expected number of aircraft in

the ring is

Av ) V v vAV

1V (4-12)
-TLIH Y-

(4-13)

From (4-3) and (4-12),

C v. rj

--~-~(4-14)

, where \/ is given by (4-13) and (4-11).



[Numerical Example]

k. = 10/hr

5(v) is uniform from 195 kt to 205 kt.
= 150 ft

= ft

H = 5,000 ft

= 100 n.m.

R2 = 50 n.m.

0V

IJS

= ~

t -L-

(q95 K- V .< 205)

V- V - -

= 4 S 4 Y,1017 r

The differences between numerical results of Cases 1, 2 and 3 are

mainly due to the expected relative velocities.

Next, one special case of collisions between different types of

aircraft is presented below.

~(v)



4.2 Special Case: Collisions between two different types of aircraft

There are two types of aircraft. Type 1 aircraft are the same as

the aircraft treated in the previous examples. Their position and

velocity are independently distributed in airspace. They can be regarded

as VFR aircraft. Type 2 aircraft are flying at constant velocity with

constant separation on an airway which runs near the airport. Their

direction of travel is parallel to the airway. The coordinate system

is defined as shown in Figure 4-5. It is assumed that the density of

type 1 aircraft is constant on the cross-section of the airway at a -

given X. It is also assumed that the probability distribution of

velocity vector (a velocity vector's components are the magnitude and

the direction of the velocity vector.) remains unchanged on the cross-

section. These assumptions can be justified considering that the cross-

section of the airway may not be large enough for these distributions

to change. The separation of two consecutive type 2 aircraft is i .

Then from (4-4), the rate of collisions between type 1 and type 2

aircraft within the segment L of the airway is given by

- ~-Sf ~IL1im Vrv(x)t4' rh~t Vab) At

This formula gives the rate of collisions between type 1 and type

2 aircraft.

[Numerical Example]

The assumptions for type 1 aircraft are the same as in Case 1 of

Section 4.1.1. The airway runs through the airspace into the airport.

Since the width of the airway is small compared with R , the direction

of aircraft 2 is almost directly to the airport. The separation and



Figure 4-5 Ainmay



the velocity of aircraft 2 are 10 n.m. and 300 kt. The other numerical

values are the same as in the numerical example of Section 4.1.1.

4.3 The Upper and Lower Bounds on the Collision Rate

So far, we have illustrated the concepts of (4-3) and (4-4)

through special cases. However, these special cases include some poor

assumptions, such as the one that aircraft fly only horizontally and

the probability distribution of altitude of type 1 aircraft is uniform

in the neighborhood of an airport. If a more realistic collision rate

is necessary, (4-3) or (4-4) should be directly used. One way to estimate

the integrals is to divide the airspace into small sub-spaces in which

the densities of aircraft and the expected relative velocities are almost

constant, and compute the integrals numerically.

However, this is difficult to do. It also takes much time to collect

the data needed to estimate these distributions. In addition, as the



density of aircraft and the probability distribution of velocity are

closely connected with each other, the consistency of the data should

be examined. Considering this situation, the following method to

evaluate the collision rate may be useful.

It is difficult to find the distributions of, Vry and \/v

in (4-3) in real situations. However, it may not be so difficult to

estimate or observe the maxima and minima off and h in a

given airspace. Let the maxima and minima of ft, and Vh be

"Y, 'IMI," v"Ax, ml/ Vhnx 0A Then, the

upper bound on the rate of collisions between the same type of aircraft,

is given by

C. ~ ~ T 4P (t vrye,1t4 k WhIM'AY.) (4-16)

where B is the volume of the airspace.

The lower bound on C is calculated as follows:

~ .(4-17)

if '

If

(p pcf-p< 2ptf-f)

Therefore,

I -X (4-18)



Then,

CI (TVlV VV i)3 Vh j

I
2.

P11 AA

(4-19).77

The upper and lower bounds on the rate of collisions between the

same type of aircraft is thus given by (4-16) and (4-19).

[Numerical Example]

The airspace is 100 n.m. x 100 n.m. x 1 n.m.

and Vrh are estimated as follows:

0. O O z aircrajt/.3M

(0 Kt i Vry .0 V

b-10 Kt <- VrS O K\

I = - =t 0, 0 Z4'~

go g = 0, 0 o 2.w

9.5s; x 10~ h

( >-.... O.Zxi~x,.h \Dv00yrx00)50)1,0

1.1 xK \0~3/

x 10~S/hr

hr i c i i.X 0 h

,,JVrvi, + 4 W

..P 2 )D



(4-16) and (4-19) indicate that the most important factor in estimating

the collisions rate is the density of aircraft. If P max is estimated
ten times are large as T , the upper bound on C is greater than or

equal to the lower bound multiplied by 100. Therefore, if the airspace

is to be sub-divided in order to obtain a better estimate, the part of

the airspace in which f changes considerably should be sub-divided

into many parts.

The upper and lower bounds on the rate of collisions between two

different types of aircraft, C , are given in a similar way by

Cli < J ( '+4pvghw) B

(4-20)

CI41 r
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CHAPTER 5

CONCLUSION

The gas model developed in the past had dealt only with the rate of

collisions between random aircraft with a uniform probability distribution

for aircraft directions. In this thesis, the gas model has been extended

to a generalized form which can provide estimates of the collision rate

for any probability distribution of aircraft directions and magnitude

of aircraft velocity. This generalized model deals with the rate of

collisions between the same type of aircraft. (All aircraft have the

same probability distributions of velocity and density.) An aircraft

collision model which estimates the rate of collisions between different

types of aircraft was also developed. It was shown that these generalized

gas models can deal with many other types of collision problems including

the problems of the overtaking rate, the rate of collisions between

random aircraft and aircraft on an airway and the rate of collisions

at the intersection of airways. The rate of collisions between aircraft

on parallel airways which the Reich model dealt with can also be obtained

by a generalized gas model.

It was also proved that the uniform probability distribution of

aircraft direction maximizes the collision rate and that the uniform

probability distribution of aircraft position minimizes the collision rate.

In the process of developing a generalized gas model, the

definition of the expected relative velocity which has been occasionally

misused was made clear, and the values of the expected relative velocities

for some interesting probability density functions of velocity direction

were calculated.



The most generalized formulae for collision rates were discussed

in Chapter 4, and the collision rates near an airport for some special

cases were calculated. The collision rate cannot be calculated if the

exact probability distributions of velocity and density of aircraft

are not given. A method which can provide the upper bound and the

lower bound of the collision rate when the exact probability distributions

cannot be estimated was also discussed in Chapter 4.

All these results can be applied to conflict problems with slight

modifications as explained in Chapter 1. However, it should be noted

that if the protected airspace of an aircraft is large enough for the

density of aircraft to change considerably, the formula for the rate

of conflicts becomes more complex. This can be understood considering

the fact that the occurrence of a conflict is described as the event

that an aircraft penetrates the outer surface of the protected airspace

of another aircraft, and that the density of aircraft on the outer surface

may not be the same as at the center of the protected airspace.

In this thesis, all the numerical results were calculated under a

number of simplified assumptions. If data regarding the density of

aircraft and the probability distribution of the aircraft velocity vector

are collected, the generalized gas model developed in this thesis can

be applied to real ATC problems. This model can be employed to estimate

the workload of pilots and airtraffic controllers in preventing collisions

because since this model assumes no collision avoidance maneuver the

collision rate provided by this model is equivalent to the frequency of

actions by pilots or controllers needed to avoid actual collisions.

Furthermore, this model may be helpful to evaluate the computer workload



85

of AERA (a new type of air traffic control system the FAA is currently

developing) in preventing conflicts if the necessary data are collected.
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APPENDIX A

2K1

+V'4-ly, V~ LQ~ CoSS 4(

Case 1: V, =Va
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c os (3) Cos 4(
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0

Case 2: Vx - Vz

521- SS

-vA > 0 (v~~v~)
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By the generalized binominal expansion,
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In order to examine

is first computed.
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Then,
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where

(~?) W

~I1~

co S d9 3

Next, the value of

Cos?

=

~

~ I

F= 0, 1, 2, (A-i0)

is computed.

COS In ( 1<*-n- COS 3 Cos (-) 1

(A-l )

If K > -ni

f (K-1) +(-n-i) K--n 
0

(A-12)

This value is given by (A-9) and (A-10), and is non-negative.

os"3 Cos -nc(

CaS' Co-no



If K = N,

21t

COS' 3COSI S K k--__

(A-13)

If K< N,

) ZTL/0 COS
Cos-no 4

From (A-12), (A-13) and

Cos COS Tp(3

From (A-6), (A-3) and (A-15),

5 v."+v"--v, os )'cos- A

1

-o

(A-14) ,

(A-14)

lt.

0

(A-15)

(A-16)



So far, it has been proved that the integral (A-1) is always negative.

Furthermore, its numerical value can be obtained through the above

formulae. Let's calculate the integral

From (A-8),

for Q = 0.5 and -A = 2
(A-9), (A-10), (A-12), (A-13) and (A-14),

\- 0.9 Cos() Cos >(. 0(

-2 .5x

X 0 x

cos'3 cos 2 A

ZL COS3 cqS.-.(c(( (.')x off CsDS (-- --

0.049 \ - 0. 0 8-0.00

-0. 0 j 4 - c.

This integral has also been numerically calculated through the

computer, and its value is -0.0535, which agrees well with the above

result.
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X
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2KIT
(0. 5) x 0C0oS Cor 40
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APPENDIX B

can usually be expanded as a Fourier series. But,

() consists of impulses (delta functions), it cannot be expanded

as a Fourier series,

Assume ) = ( D) , where () is the delta function.

o 9 : 0
00 n -

(B-1)

Let (g)

IRO )

be the Fourier expansion of

00

(B-2)

where

(B- 3)

(B-4)
(9 -*--Cosise =e

From (B-2), (B-3) and (B-4),

am M

7()

c0 -\(9

does not converge, and is not equal to

(B-5)

Therefore,

it would seem that the proof given in 3.5 is not valid in this case.

However, in fact, the result of 3.5 can be applied even if

consists of impulses. The proof is given below.

Let's consider a function

series. (e') has a cycle of

() which can be expanded as a Fourier

2TC . Then,
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From (B-13),

-TL

From (B-5) ,
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Now, let's return to the probability density function of aircraft

velocity 1(&) For convenience of calculation, let's assume that

i s defined for - T- <_ @( L . is also defined for

1 **+---- L
(B-16),
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If the direction of aircraft velocity takes discrete values,

consists of impulses.

as below.

So does ( )

r ) /

can be expressed

- a)

The expected relative velocity is,
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it may be difficult to understand what

this proof means. One numerical example is given below.

Suppose that 50 percent of aircraft are flying in the direction

9 = 0, and 50 percent in the direction 8 = -TC. The absolute value

of velocity is constant Vo. In this case, is given by,

Pe (0) = - 8(e) +*(91

Let H( ) be the Fourier expansion of P0().
± 0

*Pe(Cosere
0n lpff

-o0

1-1(0) =
I

T1L
Go

In this section, it has been proved that (3-39) is valid even if

e() -# Let's check this result for

this example, the right-hand side of (3-39) is,

Kit

2L-Lit ('o
- r.

our example.

-I~ n

DI iT 0 i 4' I(±~ :L\t.SL
-iE

(3SiY-j XICas )-m

Then,

Without a numerical example,

X

M.
*A = a^ , 'M --% 0, 1P

zz
TIL
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4VO 4% _ _

-t, r -t I

" (-) =t

(From Leibniz's formula, Y3 -.--.

This shows that even if the Fourier expansion of P(I) does not converge

and is not equal to 9() , (3-39) is still valid in this example. The

proof given in this section guarantees this relation in the general case

in which fP(e). consists of impulses. This means that the uniform

distribution makes the collision rate maximum even if f(V) which

contains impulses is considered. (The proof in this appendix is easily

extended to the case in which consists of impulses and a

continuous function.)


