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RESERVATIONS FORECASTING

IN AIRLINE YIELD MANAGEMENT

ABSTRACT

This report shows the application of Regression Analysis
in reservations forecasting in airline yield management.

The first three chapters highlight the need for yield
management and the automation of seat inventory control. The
seat inventory control problem is related to the determination
of an optimal allocation of seats among the various fare
classes being offered in a flight so as to maximize revenues.
In order to determine such optimal seat allocation, forecasts
of final bookings need to be made.

Forecasting alternatives are presented in this report.
An example of application of Time Series Analysis is given as
an alternative in providing such forecasts. Results obtained
via Time Series Analysis were not encouraging enough in
providing acceptable estimates.

Regression Analysis is also presented as a forecasting
tool. Although regression models were developed for each market,
a generalized model structure was thought to be preferable
in view of the reduction of modeling efforts, data handling
and model specification, that are needed for forecasting final
bookings for all markets/flights/classes. A general structure
model is presented in this thesis as the result of the search
for structural behavior across markets and flights.

Regression Analysis results are presented for a set of
five citypairs, one flight in each directional market, i.e.
ten flights in total. These results evidenced that a general
structure model via regression analysis can indeed be used in
the forecasting module of an automated seat inventory control
system, and thus provide better estimates of final bookings
when compared to Time Series Analysis or historical averages.
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CHAPTER ONE

INTRODUCTION

The Airline Industry, since its very

inception, has experienced many changes that have constantly

challenged it and contributed to intensify operations and

improve management of the today's diversified air

transportation markets.

The introduction of jet aircraft in commercial

operation required airlines to quickly adapt and respond to

the "new equipment". Markets that were served with over than

a day's flight could then be reached within the same day.

The industry experienced rapid growth in passenger traffic.

The combination of new equipment and traffic growth favored

competition , which made some airlines operate more

efficiently both in operational and managerial standpoints,

while some other airlines that could not cope with these

changes experienced financial problems, and eventually went

out of business.

Technological advances have dominated the

scenario of innovations in the airline industry. New

aircraft guidance systems, new aircraft with more fuel



efficient engines, and new navigational aids can be cited as

examples of technological innovations that have, one way or

the other, changed the Airline Industry.

Today, the U.S. Airline Industry experiences a

rather different source of innovation.

Managerial innovations caused by the

deregulation of the Airline Industry have dominated the

industry scenario in the last years. The "fare war" that

immediately followed the Airline Deregulation Act in 1978,

was just the beginning. Price competition among airlines

became a vivid reality.

Price competition has quickly evolved to

price-availability competition . Seats allocated to lower

fares are capacity controlled,and there are limitations or

restrictions associated to low fare seats.

The airline product, a seat in a flight from A

to B, has now two dimensions fare and restriction. The

emergence of a vast set of airline products has generated

the need of a sophisticated decision support system devoted

to the development/management of price-availability-

restriction policies. Such management decisions are central

to the permanence of an airline in the marketplace, and they

have changed the airline industry.



CHAPTER TWO

THE NEED FOR YIELD MANAGEMENT

The deregulation of the U.S. Airline Industry

launched the industry into a new era. The change from a

regulated to a "free" market caused radical modifications in

the airline industry. The objective of this chapter is to

highlight the different environments that airlines were

subject to in these two periods. A brief comparison between

these periods is presented in the next two sections of this

chapter. The third section highlights the need for an Yield

Management System.

2.1 THE AIRLINE INDUSTRY BEFORE DEREGULATION

Before deregulation, US airlines were

controlled by a government body: the Civil Aeronautics

Board-CAB. The decision of either flying or expanding

existing services in any given market, was subjected to the

approval of the CAB. Fares were calculated by using the



mileage-based Standard Industry Fare Level, adopted by the

CAB. Fare levels and structure were, therefore, fixed.

Markets were regulated and controlled. Marketing decisions

of airlines were dependent of the CAB.

Fare discounting was, nevertheless, practiced

in the U.S. Airline Industry before deregulation. The

concept at that time was that the revenue of a flight could

be increased by offering the unsold seats to a new and

different segment of passengers.

This new market segment consisted of some few

passengers that would only travel at a discount fare. The

operating cost associated to 'this "new segment" was

considered as being minimal, since the full fare passengers

would already have absorbed most of the operating costs.

Incremental costs would typically involve reservations,

ticketing, baggage handling and on board meal service for

these "additional" passengers.

Few seats were sold at discount fare to these

few passengers. The majority of passengers would still fly

at regular full fares. Revenue was not diverted from the

airline's "regular" passengers and a new and different

market , with low yield passengers, was created. Yield is

defined as the revenue per passenger-mile of traffic carried

by an airline.



A limited set of "discount" tickets was also

available to some passengers meeting pre-determined

criteria. For instance, senior citizens could buy airline

tickets at a lower price. There were discounts associated

with bulk travel, being either on a family basis or on a

group basis. Thus, some discount tickets were available for

those who would meet these pre-determined criteria.

A step towards a more complex discounting

practice was then observed with the introduction of "red

eye" flights (i.e. late night flight services). These

flights/seats at a discount were available to anyone willing

and able to travel at late hours. This new discounting

practice differed from the existing in the sense that

passenger would not need to meet/have pre-determined

qualifications (age,organizations) , nor need to travel in

"bulk"- (family or group). Anyone could buy a ticket on these

flights .



Seat inventory management was not needed in

the regular flights of an airline. The available set of

alternatives (airline product) available to passengers was

relatively small :

(1) first and regular coach class seats;

(2) limited possibilities of "discount" tickets in

regular flights;

(3) few special flights at discount fares.

The management of flight revenue was a

relatively straightforward task. Once the potential of sales

of full fare passengers was estimated for a given market,

the remaining seats were made available for low yield

passengers. Profit maximization was strongly related to

+maximization of flight loads. No special attention or

routine was used for controlling the seats sold to discount

fare passengers. Revenue maximization was achieved by

filling up planes with as many revenue passengers as

possible. Regular full fare passengers accounted for most of

the revenue. The remainder or unsold seats were sold to few

passengers, at a discount fare. A flight 'with as much

revenue passengers as possible was thought to be reaching

revenue optimality



For the profit maximizing airline,

revenue and cost would have to be taken into account, since

revenue maximization does not always lead to profit

maximization. Nevertheless, the dominant criterion was that

a flight with high load factor was the sign of good

business.



2.2 THE AIRLINE INDUSTRY AFTER DEREGULATION

The deregulation of the U.S. Airline Industry

marked the beginning of a new era. With deregulation, U.S.

airlines were allowed to enter or leave any domestic market,

increase or reduce existing services. It was up to the

management staff of an airline to fully decide where and

when services should be offered. If market A was not

considered as profitable as market B, an airline could

decided to offer services only in market B. Any airline

could offer services in market B. No government approval was

needed.

Fares were also deregulated so the industry

experienced a real change. Today, it is the airline who

determines how much should it charge in a given

market/class.

As a consequence, new airlines were created and

more airlines started to fly in traditionally profitable

markets. Unprofitable markets experienced either a reduction

in the level of service or they were abandoned. Fare

competition was inevitable in busy markets. Competition was

increased as result of the "free market" era.

The marketplace, formerly regulated and subject



to limitations, gave place to a "free" and strongly

competitive market. With the freedom to enter or leave any

market, airlines started to increase competition in

profitable markets, by offering more seats/flights at lower

and lower prices. The advent of low-cost/low-yield new

entrant carriers led to a fare war.

A fare war immediately followed the free entry

market era. Airlines were forced, once again, to react and

adapt to a new scenario : stiff competition and low fares,

with a high level of diversity.

Passengers who used to fly at full fare,

because few alternatives were available, started taking

advantage of these lower fares. They benefited from the fare

reduction by flying at more competitive prices. Demand

increased as a response to low fares. New markets were even

created because of some extremely low fares. As a

consequence, to fly at discount fares became a common

practice, and today, only few passengers fly at nominal full

fares.

Established airlines needed to remain or be
Ik

competitive. They needed to compete with new entrant

carriers, and to offer/match some low fares, and yet they

also needed to avoid fare diversion, which happens when a

potential high yield passenger takes advantage of a low fare



seat. But, most importantly, they needed to maintain, or

even recover profitability.

The creation of a very complex fare structure

was the response of the airline management to the fare war

and low-cost/low-yield carriers challenge. By offering a

more complex set of services with differential pricing,

airlines were able to maintain regular/traditional

passengers, attract low fare passengers, maintain a

competitive image in the market and remain profitable.

Restrictions and limitations were attached to

some fares and, as a general rule, the cheaper the fare

gets, the more restrictions/limitations it has. By

discriminating passengers, offering different fares, with

associated different restrictions, an airline can

differentiate passengers in respect to price, and pursue

profit maximization.

Evidently, the new fare structure could not

coexist with the cost structure that was in effect at that

time, specially for old and established airlines. Cost

levels were no longer compatible with fare/revenue levels.

Low fares must be followed by low costs. It would have been

impossible to survive in the low fare market without drastic

changes in the cost structure. As a consequence, airlines

were forced to reduce cost.



2.3 THE NEED FOR YIELD MANAGEMENT

Today, every single class/passenger is an

important part in the apportioning of flight costs. The

concept of "incremental" cost associated to lower fare

passengers no longer exists. Management of flight revenue

became a complex task. The optimal combination of passengers

and fares is now the what airlines aim at. A flight need not

to be at its maximum load factor, but rather the overall

product seats/fares sold needs to be maximized: a "revenue

load factor" maximization problem.

Management decisions related to how many seats

to sell at what price, became crucial for airlines. From the

complexity derived from managing such decisions has emerged

the need of Yield Management. An Yield Management System is,

therefore, a decision support tool designed to help an

airline to determine how many seats should be sold, given

the price levels. Finding such answers is central to the

permanence of the airline in the market place.

The passenger load factor of a flight is no

longer a proxy to infer flight revenue % performance. The

maximization of the flight load has been replaced with

flight revevue.



Profit maximization is now related to the

degree of success that an airline achieves in selling the

right number of seats to the right number of passenger so as

to maximize revenue. while at the same time keeping the

associated costs down.

The revenue maximization problem has now two

major components: seats and fares. Average yields can be

increased by either increasing price levels or reducing the

proportion of seats sold in the lowest fare product

categories. In both cases, the potential of sales in each

and every fare level has to be estimated so as to allocate

the optimal number of seats to each fare class, maximizing

the revenue of a flight.

Pricing and seat inventory control represent,

therefore, the core of Yield Management.

"While pricing is clearly an important

component of yield management, no one airline can influence

it's own revenue through pricing, without taking the

reactions of its competitors into account. Revenue increases

resulting from pricing actions are possible only when all of

the major competitors in a market agree implicitly to follow

a price leader."(1)

Prices are published in airline guides and



displayed in reservation systems that are available to

everyone. An airline can always monitor and follow its

competitors price changes.

Seat inventory control, on the other hand, is a

logistical component of yield management that is entirely

under control of each individual airline. It is an in-house

component that only the airline itself knows and controls,

with the exception of some few one-price-only low-cost/low-

yield airlines. As a consequence, airlines do not know the

seat inventory management decisions of the competitor

airlines.

While pricing is not fully dependent on the

decision of one airline alone, seat/class allocation is.

Through seat inventory control, airlines have the potential

of managing revenue from a flight on a departure by

departure basis, which would be far more difficult to

replicate via pricing.

Today, the need for an Yield Management System

is evident. Airlines can no longer be profitable in the

marketplace without it. The competition is strong. An

efficient Yield Management System is, therefore, very

important to an airline.



CHAPTER THREE

THE AUTOMATION OF SEAT INVENTORY CONTROL

The seat inventory control problem is related

to the determination of an optimal (revenue maximizing)

allocation of seats on the aircraft among the various fare

classes being offered in a flight. Other management

decisions, such as capacity allocation, equipment

utilization, aircraft routing cannot be dissociated from the

seat inventory control problem. These decisions interact

with each other, and as a consequence, the seat inventory

control problem has to either use them as input, or interact

with them.

3.1 SEAT INVENTORY CONTROL

A flight leg seat inventory control approach is

commonly used in the industry. On a flight leg basis, the

aircraft seating capacity is divided among classes with the

objective of revenue maximization on that flight leg.



Although the flight leg approach might not lead to revenue

maximization over the whole flight and/or the entire network

of an airline, because it maximizes flight leg revenues, its

simplicity makes it very attractive.

With a flight leg approach, true origin and

destination of passengers are not taken into account. All

passengers flying the same class are treated equally. The

deficiency of this approach is that seat allotment decisions

on a leg basis do not assure revenue maximization over the

whole flight.

A more coherent approach should consider

origins and destinations - O&D, when allocating seats to

different classes for a flight. The O&D approach becomes

complex when one considers the possible combinations of a

multiple leg flight. The increase of hub and spoke

operations by the airlines has certainly added further

difficulty. The number of possible O&D combinations can

become unmanageable and, as a consequence, this approach can

hardly be pursued.

In order to determine how many seats should be

allocated to each class on a future flight departure, the

airline has to have estimates of expected loads in each and

every class, as well as the associated average revenues.

With these two parameters for each class, the airline can



then figure out the best seat/class allocation that

maximizes flight revenues.

Expected loads have to be transformed in

expected bookings. Because of large incidence of no-shows in

some markets, substantial analysis has to be devoted in

determining the number of seats to be assigned to each

class. Overbooking analysis determines the level of total

bookings for a flight that will minimize the total of the

costs associated with denied boarding of passengers and the

costs in the lost revenues associated with no-shows and

unsold seats.

The estimates of expected loads, by class and

by flight, together with estimates of what will happen on

the boarding day, (i.e. no-shows, go-shows, upgrades, etc.

are then used to generate booking thresholds for each class,

on a given flight leg. These limits can then be input in the

reservations system of the airline and bookings can be

monitored.



3.2 SEAT ALLOCATION MODELS - AN OVERVIEW.

The seat inventory control system is a decision

support system that provides inputs to the reservation

system of an airline, helping the yield management analyst

to determine booking limits or thresholds. In the (case of a

flight leg based system, limits are given by class and by

flight leg.

Several alternatives have been proposed as core

routine of a seat inventory control system. This routine,

apart from determination of overbooking policies, are

intended to determine whether to accept or reject a request

for a seat (reservation) according to the fare paid.

Littlewood [2], in 1972, suggested a seat

allocation routine, probabilistic based, that maximizes

total expected flight revenues, using a "marginal seat"

model. In his routine, a low-yield passenger paying a lower

fare f2 should be accepted as long as the expected revenue

from selling all S1 seats to passengers paying the higher

fare fl is less than f2.



if f2 > f1 . P(S1) take f2 passengers,

where:

fl = higher fare;

f2 = lower fare ;

P(Si) = probability of selling S1 seats at f1

fare.

The aircraft seating capacity (C) , in this

simple case, is divided in two compartments. One with S1

seats, calculated with the probability distribution function

(pdf) of fl passengers, and fares (f1 and f2). The other

compartment takes the remaining seats, that is (C - Si).

Note that the pdf of f2 was not needed in the seat allotment

decision process.

Mayer [3], in 1976, suggested a two class seat

allocation model that would utilize dynamic programming (DP)

as a framework. He suggested a simple model to be used to

determine initial seat allotments, and that a multi-period

DP-based model should be used to modify initial limits,

taking into account bookings already made.

I

That is ,



The set of assumptions he made in deriving his

model was:

(1) no cancellations;

(2) total loss of rejected bookings

(no vertical shift );

(3) in each booking period, low fare passengers

make reservations before high fare

passengers;

(4) the demand in each period is independent of

the actual demand in all previous periods.

He concluded that the initial seat allotment

did not benefit from a DP-based approach. He suggested

Littlewood's model to set initial allotment. From there on,

a model that permits corrective action (reallotment), such

as a DP-based one, should be used.

Buhr [4] contributed to the marginal

probabilistic approach in 1982, suggesting a seat allotment

model for a two leg flight ( A to B to C ). His model was

based on the expected "residual" revenue, defined as the

revenue from allocating an additional seat to passenger

flying from A to B as the product of the average fare from A

to B, times the probability of selling more than x seats in

the A/B market, or :



AB() = P (x) . R
AB AB

where,

E (x) = expected residual revenue
AB
P (x) = probability of getting more that x
AB

passengers in the A/B market ; and

R = average fare the A/B market.
AB

For the two leg flight, the demand for each O&D

market were assumed as independent. For each of the three

markets, expected residual revenues were calculated and seat

allotment decisions were taken based on such revenues, that

is

E (x) - (E (y) + E (y)) |-->min,
AC AB BC

where y is the seat capacity allocated to local AB and BC

passengers.



An extension to the simple marginal seat

allotment model, proposed by Belobaba [5], handles multiple

fare classes and flight with multiple legs. Given the

expected bookings in a fare class i, the expected revenue

for this class is given by :

E(Ri) = fi . bi(Si)

where fi is the net fare or the yield to the airline from a

passenger booked in class i, and bi is the expected

bookings, given a seat allotment Si.

The expected marginal revenue for class i

(EMSRi) is defined as the increase in revenue when the seat

allotment is increased by one seat, i. e. Si+1 seats. EMSRi

is, therefore, calculated with the following expression:

EMSRi = fi . P[ ri > Si ],

where ri is the total reservations made on class i.

Given a natural ranking of fares fl > f2 > f3 >

f4 etc. , in order to maximize flight revenue, the

reservation process should be able to discriminate bookings,

giving priority to passengers that contribute most with

revenue. Although the assessment of the probability of

having Si passengers at the fare level fi is made, priority



should always be given to higher yield passengers. This

leads to a nested version of authorized booking limits,

where the authorized booking limit for a given higher fare

class overlaps with the authorized booking limit for all

subsequent lower fares. For example, in the case of a three

class flight, where fl > f2 > f3, the authorized limit (AU)

for each class should be as:

AU1= C

AU2= C-S1

AU3= C-S1-S2

where

C = seating capacity of the aircraft;

Si = number of seats protected for class 1;

S2 = number of seats protected for class 2;

r1 and r2 represent reservations made in class 1 and 2.

A protection level is calculated for each class

in order to achieve this priority. The protection level for

a class in the minimum number of reservations that are

accepted in that fare class and that must be protected from

lower fare classes. In the above example, S1 seats are

always protected from f2 and f3 passengers. Likewise, S2

seats are always protected from f3 passengers. No protection

level for f3, of course. Note that nothing prevents

passengers paying higher fare from taking up low fare seats.

In the example, up to C passengers paying fl fare can make

reservations, and up to to (C-Si) for passengers paying f2.



3.3 RESERVATIONS FORECASTING MODULE

Central to any model briefly presented here, is

the ability of knowing the fare and the probability

distribution function for each class i, in every market.

Airlines can obtain average fare figures by

sampling tickets on a class i, for a given market. Several

problems arise when averaging fares within a class. Within

each class there is a multitude of fare codes, and very

often they are not well structured. It is very common to

observe price overlapping between adjacent fare classes.

The average fare , calculated by class, may not

be representative, if too many fare codes exists. Not only

prices vary but also restrictions change.

Another problem associated with fare averaging

is the pro-rating of fares. When a passenger buys a ticket

from A to C, and the service he gets is a one-stop flight A

to B to C, the apportioning of fares in legs AB and BC will

tend to drive down the AB and BC average fare calculations.

With the increase of the airline hub-and-spoke operation

the pro-rating problem tends to be widespread. If the seat

allocation routine were O&D based, this problem would not

exist.



Due to this high degree of non-homogeneity it

is really difficult to define what is the "average service"

and to estimate its probability distribution function.

Fortunately, several fare data analysis performed together

with this thesis show that although there is a high degree

of non-homogeinity within each fare class, the overall class

result tends to exhibit a stable pattern, as far average

prices are concerned, especially for higher fare classes.

The reason for this result is that within each

class there is always a "dominant fare code". The majority

of passengers fly with dominant fare code tickets. The

remaining passengers use other fare code tickets (within the

same class) but with different proportions each time. The

dominant fare code tends to be less predominant as the fare

gets lower. For the lower fare class, passengers are more

disperse. Therefore, the fare aggregation within the same

class should be more meaningful and yield better result than

for lower fare classes, provided there is no radical changes

in fare levels. This may result in a better ability in

forecasting reservations for higher fares than for lower

ones.

The seat inventory control routine will need a

forecast element that provides (1) initial estimates of

final loads, and (2) updates on such estimates, as the

reservation process for a flight is under way.



These two inputs, namely fare and expected

bookings, are then used by an automated booking limit

routine. The automated booking limit system calculates

reservations thresholds, by class and by flight. The

promptness of the automated booking limit routine in

providing such thresholds is dependent on the reservation

system itself. There are reservation systems that start

taking reservation as early as one year in advance. The

usefulness of generating booking thresholds so early in time

are, of course, questionable. As a general rule, reservation

systems have some form of booking limit introduced at least

6 weeks before departure. From there on, booking thresholds

limit the number of seats made available in each class, in

every market.

The reservation forecasting module of an

Automated Seat Inventory Control System is primarily

intended to provide the dynamic booking limit adjustment

routine with estimates of expected bookings for individual

future flights. A seat allocation routine will then use

these estimates of expected bookings to calculate how many

seats should be allocated/protected for each upper fare

class.

The first step in reservations forecasting

involves initial estimates of final bookings, well in

advance of flight departures. These estimates are typically



needed for each future flight, up to 90 days out, and are

used to set initial authorized booking limits. Sophisticated

forecasting models are of little use, and outweighed by the

error associated with the forecast produced for such large

time interval. As a consequence, a simplistic but

conservative approach is thought as being the most

appropriate and effective.

These initial estimates need to be improved

later in the bookings process as more information (data) on

the specific flight for which more accurate forecasts are

needed.

A simple forecasting model is suggested for the

initial estimation of final bookings. It consists of moving

average process that is sensitive to day of week variation

only. That is to say, for instance, that a 8-week average is

used to describe or estimate final bookings for a given

flight (e.g. flight F1), on a specific day of week (e.g.

Monday).

Although no information on actual bookings on

hand for future flights is ever used, nor additional

adjustments are made for cyclic or seasonal variations other

that on weekly basis, the implicit assumption of this simple

approach is that a small sample of final demand for recent

flights will be representative of the demand for the same



flights in the near future.

The final step in the development of a

forecasting module is to improve the estimates of bookings

to come, over those strictly based on recent historical

averages. These new estimates are used to re-calculate

expected revenues ,and again the seat allocation routine is

used to update allotments.



CHAPTER FOUR

EXPLORATORY DATA ANALYSIS

An exploratory data analysis is designed to

give the forecaster more insight into the variable (s)he is

trying to forecast. Trends in daily booking levels,

variations across markets, and seasonalities are among the

characteristics the forecaster searches. Reservations data

are extremely confidential and, very reluctantly, airlines

make them available. The exploratory data analysis presented

in this thesis represents a moment of rare opportunity in

which actual. and recent data was available. As a

consequence, extensive data analysis are presented here.

4.1 DATA SAMPLE DESCRIPTION

A sample of five city-pairs was selected for

data statistical analysis and hypothesis testing. The sample

included a variety of market types and stage lengths . One

short, one short-medium, two medium and one long haul



markets were included in the sample. One of the medium-haul

markets was a Canadian market.

A total of 28 flights were included in the

sample. Some flights did not operate throughout the whole

sample period. At least two flights were operating in any

given month, for any of the five markets. The sample period

was from January, 1986 through June, 1986. The Airline

Industry registered no major abnormality during the sample

period. Therefore, it is expected that the data set provides

a normal picture of what happens in the first half of an

year.

Data was collected from the actual database of

an existing US airline. Table 4.01 shows the markets and

flights selected. In order to maintain confidentiality of

the data presented in this thesis, single capital letters

were assigned to markets ,and single digit numbers to

flights. Distances and flight times were rounded.

For instance, the flight F1 in the A/B market

departs at 09:00 am. The distance flown is approximately 500

miles, and the aircraft type is a B73S. Additional market

characteristics are also given in Table 4.01.

29



TABLE 4.01 DATA SAMPLE
GENERAL CHARACTER I ST I CS

MARKET FLT DISTANCE FLIGHT DEPART AIRCRAFT MARKET CHARACTERISTICS
NLMBER (MILES) TIME TIME TYPE

-(HH: MM) (HH:MM)

A/B Fl 500 1:30 09:00a 0735 Short-medium haul hub feeder
F2 01:50p with a minimum oF two daily flights
F3 07: 19p each way, and with high load factors.

8/A F1 500 1:30 10:00a B735
F2 02 :OOp
F3 06: 15p/08:30p

C/D F1 300 0:55 08:30a B725 Short-haul hub feeder, very stable
F2 12:OOn B735 business market, with a minimum of
F3 03 :25p 0725 three daily flights, with consistently
F4 06:50p 0733 high load factors.

D/C F1 300 0:55 09: 15a 8735
F2 11:15a B725
F3 05:10p/06:15 0733
F4 09 :30p 0725

E/F F1 2000 5:00 07:50a 0725 Long-haul hub leg, with high
F2 05:00a load factors, with two daily Flights

each way.
F/E Fl 2000 4:15 10:10a 0725

F2 05: OOp

G/H F1 1200 2:30 06 :3 5p/12 :2 5  B725 Medium-haul leg with an average load
F2 09:45a/09:45 factor arnd a good mi x of traffic.

Two daily flights , each direction.
H/G Fl 1200 2: 30 08: 15a 0725

F2 05: OOp

I/J F1 750 1:40 11:10a 0725 Medium-hub feed ,with high load factor-,
F2 05: 10p different fare structure/mix. A
F3 09:30p Canadian market, with two daily flights

each direction.
J/I F1 750 1:40 07:4 0a 6725

F2 01: 4 Op
F3 05: 50p

SOURCE :Official Airline Guide, North Aamerican Edition, 1986.



Table 4.02 shows how many days a given flight

operated, throughout the sample period, on a monthly basis.

Some flights started operation only June, e.g. flight F2 in

the C/D market. Some flights operated throughout the whole

sample, e.g. flight F1 in the A/B market. Within the sample

period some flight ceased operations. Sometimes, a new

flight was created, departing at the same time as the old

one, e.g. flight F2 in the G/H market, or the new flight

departed between one and two hours later, e.g. flight F3 in

the D/C markets. In both cases, the old and the new flights

were considered as the same flight.



TABLE 4.02 DATA SAMPLE
MARKETS & FLIGHTS

MARKET FLT OBSERVATIONS
NUMBER

JAN. FEB. MAR. APR. MAY JUN.

A/B F1 31 28 31 30 31 30
F2 30 28 31 30 31 30
F3 0 0 0 0 0 30

B/A F1 31 28 31 30 31 30
F2 0 0 0 0 0 30
F3 31 28 29 30 31 30

C/D Fl 30 28 31 30 31 30
F2 0 0 0 0 0 30
F3 31 28 31 30 31 30
F4 31 28 31 30 31 30

D/C Fl 0 0 0 0 0 30
F2 30 28 31 30 31 30
F3 31 28 31 30 31 30
F4 31 28 31 30 31 30

E/F F1 31 28 31 30 31 30
F2 31 28 31 30 31 30

F/E F1 31 28 31 30 31 30
F2 31 27 31 30 31 30

G/H Fl 26 24 29 26 26 30
F2 30 27 30 29 31 30

H/G Fl 26 24 29 26 27 30
F2 30 27 30 29 31 30

I/J Fl 29 28 31 30 31 30
F2 31 28 31 0 0 30
F3 31 28 31 29 30 30

J/1 Ft 31 28 31 30 31 30
F2 28 28 29 30 31 30
F3 0 0 0 0 0 30



The markets in the sample exhibited high levels

of bookings on boarding day. Table 4.03 shows reservations

load factors , defined here as total reservations on the

boarding day, divided by the seating capacity of the

aircraft assigned to that flight. From now on the term load

factor will be loosely used meaning not the actual load

factor, which is calculated with departure loads in the

passenger cabin, but rather the reservations load factor

already defined. It can be observed that there were months

in which the average load factor was greater than 100%,

which means that in the average flights were overbooked.

This is the case of markets A/B, B/A, D/C, E/F, and F/E.

It is interesting to observe, still on Table

4.03 the change in the performance of reservations caused by

the introduction of a new flight in the market. For the A/B

market, the third flight introduced in June, a night flight,

exhibited a reservations load factor that ranked second. In

the opposite direction, market B/A, the third flight

exhibited the highest reservations load factor in the month.

Reservations load factors in the other flights, in June,

were bellow average, with the exception of flight F1 in the

A/B market. This result suggests that some of demand

generated by the new flight might be the result of diversion

of "regular" passengers from other flights.



The new flights in the C/D and D/C markets, on

the other hand, exhibited very low load factors, and one may

also speculate about passenger diversion. There was an

overall reduction in load factors in the month of June. If

the reduction of load factors was a consequence of a

seasonality in the market demand then passenger diversion

cannot solely justify the observed reduction in demand

levels.

For the J/I market, the result was very

different. Flight F3 showed a reservations load factor that

ranked second, but the overall market behavior suggests that

reservations demand was indeed increased in the market. In

the I/J case, there were three flights from January to

March. When the third flight came back in operation in June,

reservation levels were brought back to normal levels.



TABLE 4.03 RESERVATIONS LOAD FACTOR ON BOARDING DAY
ALL CLASSES

,MARKET FLT AVERAGE LOAD FACTOR
NUMBER

JAN. FEB MAR. APR. MAY JUN.

A/B F1 74 80 101 89 98 95
F2 89 88 99 90 90 61
F3 0 0 0 0 0 71

B/A F1 73 84 97 84 85 54
F2 0 0 0 0 0 82
F3 80 88 100 94 107 72

C/D F1 97 96 91 84 84 81
F2 0 0 0 0 0 47
F3 89 86 85 76 78 57
F4 48 48 50 31 41 41

D/C F1 0 0 0 0 0 37
F2 87 89 86 72 78 70
F3 84 92 100 81 86 70
F4 49 58 65 53 57 66

E/F F1 77 86 104 60 78 101
F2 86 97 102 79 89 101

F/E F1 93 99 111 96 105 114
F2 68 74 90 61 62 91

G/H F1 41 39 71 58 70 30
F2 56 51 80 77 93 87

H/G F1 49 47 77 65 83 64
F2 50 51 80 74 95 77

I/J F1 58 61 65 66 74 82
F2 66 76 72 0 0 49
F3 80 87 79 94 84 59

J/I F1 67 82 82 92 85 57
F2 60 81 80 59 64 74
F3 0 0 0 0 0 63

Seating capacity
(all classes)

B735
8725
B733

-115
-148
-128



Table 4.04 shows reservation averages for a

flight on the boarding day. Reservations were totaled, for

all classes, and then averages were calculated by month. The

result is presented on table 4.04 . For instance, the

average in January for flight F1 in the C/D market was 144

reservations, for the month of January. This table presents

the intensity in bookings for each market analyzed. market.

The C/D and D/C markets exhibited a high reservation

activity. In this example, a total of six flights, eight in

June only, one can also observe that the high level on

bookings did not vary too much from month to month,

exception made only in June, when flights were added. The

same stability pattern is also observed in the other

markets.



TFABLE 4. 04 . REVERVAT IONS ON BOARD ING
(ALL CLASSES)

DAY

MARKET FLT AVERAGE TOTAL BOOKI NGS
NUMBER

JAN. FEB. MAR. APR. MAY JUN.

A/B Fl 85 92 116 102 113 109
F2 102 101 114 103 103 70
F3 0 0 0 0 0 82

B/A Fl 84 97 111 97 98 62
F2 0 0 0 0 0 94
F3 92 101 115 108 123 83

C/D Fl 144 142 134 124 124 120
F2 0 0 0 0 0 54
F3 132 127 126 113 116 85
F4 61 61 64 40 52 53

D/C F1 0 0 0 0 0 43
F2 129 132 127 106 115 104
F3 108 118 128 104 110 90
F4 72 86 96 79 84 97

E/F Fl 114 128 154 89 116 150
F2 128 143 151 117 131 150

F/E F1 137 146 165 142 155 168
F2 100 110 133 90 92 134

G/H F1 60 58 105 86 104 44
F2 83 75 119 114 137 129

H/G Fl 72 70 114 96 123 95
F2 74 76 119 109 140 114

I/J F1 86 91 96 97 110 121
F2 97 112 106 0 0 72
F3 118 129 117 139 124 87

J/1 Fl 99 121 122 136 126 84
F2 89 120 119 88 95 109
F3 0 0 0 0 0 93



Table 4.05 shows averages in the reservations

for a flight on the boarding day. The objective of this

table is to show the contribution of different classes in

the flight load. First class was also included in the

calculation of percentages, and the total coach compartment

contribution is shown on the last column. The contribution

of the first class is, on the average, less than 5% .

For the business market, the Y contribution in

the flight load would be expected to be a little higher than

the average. It was indeed observed in the E/F & F/E data

that participation of Y class was slightly higher in this

business market.

In the I/J & J/I market, the contribution of Y

class was the highest. It happens to be the canadian market.

A large proportion of non-restricted Y seats were sold in

this market. In the other markets the Y contribution was

less than 8%, in the average. The results are as expected.

While the expected typical contribution of Y class is less

than 10%, when there is a strong business component in this

market. Canadian markets usually exhibit different behavior

when compared to US markets.

The participation of Q class observed in the

sample was very high. In the average, excluding the business

and the Canadian market, Q class participation was 42.27% .



BOOKINGS BY CLASS
( % TOTAL )

MARKET CLASS
FLT TOTAL

Y M B Q COACH

A/B Fl 7.00 22.83 24.83 42.83 97.50
F2 7.33 19.67 26.50 43.33 96.83
F3 7.00 22.00 19.00 51.00 99.00

B/A Fl 6.83 22.00 22.33 46.17 97.33
F2 5.00 27.00 16.00 50.00 98.00
F3 7.83 22.67 23.33 43.50 97.33

C/D Fl 6.00 28.17 24.83 37.83 96.83
F2 9.00 24.00 27.00 38.00 98.00
F3 4.33 31.67 24.67 36.17 96.83
F4 2.17 34.83 19.67 41.33 98.00

D/C Fl 6.00 24.00 21.00 46.00 97.00
F2 5.17 30.67 24.83 36.67 97.33
F3 3.50 32.83 23.00 37.83 97.17
F4 5.17 23.50 26.33 42.50 97.50

E/F Fl 15.00 13.83 27.33 36.33 92.50
F2 16.33 11.50 28.67 35.83 92.33

F/E Fl 16.67 14.83 29.17 32.00 92.67
F2 9.50 13.50 31.67 35.17 89.83

G/H Fl 5.17 16.00 17.17 57.67 96.00
F2 3.83 17.00 22.50 53.17 96.50

H/G Fl 4.83 16.50 17.17 58.17 96.67
F2 4.33 18.00 20.83 52.67 95.83

I/J Fl 35.33 33.00 8.50 18.17 95.00
F2 35.25 28.00 10.50 21.25 95.00
F3 .26.17 18.00 19.50 32.00 95.67

J/I F1 29.00 28.67 10.50 27.67 95.83
F2 39.33 25.S0 9.83 19.83 94.50
F3 6.00 25.00 13.00 53.00 97.00

TABLE 4.05 REVERVATIONS ON BOARDING DAY



Table 4.06 shows the breakdown of class

participation in the flight load, but on a monthly basis.

Table 4.07 shows the authorized booking limits that were

imposed to the reservation system of the participating

airline, by flight, by class and by month. The reference

level was the Y class limit, which was always greater that

the coach class seating capacity. One could observe the

"high" authorized level assigned to M-class, exception made

only to the Canadian I/J & J/I markets. In the business

markets, i. e. C/D & D/C, the authorized limit was slightly

lower. As the reservation system of this airline nest

authorized limits, and considering the seat allocation

routine proposed by Belobaba, one could calculate the

average protection level assigned to each upper fare class.

For instance, for flight F1 in the A/B market, the average

protection level for Y class was 7%, in the month of

January. The M protection level was 15% ( 22% - 7% ),and for

the B class it was 33% ( 55%-22%).



TAELE 4.06 REVERVAT IONS ON BOPDING DAY
BOOK1NGS BY CLASS

( X TOTAL )

MAE FLT Y BOOKINGS (X) M BOOKINGS (x) 8 BOmNGS (X) * Q 80O1(05 (X)
OUMBER

JAN. FEB MAR. APR. MAY JUN. JAN. FEB. MAR. APR. MAY JUN. JAN. FEB. MAPR. APR. MAY JUN. JAN. FEB. MAR. APR. MAY JLU.

A/8 Fl 8 8 5 6 6 9 31 21 18 21 22 24 24 27 26 21 24 27 36 42 46 49 44 38
F2 1 7 4 7 10 5 23 19 10 20 19 19 26 29 29 29 24 22 38 42 46 40 43 51
F3 0 0 0 0 0 7 0 0 0 0 0 22 0 0 0 0 0 19 0 0 0 0 0 51

B/A F1 7 8 6 8 6 6 27 21 19 20 21 24 23 24 27 21% 18 21 41 45 45 48 52 46
F2 0 0 0 0 0 5 0 0 0 0 0 27 0 0 0 0 0 16 0 0 0 0 0 50
F3 10 9 6 6 7 9 27 19 19 24 24 23 25 27 26 24 18 20 37 42 47 42 47 46

30 26 26 31 25 31
0 0 0 0 0 22

36 30 28 33 26 37
40 40 33 41 16 39

0 0 0 0 0 43
37 34 30 36 24 23
40 35 30 35 19 38
28 25 22 25 16 25

27 27 28 22 24 21
0 0 0 0 0 20

24 27 26 24 24 23
13 22 23 22 17 21

0 0 0 0 0 13
23 26 26 19 24 31
19 27 23 24 22 23
26 31 29 25 22 25

34 37 39 39 41 37
0 0 0 0 0 52

34 34 39 34 42 34
43 34 41 32 62 36

0 0 0 0 0 39
35 32 36 34 44 39
36 33 41 34 50 33
39 38 43 42 51 42

13 6 11 16 20 22
13 12 14 16 19 24

15 11 14 17 18 25
8 7 9 8 10 15

7 9 17 12 19 19
5 8 13 12 16 15

9 12 16 16 18 18
5 8 13 13 21 21

23 32 32 24 24 29
26 31 30 26 28 31

26 32 30 29 29 29
29 33 31 31 32 34

50 44 34 38 28 24
49 41 36 38 28 23

41 39 33 30 27 22
48 41 38 36 26 22

G/H Fl 10 5 4 5 4 3 42 13 7 8 14 12 17 29 20 20 11 6 28 49 67 61 66 75
F2 6 4 , 3 3 3 4 39 9 5 6 14 29 18 31 28 19 17 22 34 52 61 68 62 42

7 4 3 4 5 6 41 11 7 5 10 25
7 5 3 3 4 4 42 10 7 7 14 28

16 25 18 14 17 13
17 33 23 17 16 19

32 56 70 73 65 53
29 48 64 69 61 45

35 35 33 38 41 30
33 33 37 0 0 30
20 21 24 24 30 38

26 25 27 27 32 37
40 36 36 46 46 32
0 0 0 0 0 43

32 28 36 25 34 43
27 29 30 0 0 26
18 14 17 17. 17 25

33 27 31 22 27 32
26 21 29 20 22 35
0 0 0 0 0 20

16 10 8 7 4 6
18 9 8 0 0 7
20 19 19 22 23 14

7 9 8 18 12 9
15 12 14 5 4 9
0 0 0 0 0 5

12 23 19 23 15 17
16 25 19 0 0 25
39 42 37 31 24 19

32 35 29 23 23 19
14 27 16 21 20 21
0 0 0 0 0 28

C/D FI
F2
F3
F4

D/C F1
F2
F3
F4

E/F Fl
F2

F/E Ft
F2

H/G Fl
F2

JJ Fl
F2
F3

I F1
F2
F3

- -- -- --- - -- -- -- -- ---- - -- - --- -- -- -- -- -- -- -- --



TABLE 4.07 AUTHORIZED BOOKING5 LEVELS
( YAU as 100% )

MARKET Y M LEVEL5 B LEVELS Q LEVELS
FLT

JAN. FEB. MAR. APR. MAY JUN. JAN. FEB. MAR. APR. MAY JLN. JAN. FEB. MAR. APR. MAY JLN.

A/B F1 100 93 98 99 92 92 72 76 83 84 78 68 54 45 53 48 39 35 26
F2 100 93 95 97 96 70 85 78 77 80 76 61 67 46 50 44 33 33 35
F3 100 0 0 0 0 0 88 0 0 0 0 0 75 0 0 0 0 0 38

8/A F1 100 92 94 94 92 67 88 78 80 80 76 66 66 49 47 40 36 37 35
F2 100 0 0 0 0 0 93 0 0 0 0 0 77 0 0 0 0 0 44
F3 100 94 94 94 86 93 86 81 80 80 65 70 66 49 59 43 31 38 32

83 83 83 85 89 78
0 0 0 0 0 93

86 84 83 84 86 84
95 91 91 90 89 92

0 0 0 0 0 93
86 87 83 70 91 82
89 90 84 78 82 83
84 91 91 77 92 91

65 62 62 51 62 41
0 0 0 0 0 64

71 62 60 59 57 53
79 76 76 69 65 71

0 0 0 0 0 82
70 65 62 39 69 55
71 65 60 46 61 62
72 73 72 57 68 67

38 50 28 25 30 19
0 0 0 0 0 35

42 37 30 28 32 29
52 59 54 44 43 45

0 0 0 0 0 40
44 33 25 15 32 28
40 39 28 23 32 30
51 44 39 32 42 41

E/F F1 200 84 92 92 92 92 71 73 73 65 70 67 48 44 35 27 37 37 23
F2 100 83 87 83 89 87 67 67 67 58 66 62 40 44 44 25 34 30 17

86 92 92 90 90 75
82 86 83 89 91 80

58 70 65 63 60 43
72 72 66 68 72 50

30 41 25 28 29 16
53 43 30 38 41 33

G/H F1 100 93 93 92 93 94 92 78 75 73 73 78 71 59 59 53 47 55 41
F2 100 89 92 92 93 94 92 82 76 75 74 76 55 52 49 45 47 48 20

H/G F1 100 92 91 92 93 94 89 77 74 74 73 77 63 49 54 51 53 55 31
F2 100 94 92 92 93 94 82 80 74 72 73 77 61 50 46 45 49 50 30

I/J F1 100 78 84 84 83 89 78 40 59 61 58 58 49 23 19 23 26 27 21
F2 100 79 84 82 0 0 84 51 51 43 0 0 59 29 13 20 0 0 32
F3 100 87 78 78 77 80 82 62 62 56 62 66 53 32 25 17 19 31 24

J/1 Ft 100 92 85 83 90 88 88 66 65 55 72 66 66 37 31 19 47 48 48
F2 100 75 82 81 84 84 88 51 57 47 53 56 67 26 23 13 20 23 39
F3 100 0 0 0 0 0 89 0 0 0 0 0 71 0 0 0 0 0 42

C/O F1
F2
F3
F4

D/C F1
F2
F3
F4

100
100
100
100

100
100
100
100

F/E F1
F2

100
100



Table 4.08 shows bookout analysis performed for

the flights in the sample. Columns with heading " # DAYS "

indicate the actual number of days in which the class was

closed. Columns with " (%) " heading indicates the

percentage of days, during the whole sample period in which

the class was closed. As a function of the nested authorized

booking limit reservation system, the following equations

describe a bookout in a given class:

Y is closed if:

YRES + MRES + BRES + QRES > YAU.

M is closed if:

YRES + MRES + BRES + QRES > YAU , OR

MRES + BRES + QRES > MAU.

B is closed if:

YRES + MRES + BRES + QRES > YAU ;OR

MRES + BRES + QRES > MAU ;OR

BRES + QRES > BAU.

Q is closed if:

YRES + MRES + BRES + QRES > YAU ;OR

MRES + BRES + QRES > MAU ;OR

BRES + Q+ QR ES> BAU ;OR

QRES > QAU.



A consequence of the bookout equations in the

previous page, is the following relation :

QCLOSED > BCLOSED > MCLOSED > YCLOSED.

One can observe that this relation is not

observed in the flight F1 in the B/A market. Flight F2 in

the A/B market exhibit a high level of bookout for all

classes. M was closed in 18.33% of the flight. The high

percentage in Y bookout is likely to be the consequence of

bookout in other class, rather than in Y alone. In the

opposite market, B/A, flight F2 consistently exhibit the

lowest bookout levels, for all classes.



BOOKOUT ANALYS IS

CLASS

MARKET Y M 8
FLT

* DAYS (X) * DAYS (Y.) # DAYS (%) * DAYS (Y.) * FLTS
----------------------------------------------------- -------- --------

A/B F1 14 7.73 24 13.26 34 18.78 48 26.52 181
F2 32 17.68 33 18.23 44 24.31 71 39.23 180
F3 0 0.00 0 0.00 0 0.00 2 1.10 30

8/A F1 12 6.63 22 12.15 15 8.29 39 21.55 181
F2 1 0.55 3 1.66 0 0.00 4 2.21 30
F3 12 6.63 13 7.18 25 13.81 49 27.07 179

C/D Fl 5 2.76 39 21.55 76 41.99 80 44.20 180
F2 0 0.00 0 0.00 1 0.55 2 1.10 30
F3 2 1.10 14 7.73 47 25.97 43 23.76 181
F4 0 0.00 2 1.10 4 2.21 4 2.21 181

D/C F1 0 0.00 0 0.00 0 0.00 0 0.00 30
F2 7 3.87 20 11.05 38 20.99 57 31.49 180
F3 9 4.97 31 17.13 49 27.07 50 27.62 181
F4 0 0.00 3 1.66 10 5.52 17 9.39 181

E/F F1 12 6.63 13 7.18 46 25.41 36 19.89 181
F2 8 4.42 22 12.15 98 54.14 59 32.60 181

F/E ..F1 11 6.08 12 6.63 82 45.30 86 47.51 181
F2 4 2.21 17 9.39 47 25.97 35 19.34 180

G/H F1 0 0.00 0 0.00 6 3.31 11 6.08 161
F2 0 0.00 4 2.21 16 8.84 62 34.25 177

H/G F1 5 2.76 10 5.52 26 14.36 22 12.15 162
F2 0 0.00 5 2.76 18 9.94 39 21.55 177

1/J Fl 9 4.97 9 4.97 15 8.29 39 21.55 179
F2 3 1.66 6 3.31 17 9.39 31 17.13 120
F3 5 2.76 16 8.84 46 25.41 87 48.07 179

J/I Fl 6 3.31 8 4.42 10 5.52 23 12.71 181
F2 1 0.55 9 4.97 34 18.78 44 24.31 176
F3 0 0.00 0 0.00 0 0.00 1 0.55 30

TABLE 4.08



For the remaining markets, the same behavior

is observed. At least one flight for each directional market

exhibited a high level of bookouts. The renaining flights

showed moderate to low bookout statistics.

The flights that exhibited high level of

bookouts were:

MARKET FLIGHT

A/B F2

B/A F1 & F3

C/D F1

D/C F2 & F3

E/F F2

F/E F1

G/H F2

H/G F1

I/J F3

J/I F2



The flights in the following list did not

exhibit high level of bookouts. They were

MARKET

A/B

B/A

C/D

D/C

E/F

F/E

G/H

H/G

I/J

J/I

FLIGHT

F1

F2

F4

F3

F1

F2

F1

F2

F1

F1

Statistical analysis on these flights above

should produce results that are likely to be more

representative of the market behavior than the original set

of 28 flights because they have exhibited low level of

bookout. There is not a simple routine for bookout

correction, i.e. how to estimate what would have been the

reservations demand given that no seat limitation was

imposed to a flight. As a consequence, major attention will

be given to the flights that did not bookout. Therefore,

statistical analysis, distribution plotting and the demand

analysis presented in this thesis will only show results for

these flights.



4.2 DISTRIBUTION ANALYSIS

The objective in this analysis was to produce

and examine distribution plots of reservations by fare class

for the markets and flights in the sample, specially those

which exhibit low levels of bookout. The first reservation

data retrieved for any flight refers to a period that

corresponds to 28 days before departure. From there on,

snapshots were taken for every seven days. That is to say

that each flight will be analyzed in 5 seven-days' periods,

from day 28 to boarding day, that is, periods are: T28, T21,

T14, T7 and TBD.

Analyses were made in terms of reservations

made for the M-class, up to a particular period , or

bookings-on-hand, and the expected number of reservation

still to come,or bookings-to-come. This is to say, that on

day 21, we should have data analysis for both bookings-on-

hand and bookings-to-come. The objective is to observe these

two related but distinct variables in terms of shapes,

means, and standard deviation. Exception will be made for

the Canadian markets, where the analyzed class will be Y.

Correlation analysis performed in bookings-on-

hand and final bookings indicated that the correlation



between these two variables , in the majority of cases, was

very low. This means that bookings-on-hand should not

exhibit good explanatory power when forecasting final

bookings via bookings-to-come. This result corroborates the

conclusion arrived by Littlewood [1):

"The subsequent arriving passengers

can be regarded as independent of

the booked load".

Figures 4.01 through 4.10 show distribution

plots for the flights/markets selected for data analysis.

Figure 4.01 shows distribution plots for flight

F1 in the A/B market. The shape of the distribution observed

for final bookings, i.e. reservations on boarding day,

resembles the bell shape of a normal distribution. An

increase in skewness is observed for bookings on hand as

it gets further from boarding day. On the other hand, the

shape of bookings-to-come plots, in any period, resemble

that of a normal distribution. Bookings-on-hand exhibits

increase in standard deviation, going from 6.00 to 7.87,

whereas bookings-to-come is the reverse, going from 8.80 to

6.42 . A side by side plot comparison in given in figure

4.01 . The small table on the top right corner of figure

4.01 shows statistical analysis for this flight.
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The notation used in these figures is :

FiMBD = reservations on boarding day

for flight i, M class;

FiMt = total reservation made up to day t,

for flight i, M class,

( t = 7, 14, 21 and 28 );

FiMtBD = bookings-to-come for flight i, from

day t to boarding day, M class,

( t = 7, 14, 21 and 28 ).
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Sample set to -> ALL
Descrip:ive Statistics

Variable Mean

F1M7
F1M7

F1M21
F1M29
F17 S0
F1M1 :0
F1'21-3
F1M2-30

19.406
11.250
6.5944
4.2556
3.1444
8.1556
12.711
15.150
16.261

180 observaticns used.

Std. Dev. Skewness

8.8908
7.3746
6.8719
6.2919
5.9936
6.4 252
8.1826
8.7379
8.7971

.79593
1.1836
4.4066
6.2310
7.1251
.13393

-. 54175
-.23213
-. 276153

Kurtosis Minimum Maximum

£.1779
6. 1703
35.232
57.4965
69.900
3.3533
6.2530
6.3647
6.7125

3.000
.0000
.0000
.0020
.0000

-13.00
-31.00
-31.00
-0.00

57.10
49.00
67.00
67.:0
66.00
27.00
37.00
41.30
42.00

(Skewness = x3/s*'1 ; Kurtosis = m4/s**4)
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Sample set to -) ALL
Descriptive Statistics - 181 observations used.

Variable Mean

F2M40
F2M7
F2M14
F2!21
F2M28
F2M7 SD
F2M11 80
F2M21~8D
F2M28~SD

23.337
13.011
6.8398
4.6961
3.1934
10.326
16.497
18.641
20.144

Std. Dev. Skewness

10.383
8.2050
5.4896
4.5694
3.7150
7.9302
S.7049
10.121
10.361

.34722
1.1963
1.7808
2.065

'2.2790
.44086
.45437
.27984
.33458

Kurtosis Minimum Maximum

2.7745
4.9249
7.4439
8.9319
9.3770
3.2102
3.068
2.8918
2.8315

.0000

.0000

.0000

.0c00

.0000
-9.000
-6.000
-2.000
..0000

52.00
49.00
35.00
30.00
21.00
34.00
46.00
45.00
49.00

30

28

26

24

22-

36
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14-

12

10

240
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Sample set te -) ALL
Descriptive Statistics - 180 observations used.

Variable Mean

FIMSD
FAX7
F4M14
F4M21
FAM2
F447 80
FAM11 80
FIM2?180
FAM28~0D

1n.267
8.0667
4.3667
2.6556
1.5557
10.200
13.900
15.611
16.700

Std. Dev. Skewness

10.010
5.4717
3.6615
2.9997
1.9292
6.8784
8.5907
1.970
9.5729

.33665
1.5856
1.8727
2.2730
1.8897
.365!5
.15795
.16705
.31096

Kurtosis Minimum Maxima:!

2.6126
6.9378
7.9251
10.058
7.1777
2.6981
2.1534
2.2709
2.4013

1.000
1.000
.0000
.0000
.0000

-3.000
-7.000
-1.000
.0300

48.00

21.00
19.00
11.00
32.00
3f.00
38.00
43.00

(Skewness = t3/s"3; Kurtesis = m4/s*44)
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80DxrC5 M0 COME - DAY 7

10 d

-12 - 6a 12 8is 24 30 C6 42 44 60 86 72 78 84 ;0

FOO&MM T1O COM- DAY 14

Figure 4.03 Distribution Plots

M-class Flight F4 Market C/D

- -r vI I t IIII I i

12 18 24 30 34 42 4 84 60 66 72 78 84 90 904+

W REEVA11GM OArNG DAY

.IM - .8k. 1668

*01



-6 4 4 a 2 ,t 20 24 23 32 36 40 ~4 8 52 6 11 .14 .. n1 ;11

M REERVAOS - DAY 21V

-8 -4 0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 84 8 72 76

M RESERVAnOmS - DAY 28

7

0

-12 -4 0 6 12 18 24 30 36 42 48 54 60 SO 72 78 84 *0

BOOKINGS TO COME - OAT 21

.AA&. - .IuM. ....

201

104

A .1~~t, A

-12 -9 0 6 12 18 24 30 36 42 48 &4 60 66 72 78 a 9o

BOOKINGS TO COME - DAY 28

Figure 4.03 (cont.) Distribution Plots

M-class Flight F4 Market C/D

56

~FIL

J&AL JU6L Ift"



30-

28 -

26

24-

22-

a.-

12-

14-

1-

2

0 A 12 18 24 30 3 42 4s 54 60 6 72 64 & 0 so 0

J acuAng 60AnIGM DAY

12-$

10 -

-6 -3 0 3 6 6 12 1 18 21 24 27 30 33 36 3* 42 45 45 460 63 66

U RE5MEvA7I0MS - OAY 7

.""M. - Jul& Is"

Sample set to -) ALL
Descriptive Statistics - 181 observations

Variable Mean

F3M60
F3.7
F3M14
F3'21
F3M23
F3.7 80
F2MIl 80
F3M2I -ED
F3M28~80

35.564
19.564
10.370
6.1050
3.7459
17.000
26.193
30.459
32.818

Std. Dev. Skewness

77.241
11.384
6.4945
4.0959
3.1940
10.423
14.137
15.682
16.119

.11119

.68521

.72749

.94272
1.2185
.40856
.30349
.19537
.12118

used.

Kurtosis

2.4434
2.8519
3.0515
3.6303
4.5487
2.7033
2.62E
2.5519
2.4817

Mini2um Maximu

4.000
.0000
.0000
.0000
.0000

-4.000
-1.000

1.000
.0000

85.00
5E.00
32.00
20.00
16.00
52.00
69.00
79.00
81.00

(Skewness x m3/s**3; Kurtosis a e4/s 3 34)

AL- aUIim **a

a. .4

20 -
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-12 -40 6 12

Figure 4.04 : Distribution Plots

M-class Flight F3 Market D/C
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30-

Ua - Sample set to -) ALL
36 - Descriptive Statistics - 181 observations used.

24 Variable Mean Std. 0ev. Skewness Kurtosis Minimum Maximur

F19E 18.492 14.380 1.2502 4.4513 .0000 73.00
F17 12.752 12.965 1.5975 6.2956 .0000 72.00

- F1M14 11.657 12.295 1.9275 7.2190 .0000 69.00
F1421 10.249 11.475 2.0563 7.5916 .0000 59.00
F1.M28 9.5912 11.792 2.2476 8.6765 .0000 64.00

12 - F1M7 ED 5.7293 5.5446 .56191 3.0394 -9.000 22.00
10- F1il 80 6.8343 7.0691 .73860 3.6576 -10.00 34.00

F1M2180 8.2431 8.8980 .3895 3.6611 -17.00 12.00
F1M28"B0 8.9006 10.246 .18590 6.0279 -35.00 53.00

(Skewness m *3/s**3; Kur:osis *4/s**4)
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Sample set to -) ALL
Descriptive Statistics - 180 observations

Variable Mean

F2M0
F214
F2P14
F2M21
F2M28
F247 80
F2411 80
F2521-80
FM28-80

15.811
8.2333
5.9056
5.2778
4.3389
7.5778
9.9056
10.533
11.472

Std. Dev. Skeoness

12.703
9.4951
7.7592
7.4437
6.8071
6.9955
8.8701
9.6094
10.194

1.295!5
1. 979 1
1.9215
2.3957
2.6277
.98957
.81249
.745 8
.64110

used.

xuriosis

4.1136
6.357 1
6.3720
10.002
11.693
4.1794
4.0811
4.0989
4.5303

(Skewness : a3/s*.3; Kurtosis - m4/s'
8
9)

.6".- "6. 16414

V 01
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Figure 4.06 : Distribution Plots

M-class Flight F2
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RMstNAnONS ON 90AJolNG DAY

Sample set tc -> ALL
Descriptive Statistics - 177 observations used.

Variable Mean

F1.43D
F 17
F1414
F121
F1M28
F'A7 80
F1M1 80
FY.21'SD
FIM2880

9.5876
5.0329
4.0113
3.3955
2.5028
4.5537
5.5763
6.1921
7.0847

Std. Dev. Skewness

8.7441
4.8464
4.2707
4.0748
3.5099
6.0367
6.9819
7.3002
7.7788

1.0552
1.157
1.2575
1.5439
1.9954
1.3625
1.1649
1.0470
1.0703

Kurtesis Minimum Maximur

3.5150
3.9874
4.086
5.0292
7.3824
4.6258
3.9173
3.5200
3.6601

.0000

.0000

.0000

.0000

.0000
-5.000
-5.000
-7.000
-6.000

39.00
22.00
20.00
20.00
19.00
25.00
29.00
30.00
32.00

(Skewness = 63/s*23; Kurtosis = @A/s'84)
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Sample set to -> ALL
Descriptive Statistics

Variable Mean

F2M80
F2.47
F21414
F2M21
F2M28
F2N7 ED
F2MI 8D
F2M21-8D
F2M98~8D

18.458
10.350
6.9209
5.1582
3.8023
8.1073
11.537
13.299
14.655

177 observaticns used.

Std. Dev. Skewness

15.469
11.427
9.7559
8.8175
7.8935
8.0032
10.723
12.200
12.555

1.1536
2.7474
4.4785
5.2529
7.1373
.75510
.782!3
.65665
.79869

Kurtosis Minimum Maximut

4.6206
15.177
32.974
42.539
69.124
2.8912
2.7405
3.1032
2.9438

.0000

.0000

.0000

.0000

.0000
-8.000
-3.000
-23.00
-2.000

98.00
88.00
90.00
96.00
86.00
35.00
43.00
52.00
56.00

(Skewness * 3/s"3; Kurtosis T m/s"4)
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Sample set to -) ALL
Descriptive Statistics

Variable Mean

F1MID 33.414
F1v7 36.414
F114 35.315
F1M21 32.713
FI121 30.276
FiM7 80 -3.0000
F1M1I 80 -1.9006
F1P.21-0 .70166
F1N28~80 3.1381

- 181 observations

Std. Dev. Skewness

18.656
20.924
22.328
23.651
24.502
6.9873
9.4717
11.646
12.390

1.3495
1.1379
1.13.11
1.2593
1.4118

-2.4831
-. 32923
-. 20316
-.22423

used.

Kurtosis

5.3380
4.1375
4.0560
4.3340
4.7802
13.880
3.9236
4.0552
3.6612

(Skewness a a3/s"3; Kurtosis . a4/s"4)
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CHAPTER FIVE

RESERVATIONS FORECASTING

Forecasts are made because they assist the

decision making process from the analysis of policy,

activity, or plan to the timing and implementation of an

action, program, or strategy [7). The need to forecast final

reservation requests, particular to this thesis, represents

a key ingredient of the decision making process in a Yield

Management System. Regardless of the core algorithm that the

Seat Inventory Control routine uses, forecasts of final

reservation requests are needed.

In general, the various forecasting methods can

be divided into three broad categories: quantitative or

scientific, qualitative or judgmental, and decision

analysis, which is a combination of the first two methods.

Quantitative methods have been used more often,

and have gained a wide acceptance for several reasons. They

rely heavily on the existence and use of historical data,

and to a large extent, on the perpetuation of past behavior.



Forecasting methods are based on cause-effect relationships,

statistical analysis or simulation methods, which in turn

provide a description of the underlying process one is

trying to understand, explain and make forecasts.

Qualitative methods, on the other hand, rely on

the "intuition and/or experience" of the forecaster, and

are, as a consequence, dependent on the forecaster ability

in describing the process. Subjective by nature, this class

of forecast "models" tend to be used when very little

information is available, or when there is an inherent

inability of modelling in an objective fashion.

Decision analysis, the remaining category, is a

combination of both quantitative and qualitative methods. In

this category, assumptions on some unknown parameters ar-.

made, and using quantitative methods, forecasts are made.

Given the ability of any airline to provide a

vast set of historical data , quantitative methods can be

applied to fulfill the forecast need of the Yield Management

System. Therefore, quantitative methods in forecasting final

bookings for a flight are explored in this thesis.



5.1 ALTERNATIVES IN FORECASTING

Time Series Analysis are heavily based on

statistical behavior. The model/parameters estimated in Time

Series Analysis do not have specific meaning. Models in this

class can be used as a forecast tool, but they do not try to

explain the underlying nature of the process. Models are

developed based on a statistical basis only.

In this class of models, we presume to know

nothing about the real world causal relationships that

affect the variable to be forecasted. Instead, past

behavior of a time series is examined in order to infer

something about its future behavior. Ratio analysis, trend

projection, moving averages, spectral analysis, and

BoxJenkins' ARIMA modelling can be cited as examples of

Time Series Analysis methods.

The second class of Quantitative methods,

namely Causal Methods, concentrates on models that can be

expressed in equation form, relating variables

quantitatively. Data are then used to estimate parameters of

the equations, and theoretical relationships are tested

statistically.

In single equation regression models, the



variable under study is explained by a single function

(linear or nonlinear) of explanatory variables. The equation

will often be time-dependent (i.e. a time index will appear

explicitly in the model), so that one can predict the

response over time of the variable under study.



5.2 TIME SERIES ANALYSIS

Time Series Analysis presumes that the series

to be forecasted has been generated by a stochastic process

with a structure that can be characterized or described. In

other words, a times series model provides a description of

the random nature of the stochastic process that generated

the sample under study. The description is given in terms of

how the randomness is embodied in the process, and not in

terms of cause-effect relationships.

Because time series analysis require a large

deal of statistical analysis, it provides better estimates

and it is more sophisticated than simple extrapolations.

Simple extrapolation, such as trend analysis do not account

for the fact that a time series is the result of a

stochastic process.

With Box-Jenkins' Auto Regressive Integrated

Moving Average models , known as ARIMA models (8], one can

describe time series process, by using autoregressive and

moving average components. A constant may also be included

in the model. Model parameters can be estimated for the

original series, or for the time series differentiated i

times. Parameters are chosen for the terms included in the

model in such a way that it minimizes the sum of square
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differences between actual time series and fitted time

series. Model parameters, again, convey no special mean.

ARIMA models were developed and estimated for

flight F1 in the A/B market, as an example of application

and to observe model fitting results. The data used for

modelling was final bookings for M class for this flight,

for the six month sample. Table 5.01 shows fitting results

for an ARIMA(3,0,2) model. The equation fitted was:

AR3 . MBD(t) = C + MA2 . r(t)

where

2 3
AR3 = ( I + AR(1).B + AR(2).B + AR(3).B

B = backward shift operator, defined as
n
B [X(t)]= X(t-n);

MBD = final reservations, M-class;
2

MA2 = ( 1 + MA(1).B + MA(2).B

r(t)= residual at time t

and ( to be determined by model fitting )

C = constant ;

AR(i) = coefficient i calculated for

the Moving Average components

MA(i) = coefficient i calculated for

the Auto-Regressive components.
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The model estimated is statistically accepted,

because the calculated chi-square test statistic on first

20 residual autocorrelations is 17.91, which is meaningful

at least at a confidence level of .90 , chi-square(15, .90)

= 22.3 . Three from five parameters do not exhibit

acceptable t statistics. The estimated white noise variance

is 77.56, which corresponds to a standard error of

regression of 8.81 . From figure 4.01 one can observe that

the standard deviation of the time series variable is 8.89

No much explanatory power was gained with this ARIMA model.



ITERATION
ITERATION
ITERATION

RESIDUAL SUM OF SQUARES .....
RESIDUAL SUM OF SQUARES .....
RESIDUAL SUM OF SQUARES .....

13739
13434.9
13346.9

SUMMARY OF FITTED MODEL

parameter estimate stnd.error t-value prob(>ItI)
AR ( 1) 1.00765 .14360 7.01705 .00000
AR ( 2) -.11036 .17264 -.63922 .52353
AR ( 3) .02083 .08176 .25474 .79923
MA ( 1) 1.07407 .14845 7.23533 .00000
MA ( 2) -.22857 .15545 -1.47036 .14329
MEAN 22.04925 1.33373 16.53206 .00000
CONSTANT 1.87547

ESTIMATED WHITE NOISE VARIANCE = 77.5587 WITH 172 DEGREES OF FREEDOM.
CHI-SQUARE TEST STATISTIC ON FIRST 20 RESIDUAL'AUTOCORRELATIONS = 17.9051

Table 5.01 Time Series Analysis

ARIMA ( 3,0,2 )

Reservations on Boarding Day

M-class Fight F1 Market A/B



Another time series model was estimated for the

original series differenced once, which corresponds to the

series D(t) = MBD(t) - MBD(t-1). A week seasonality was

intorduced in the model . Table 5.02 shows fitting results

for a seasonal ARIMA(0,1,4), with length of 7 days. The

equation that represents the model is

D(t) = C + MA4 . r(t)

where

D(t)= MBD(t) - MBD(t-1)

MBD = final reservations, M-class;

7 14- 21
MA4 = 1 + MA(7).B + MA(14).B + MA(21).B +

28
+ MA(28).B

r(t)= residual at time t

and ( to be determined by model fitting

C = constant ;

MA(i) = coefficient i calculated for

the Auto-Regressive components.

The calculated chi-square statistic is 17.72 (

< 22.3 ), which means that the model can be accepted.

Estimated white noise variance, this time, was higher than

before: 108.23 , which means a standard error of regression

of 10.40.



ITERATION 1: RESIDUAL SUM OF SQUARES ..... 16433.8
ITERATION 2: RESIDUAL SUM OF SQUARES ..... 15282
ITERATION 3: RESIDUAL SUM OF SQUARES ..... 15260.9

SUMM.ARY OF FITTED MODEL

parameter estimate stnd.error t-value prcb(>jtj)
SAR( 7) -.70067 .08339 -8.40285 .00000
SAR( 14) -.43076 .10223 -4.21363 .00004
SAR( 21) -.24550 .10321 -2.37860 .01872
SAR( 28) -.32319 .09446 -3.42135 .00082
MEAN -. 10325 .30574 -.;33770 .73609
CONSTANT -.36782

MODEL FITTED TO SEASONAL DIFFERENCES OF ORDER 1 WITH SEASONAL LENGTH = 7
ESTIMATED WHITE NOISE VARIANCE = 108.233 WITH 141 DEGREES OF FREEDOM.
CHI-SQUARE TEST STATISTIC ON FIRST 20 RESIDUAL AUTOCORRELATIONS 17.7191

Table 5.02 Time Series Analysis

ARIMA ( 0,1,4 )

Reservations on Boarding Day

M-class Fight F1 Market A/B

80



The level of error in each model presented is

not related to poor model specification. Instead, they

reflect the variability of the parameter we are modelling.

Although reservations on boarding day for a flight/class

exhibit time related patterns, such as day of week

seasonality, they cannot be used alone to describe the

random process associated with bookings. Furthermore, given

the need to make forecast for a flight departure, say 28

days ahead, the error associated with the forecast will

sharply increase as the time interval increases.

These two examples are illustrative of the

randomness that is present in reservations data. Rather than

showing how to use ARIMA models, they serve to illustrate

the difficulty posed to the forecaster in modelling and the

seemingly disadvantage of time series models. Moreover,

because no structural behavior is associated with any time

series model, model specification becomes extremely time

consuming. No clear cut approach can be developed in

modelling, not in an reasonable fashion, when one uses time

series models. Just too many forecaster's interventions are

needed. Time series analysis were applied in the remaining

markets, and the results obtained were similar.For the above

reasons, the use of time series analysis in reservation

forecasting becomes unattractive, although with only two

model examples a forecaster should never discard a

forecasting method.



One should note that in the above presented

models, only reservations data on boarding day were used. No

other available data, such as reservation made 28 days

before departure for the same flight, or reservation for the

same class in the same day, or even other flight

reservations data, were ever used. That leads to the next

step which is the use of Regression Analysis in reservations

forecasting.



5.3 REGRESSION ANALYSIS

The use of Regression Analysis in reservations

forecasting implicilty leads to the presumption that one

knows something about causal relationships that are relevant

and influences booking patterns for a given flight. One may

assume that there is a relationship between booking levels

in a directional market, for instance. Cause-effect

relationships can also be tested among different classes in

the same flight/market. One could argue that some passengers

that made reservation on a full Y class did so because they

did not find a seat in the "M compartment". Correlation

among classev; among flights and between markets are few

examples that one could test in developing a regression

model.

Given the need to provide estimates of final

seat requests, for a given flight, for a given class, the

forecaster can launch himself in model building, knowing

that he has at his disposal a large database. The data that

is usually available includes :
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(1) historical data from past operations of the

same flight, for all classes, which can be

retrieved from the airline reservation

system;

(2) reservation data for the flight itself;

(3) current and past applicable fares;

(4) changes in schedules/airlines in the

market;

(5) level of service variables, such as a new

flight was introduced in the market;

(6) time related information, e.g. as flight

will depart on a Friday morning,

Thanksgiving week;

(7) socio-economic variables

Historical data from past flight operation can

be retrieved for all classes, and flight build up patterns

can be derived from the database. Data can be retrieved and

analyzed in a seven days intervals, for instance. That is to

say that for the M class of flight F1, market A/B,

reservations data can be retrieved for the boarding day

(MBD), 7 (M7), 14 (M14) ,21 (M21) days 'before flight

departure and so forth.



Current and past fares are also available. A

regression analysis model with micro/macro-economic

variables should increase the explanatory power of

regression models. By including such variables, one could

infer about consequences of fare changes. It is very

unfortunate that, in this thesis, fare data was not so

readily available. Some problems were detected in the fare

database that made them of little use. A "pollution" problem

was particularly detected in the highest fare class, with

exception only of the I/J & J/I markets, which makes them

unusable as far statistical analysis and demand modelling

are concerned.

Because reservations were modeled on a leg

basis, not on a O&D basis, the absence of a fare variable

does not implicitly represent a loss in the model

explanatory power. If O&D forecasts are needed, then fare

variables should inevitably be incorporated, as well other

socio-economic variables, e.g income level, population ,etc.

Variables type (4) and (5) cannot be explicitly

introduced in the model. An example of a methodology for

determining the relationship between air transportation

demand and the level of service has been proposed by

Eriksen, Scalea and Taneja [8]. In essence, a level of

service index is created and used in regression analysis

models. The level of service index generated is a non-



dimensional generalized trip time scaled from zero to one,

which takes into account not only the number of flight, but

also the number of intermediate stops, direct or connecting

service, speed of aircraft, and most important, the matching

of departure schedules to time variability of demand. By the

same token that fares cannot be introduced in the model,

(only in O&D models), this index cannot be applied to the

regression models developed in this thesis.

Although some variables above mentioned are not

explicitly considered in the regression models presented in

this thesis, some structural behavior are implicitly assumed

here. For instance, fare elasticities are expected to

increase as one moves from a potential full fare passenger

to the lowest fare potential passenger. Correlations are

expected to be higher in adjacent classes in comparison with

extreme classes, for instance , or, in other words,

reservations on the lowest fare class are not expected to be

an important explanatory variable in the regression model of

the highest fare class. A coherent fare structure, as well

associated set of restriction, are assumed in each and every

market analyzed. As the models presented here are the result

of a search of a structural behavior among classes and even

markets, those implicit assumptions are of very importance.

Under these circumstances, the models that are

presented here can be called as booking performance models,



in the sense that they search for structural behavior and or

performance of booking for a given class, on a given flight.

The search of a structural behavior across markets leads to

the formulation of a general structure model, which is a

model that is expected to hold across flights and markets.

The rational in developing this kind of model is that one

expects to find a minimal set of explantory variables that

is able to describe reservations as a function of these

variables. In building the so called general structure

model, causal-effect relationships are examined between

bookings-on-hand and bookings-to-come, among adjacent fare

classes, among flights and classes, and time related

variables, such as week-of-year and day-of-week seasonal

variables.

One may argue that there is loss in model

precision when a general structure is used. It is true that

there are losses involved in adopting a general structure

model. A model that is market and flight specific is by all

means better than a generalized one. Because it is specified

and fitted with the data of one flight only, it tends to

show better fitting results. Building models that are

market/flight specific may be a time consuming task,

especially when one considers the large number of

flights/markets served by an airline. One may introduce a

variable that is relevant for the flight F1 in the A/B

market, whereas the same variable may not be of relevance in



the flight F1 in the E/F market.

Therefore, building models that are

flight/market specific has some practical disadvantages when

one considers that a vast set of forecasting models has to

to be generated for an airline. When a new flight is

introduced in the A/B market, for instance, a general

structure model,that was fitted for the A/B market is likely

to yield better forecast than the one particularly specified

and fitted to any flight in the market. One also has to have

in mind that schedule changes happen very often in the

airline industry, and the ability of building flight

specific models is sharply reduced. It would require a much

higher stability in schedules that is observed in the

airline industry.

Therefore, if a general structure model can be

developed and the incurred precision losses are not

relevant, those models are preferred. With a general

structure model approach, forecasts of final bookings can be

made more efficiently without spending too much time in

modeling.

Another positive consequence of a general

structure model is the associated reduction in data handling

routines that are required for model fitting. Moreover, with

a market specific approach, one could run into the problem
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of having to re-specify the model as time goes by, because

the model could also be specific for a determined

period/season of the year, or even worse, a model dependent

on the data set used for fitting.

The regression models presented in this thesis

are the result of a search of a general structure model.

Several model specifications and variables were tested for

each market, and pooled together in a time consuming

regression analysis effort. Variables that showed

statistical adherence in most of all markets were kept.

The general structure model developed here,

includes a long term cyclic (seasonal variation) component,

recent historical data, as well as actual bookings. The

minimum cycle is a week, and the model is sensitive to day-

of-week variation.



The variables used in the general structure

model to forecast bookings to come, for flight F1 in M

class, for a given market, from t days before departure, (

MtBD ), are as follows:

ONE

DAYS

Mt

INDEX

S5MAiB

MTt

- a constant or base booking level;

- day of week dummy variables,

(MO,TU,WE,TH,FR, and SA relative to

SU);

- bookings-on-hand, on day t, M-class;

- week of year non-dimensionalized index

for traffic levels and growth through

the major hub of the airline;

- historical average of bookings made in

M-class , between day t and departure,

for the most five recent departures of

the same flight Fi ;

- total bookings on hand ,for all future

flights in the same directional market

t days before departure.

Long-term cycles and market growth are expected

to be captured by the INDEX variable, while S5MAiB should be

sensible to shorter term trends.

Regression analysis results are shown from

Tables 5.03 through 5.12 .



Table 5.03 shows fitting results of the general

structure model applied to market A/B, flight Fl. Ten

explanatory variables are included in the model. The model

also includes a constant term. The model is fitted in a

subset of the original data set. The subset used was from

observation #35 to observation #181, which means a total of

147 observations. The sample size was reduced to 147 because

of the S5MA variable. S5MA is a 5-week lag average, and

consequently the first non-trivial S5MA is for observation

#35 ( 35 = 7 . 5 ).

The degree of freedom for the F-statistic is

therefore equals to 10 (the number of explanatory variables)

in the numerator, and equals to 136 ( number of observations

minus the number of parameters to be estimated, or 136=147-

10-1),in the denominator. Therefore, the critical value of

the F-Statistic (10,136), at 95% level of confidence is

1.91. All runs exhibit a higher F level, which means that

the models are accepted.

The adjusted R-squared , or R-bar squared, for

all runs is characterized by a low value. One has to

remember that the dependent variable is the result of the

difference of final bookings and bookings-on-hand. Model

fitting for differenced variables will always exhibit low R

squared statistics. This explain, to some extent, why R

square is relatively low for each model run.



In this example there was a distinct behavior

for Mondays, Fridays, Thursdays, and Saturdays. They were

statistically different from the base day, which were

Sundays. The Bookings-on-hand and INDEX variables were

significant in all runs : in any run, the t statistic of

coefficients were greater than the critical value

t(136)=1.98.

This market/flight is an example of model

fitting results that is expected for the general structure

model. The INDEX variable is expected to be significant and

capture week-of-year seasonality. A "local" seasonality is

also expected to be captured by day-of-week dummy variables.

It was indeed possible for this flight/market to detect some

different behavior for some dummy variables.



TABLE 5.03

MARKET A/B

MODEL RUN (DAY)

DEPENDENT VARIABLE
MEAN

STD. DEV.
STD. ERROR OF REGRESSION
R SQUARED
R-8AR SQUARED
F-STATISTIC (10,136)

REGRESSION ANALYSIS
SUMMARY

FL I GHT

t=28

M28 BD
15.56
8.32
6.38
0.45
0.41

11.17

VAR I ABLES value t stat value + stat value t stat value t stat

CONSTANT 34.56 6.57 33.87 6.46 31.61 6.21 24.04 5.19
MO -3.94 -1.98 -3.86 -1.96 -2.85 -1.51 -1.36 -0.87
TU 0.41 0.19 0.45 0.21 1.34 0.66 2.14 1.21
WE 1.6 0.81 1.35 .0.68 1.94 1.01 1.37 0.82
TH 3.12 1.34 3.31 1.42 3.39 1.52 2.28 1.18
FR 5.91 2.93 5.32 2.65 4.54 2.32 1.36 0.75
SA -5.11 -2.52 -5.14 -2.55 -3.81 -1.94 -20.9 -1.21
Mt -0.51 -4.23 -0.49 -4.13 -0.42 -3.95 -0.29 -3.18
INDEX -0.11 -2.23 -0.09 -2.11 -0.11 -2.31 -0.08 -2.18
55MAt -0.32 -2.15 -0.32 -2.16 -0.23 -1.62 -0.13 -1.04
MTt -0.15 -1.97 -0.15 -1.94 -0.16 -2.25 -0.09 -1.57

t=21

M21 6D
14.44
8.24
6.34
0.45
0.41

11.01

t= 14

M14 BD
12.01
7.72
6.09
0.42
0.38
9.79

t=7

M7 BD
7.56
6.09
5.35
0.28
0.23
5.29

- -- --- -- --- - - --- -- ---- -- -- --- -- -- -- -- -- - - -- --- -- - -- - --- --- -



Table 5.04 shows fitting results for flight F2,

in the B/A market. This is an example of a flight in the

reverse direction of the one shown in the previous example.

In this example, F-statistics were acceptable

for all model runs. R-bar squared although almost constant

was also low across runs. The day-of-week variables

exhibited an interesting behavior. While only Fridays and

Saturdays variables were statistically significant in the

day_28 run, all days but Mondays were significant in the

day_7 run. The bookings-on-hand variable did not behave

consistently for all runs. It showed an almost/ acceptable

t_statistics in day_28 and day_7 runs while in between the t

values were not acceptable. The INDEX variable exhibited a

very stable behavior, although not all t-statistics were

acceptable.

This market/flight is an example of a mixed

statistical behavior for the general structure model.

Although some coefficients of the variables could not be

statistically determined, the overall model performance was

acceptable. When compared to Table 5.03, one can observe

that relatively similar results were obtained for flights in

both direction of the markets defined by the citypair A&B.



TABLE 5.04

MARkET B/A

REGRESSION ANALYSIS
SUMMARY

FLIGHT

MODEL RUN (DAY) t=28 t=21 t=14 t=7

DEPENDENT VARIABLE M28 BD M21 _D M14 8D M7 BD
MEAN 20.46 18.77 16.61 1021

SD. DEV. 10.45 10.22 9.78 8.01
STD. ERROR OF REGRESSION 9.03 8.59 8.21 6.81
R SQUAiRED 0.31 0.34 0.34 0.32
R-BAR SQUARED 0.25 0.29 0.29 0.27
F-STATISTIC (10,136) 5.86 6.99 7.02 6.55

value t stat value t stat value t stat value t statVARIABLES

CONSTANT
MO
TU
WE
TH

24.31
1.71

-2.15
-1.24
-7.53
-2.01
-5.69
-0.42
-0.07
0.38

-0.08

2.69
0.58

-0.75
-0.43
-2.35
0.66

-1.85
-1.41
-0.91
3.01

-0.68

26.83
1.37

-2.49
-2.09
-9.59
-3.43
-S.02
-0.12
-0.11
0.37

-0.11

3.11
0.49

-0.91
-0.76
-3. 11
-1.19
-1.71
-0.56
-1.37
3.07

-1.21

2659
1.16

-2.97
-4.32
-9.37
-4.37
-4.26
0.006
-0.11
0.35

-0.16

3.24 22.31
0.44 0.05

-1.14 -3.66
-1.61 -7.01
-3.21 -8.93
-1.59 -7.31

1.51 -4.78
0.03 -0.16

-1.52 -0.08
3.06 0.19

-1.88 -0.02

3.29
0.02

-1.71
-3.15
-3.73
-3.17
-2.04
-1.49
-1.38
40~'94

-0.33

INDEX
SSMAt
MTt
------------- - --------------------------- ------ - ---------- -- ------------------



Table 5.05 shows model fitting results for

flight F4 in the C/D market. R-bar statistics are little

higher for this flight. In this example all day-of-week

variables were different from the base day, Sundays.

Thursday was constantly the busiest day in any week, in any

model run. The bookings-on-hand variable was not significant

in any model run. The INDEX and S5MA variables were

constantly significant across model runs.

The general structure model behave as expected.

Fitting improvement was observed, when compared to previous

flights/markets.

Table 5.06 shows model fitting results for

flight F3 in the D/C market. R-bar squared statistics were

improved. All day-of-week variables were significant, in any

model run. Bookings-on-hand were not significant again. The

INDEX and S5MA variables were siginificant in most of the

runs.

The overall model behavior was similar to the

C/D market example. That is, all dummy variables were

significant in the C&D citypair markets. The INDEX and S5MA

variables did contribute to the general structure model. The

remaining variables did not explicitly improve model

statistics.



TABLE 5.05

MAR<ET C/D

MODEL RUN (DAY)

REGRESSION ANALYSIS
SurMARY

FLIGHT

t=28

DEPENDENT VAR I ABLE N28_8D
MEAN 15.93

STD. DEV. 9.25
STD. ERROR OF REGRESSION : 6.82
R SQUARED 0.49
R-BAR SQUARED 0.45
F-STATISTIC (10,136) 13.12

VARIABLES value t stat value t stat value t stat value t stat

* -18.83
, 5.49

6.63
9.38

11.68
7.92
6.81

* -0.04
0.21

i 0.34'
* 0.25

t=21

M21 8D
15. 11
8.84
6.63
0.47
0.43

12.28

t=14

M14_8D
13. 57
8.42
6.21
0.49
0.45
13.2

CONSTANT
MO
TU
WE
TH
FR
SA
Mt
INDEX
S5MAt
MT+-

t=7

M7 BD
9.81
6.79
5.38
0.41
0.37

9.6

-2.95
2.33
2.67
3.44
3.94
2.81
2.62

-0.09
3.05
3.12
1.91

-18.99
6.34
6.48
9.39

11.04
8.11
6.78
0.11
0.21
0.31
0.08

-3.09
2.74
2.69

. 3.56
3.82
2.93
2.61
0.38
3.35
2.91
1.01

-17.68
4.81
5.08
6.91
9.42
6.03
4.51
0.09
0.17
0.31
0.12

-3.04
2.24
2.23
2.74
3.45
2.33
1.83
0.45
2.93
3.01
1.91

-18.18
3.78
4.98
5.42
7.21
4.87
3.35
0.03
0.18
0.19
0.04

-3.64
1.98
2.53
2.45
2.97
2.08
1.49
0.22
3.69
2.23

0.87

- - -- -- -- - - --- -- ----- -- --- ---- -- -- --- -- -- -- -- --- -- -- - -- -- - - - -



TABLE 5.06

MAPJET D/C

REGRESS ION AFNALYS I S
SUMMARY

FL I GHT F3

------------------------------- ------------- ----------------------

MODEL RUN (DAY)

DEPENDENT VAR I ABLE
MEAN

STD. DEU.
SID. ERROR OF REGRESSION
R SQUARED
R-BAR SQUiRED
F-STATISTIC (10,136)

- --- ----------- -------------- -- -------- ---- ---- - ------ ------

VARIABLES value t stat value t stat value t stat value t stat

CONSTFNT * -5.21 -0.56 -4.47 -0.46 -3.51 -0.38 -3.53 -0.47

MO 2.08 0.52 2.88 0.87 4.38 1.35 5.84 2.24

TU 8.15 2.24 9.13 2.47 9.95 2.72 9.67 3.27

WE 14.19 3.46 13.91 3.34 14.11 3.41 11.51 3.46

TH * 11.84 3.02 11.91 3.02 10.94 2.84 6.21 1.94

FR 10.31 2.84 10.41 2.89 6.49 1.82 0.39 0.13

SA -7.64 -2.17 -7.66 -2.14 -7.13 -2.06 -5.73 -1.97

Mt 0.23 0.53 -0.18 -0.62 -0.27 -1.16 -0.11 -0.83

I1DEX 0 0.19 2.09 0.17 1.89 0.14 1.64 0.11 1.63

S5MAt 0.41 3.53 0.38 3.31 0.28 2.44 0.11 1.25

MTi: -0.29 -1.27 -0.12 -0.66 0.07 0.53 0.51 0.73
---------------- ------------------------ -----------

t=28

M28_80
31 .78
15. 66
10.04
0.61
0.58

21.91

M21_8D
29.44
15.24
10.08
0.59
0.56

19.76

t=14

M14_BD
25.33
13.71
9.67
0.53
0.51

15.73

t=7

M7 BD
16.63
10.33
7.88
0.45
0.42
11. 48

- -- -- ----- -- --- - -- --- - -



Table 5.07 shows model fitting results for

flight F1 in the E/F market. R-bar squared statistics are

very low. They range from 0.19 to 0.16 . Nevertheless, all

F statistics were acceptable. The critical value is

F(10,136)=1.91, at a 95% confidence interval. As it gets

closer to the departure day the more significant the day-of-

week dummy variables are. While the INDEX and S5MA variables

were not significant to the model runs, the Mt and MTt

variables exhibited acceptable t-statistics. It is an

example of the opposite behavior so far observed.

Table 5.08 shows model fitting results for

flight F2 in the F/E market. R-bar squared statistics are a

little higher than in the previous example. All Fstatistics

were also acceptable. Statistical significance was

marginally observed for day-of-week variables. The Mt

variable, bookings-on-hand was not significant in any model

run. The INDEX and S5MA were significant in this example.

Total bookings-on-hand (MTt) was not so significant as in

the previous example.

These two examples illustrate the distinct

behavior expected for the (INDEX & S5MA) variables vs. (Mt

& MTt) variables. When the first two are significant, the

others are not, and vice-versa. It explains why both sets

are included in the model, together with the fact that no

one can a priori predict which two will be significant.
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TAdBLE 5.07

MARKET E/F FLIGHT F1

REGRESSION ANALYSIS
SUNMf)RY

MODEL RUN (DAY) | t=28 t=21 t=14 t=7

DEPENDENT VARIABLE
MEAN

STD. DEV.
STD. ERROR OF REGRESSION
R SQUARED
R-BAR SQUARED
F-STATISTIC (10,136)

VAR I ABLES value t stat Value t stat value t stat value - stat

o CONSTANT
MO
TU
WE
TH
FR

-5.58
1.41

-0.85
1.35
4.54
2.79
4.05

-0.67
0.13
0.13
0.39

Mt
I NDEX
ssMAt
MTt

1128_BD
10.61
10.46

9.4
0.24
0.19
4.45

M21 BD
9.71
9.07
8.45
0.19
0.13
3.21

M14_BD
8.08
7.12
6.81
0.15
0.09
2.41

M7_8D
6.63
5.67
5.21
0.21
0.16
3.73

-1.01
0.46

-0.29
0.46
1.55
0.91
1.34

-4.35
2.74
0.97
2.92

-2.11
2.73
1.67
1.65
5.98
1.99
2.51

-0.51
0.07
0.15
0.35

-0.42
1.01
0.62

- 0.62
2.26
0.72
0.92

-3.79
1.59
1.27
3.32

1.71
3.26
3.45
2.42
6.27
3.01
1.89

-0.21
0.01
0.16
0.16

0.42
1.48
1.61
1.15
2.95
1.36
0.87

- .1 0

0.22
1.67
2.22

4.93
3.76
4.66
3.88
7.06
2.61
1.68

-0.14
-0.04
0.07
0.14

1.57
2.23
2.81
2.39
4.31
1.52
1.01

-2.06
-1.36
0.99
2.77

------ ------ - -- ------------ - - --------- - ------ - ----- - ---------



TABLE 5.08

MARKET F/E

REGRESSION ANALYSIS
SUMHARY

FLIGHT

MODEL RUN (DAY) t=28 t=21 t=14 t=7

DEPENDENT VARIABLE
MEIN

STD. DEV.
STD. ERROR OF REGRESSION
R SQUARED
R-BAR SQUARED
F-STATISTIC (10,135)

M28 BD
13.81
9.45
7.83
0.35
0.31
7.57

M21 _D
12.68
9.02
7.94
0.28
0.22
5.17

value t stat value t sitat value £ stat value t statVAR I ABLES

CONSTANT -13.58
2.51
4.61
3.18
3.55
1.71
3.57
0.04
0.16
0.61
0.08

INDEX
SSAt
MTt

-2.55 -11.93
1.01 3.28
1.83 4.06
1.29 3.36
1.42 3.13
0.68 0.48
1.31 3.06
0.26 0.02
3.08 0.15
5.43 0.53
1.11 0.04

M14 8D
11.81
8.44
7.64
0.23
0.17
4.16

M7 BD
8.96
6.81
6.48
0.15
0.19
2.48

-2.184
1.31
1.56

- 1.33
1.21
0.18
1.08

-0.13
2.81
4.74
0.54

-8.24
3.91
4.31
4.07
3.51
2.11
3.82

-0.04
0.11
0.46
0.06

-1.54
1.66
1.68
1.65
1.38
0.82
1.39

-0.29
2.01
4.17
0.89

-3.52
3.01
4.24
3.56
1.79
2.41
4.87

-0.14
0.05
0.29
0.07

-0.77
1.44
1.89
1.64
0.81
1.11
2.13

-1.54
1.25
3.11
1.42



Table 5.09 shows model fitting results for

flight F1 in the G/H market. R-bar squared statistics are

again low. Fstatistics are acceptable, and in the day_7

run, it reaches the minimum so far observed, 1.92 . In this

example, only the INDEX variable is statistically

significant. One possible reason is the high variation

observed for the dependent variable. While means are

extremely low, ranging from 6.65 to 3.97, standard

deviations are relatively high, ranging from 6.7 to 5.3,

respectively. As a consequence, model performance is

reduced. Nevertheless, the standard error of the regression

was always smaller than the standard deviation of the

dependent variable.

Table 5.10 shows model fitting results for

flight F2, in the H/G market. Although R-bar squared are

extremely low, one can observe the distinct model behavior.

In this example, all day-of-week variables were significant.

The INDEX and S5MA variables were also significant, while

MTt and Mt showed bad tstatistics. Again, only two

variables were significant.

The flight F1, market H/G, example illustrates

that even for a flight with very small load the general

structure model can be used.
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REGRESSION ANALYSIS
SUMMiRY

FLIGHT

MODEL RUN (DAY)

DEPENDENT VAR I ABLE
MEAN

5TD. DEV.
STD. ERROR OF REGRESSION
R SQUARED
R-BAR SQUARED
F-STATISTIC (10, 136)

- - - -- ----------------------- ----------- --- --- --- --- ---

t=28 t=21

N28 8D
6.04
6.65
5.56
0.35
0.31
6.37

M21 BD
5.46
6.41
5.47
0.32
0.27
5.68

t=14

M14 8D
4.88
6.12
5.57
0.23
0.17
3.58

tz7

M7 BD
3.97
5.25
5.07
0.14
0.06
1.92

VAR RIABLES va I'ue t stat value t stat value t stat value t staL

CONSTANT
MO
TU
WE
TH
FR
SA
Mt
I NDEX
ssm)t
MTt

-5.35
-1.61
-0.54
-2.05
-0.81
4.31

-1.31
-0.18
0.12
0.13

-0.51

-1.45
-0.91
-0.31
-1.16
-0.45
2.45

-0.53
-0.83
4.35
1.48

-3.44

-4.22
-1.39
-1.26
-2.61
-2.05
3.54

-0.43
0.02
0.11
0.13

-0.61

-1.16
-0.81
-0.71
-1.49
-1.17
2.03

-0.17
0.11
4.13
1.61

-3.54

-4.88
-1.41
-1.06
-2.65
-1.53
3.31

-1.31
-0.24
0.11
0.09

-0.23

-1.32
-0.79
-0.59
-1.49
-0.86

1.83
-0.52
-1.17
3.88
1.01

-1.67

-3.02
-1.68
-1.38
-2.27
-1.78
0.96

-2.03
-0.11
0.08
0.02

-0.07

-0.89
-1.14
-0.85
-1.41
-1. 11
0.57

-0.91
-0.79
3.13
0.21

-0.74

TAB3LE 5.09

MARKET G/H



TABLE 5. 10

MARKET H/G FL IGHT F2

REGRESS I ON ANALYS I5
SUMItARY

MODEL RUN (DAY)

DEPENDENT VAR I ABLE
MEAN

STD. DEV.
STD. ERROR OF REGRESSION
R SQUARED
R-BAR SQUARED
F-STATISTIC (10,132)

VARIABLES value t stat value t stat value t stat value t sta
I.- --------------------------------------------- ------- ---- -- --- -- ---- --- ---- -- -- --- ---- ---- --- ---- ------- ---- ------- ---- --------- ----

o CONSTANT
MO
TU
WE
TH
FR
SA
Mt
INDEX
ssMAt
MTt

: 5. 69
-12.27
-13.01
-14.72
-12.92
-13.64

: -11.01
-0.14
0.09

* 0.59
0.15

t=28 t=21

128_ED
12. 51
11.58
10.38
0.25
0.19
4.46

t=14

M21 8D
11.26
11.21
10.44
0.19
0.13
3.18

M14 BD
9.88
9.77
9.14
0.18
0. 12
3.01

M7_80
7.13
7.45
7.02
0.17
0.11
2.81

1.42
-3.21
-3.38
-3.85
-3.33
-3.56
-2.88
-0.71
2.81
4.56
0.89

6.14
-11.61
-12.85
-15. 14
-12.01
-12.46
-10.77
-0.26
0.09
0.45
0.22

1.52
-3.01
-3.31
-3.95
-3.08
-3.21
-2.81
-1.33
2.64
3.37
1.32

4.22
-9.23

-10.81
- 12. 01
-9.55

-10.97
-10.61
-0.21
0.08
0.35
0.23

1.18
-2.71
-3.16
-3.56
-2.78
-3.23
-3.15
-1.14
2.51
2.95
1.51

3.45
-7.03
-7.59
-7293
-6.52
-8.58
-8.87
-0.07
0.06
0.19
0.14

2.61
2.1

.41



Table 5.11 shows model fitting restults for

flight F1, in the I/J market, for the Y-class. The same

general structure is applied to the Y-class in the Canadian

market. R-bar squared statistics are low as it were in the

case of the M-class, for domestic U.S. markets. In the day_7

run, all model statistics dropped significantly, and the

model exhibited a distinct behavior: only two variables were

significant. Nevertheless, Fstatistics were acceptable for

all runs. The day-of-week dummy variables exhibited the

expected behavior, that is for some days (e.g. TU or SA)

different behavior from the base day was observed, i.e.

t_statistics were significant. Bookings-on-hand/ (Yt) were

significant for all model runs, but day_7 run. The INDEX

variable was marginally accepted in some runs, while the

remaining variables were not.

Table 5.12 shows model fitting results for

flight F1 in the J/I market, for the Y-class. R-bar squared

statistics were a little higher that in the previous

example. In the day_28 model run it was 0.41 and it dropped

to 0.16 on the day 7. The day-of-week variables did not

exhibit good tstatistics. No "local" seasonality could be

picked up by the model. The Yt variable was significant in

the first two model runs, while YTt was not. The INDEX

variable was significant in all model runs. S5MA was not

significant.
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TABLE 5.11

MAIRKET I/J FLIGHT Fl

REGRESS 10N ANALYS I S
SUMARY

MODEL RLN (DtAY) +t=28 t=21 t14 t=7

DEPENDENT VARIABLE Y28 BD Y21 8D Y14 BD Y7BD
MEAN 22.98 21.36 18.48 13.11

STD. DEU. 13.36 12.21 10.48 8.19
STD. ERROR OF REGRESSION : 11.3 10.77 9.76 7.98
R SQUIRED 0.33 0.27 0.18 0.11
R-BAR SQUARED 0.28 0.22 0.12 0.04
F-STATISTIC (10,136) 6.81 5.13 3.18 2.81

UAR I ABLES : value t sfat value t stat value t stat value t stat

CONSTANT
MO
TU
WE
TH
FR
SA
Yt
INDEX
S5MAt
MTt

48.22
-5.24

-10.99
-3.93
-4.64
5.91

-6.29
-0.72
-0. 11
-0. 15
0.03

5.29
-1.28
-2.98
-1.01
-1.29

1.65
-1.79
-5.69
-1.64
-1.25
0.46

45.5
-3.34
-8.91
-1.97
-3.87
6.01

-6.36
-0.51
-0. 11
-0. 15
0.01

5.15
-0.86
-2.52

*--0.53
-1. 12

1.75
-1.91
-3.96
-1.49
-1.29
0.21

35.56
-0.41
-5.22

1.19
-1.89
6.49

-5.49
-0.27
-0. 11
-0.09
0.02

4.29
-0.11
-1.59
0.34

-0.61
2.09

-1.81
-2.21
-1.86
-0.84
0.37

25.51
1.22

-0.56
2.01
0.37
3.79

-3.42
-0.01
-0.08
-0.05
-0.05

3.62
0.41

-0.21
0.71
0.14
1.45

-1.35
-0.02
-1.89
-0.64
-1.01



TABLE 5.12

MARKET J/I FLIGHT FI

REGRES51ON ANALYSIS
SUMMARY

MODEL RUN (DAY) t=28 t=21 t=14 t=7

DEPENDENT UARIA8LE : Y28_8D Y21_8D YI4_BD Y7_BD
MEAN 20.98 19.42 17.01 11.36

STD. DEV. 13.87 10.34 8.29 6.62
STD. ERROR OF REGRESSION : 10.74 9.53 7.81 6.04
R SQUARED 0.44 0.21 0.17 0.22
R-BAR SQUARED 0.41 0.15 0.11 0.16
F-STATISTIC (10,134) 10.61 3.54 2.81 3.88

VARIABLES v'alue t stat value t stat value t stat value t stat

CONSTANT 40.03 6.84 31.89 5.92 23.67 5.16 18.41 5.04
MO -3.59 -1.07 -3.37 -1.13 -2.13 -0.87 0.29 0.15
TU -4.79 -1.39 -0.81 -0.25 2.34 0.91 2.47 1.24
WE -0.84 -0.25 2.82 0.91 5.96 2.32 6.92 3.45
TH -1.99 -0.58 0.99 0.32 3.21 1.26 3.17 1.61
FR * 1.43 0.42 3.42 1.13 6.15 2.44 5.27 2.73
SA -0.41 -0.12 0.01 0.01 2.37 0.94 0.71 0.35
Vlt -0.89 -6.22 -0.47 -3.52 -0.11 -0.94 0.06 0.81
INDEX -0.15 -3.27 -0.14 -3.51 -0.11 -2.91 -0.06 -2.11
55Mit 0.24 1.82 0.18 1.55 0.05 0.48 -0.06 -0.81
YTt 0.07 0.92 0.11 1.58 0.03 0.59 -0.08 -1.81



The statistical adherence of the variables

considered in the generalized model vary from market to

market. For instance, the bookings-on-hand variable was

statistically significant in the directional A/B market, but

in the other direction it was not. In the majority of

markets, the INDEX and S5MA variables contributed to the

model. MTt and Mt variables seem to pick up explanatory

power when INDEX and S5MA variables can not. Therefore, they

work together in an almost exclusive basis. Nevertheless,

all four are kept in the general structure model because one

can never predict what variables will be significant. In

general, the model was able to pick up /day-of-week

seasonality: day-of-week dummy variables were significant in

most of the cases. A reduction in the number of explanatory

variables included in the set of variables selected for the

general structure model causes noticeable reduction of

Durbin-Watson statistics to values that are not acceptable,

which in turn means the presence of serial correlation. This

result leads to the conclusion that either variables can

only be added to this minimal set, or carefully replaced.

In all markets, the general structure model

outperformed simple estimates of bookings-to-come based on

local historical averages. The application 04f the model in a

Y-class, as in the case of the Canadian market, yielded

equivalent fitting results, which may suggest that the model

can be adapted and applied to the Y-class.
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CHAPTER SIX

CONCLUSION

6.1 SUMMARY

The forecasting module of an Automated Seat

Inventory Control System is intended to provide the dynamic

booking limit adjustment routine with estimates of expected

bookings for individual future flights. A seat allocation

routine will then use these estimates of expected bookings

to calculate how many seats should be protected for each

upper fare class, in addition to bookings already on hand.

The initial work in forecasting involved models

that derived direct estimates of final bookings. Bookings by

fare class, on the day of departure. was the variable we

wanted to forecast - the dependent variable. Cause-effect

relationships between this variable and a set of explanatory

(independent variable) as well qualitative and quantitative

time series behavior.
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Further examination of these cause-effect

relationships, together with statistical analysis of

historical reservations data, have indicated that a focus on

bookings-to-come would be a better approach. The key factor

to this conclusion was an observed correlation between

bookings on hand and final bookings, obtained across the

data set selected for hypothesis testing. With the focus

shifted to bookings-to-come, final bookings were indirectly

estimated as the sum of actual bookings on hand and the

estimated bookings to come.

A simple forecasting model is suggested for the

initial estimation of final bookings. It consists of moving

average process that is sensitive to day of week variation

only. That is to say, for instance, that a 8-week average is

used to describe or estimate final bookings for a given

flight (e.g. flight F1), on a specific day of week (e.g.

Monday). Although no information on actual bookings on hand

for future flights are ever used, nor additional adjustments

are made for cyclic or seasonal variations other that on

weekly basis, the implicit assumption of this simple

approach is that a small sample of final demand for recent

flights will be representative of the demand for the same

flights in the near future.

The first step in reservations forecasting

involves initial estimates of final bookings well in advance
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of flight departures. These estimates can be improved later

in the bookings process as more information (data) on the

specific flight for which more accurate forecasts are

needed.

The 'final step in the development of a

forecasting module is to improve the estimates of bookings

to come, over those strictly based on recent historical

averages. The closer it gets to departure day, the better is

to improve forecasts of final bookings. As a general rule,

better forecasts of final bookings, via bookings-to-come,

are obtained using regression analysis as the 28/days before

departure day threshold is surpassed.

The models tested in this thesis ranged from

analytical models ( Time Series Analysis and Regression

Analysis) to non conventional models ( Bookings Curves and

ad-hoc methods). Results obtained via Time Series Analysis

(Box and Jenkins' ARIMA models) were not encouraging enough

in providing better estimates, when compared to results

obtained via Regression Analysis or even simple historical

averages. Any improvements were far outweighed by elaborated

data handling routines that would have to be used to fit the

models. Non-conventional methods required too many "tuning"

interventions by the forecaster, which is not helpful if an

automated routine is to be developed, and again their

results did not improve over Regression Analysis. As a
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result, effort was concentrated on Regression Analysis.

The first step was to develop market specific

models. Models were formulated and generated for the markets

selected in the data sample. The search was for a specific

structure ( model specification) that yielded better and

better model fitting results. At this level, model structure

was considered as independent of direction. That is to say,

for instance, that the same model structure for the A/B

market, should also hold for the B/A market, although

estimated coefficients were allowed to be directionally

sensitive.

Although it was possible to develop models that

were specific to markets, a general structure model was

thought to be preferable in view of the associated reduction

in specific data handling routines that would be required

for model fitting. As model generalization involves losses

in forecast precision caused by aggregation of markets, this

approach was preferred because these losses were not large

enough to distort forecasting results. All forecasts

produced with the general structure approach were

consistently better (less variable) than simple historical

average from a sample of recent flights. *

A proposal of a general structure model is then

presented and tested in this thesis. The general structure
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model proposed here includes a long term cyclic (seasonal)

component , short term cyclic and trend components

calculated over recent historical data, and the model is

sensitive to day of week variations. Apart from showing

"good" model fitting statistics, this model structure

demonstrates how Regression Analysis can be used in a

forecasting module of an Automated Booking Limit System, and

thus provide improved estimates of bookings to come.
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6.2 TOPICS FOR FURTHER RESEARCH

The general structure model was developed in

this thesis for the M-class only.

As the typical airline has, at least, four

different classes, models need also to be developed and

tested for the remaining classes. For the upper fare class,

in this case Y-class, a similar model structure can be

applied.

The expected set of build-up curves for the Y

class is rather similar to the set of M-class, and generally

speaking, flights start to heavily build up during the last

week, before flight departure. Therefore, a bookings-to-come

approach, with the reference on the boarding day can also be

used. Almost no "supply limitation" is also expected to

occur, since Y authorized booking levels are usually greater

than the total coach seating capacity.

As one moves to lower fare classes, both build

up behavior ( build-up curves) and supply limitations

change. For the B-class, for instance, the build-up curve

reaches its peak at least a week before the flight

departure, say on day 14, and from there on a period of

cancellation is expected to be observed. The same phenomena
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is also observed in the lowest fare class, although, as far

as seat inventory control routines are concerned,

forecasting models will not be developed. This build-up

phenomena can be taken into account by changing the

reference day to day 14, as in the case of above mentioned

example for the B-class.

On the other hand, the supply limitation

problem, caused by bookout phenomena, ( the class was closed

due to either a low authorized booking limit, or by a large

number of reservations made in other classes.), needs to be

carefully addressed.

A single equation regression model can no

longer be applied. Instead, a multi-equation regression

model needs to developed, using a simultaneous equation

system approach. Now, supply variables, such as authorized

levels for a given class need to be explicitly taken into

account. For instance, cause-effect relationships such as,

for a given fight, for a given class, there was a cutoff in

the flight build up because the authorized level for the

class itself was reached ( low authorized booking limit --- >

low demand observed --- > change in flight statistics) should

be investigated.
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