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Preface

(Authors’ note: This is an unfinished draft copy of the Paper Airplane User’s Man-
ual. As such, I would appreciate that you report any problems with language, spelling,
format, etc, to the address at the end of this Preface.)

This document provides the user with a step-by-step guide to using Paper Airplane,
Version IV. Although this program can be used to design any system (once given the
proper set of design equations), this manual will use as a running example the design
of an executive transport jet, the AM{10-Laser. This design was originally done by the
author using manual calculations; where appropriate, comparisons will be made between
the two methods.

This manual contains the following conventions for displaying examples:

o Bold sans-serif text such as this will represent user input requirements or options
that you should enter ezactly as shown — including upper and lower case.

o Italic sans-serif text such as this will represent user input requirements or options
that you need to specify.

e Thin curly-brackets surrounding a list of user input separated by commas: {...,...}
will represent a choice of requirements.

e Thin square-brackets surrounding user input: [...] will represent optional input.

e Thin square-brackets surrounding a list of user input separated by commas: |...,...]
will represent a choice of options.

e Typewriter-style text such as this will represent the response from Paper
Airplane or the system.

Paper Airplane Version IV runs under NIL release 329 or above on the DEC VAX
family of processors under the VMS operating system. The NIL Lisp language system
is available from M.L.T.’s Laboratory for Computer Science, 545 Technology Square,
Cambridge MA 02139. Paper Airplane also runs under Zeta LISP on the Texas Instru-
ments Ezplorer. Paper Airplane requires a VT100-compatible terminal, equipped with
a keyboard containing arrow keys and a programmable keypad with PF-keys as well as
numbers.
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Version IV of Paper Airplane contains a substantial number of improvements over
the last documented release. In particular:

1.
2.

Much faster convergence on design point solutions.

Capability to use multiple-input multiple-output design functions along with multiple-
input single-output design functions.

. Capability to use non-LISP based external computer programs as design functions

(on VAX only).

. An enhanced Design Function Exerciser.
. Pre-defined table-lookup auxiliary functions.

. Addition of a Library to store design variables and design functions from which

design sets can be made.

Paper Airplane is distributed with the understanding that no claims are made as
to the use or performance of this system. Paper Airplane is released for evaluation,
stimulation, and exchange of ideas only. The Massachusetts Institute of Technology
authorizes the use and distribution of this program and associated manuals as long as
the copies are not made for sale or other commercial purposes, either in its original form
or in an enhanced form, and that the copyright notice on each source file also be copied.
The Massachusetts Institute of Technology retains the copyright to the Paper Airplane
code and manuals, and all enhancements, developments, or results obtained using Paper
Airplane must be reported in writing and sent to the following address:

Paper Airplane CAPD Project

Flight Transportation Laboratory, Room 33-412
Department of Aeronautics and Astronautics
Massachusetts Institute of Technology
Cambridge, MA 02139

Please address any questions and comments to Mark Kolb at (617) 253-6883.
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Chapter 1

Introduction

This chapter is an introduction to both the manual and the project. The first section
explains the need for Paper Airplane-like systems and the history behind the project.
The second section outlines the rest of the manual.

1.1 History of the Project

In the manufacturing environment, after a product is built, it is run through a series
of tests: structural tests, acoustic tests, performance tests, thermal tests, safety tests, and
many others; this is called “Product Testing.” In the engineering environment, defore a
product is built, it is run through the same tests to decide whether or not the product
should be built; this is called “Preliminary Design.” Preliminary design is what takes an
idea and possibly turns it into a blueprint for a product.

Representation of the Idea

Since the product is only an idea during preliminary design, an alternative representa-
tion of it must be found. This representation comes in the form of a mathematical model.
A mathematical model of a simple metal screw, for example, must contain information
on its geometric properties, its structural properties, its thermal properties and its elec-
trical properties. Attach this screw to a metal plate and the mathematical model must
not only include the aforementioned properties of both the screw and plate, but also the
interaction of those properties between the two. Attach this plate to an avionics box and
the mathematical model becomes very complex. Attach this avionics box to the cockpit
of a commercial jetliner and the mathematical model becomes extremely complex.

To simplify the mathematical model, it is separated into many groups of components,
or sub-systems, using a hierarchy similar to the one followed above. To simplify the
mathematical model even more, each component model is further separated into groups
according to its properties. Instead of one large and extremely complex mathematical
model, preliminary design thus deals with many small and simpler sub-models. These
sub-models are commonly referred to as engineering models, since these are the types of

1-1
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mathematical models an engineer usually deals with. Dividing the mathematical model
into many engineering models also has the advantage that some engineering models of
the idea may be common to other ideas already transformed into products.

The engineering models, depending upon on their own level of complexity, are phys-
ically represented by single equations, by sets of equations, and by computer programs.
They are stored on magnetic tape and hard disk, in textbooks and notebooks, and on
scraps of paper and piles of computer print-out.

The Problems with Engineering Models

In an ideal engineering environment,

1.

The engineering models of an idea would be available in several different layers of
complexity, ranging from a conceptual level to an advanced level of design.

- At each level of design, there would be engineering models of that level’s complexity

to account for all parts of the proposed product and all of their properties. (Even
though a structural model of an aircraft wing at the preliminary design level rarely
includes the rivets and joint connections, the model should nevertheless account for
them, even if it means merely adding some structural efficiency factor.)

. The information on the proposed product would be stored in one secure central

location and referenced by all the engineering models involved. This would insure
that, for example, all engineering models requiring geometry information would
acquire the same geometiy information.

In the real engineering environment, however,

1.

The engineering models of an idea are not always available in several different layers
of complexity. For example, thermal models at the conceptual design level usually
do not exist and their properties are usually ignored until the idea enters advanced
preliminary design.

. At each level of design, there are not always engineering models of that level’s

complexity to account for all parts of the proposed product and all of their proper-
ties. Instead, the missing engineering models and the information they contain are
ignored (as mentioned above) or engineering models from more complex levels of
design are substituted for the nonexistent simpler ones. This could be worse than
ignorance since it brings unnecessary detail into the design at that level. It also can
lock the design prematurely before all the degrees of freedom that a simple level of
design has to offer are analyzed.

. The information on the proposed product is scattered all over a company. The in-

formation resides in the company’s main computer, in engineers’ personal computer
files, on notepads on engineers’ desks, and on blueprints on drafters’ tables. The
time delay in acquiring needed information often results in an engineering model us-
ing assumed, and often conflicting, information. Wrong information can propagate
throughout the design before it is finally detected and, expensively, corrected.
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Part of the problem has been the enormity of the task. To correct Problems 1 and 2,
more engineering models would have to be created; however, this would add to Problem 3.
Making sure that many engineering models, scattered throughout a large company, never
have conflicting information is an impossible job for a human being. Adding more hu-
man beings to the job requires one more human being above them to make sure that
they communicate with each other. Most companies cannot afford either the manpower,
money, or time to do this, thus business continues as usual.

A Computerized Solution

With the advent of smart computers and even smarter computer programmers, there
may finally be a cost-effective means to monitor and handle the information engineering
models require and produce and to insure that the design never has conflicting informa-
tion.

Recent developments in computer technology have created engineering workstations,
powerful cousins of personal computers. These new computers give the engineer the
power of a large computer on a desktop. This, of course, means nothing if the engineer
still has to write down the results or make a hard-copy to pass along design information.
Other recent developments in computer technology and in communications technology
have created very high speed networks that, once linked to several computers, provide
instant communication between them. Even now, networks linking computers speed data
across the country in a matter of minutes when it used to take days by mail and even by
person. .

Linking together engineering workstations is one thing, linking together engineers
and their engineering models is another. The former is a matter of computer hardware;
the latter, of computer software. The purpose of computer software is to do the same
thing a human could do only faster, and repeatedly without adding mistakes. High-
level computer programming languages, especially the object-oriented ones, now have
the capability to monitor and handle design information between engineering models
quickly and accurately. Computer databases now have the capability to house all the
design information in one secure location plus allow for fast information storage and
retrieval. A computer-based engineering model information sharing system (CEMISS) is
now a cost-effective prospect to the engineering community.

The Paper Airplane Project

The Paper Airplane Project is the first one of its kind to apply this CEMISS idea
to aerospace engineering. Although other computer programs have been developed that
can share information between similar engineering models, they have been limited to
certain types of products, such as general aviation aircraft [3] and naval airships [10], or
to certain types of properties, such as NASTRAN?! and MATRIXx.? Neither group could

INASTRAN is a finite-element modeling and analysis program for dealing with the structural and thermal
properties of a component.

IMATRIXx is 2 mathematical modeling and analysis program for dealing with the dynamics and control
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pass information on to any random engineering model. The goal of the Paper Airplane
Project is to do just that.

The project was begun by Dr. Antonio Elias [2], former professor of Aeronautics and
Astronautics at the Massachusetts Institute of Technology, in 1981 with a LISP-based
code that could solve a simple system of design equations. Prof. Elias, working together
with Mark Kolb ([4] and [5]), then a Master’s candidate, later made Paper Airplane
a user-friendly interactive test-bed for general systems of linear and non-linear design
equations. In 1985, Ronnie Lajoie ([7] and (8]), another Master’s candidate, joined the
project to increase Paper Airplane’s domain to include multiple-output design functions
and externally-based computer programs.

Paper Airplane itself is a Computer-Aided Preliminary Design (CAPD) tool; that is,
a computer program designed to aid an engineer in the conceptual and preliminary design
of an aircraft or any other system capable of being described by a set of scalar parameters.
Superficially, Paper Airplane is a “simultaneous calculator”; that is, a calculator capable
of determining the values of a set of parameters satisfying a set of linear and non-linear
simultaneous functions. In this sense, Paper Airplane might be viewed as an “engineer’s
spreadsheet” program, similar to TK!Solver [13]. But while TK!Solver can only handle
simple algebraic expressions, Paper Airplane can also handle complex multiple-input
single-output (MISO) functions such as numerical integrators, and complex multiple-
input multiple-output (MIMO) functions such as computer programs.

Paper Airplane now has the capabilities to perform automatically many of the com-
puter tasks now performed manually by an engineer, such as setting up input files, ex-
. ecuting and monitoring codes, and converting output information to data required by
another code or by another engineer. Paper Airplane also has a user-friendly interface
so that the engineer with little programming knowledge can work it as easily as one with
expert knowledge. In these two regards, Paper Airplane has earned the status of an early
prototype of a CEMISS. ’

Future Research Requirements

To make Paper Airplane reach the full status of a CEMISS, however, several more
capabilities still need to be added.

1. Paper Airplane will require the ability to perform automatic trade studies and
optimizations of design variables if it is to be of any value to the modern engineer.
Paper Airplane already has the ability to compute a “performance function” based
upon the weights applied to design variables. What it lacks is a general method
to minimize or maximize that performance function and to do it as efficiently as

_possible.

2. Paper Airplane will require a “Librarian” to accompany the Paper Airplane Li-
brary. Much time can be saved by having computerized help in sorting through the
collection of design functions and design variables to assemble the proper design set
to solve the problem at hand.

properties of a component.
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3. Paper Airplane will require a database to house all the design information if it is
to properly integrate real engineering models. Paper Airplane just doesn’t have
the memory to store all the information of a design (such as the mathematical
points defining a surface mesh). It needs a link to a database that can store and
retrieve design information quickly and efficiently, so that an engineer can acquire
any information he or she requires when it is required.

4. Paper Airplane will require the ability to handle non-scalar design variables if it is
to handle real engineering models. Geometry information is sometimes best handled
in a drawing; and tabular information, in a graph. Paper Airplane will require the
ability to accept design information in this form as well as to give it out.

5. Paper Airplane will require the ability to communicate with the computers best
suited for handling the engineering models. This will require a network interface
capability in addition to a modified external code interface.

6. Finally, Paper Airplane will require the ability to perform parallel processing of
tasks that can be parallel processed. Such an ability would greatly reduced the
processing time of numerical searching for the solution well beyond the reductions
already made.

With all these new abilities, Paper Airplane would finally be considered a true CE-
MISS. Would this mean that engineers would lose their jobs? No way. Even with all .
these capabilities, Paper Airplane would still be only a computational tool to the mod-
ern engineer. The key to finding a good numerical solution quickly is to start with a
good intelligent guess at it; such information would still only come from an engineer.
An expert system to teach Paper Airplane engineering is still a long, long way down the
road. )

1.2 Outline to the Manual

The following chapters and appendices guide the user through all the essential, and
nonessential, features of Paper Airplane.

Chapter 2 defines the terminology of Paper Airplane and takes the reader through a
simple example.

Chapter 3 details the first, and usually more difficult, phase of the use of Paper Air-
plane; that of assembling the proper design set to solve your problem, and creating
" its corresponding source file.

Chapter 4 details the second phase of the use of Paper Airplane; exercising the design
set to find the solution to your problem.

Appendix A instructs the user in the basics of LISP required to write the LISP code
to a mathematical design equation or function.
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Appendix B instructs the user in the basics of IATEX required to produce “fancy”
output. (It is not a necessity.)

Appendix C instructs the user in the mechanics of using Paper Airplane’s pre-defined
auxiliary functions, namely the table-lookup functions and the external code in-
terface function.

Appendix D gives the user a complete listing of the units pre-defined under the Paper
Airplane Dimensions and Units Package (PDUP). :

Appendix E gives the user a complete listing of the menu functions available in Paper
Airplane and their results.
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Chapter 2

A Paper Airplane Primer

This chapter is a primer to Paper Airplane. The first section explains the terminology
of Paper Airplane. The second section explains the usage and basic concepts. The third
section takes the reader through a simple, but complete, example.

2.1 The Terminology of Paper Airplane

This section explains the terminology of Paper Airplane. New teérms appear in bold
sans serif where they are defined. These terms also appear in the glossary at the end of
this manual.

design variable: is a scalar parameter, such as Vehicle Length or Vehicle Weight, whose
value uniquely determine part of the configuration of an aircraft, spacecraft, or
any other system. A design variable has a number of attributes associated with

it, such as its value, its dimensions, its order of magnitude, and the limits of its
value.

design function: is a relationship between design variables. A design function can range in
complexity from a simple algebraic equation to a very large and complex computer
program.

design set: is a set of certain design functions and the design variables those functions
relate towards the goal of solving a particular design problem.

auxiliary function: is a COMMON LISP function that can be called by any design func-
~ tion to perform a generic task (such as a table lookup).

source file: is a computer file containing the information on all of the design variables
and design functions to be loaded internally into a Paper Airplane design set.

loading: is a COMMON LISP term for reading and evaluating LISP code from a file into
main memory.
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variable tableau: is a spreadsheet of information on the design set arranged on a computer
screen. This information includes a list of design variables and their current values,
units, and states.

variable state: is the condition of the value of a design variable. Variable states come in
the following three varieties, which are assigned to design variables according to
their initial letter.

Initialized-value state: Thisindicates a design variable that has been given a known
value by the user. A design variable obtains state I whenever the user changes
its value, or when the user freezes it. I-state design variables, officially des-
ignated as base variables, will be referred to simply as knowns.

Guessed-value state: This indicates a design variable that has been given a trial
value by the user. A design variable obtains state G whenever the user floats
it. G-state design variables, officially designated as derived variables, will be

* referred to simply as unknowns.

Computed-value state: This indicates a design variable that had been given a trial
value by the user, and was later given a known value by Paper Airplane. A
design variable obtains state C only when the user processes the design set;
and then only if Paper Airplane can find a solution which satisfies all the
design functions in the user’s design set.

design point: is the values and states of all the design variables in a design set at any
stage in the design process.

design path: is the selection of certain design variables as knowns and the rest as un-
knowns; thereby setting up some implied path, or sequence of design functions,
for Paper Airplane to follow once values are provided for the design variables.

computational agenda: is the actual path, or sequence of design functions, to be evaluated
to find the values of the unknowns once given the initialized values for the knowns
and the guess values for the unknowns. The computational agenda is also called
the computational path. The computational agenda consists of a forced path and
loops.

forced path: is a sequence of perfectly constrained design functions, each of which can
. be solved individually, although sequentially. The path is called “forced” since
there is no alternative but to solve the design functions in this sequence in order

. to compute the values of their unknowns.

loop: is a sequence of perfectly constrained design functions, each of which computes
values required by other design functions in a closed loop. Loops are solved by
guessing the value of a forcing variable to compute two independent values of a loop
variable. When the two values converge, the values of all the unknowns involved
can be found.
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2.2 The Usage of Paper Airplane

A user of Paper Airplane must first gather the engineering knowledge he or she will
need and represent it as equations, functions, and/or computer programs. (A function is
an internal piece of code written in COMMON LISP; whereas a computer program is an
external piece of code usually not written in COMMON LISP.) Next, that information
must be coded as design variables and design functions into a source file; the format to
be followed is shown in Figure 2.1. The user then starts up Paper Airplane and loads
the source file into it.

Figure 2.2 shows the spreadsheet-like tableau a user may see once the source file is
loaded into a design set. The columns are for the design variable names, states, current
values, and current units. The name of the tableau appears at the top since a design set
can have more than one tableau (to better organize design set information).

The user selects the design path by changing design variable states to the best of his
or her knowledge. As long as the number of unknowns equals the total number of values
computed by all the design functions, Paper Airplane should then be able to build a
computational agenda to solve for all the unknowns. If the number of unknowns are less
than this total, as in an overconstrained problem, Paper Airplane would eventually come
across an overconstrained design function it could not solve for; and if the number of
unknowns are greater than this total, as in an underconstrained problem, Paper Airplane
would eventually come across an underconstrained design function it could not solve for
or a loop it could not close, and thus not solve either.

Once the design path is selected, the user then provides initialized values for the
knowns and guess values for the unknowns to define the initial design point of the design
set. The user then instructs Paper Airplane to process the design set to find the true
values for the unknowns.

Paper Airplane processes the design set in combinations of three techniques:

1. It may evaluate a design function directly, if all output values of the design func-
tion are unknown, and all input values are known. This one-time single-function
evaluation is called forward computation.

2. It may snvert a design function, if a number of output values of the design function
are known, and the same number of input values are unknown. Paper Airplane
will attempt to numerically invert that design function by repeatedly evaluating it
in order to find the values of the unknowns. Almost always, this will be successful,
and the values of the unknowns will be obtained. This iterative single-function
evaluation is called reverse computation.

3. It may iterate a set of design functions in a loop, if those design functions form
a closed loop containing several interdependent unknowns. Paper Airplane will
repeatedly guess values for a chosen forcing variable until the two computed values
of a loop variable converge; thereby stabilizing the values of all the unknowns of the
design functions in the loop. This iterative multiple-function evaluation is called
loop computation.
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After Paper Airplane builds the computational agenda to solve the design path (see
following section for details of this process), it then uses numerical methods to find a
numerical solution to the initial design point. If a solution is found, Paper Airplane
will update the values of the unknowns and make them computed knowns, as shown in
Figure 2.3. (Note that Paper Airplane also informs the user when values obtained in the
solution fall outside the recommended limits.)

Now that the user has one solution, design variable values can be changed to form new
initial design points to find more solutions as part a trade study or design optimization.
(Automatic trade study and optimization features have yet to be incorporated into Paper
Airplane; however, they are matters under research.) Design variable states can also be
changed to form new design paths to find new computational agendas and lead to new
types of solutions, trade studies, and optimizations.

Agenda Building

Given a design path of design variables selected as knowns and unknowns, Paper
Airplane assembles its methodology for solution into a computational agenda. This
process is commonly referred to as agenda building. This section briefly describes the
process of agenda building, since it is this process that makes Paper Airplane a unique
(so far) and powerful computer-aided preliminary design tool. (For complete details on
agenda building, see [5].)

The key to understanding agenda building is that it only involves the knowns, the
unknowns, and the design functions that use them. No design function is evaluated and
no numbers are produced. Each design function is merely examined to find out what
kind of design variables (knowns or unknowns) go in, and what kind come out. In this
manner, an order of function evaluation can be set up without the need to resort to more
difficult and time-consuming artificial intelligence methods. .

An iterative search is performed to find the design function with the least amount
of unknowns, whether they are going in or coming out. At any time, if the number
of unknowns of the design function is less than the number of values it computes, that
overconstrained design function is discarded and the unknowns involved are labeled “in-
consistent.”

If the number of unknowns of the design function equals the number of values it
computes, however, the design function can be solved for using the forward computation
method, the reverse computation method, or (for MIMO design functions) a combination
of both. The design function is then labeled “used” and is placed as an agenda entry
into the forced path of the computational agenda. An agenda entry is merely the design
function and the unknowns to be solved for by it. The states of the unknowns are then
changed to C and the design variables are then treated as knowns. In this manner,
a design function that was initially underconstrained can become perfectly constrained
because of the solution of another design function.

When the search returns a design function whose number of unknowns is greater
than the number of values it computes (i.e., an underconstrained design function), the
forced path construction is ended and the loop construction begins. The choice of forcing
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variable for a possible loop is the unknown most common to the remaining unused design
functions. The state of the forcing variable is temporarily set such that the search will
treat it is a known. As long as the search keeps returning perfectly constrained design
functions, a forced path of preliminary entries will be constructed. This construction
stops when an overconstrained or an underconstrained design function is returned.

If an overconstrained design function is returned, it is checked to see if it has a
computed unknown common to one of the design functions in the preliminary entries. If
it does, then there are two design functions that can independently compute the value
of the same unknown, then called the loop variable; thus the loop can be closed. If it
doesn’t however, then the overconstrained design function is discarded and its unknowns
are labeled “inconsistent.” On the other hand, if an underconstrained design function is
returned, the loop can never be closed; thus a new forcing variable must be chosen.

The preliminary entries of any closed loop are organized into an initial path, two
branches, and a final path. The initial path is a sequence of perfectly constrained design
functions whose computed unknowns are required by both branches. The branches are
two.independent sequences of perfectly constrained design functions for computing the
value of the loop variable. Lastly, the final path is a sequence of perfectly constrained
design functions whose unknowns can be solved for once the loop has converged.

Agenda building continues until all the design functions are used or discarded, or until
a loop construction failure occurs, when all possible forcing variables have been tried to
construct a loop and have failed. If all the design functions are used, Paper Airplane
should be then able to compute a unique numerical solution for any initial design point
obeying the design path. If design functions have been discarded, however, any numerical
solution found will have inconsistencies. On the other hand, if a loop construction failure
occurs, the computational agenda will be incomplete, and Paper Airplane will only be
able to find a partial numerical solution to any initial design path.
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(pa~defvar WING_REFERENCE_AREA
:category (geometry wing)
:documentation "The Reference Area of the Wing."
:TeX-name "$S_{ref}$"
:order-of-magnitude 261.0
:lower-value 220.0
:upper-value 300.0
:dimensions "12"
:default-units "£t2")

(pa-defun DF-1
:category weights
:computed-variables (GROSS_TAKE-OFF_WEIGHT "1bf")
:input-variables ((PAYLOAD_WEIGHT "1bf")
(FUEL_WEIGHT "1bf")
. (EMPTY_WEIGHT_FRACTION ""))
:function-body (/ (+ PAYLOAD_WEIGHT FUEL_WEIGHT)
(- 1 EMPTY_WEIGHT_FRACTION))
:TeX-name "$¥_{gto} {3 = {3} {{W_p + W_£f} \\over {1 - f_e}}$"
:documentation "Gross Take-off Weight Equation.")

Figure 2.1: Example design variable and design function declarations.
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CRUISE

==>RANGE G 3.000e+03 mi
CRUISE_VELOCITY G 566.0 mph
TSFC G 800.0 e-03 1lbm 1lbf-1 hr-1
LIFT-TO~-DRAG_RAT G 15.00
GROSS_TAKE-OFF_¥W G 15.00 e+03 1b
MIN_LANDING_WEIG G 11.00 e+03 1b
TIME_ON_RESERVES G 750.0 e-03 br

(PF1->Process 2->Float 3->Freeze 4->Exit) Value:

Figure 2.2: Example tableau as it first appears.
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CRUISE
RANGE I 3.000e+03 mi
-=>CRUISE_VELOCITY I 565.0 mph
TSFC I 800.0 e-03 1bm 1lbf-1 hr-1
LIFT-TO-DRAG_RAT ¢ 15.10
GROSS_TAKE-OFF_W C 20.27 e+03 1b above suggested upper value
MIN_LANDING_VWEIG C 15.30 «+03 1b above suggested upper value
TIME_ON_RESERVES I 1.000 hr

(PF1->Process 2->Float 3->Freeze 4->Exit) Value:

Building agenda ... Agenda comstruction completed.
Processing forced path ...

Processing GROSS_TAKE-OFF_WEIGHT/DRAG_COEFFICIENT loop ....

Figure 2.3: Example tableau after design set processing.
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Symbol Paper Airplane Name Definition

AR ASPECT_RATIO Aspect Ratio of the Wing.

Cp DRAG_COEFFICIENT The Drag Coefficient of the aircraft at Cruise.

Cp, ZERO-LIFT_DRAG_COEFF  The Zero-lift Drag Coefficient of the aircraft.

CL LIFT_COEFFICIENT The Lift Coefficient of the aircraft at Cruise.

€ OSWALD_EFFICIENCY The Oswald Efficiency of the Wing.

fe EMPTY_WEIGHT_FRACTION The Empty (structural) Weight Fraction of the aircraft.
/o LIFT-TO-DRAG_RATIO The Lift-to-Drag Ratio of the aircraft at Cruise.

R RANGE The Range of the aircraft.

Sres WING_REFERENCE_AREA The Reference Area of the Wing.

TSFC  TSFC The Thrust Specific Fuel Consumption of the Engines.
Tres TIME_ON_RESERVES The Time Available using the aircraft’s Fuel Reserves.
Ver CRUISE_VELOCITY The Velocity of the aircraft at Cruise.

Wer CRUISE_WEIGHT The Weight of the aircraft at Cruise.

W, FUEL_WEIGHT The Weight of the aircraft’s Fuel Supply.

Wgto GROSS_TAKE-OFF_WEIGHT The Gross Weight of the aircraft at Take-off.

Wi..  MIN_LANDING_WEIGHT The Minimum Weight of the aircraft at Landing.

W, PAYLOAD_WEIGHT The Weight of the aircraft’s Payload.

Table 2.1: Design Variables for Tutorial Number 1.

2.3 Tutorial Number 1

This section presents a tutorial using the example of the AM{10-Laser design. The
design set for this example consists of 17 design variables and 7 design functions and
illustrates the problem of determining the basic design characteristics of the aircraft
(while minimizing its weight) so that it will obtain its required range. This example
illustrates all of the basic concepts, features, and problems with Paper Airplane.

The tutorial begins by presenting the design set, that is, the 17 design variables and
7 design functions (which at this stage are just simple equations). How this information
is coded into the source file will be explained in detail in a later chapter. The tutorial
will begin at the point of starting up Paper Airplane on the computer and loading the
source file. Then it will take you through the world of Paper Airplane and allow you to
try out firsthand the early design of the AM{10-Laser.

2.3.1 The LASER Design Set

Table 2.1 summarizes the 17 design variables, including their traditional mathematical
symbols, their names inside of Paper Airplane, and their definitions — information which
comes straight from the source file “PA$DISK: [EXAMPLES] EXAMPLE1.S0U”.

The 7 design functions, which have been labeled simply DF-1 through DF-7, are
classical simple relationships which can be found in any book on aircraft design, such as
the ones by Nicolai [12] and Torenbeek [15].

DF-1 This is an equation for Gross Take-off Weight as a function of Payload Weight,
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Fuel Weight, and the Empty Weight Fraction.

Wgto— l—fc

DF-2 This is a simple equation for Cruise Weight which assumes that it is equal to the
Groses Take-off Weight minus two-thirds of its Fuel Weight.

2
WC' = Wg‘o - '3-W!

DF-3 This is an equation for Minimum Landing Weight in terms of its Gross Take-off
Weight and a fraction of its Fuel Weight (like the equation above). In this case
the fraction is the aircraft’s endurance (equal to the Range divided by the Cruise
Velocity) over the sum of the endurance plus the Time Available on Fuel Reserves.

- R/V Cr ]
Winin =Wato [(R/VCr)+Trea Wi

DF-4 This is a form of the famous Bréguet Range Equation, relating Range to Cruise
Velocity, Thrust Specific Fuel Consumption, Lift-to-Drag Ratio, and the ratio of
Gross Take-off Weight to Minimum Landing Weight.

_ Ver L Wto
B= Tsrcp ® (W;_h)

DF-6 This is the definition of Lift-to-Drag Ratio, which is simply Lift Coefficient divided
by Drag Coefficient.
C
Ly _. %L
=g,

DF-6 This is an equation for Lift Coefficient at Cruise (when the aircraft’s lift just
balances its Cruise Weight). The variables in the denominator are the dynamic
pressure (one-half the air density times the Cruise Velocity squared) and the Wing

Reference Area.
WC r

Cr=—or —
1/2PV(§1‘S"¢I

DF-7 This is an equation for Drag Coefficient at Cruise including only the Zero-Lift Drag
Coefficient and the “wave drag” coefficient, which is equal to the Lift Coefficient
squared divided by the product of pi, the Aspect Ratio, and the Oswald Efficiency.

ci

Cp =Cp, + xARe
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By the time the design variables and functions are selected, the user should have a
good idea which design variables will be the knowns and which ones will be the unknowns.
Keep in mind that Paper Airplane allows any design variable to be a known or unknown;
the selection process is governed by the rules of engineering, not the limitations of Paper
Airplane.

For this first tutorial, the engineering reasoning goes as follows. Since there are only
7 design functions to 17 design variables, 10 design variables will have to be initialized.
Design requirements usually specify Range, Cruise Velocity, and Payload Weight, so
those three will obviously be knowns. Likewise, obvious unknowns will be Gross Take-off
Weight, Fuel Weight, Cruise Weight, and Minimum Landing Weight. Another common
unknown is Lift-to-Drag Ratio, which suggests that Lift Coefficient and Drag Coefficient
are unknowns as well. Those three added to the four unknown weights yield the seven
unknowns the seven design functions can be used to solve for; the rest must be knowns.
FAA regulations will supply the value for Time Available on Fuel Reserves; however,
there are no regulations to supply the values for the last six design variables: Aspect
Ratio, Wing Reference Area, Zero-Lift Drag Coefficient, Oswald Efficiency, Empty Weight
Fraction, and Thrust Specific Fuel Consumption. The values of these six variables are
arbitrary, although technology does impose limits on them. These are the true design
variables that the design engineer can manipulate.

2.3.2 Starting up Paper Airplane

Once the design set has been coded into the source file, Paper Airplane should be
started and the source file loaded into it. At this point the reader should be logged on
to a Paper Airplane equipped computer, so that you can follow along as you read on. If
you are not logged on to a VAX/VMS NIL-equipped computer, the following steps may
not apply to you. If they do not, please consult your local systems operator to find out
how to start up Paper Airplane on your computer. Then move on to the next section to
continue with the tutorial.

Before you can start up Paper Airplane, you must first enable the NIL environment.
Once enabled, it can be permanently left on the user’s session (since one can leave and
re-enter NIL at will). If you are a regular NIL user, then you probably have a “NIL.COM”
and a “NIL.INI” file, and the following may be different from what you are used to. New
NIL users should do the following from the VAX DCL ($-prompt) environment:

$ nil [Return|

This is NIL, MIT Common Lisp

Type your terminal type, without quotes, then <return>: vt100

This is NIL, MIT Common Lisp, running on WILBUR-WRIGHT.
Experimental Steve 17.8

Experimental Lisp 329.0

W 1177

;Reading WILBUR::NIL$DISK: [NIL.SITE]DEFAULT.INI;3 into package USER.
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;WILBUR: :NIL$DISK: [NIL.SITE]DEFAULT.INI loaded. Runtime = 2.17 seconds;
: 496 pagefaults, thrash coefficient = 228.57 pgs/sec.

"Experimental Steve 17.8, Experimental Lisp 329.0, VM 1177"
%*

(setq si:*print-gc-messages* nil)
NIL

(The actual response may differ slightly, but it should have this basic format.) Once
you are in NIL, you must load Paper Airplane into it:

*
(load "pa$disk:[utils]fastload")
iReading WILBUR: :PAS$DISK: [UTILS]FASTLOAD.LSP;1 into package USER.

;WILBUR: : PASDISK: [UTILS]FASTLOAD.LSP; loaded. Runtime = 77.82 seconds;
; 29364 pagefaults, thrash coefficient = 377.33 pgs/sec.
#<LOCAL-VMS-PATHNAME "WILBUR::PA$DISK: [UTILS]FASTLOAD.LSP;1" 1B7454>

You will notice that NIL begins to process the loading function immediately after
you type the closing right parenthesis, without waiting for a or other entering
keystroke. This is because NIL has a hot reader, similar to those of Lisp Machines, which
detects when your input is logically complete. After Paper Airplane has successfully
loaded, you start it by doing the following:

#<LOCAL-VMS-PATHNAME "WILBUR::PA$DISK: [UTILS]FASTLOAD.LSP;1" 1B7454>
(pkg-goto °pa)

#<PACKAGE PA>

(pa-directory "pa$disk:[examples]") _
#<LOCAL-VMS-PATHNAME "WILBUR: :PA$DISK: [EXAMPLES]POINT.DAT" 1DC4D4>

(pa)

The first line you type instructs NIL to enter a special environment, or package, where the
Paper Airplane LISP functions are defined. The second line you type defines the default
directory where your source files are stored. For all tutorials, the source files are stored in
the directory “PA$DISK: [EXAMPLES].” And finally, the last line you type instructs NIL to
execute Paper Airplane. The screen will clear and be replaced by a welcoming message.

Press any key, and the screen will be replaced by Figure 2.4, the main menu of Paper
Airplane.

2.3.3 Loading the Source File

‘The main menu of Paper Airplane, Figure 2.4, contains the first 24 commands avail-
able to the user. The user selects one of them by entering the number associated with
that command (again, both NIL and LISP have hot readers, so any non-alphanumeric
keystroke after the number, such as a space, will terminate the input).

Since Paper Airplane, at this point in the tutorial, is devoid of design sets, you must
“Load a source file” into it. To load the first tutorial source file, follow these steps:
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2-13

Enter

PAPER

Enter tableau mode
Process design set (timed)
Processing Debugger Menu
Library Menu

Design Set Editor Memu
System Menu

VAX/VMS utilities
Operator Menu

List active design sets
Switch current design set
Describe a design variable
List all design variables

command number:

AIRP

[13]
[14]
[156]
[16]
[17]
[18]
[19]
[20]
[21]
[22]
[23]
[24]

LANE

List incompatible variables
Display processing agenda
List all design functions
Show performance function
List all defined tableaux
List tableau using a variable
Describe design point
Restore old design point
Save current design point
Print design point table
Load a source file

Exit PAPER AIRPLANE to LISP

Figure 2.4: Paper Airplane Main Menu
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Enter command number: 23

Load file (WILBUR::PA$DISK:[EXAMPLES]SOURCE.SOU): examplel
File WILBUR: :PA$DISK: [EXAMPLES]EXAMPLE1.S0U;1 loaded.

Enter command number:

The first thing you enter is the file specification of the source file. Since you told Paper
Airplane what the default directory would be (as indicated by the name in parentheses),
you do not need to do so again. All you need to supply is the information not identical to
the name in parentheses, which in this case is the file name examplel. You will have to
press a carriage return because NIL’s hot reader is turned off during this reading.! After
you enter the source file name, Paper Airplane loads the source file into a design set, a
process which may take 10-20 seconds for the LASER design set and longer for larger
design sets. Once the source file has been loaded (as denoted by the reappearance of the
“Enter command number:” prompt), you are ready to exercise the design set.

If you ever need to return to the NIL environment from Paper Airplane, you can do
so easily by selecting the “Exit PAPER AIRPLANE to LISP” command, [24] in the main
menu. This command allows you to leave Paper Airplane without terminating it.2 To
re-enter Paper Airplane, just type (pa) and you will be brought back to Paper Airplane’s
main menu. Similarly, you can non-destructively return to VMS from Paper Airplane by
entering (valret) instead of a command number, and re-enter Paper Airplane by typing
nil:

Enter command number: 24

THANK YOU FOR USING PAPER AIRPLANE
T

(pa)

Enter command number: (valret)

$ nil

Enter command number:

Paper Airplane, being a research tool, is far from error-free, and it actually takes
very little to upset it to the point where it will dive into debug mode (where you will
see a prompt such as “1>xdbg>”). Fortunately, it also takes very little to recover back to

the point where the error occurred. Merely press to abort debug, then enter (pa)
again:

Enter command number: (crash)

1A carriage return is always acceptable as a command terminator; however, it is mandatory when entering
file pathnames and other text-type data.

3Actually, there is no way to really terminate Paper Airplane. To do 80, you would also have to terminate
NIL using the NIL (quit) function.
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1>xdbg> [Ctrl-G]

1>xdbg> [Abort]

*
(pa)
Enter command number:

You will be brought back to the main menu of Paper Airplane, but all the changes you
made to the design set will still be present. Likewise, if you need to stop Paper Airplane
during a process, press and you will bé brought into the interrupt mode (where
you will see an “Interrupt>” prompt). Again, press to abort the interrupt, then
enter (pa):

Enter command number:
Interrupt>

Interrupt> ;Quit!

*

(pa)

Enter command number:

2.3.4 Exercising the LASER Design Set

In this section, you will learn how to exercise the LASER design set in order to
perform conceptual design of the AM{10-Laser. The interfaces to the design set are the
tableaux defined in the source file. On a VT100 terminal, each tableau can contain 15
design variables, while on a Lisp Machine 48 design variables can be displayed at one
time. In practice, it is better to group the design variables in smaller sets, according
to the particular aspect of the design one wishes to concentrate on. On a large design,
one may have a dozen or so tableaux, labeled “fuselage”, “aerodynamics”, “propulsion”,
“mission profile” and so on. The tutorial design set contains three tableaux. Command
[17] will “List all defined tableaux” in alphabetical order:

Enter command number: 17

AERODYNAMICS CRUISE WEIGHTS
Enter command number:

To display a particular tableau, use command [ 1], “Enter tableau mode”. Since
this is by far the most often-used Paper Airplane command, it appears on both the main
menu and most sub-menus, and it usually is command [ 1]:

Enter command number: 1
Enter tableau name:
AERODYNAMICS CRUISE WEIGHTS

Enter tableau name: CRUISE
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Notice that if you type a question mark, Paper Airplane will produce the same list of
tableaux as it produced for command [17]. Also, you do not need to type the full name
of the tableau you want, for Paper Airplane, like VMS, recognizes the name as long as
it is given enough letters for it to distinguish your choice from the rest. For example,
you could have typed merely C rather than CRUISE and Paper Airplane would still have
selected. the CRUISE tableau shown in Figure 2.5.

Each tableau consists of its name, which appears at the top of Figure 2.5, and five
columns of design variable information. The first column contains the names of the design
variables; the second, their current states (which are initialized to G); the third, their
current values (which are initialized to their orders of magnitude — default values); and
the fourth, their current units. The fifth column is reserved for comments or warnings
about each design variable. When everything is going smoothly, the fifth column should
be blank.?

The arrow (-->) pointing to “RANGE” marks the Range design variable as current,
which means that this design variable can be manipulated. For example, you can change
its state, its value, and/or its units; though, of course, you cannot change the units of a
design variable that is dimensionless, such as Lift-to-Drag Ratio.

You will need to use the keypad keys and the arrow keys to operate on a tableau. If
your keyboard lacks either of these, then stop what you are doing, and find a keyboard
that has them. If your keyboard has these, then sorry about the interruption.

The major operations you can perform on a design variable are described below:

Getting Information on a Design Variable
To get information on a design variable, such as the limits to its value, press the -
key on the keypad:

(PF1->Process 2->Float 3->Freeze 4->Exit) Value: E
Display RANGE brief or full?

Since, at this stage, both brief and full descriptions are the same, a key
is the easiest reply. The tableau screen will be replaced by the screen shown
in Figure 2.6. This description screen contains the name of the design variable,
its IATEX name, its documentation (or help information), its dimensions (“"1"”
for “length”), its performance function weight (not currently available), its current
state, its current value and units, its order of magnitude (default value) and limits,
.the tableaux it appears in, and the functions that can compute it. To return to
the CRUISE tableau, simply press any key.

A Changing a Design Variable’s State

To change a design variable’s state from G to I, simply press the key; this
is referred to as freezing a design variable. To change its state back to G, simply
press the key; this is referred to as floating a design variable.

3Chapter 4 discusses what to do when everything is not going smoothly.



CHAPTER 2. A PAPER AIRPLANE PRIMER 2-17

CRUISE

-=>RANGE G 3.000e+03 mi
CRUISE_VELOCITY G 565.0 mph
TSFC G 800.0 e-03 1bm lbf-1 hr-i
LIFT-TO-DRAG_RAT G 15.00
GROSS_TAKE-OFF_W G 15.00 e+03 1b
MIN_LANDING_WEIG G 11.00 e+03 1b
TIME_ON_RESERVES G 750.0 e-03 hr

(PF1->Process 2->Float 3->Freeze 4->Exit) Value:

Figure 2.5: Tableau CRUISE.
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Design Variable: RANGE
TeX-name: $RS
Documentation:

The Range of the aircraft.
Dimensions: nim
Performance function weight: 0.0d0
Current state: G
Current value: 3.000e+03 mi
Lower Value: 3.000e+03 mi
Order of Magnitude: 3.000e+03 mi
Upper Value: 3.000e+03 mi
In tableaux: CRUISE

Forward computing functions: DF-4
Reverse computing functions: DF-3

--Pause--

Figure 2.6: Information on RANGE.
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Changing a Design Variable’s Value

To change a design variable’s value, type the new value, then press the
key. You will notice that the design variable’s state will change as well, to I, since
Paper Airplane assumes that all user-entered values are for knowns. If you want
to provide Paper Airplane with a better trial value for an unknown, just press the
key after entering the value.

Changing a Design Variable’s Units

To change a design variable’s units, press the E (minus-sign) key on the keypad.
Paper Airplane will then ask you for the new units, which you then supply. For
example, to change the units of Range from standard miles to nautical miles (a
more common unit of Range) you would do the following:

(PF1->Process 2->Float 3->Freeze 4->Exit) Value: E
Enter new units (or RETURN to abort): kg

Units "kg" do not have dimensions "1".

Check spelling of your units.

Enter new units (or RETURN to abort): NM

The value and units of “RANGE” will change from “3.000e+03 mi” to “2.607e+03
NM”. Paper Airplane automatically updates the value to reflect the change in units.
Note, that Paper Airplane also checks to make sure that the new units have the
proper dimensions. Appendix D lists all the dimensions and units pre-defined by
Paper Airplane. It also explains to the user how to define new units and new
dimensions.

Moving on to Another Design Variable

There are three wa s to move on to another design variable. Two are to use the
arrow keys: the key to step down the list of design variables, and the
key to step up. Both keys will cause a wrap-around if you pass an end of the list.

The third way is to move directly to the design variable you want by pressing the
E] key on the keyboard:

(PF1->Process 2->Float 3->Freeze 4->Exit) Value: L—}_—]
Variable to visit: TSFC

. The tableau will be redrawn with the arrow marker positioned at “TSFC”. This
method also works for moving directly to a design variable contained in a different
. tableau.

Moving on to Another Tableau

There are four ways to move on to another tableau. Two are to use the arrow
keys: the key to step down the alphabetized list of design tableaux, and the
key to step up. Again, both keys will cause a wrap-around if you pass an end
of the list. The third way is when you move directly to a design variable contained
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in a different tableau (see previous description); and the fourth way is to move
directly to the tableau you want by pressing the E] key on the keyboard:

(PF1->Process 2->Float 3->Freeze 4->Exit) Value: E

Tableau to visit: AERO

The AERODYNAMICS tableau will be drawn with the arrow marker positioned at the
first design variable. This tableau is shown in Figure 2.7.

Reviewing the Keypad Options

To review these and other keypad options, press the EE key on the keypad.
The screen will be replaced with Figure 2.8. For now, please ignore the keys that
were not described above.

You now know enough to make the changes to the design set necessary before you can
proceed to the next step, processing it. Since the unknowns and knowns have already
been selected (page 2-11), you can now assign them values. The default values that
appear in the tableaux were taken from an early paper on the AM{10-Laser. The upper
and lower limits were based upon the range of such values for existing executive transport
jets from Nicolai [12]. Design requirements include a Range of 3000 standard miles, a
Cruise Velocity of 565 mph, and a Payload Weight of 2200 pounds. Of the rest, the more
specific values will be rounded to better starting guesses; the less specific ones will be left
as is.

The next three figures, 2.9, 2.10, and 2.11, show the three tableaux after all the
necessary changes have been made — after the design set has been initialized. You
should be able to make those changes just by comparing the figures with what you see on
the screen; however, if you have trouble, you can reference the text below. It is a list of
the author’s keystrokes and Paper Airplane’s responses. Although, in normal practice,
many commands are used much more than others, the author’s changes were designed to
give the user a feel for all of the commands.

The changes made to the AERODYNAMICS tableau are as follows:

(PF1->Process 2->Float 3->Freeze 4->Exit) Value: 250 [Return]
(PF1->Process 2->Float 3->Freeze 4->Exit) Value: 4
(PF1->Process 2->Float 3->Freeze 4->Exit) Value: [PF3
(PF1->Process 2->Float 3->Freeze 4->Exit) Value: $
(PF1->Process 2->Float 3->Freeze 4->Exit) Value: [PF3
(PF1->Process 2->Float 3->Freeze 4->Exit) Value: 4
(PF1->Process 2->Float 3->Freeze 4->Exit) Value: 12 [Return|
(PF1->Process 2->Float 3->Freeze 4->Exit) Value: [PF2
(PF1->Process 2->Float 3->Freeze 4->Exit) Value: 1
Variable to visit: ZERO

(PF1->Process 2->Float 3->Freeze 4->Exit) Value:
(PF1->Process 2->Float 3->Freeze 4->Exit) Value:
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AERODYNAMICS
-->WING_REFERENCE_A G 261.0 152
ASPECT_RATIO G 8.000
OSWALD_EFFICIENC G 800.0 e-03
LIFT-TO-DRAG_RAT G 15.00
LIFT_COEFFICIENT G 300.0 e-03
DRAG_COEFFICIENT G 20.00 e-03
ZERO-LIFT_DRAG_C G 15.00 e-03

(PF1->Process 2->Float 3->Freeze 4->Exit) Value:

Figure 2.7: Tableau AERODYNAMICS.
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TABLEAU EDITOR HELP SCREEN

| PROCESS | FLOAT | FREEZE | EXIT |

| DESIGN | VARIABLE | VARIABLE | TABLEAU |
previous item | SET | (to "G") | (to "I") | TO MENU |
- | DELETE | INSERT | APPEND | CHANGE |

| DESIGN | DESIGN | DESIGN | VARIABLE |
| VARIABLE | VARIABLE | VARIABLE | UNITS |

previous <-- -=> npext : : : ——— :
tableau tableau | DESCRIBE | SHOW | LIST | DISPLAY |
| | DESIGN |VARIABLE's| DESIGN | CURRENT |
v | VARIABLE | FUNCTIONS| VARIABLES| AGENDA |
next item | MOVE TO | MOVE TO | CHANGE | |
| DESIGN | OTHER | DISPLAY | |, |
| VARIABLE | TABLEAU | FORMAT | DESCRIBE |
: - :- -: DESIGN- |
| | TOGGLE | POINT |
| HELP (74 | |
| | INPUT | |
--Pause--

Figure 2.8: Screen review of the keypad choices.
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AERODYNAMICS
WING_REFERENCE_A I 250.0 £t2
ASPECT_RATIO I 8.000
OSWALD_EFFICIENC I 800.0 e-03
LIFT-TO-DRAG_RAT G 12.00
LIFT_COEFFICIENT G 300.0 e-03
DRAG_COEFFICIENT G 20.0 e-03
-->ZERO-LIFT_DRAG_C I 15.0 e-03

(PF1->Process 2->Float 3->Freeze 4->Exit) Value:

Figure 2.9: Tableau AERODYNAMICS after initialization.
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The changes made to the WEIGHTS tableau are as follows:

(PF1->Process 2->Float 3->Freeze 4->Exit)
Variable to visit: GROSS

Variable to visit: GROSS_TAKE-OFF_WEIGHT
Visit GROSS_TAKE-OFF_WEIGHT in which tableau?

CRUISE WEIGHTS

Value:

[1]

Visit GROSS_TAKE-OFF_WEIGHT in which tableau? W |Return

(PF1->Process 2->Float 3->Freeze 4->Exit)
(PF1->Process 2->Float 3->Freeze 4->Exit)
(PF1->Process 2->Float 3->Freeze 4->Exit)
(PF1->Process 2->Float 3->Freeze 4->Exit)
(PF1->Process 2->Float 3->Freeze 4->Exit)
(PF1->Process 2->Float 3->Freeze 4->Exit)
(PF1->Process 2->Float 3->Freeze 4->Exit)

(PF1->Process 2->Float 3->Freeze 4->Exit)
(PF1->Process 2->Float 3->Freeze 4->Exit)

The changes made to the CRUISE tableau are as follows:

(PF1->Process 2->Float 3->Freeze 4->Exit)
(PF1->Process 2->Float 3->Freeze 4->Exit)
Enter display units for RANGE (or PF-4) to
(PF1->Process 2->Float 3->Freeze 4->Exit)
(PF1->Process 2->Float 3->Freeze 4->Exit)
(PF1->Process 2->Float 3->Freeze 4->Exit)
(PF1->Process 2->Float 3->Freeze 4->Exit)
(PF1->Process 2->Float 3->Freeze 4->Exit)

Variable to visit: TIME

(PF1->Process 2->Float 3->Freeze 4->Exit)
(PF1->Process 2->Float 3->Freeze 4->Exit)

Value:
Value:
Value:
Value:
Value:
Value:
Value:

Value:
Value:

Value:
Value:

4

PF3

ft

ft

PF3

f

13000

PF2

<=

abort) : mi [Return

Value:
Value:
Value:

Value:
Value:

Value:

Value:

PF3

¢

4

PF3

1

1 Return]
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Before you press thkey to tell Paper Airplane to process the design set, it is a
| Enter |

good idea to press the

key on the keypad first. This asks Paper Airplane to tell

you if your design set is properly constrained; that is, if the number of unknowns matches

the number of values computed by all the design functions:

(PF1->Process 2->Float 3->Freeze 4->Exit)

Value:

Design LASER has 9 base variables, 8 derived variables,
and 7 functions computing 7 variables. The design path

is underconstrained by 1 derived variable.
(PF1->Process 2->Float 3->Freeze 4->Exit)

Value:
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WEIGHTS
GROSS_TAKE-OFF_¥ G 15.00 e+03 1b
PAYLOAD_VWEIGHT I 2.200e+03 1b
FUEL_VEIGHT G 4.000e+03 1b
MIN_LANDING_WEIG G 11.00 e+03 1b
-->CRUISE_WEIGHT G 13.00 e+03 1b
EMPTY_WEIGHT_FRA I 600.0 e-03

(PF1->Process 2->Float 3->Freeze 4->Exit) Value:

Figure 2.10: Tableau WEIGHTS after initialization.
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CRUISE

RANGE I 3.000e+03 mi

CRUISE_VELOCITY G 6565.0 mph

TISFC I 800.0 e-03 1bm 1bf-1 hr-i

LIFT-TO-DRAG_RAT G 12.00

GROSS_TAKE-OFF_¥W G 15.00 e+03 1b

MIN_LANDING_WEIG G 11.00 e+03 1b
=-=>TINE_ON_RESERVES I 1.000 hr

(PF1->Process 2->Float 3->Freeze 4->Exit) Value:

Figure 2.11: Tableau CRUISE after initialization.
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Now you know why it is a good idea. Paper Airplane has discovered that the design
set is underconstrained; that there is 1 more unknown (“derived” variable) than values
computed by all the design functions. Since Paper Airplane cannot solve a design problem
that is underconstrained, you will have to change one more unknown into a known. Quick
analysis reveals that the Cruise Velocity design variable is the obvious choice. It is a design
requirement, but was accidentally skipped over. You merely have to change its state to
I and, then, you can see if your design is properly constrained:

(PF1->Process 2->Float 3->Freeze 4->Exit) Value: J
(PF1->Process 2->Float 3->Freeze 4->Exit) Value: J
(PF1->Process 2->Float 3->Freeze 4->Exit) Value: [PF3
(PF1->Process 2->Float 3->Freeze 4->Exit) Value: |Enter|
Design LASER has 10 base variables, 7 derived variables,
and 7 functions computing 7 variables. The design path
is perfectly constrained.

(PF1->Process 2->Float 3->Freeze 4->Exit) Value:

The design is now properly constrained. Here’s where the fun begins. All you have
to do now is to press the key and let Paper Airplane go to work to solve for the
unknowns:

(PF1->Process 2->Float 3->Freeze 4->Exit) Value: |PF1
Building agenda .

Building agenda ... Agenda construction completed.
Processing forced path ...
Processing FUEL_WEIGHT/DRAG_COEFFICIENT loop .

Processing FUEL_WEIGHT/DRAG_COEFFICIENT loop ....
(PF1->Process 2->Float 3->Freeze 4->Exit) Value:

If you examine all three tableaux, they will appear as shown in Figures 2.12, 2.13,
and 2.14. You will notice that all the unknowns are now knowns (computed-values) since
their states have been changed from G to C. Their values have been changed as well,
some by too much (as reflected in the warning messages for Gross Take-off Weight and
Minimum Landing Weight). Do not be alarmed if your computed values differ slightly
from those shown in the figures. Paper Airplane convergence criteria defaults its system
epsilon to 0.1%, so it is not your fault if your values differ from the figures’ beyond the
third significant digit.

If you want to examine all of your design variables at the same time, you can do so by
pressing the @ key on the keypad in any tableau. This will give you an alphabetized
table of all design variables in the design set, such as the one shown in Figure 2.15. The
+s (plus signs) in the first column mark those design variables which are the computed
variables of design functions, while the T’s in the second column mark those design
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CRUISE
RANGE I 3.000e+03 mi
~->CRUISE_VELOCITY I 565.0 mph
TSFC I 800.0 e-03 lbm 1bf-1 hr-1
LIFT-TO-DRAG_RAT ¢ 15.10
GROSS_TAKE-OFF_W C 20.27 e+03 1b above suggested upper value
NIN_LANDING_VWEIG C 15.30 e+03 1b above suggested upper value
TIME_ON_RESERVES I 1.000 hr

(PF1->Process 2->Float 3->Freeze 4->Exit) Value:
Building agenda ... Agenda construction completed.
Processing forced path ...

Processing FUEL_WEIGHT/DRAG_COEFFICIENT loop ....

Figure 2.12: Tableau CRUISE after processing.
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AERODYNAMICS
~=>WING_REFERENCE_A I 250.0 ££2
ASPECT_RATIO I 8.000
OSWALD_EFFICIENC I 800.0 e-03
LIFT-TO-DRAG_RAT ¢ 15.10
LIFT_COEFFICIENT C 288.9 e-03
DRAG_COEFFICIENT C 19.15 e-03
ZERO-LIFT_DRAG_C I 15.00 e-03

(PF1->Process 2->F16&t 3->Freeze 4->Exit) Value:

Figure 2.13: Tableau AERODYNAMICS after processing.
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WEIGHTS
~->GROSS_TAKE-OFF _WEIGHT C 20.27 e+03 1b above suggested upper value
PAYLOAD_WEIGHT I 2.200e+03 1b
FUEL_WEIGHT c 5.907e+03 1b
MIN_LANDING_WEIGHT C 15.30 e+03 1b above suggested upper value
CRUISE_WEIGHT C 18.30 e+03 1b
EMPTY_WEIGHT_FRACTION I 600.0 e-03

(PF1->Process 2->Float 3->Freeze 4->Exit) Value:

Figure 2.14: Tableau WEIGHTS after processing.
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variables which are displayed in one or more tableaux. The fourth column, which contains
the weights on the values of the design variables, should be blank as this space is merely
being reserved for the future. The last column, which contains the verbal number of
incompatibilities each design variable has, should be blank as well; however, it would
not be blank if Paper Airplane had problems processing the design set. Like the design
variable information screen, you return to the tableau by pressing any key.

By now, you should be able to load a source file into a design set, prepare it for
processing, and have Paper Airplane process it. If you wish to continue exercising the
LASER design set, then keep reading; if you do not, then skip to the next section to
learn what you may do with your design set now that it has been processed.

2.3.5 Further Exercising of the Design Set

In this section, you will continue exercising the LASER design set in an effort to bring
the weight of the aircraft down. Since one of an aerospace engineer’s major goals is to
reduce weight, the design set will have to be reprocessed. The next attempt will be to
change the value of a known; this way Paper Airplane will not have to recompute the
computational path (agenda).* For the rest of this exercise, you will not be shown the
author’s keystrokes (since you should be able to make the changes on your own); nor will
you be shown any more tableau figures, just table figures, like Figure 2.15.

One way to reduce aircraft weight is to reduce fuel weight (since it is such a large
percentage of the total weight), and one way to reduce fuel weight is to reduce the amount
of time needed on.fuel reserves. Since FAA regulations only require 45 minutes of reserve
fuel, you can lower “TIME_ON_RESERVES” back to 0.75 hours, and then press again.
Notice that this time, Paper Airplane did not print out “Building agenda” since it
already knew the computational path. After processing has completed, you will notice
that the warning messages on the weights have gone, that their values have dropped back
within design limits — “GROSS_TAKE-OFF_WEIGHT” is down to about 19,340 pounds —
however, that should not stop you from trying to reduce weight further.

Another way to lower fuel weight is to use a more fuel efficient engine, which you
can get by lowering its Thrust Specific Fuel Consumption. Lower “TSFC” from 0.8 to
0.6 Iblbf~1hr—!, then press the key. Indeed, “GROSS_TAKE-OFF_WEIGHT” is back
down to its initial guess; however, this was done using technology that does not yet exist,
as shown by the warning on “ISFC”. If you press the key and look at the information
on “TSFC”, you will find that 0.81blbf~1 hr—! is not only the order of magnitude, but the
limits as well. This is because a certain type of engine was specified in the requirements;
thus, you will have to change “TSFC” back to 0.8 Iblbf~*hr—1.

Another way to lower fuel weight is to raise the Lift-to-Drag Ratio, which is closely re-
lated to the ratio of aircraft weight and engine thrust (which you now know is fixed). You
could change the value of “LIFT-TO-DRAG_RATIO” directly, but that would cause prob-
lems; you would be ignoring the values of “LIFT_COEFFICIENT” and “DRAG_COEFFICIENT”,
and thus you would be also ignoring the values of the other four design variables in the

“Indeed, Paper Airplane remembers every computational path it creates for each design set during a
gession.
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LIST OF DESIGN VARIABLES

F T Design Variable Name Weight State & Value Units
T ASPECT_RATIO I 8.000
T CRUISE_VELOCITY I b565.0 mph
+ T CRUISE_WEIGHT c 18.30 e+03 1b
+ T DRAG_COEFFICIENT c 19.15 e-03
T EMPTY_WEIGHT_FRACTION I 600.0 e-03
T FUEL_VEIGHT c 5.907e+03 1b
+ T GROSS_TAKE-OFF_VEIGHT c 20.27 e+03 1b
+ T LIFT-TO-DRAG_RATIO c 15.10
+ T LIFT_COEFFICIENT C 283.9 e-03
+ T MIN_LANDING_WEIGHT H 15.30 e+03 1b
T OSWALD_EFFICIENCY I 800.0 e-03
T PAYLOAD_WEIGHT I 2.200e+03 1b
+ T RANGE I 3.000e+03 mi
T TIME_ON_RESERVES I 1.000 hr
T TSFC I 800.0 e-~03 lbm 1bf-1 hr-i
T WING_REFERENCE_AREA I 250.0 ££2
T ZERO-LIFT_DRAG_COEFF I 15.00 e-03
--Pausge--

Figure 2.15: Table of all design variables in design set LASER.
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AERODYNAMICS tableau, the ones that are supposed to be the knowns. A better way would
be to change the value of one of the knowns.

Longer wings create more lift and usually have less drag. That is why gliders have
them. Aspect Ratio is the design variable to change here. Change “ASPECT_RATIO” to
10, then process the design set. “GROSS_TAKE-OFF_WEIGHT” has been reduced another
800 pounds. Unfortunately, at the speeds executive transport aircraft want to fly, longer
wings cause other problems not reflected in this design set (which is why fighter aircraft
have short wings); therefore, set “ASPECT_RATIO” back to 8.

One last way to reduce weight is actually the simplest from the design standpoint,
but the hardest from the technological one. That is to lower the empty (structural)
weight of the aircraft. The Empty Weight Fraction design variable used to be con-
sidered a fixed quantity, but with the introduction of composite materials, it has be-
come a key design variable. As a last attempt to lower the aircraft weight, change
“EMPTY_WEIGHT_FRACTION” to 0.55, then process the design set again. “GROSS_TAKE-
OFF_WEIGHT” will be greatly reduced from 19,340 pounds down to 16,410 pounds. Now
you know why this design variable can be so important. A lighter empty aircraft requires
less fuel to make the same journey, and thus makes for a much lighter fully-loaded one.

Figure 2.16 summarizes this section’s changes to the design set. It is the table of
design variables (the one you get by pressing the keypad | 6 | key) as it should now
appear. This marks the end of the exercise portion of the tutorial. The next section tells
you what you can do with your design set now that it has been processed.

2.3.6 Finishing Up

This section tells you what you can do with your design set now that it has been
processed. To begin, you will need to return to the main menu, which you can do easily
by pressing the key. '

If you examine the main menu, you will find that some commands produce information
similar to that produced by some keypad keystrokes inside the tableaux environment.
Command [ 2] will process the design set and return the time (in CPU seconds) Paper
Airplane took to do it. Command [11] will “Describe a design variable” in the
same manner that pressing the keypad [I] key did. Likewise, command [12] will “List
all design variables” in the same manner that pressing the keypad [zl key did.
Command [13] does the same thing as command [11] except that it only lists design
variables with incompatible values (between design functions). Finally, command [19]
will “Describe design point” in the same manner that pressing the keypad key
did. See Appendix E for a complete description of these and other menu functions.

Now that you have a processed design set, you may want to keep something for your
records. There are two ways to make hardcopy, both use the same command, [22],
“Print design point table”. If your computer supports IATEX, you can get high
quality output by doing the following:

Enter command number: 22

Do you wish to produce a TeX file or a standard data file? tex
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LIST OF DESIGN VARIABLES

Design Variable Name Weight

State & Value

Units Incomp’s

ASPECT_RATIO
CRUISE_VELOCITY
CRUISE_WEIGHT
DRAG_COEFFICIENT
EMPTY_WEIGHT_FRACTION
FUEL_WEIGHT
GROSS_TAKE-OFF _WEIGHT
LIFT-TU-DRAG_RATIO
LIFT_COEFFICIENT
MIN_LANDING_WEIGHT
OSWALD_EFFICIENCY
PAYLOAD_WEIGHT

RANGE
TIME_ON_RESERVES

TSFC
WING_REFERENCE_AREA
ZERO-LIFT_DRAG_COEFF

+ + + +
LG I I

--Pause--

HEHMFHAHAHMHQOQOOOQGHOQOOM M

8.
565.
14.
17.
550.
5.
16.
13.
231.
11.
800.
2.

3
750.
800.
250.
15

000

o

68 e+03
67 e-03
0 e-03
185e+03
41 e+03
i1

8 e-03
87 e+03
0 e-03
200e+03

.000e+03

0 e-03
0 e-03
0

.00 e-03

mph
1b

1b
1b

1b

1b
mi
hr
1bm 1bf-1 hr-i
££2

Figure 2.16: LASER design variables at end of exercise.
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Print file (WILBUR::PA$DISK:[EXAMPLES]POINT.TEX): sys$login:laser Return]
Design point for "LASER" written to "WILBUR::SYS$LOGIN:LASER.TEX;" at
12:41:43.

Enter command number:

Normally you would just enter laser, but for the tutorial you should put any created files
in your own directory (“SYS$LOGIN” is your home directory). You process this file just
as you would any other IATEX file, and you will get results similar to Table 2.2. If your
computer does not support IATEX, however, you can still get a normal text file version
of the table (shown in Table 2.3) by doing the following:

Enter command number: 22

Do you wish to produce a TeX file or a standard data file? dat Return|
Print file (WILBUR::PA$DISK: [EXAMPLES]POINT.DAT): sys$login:laser m
Design point for LASER written for "RML" at 12:45:561.

Enter command number:

Once you are finished with your design set, you should save it in a file as a design
point. This allows you to pick up where you left off when you restart Paper Airplane
some other time; otherwise, you would have to make the same changes all over again.
Command [21] will “Save current design point” as follows:

Enter command number: 21

Save file (WILBUR::PA$DISK:[EXAMPLES]POINT.SAV): sys$login:laser
File WILBUR::SYS$LOGIN:LASER.SAV;1 written out.

Variable values saved.

Enter command number:

To restore a design point, you must load the original source file first. Then use command
[20] to “Restore old design point”:

Enter command number: 20

Read file (WILBUR::PA$DISK: [EXAMPLES]POINT.SAV): sys$login:laser Return]
File WILBUR: :SYS$LOGIN:LASER.SAV;1 read in.

Variable values restored.

Enter command number:

Finally, once you have finished using Paper Airplane, you exit it using command
[24], “Exit PAPER AIRPLANE to LISP” and to exit NIL using the (quit) function:

Enter command number: 24

THANK YOU FOR USING PAPER AIRPLANE

T
(quit)



roint for LASER, written for RML on Monday the twenty-third of March, 1987; 2:68:27 pm.

0.0.M. Weight State Variable Name  Current Value  Units Incomp’s Responsible Function
;000 I AR 8.000
65.0 I Vo, §65.0 mph
3.30 x10° c  Wo 1468 x10° Ib Wor = f(Wet0,Wy)
0.00 x107% C O©Op 1767 x107° DF-6
8000 ) G 0.5500
000. c w 5185. Ib Cp = Cp, + ok
5.00 x10° C Wy 1641 x10*° Ib Woeo = 22E2L
5.00 c I 13.11 R = 385 f log (e
3000 C Ci 0.2318 CL = ;/T"v"?ns—,-
100 x10° cC Wi, 11.87 x10° Ib Winin = Woto — Wy [ reiiien]
3000 I ¢ 0.8000
200. I W, 2200. b
000. 1 R 3000. mi
7500 I T 0.7500 hr
3000 I TSFC 0.8000 b Iby ™ hr—?
61.0 I Sret 250.0 ft?
500 x107% I Cp, 1500 x107%

Table 2.2: Table of design variables produced by IATEX.



point for LASER printed for RML on Monday the twenty-third of March, 1987; 2:58:64 pm. *#¥*

d. Wt. State Variable Name Value Inc’s Resp. Function
b] I ASPECT_RATIO 8.000
I CRUISE_VELOCITY 666.0 mph
e+03 C CRUISE_WEIGHT 14.68 ¢+03 1b DF-2
e-038 C DRAG_COEFFICIENT 17.67 ¢-038 DF-6
e-03 1 EMPTY_WEIGHT_FRACT 560.0 e-08
De+03 C FUEL_VWEIGHT 65.186e+038 1b DF-7
e+03 C GROSS_TAKE-OFF_WEI 16.41 e+03 1b DF-1
C LIFT-TO-DRAG_RATIO 13.11 DF-4
e-03 C LIFT_COEFFICIENT 231.8 e-03 DF-6
e+08 C MIN_LANDING_WEIGHT 11.87 e¢+03 1b DF-38
e-03 I OSWALD_EFFICIENCY 800.0 e-03
De+03 I PAYLOAD_WEIGHT 2.200e+03 1b
De+03 I RANGE 3.000e+03 mi
e-03 I TIME_ON_RESERVES 760.0 e-03 hr
e-03 I TSFC 800.0 e-03 lbm 1bf-1 hr-i
I WING_REFERENCE_ARE 260.0 t2
e-03 I ZERO-LIFT_DRAG_COE 16.00 e¢-03 '

Table 2.3: Table of design variables in text file.
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You have now completed your first lesson in Paper Airplane. You should now know
the terminology and should be able to do the following:

e Start up Paper Airplane.
e Recover from dives into debug mode.

e Load a source file into a design set.

e Prepare a design set for processing, including the ability to:

— Get information on a design variable.

— Change a design variable’s state.

— Change a design variable’s value.

— Change a design variable’s units.

— Move on to another design variable or tableau.

— Check to see if the design set is properly constrained.
e Process the design set.
e Examine the results.
e Make hardcopy of the results.
o Save the design point.

e Exit Paper Airplane.

You should also have a feel for what Paper Airplane can and cannot do at this time. The
rest of the chapters will go into more detail on many of the subjects discussed in this

chapter, especially Chapter 3, which will explain how to create source files.

Please remember that the AM/10-Laser design was just one example of Paper Air-

plane’s applications. As long as you can define the functions (equations and/or codes)

that describe a system, you can model and manipulate that system using Paper Airplane.
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Chapter 3

Getting Started

In the last chapter, you learned how to use Paper Airplane once you had a source
file. In this chapter, you will learn how a source file is made, a process discussed in the
first three sections: Choosing the Design Set, Preparing the Design Set, and Creating the
Source File. The last section will then ask you to edit the first tutorial source file to add
some more features to the LASER design set.

3.1 Choosing the Design Set

Choosing the proper set of design variables and design functions is crucial to success-
fully finding the solution to a design problem. This process is often the most difficult
and time-consuming, for it involves a lot of reasoning — on the engineering level, on the
scientific level, and even on the mathematical level. This section details the rules and
steps to follow for choosing a proper design set. It then closes with an examination of
the author’s reasoning for choosing the first LASER design set.

3.1.1 Rules for Choosing the Design Set
Rule Number 1

The most important rule for choosing the design set is to keep the design set simple.
The design functions themselves can be complex, but you should keep the number of
those design functions down to a manageable level — on the order of 10. Manufacturers
are aware of this rule, that is why they separate the design process into a number of
design levels ranging from “conceptual design” to “final design”. When advancing levels,
simpler design functions are replaced with more detailed ones, thus keeping the number
of design functions small. Design variables that were once unknowns, meanwhile, have
their values frozen (into knowns) or at least tightly constrained, and thus make room for
new unknowns. Whether you are designing an aircraft, microchip, or sailboat, the rule
is the same: keep the design set stmple.
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Rule Number 2

Another important rule for choosing the design set is to keep the design set focused.
The design functions can solve for many unknowns, but there should only be one design
goal. For example, in conceptual aircraft design, the goal is to minimize the aircraft’s
weight while meeting its performance requirements. Although many unknowns are solved
for, such as the aircraft’s geometric and aerodynamic characteristics, the chief design goal
is to find the aircraft’s total weight. By choosing a design set with one clear design goal in
mind, you are forced to assemble only those design variables and design functions appro-
priate for the task at hand; thereby, creating a clear, concise package of interdependent
design functions and the design variables those functions relate. With such a design set,
you can be insured of not only solving your design problem, but solving for all the associ-
ated unknowns as well. This type of approach is designed to keep you from accidentally
leaving out an important design principle by forcing you to think the design problem out
thoroughly. Whether you are designing a diesel engine, wind mill, or communications
satellite, the rule is the same: keep the design set focused.

A fringe benefit of choosing a design set to solve only one design problem is, ironically,
the ability to solve other design problems as well — using the same design set. For
example, a conceptual spacecraft design set that is designed to minimize launch weight
and solves for material costs along the way also could be used to minimize material
costs and solve for launch weight along the way. In fact, once the proper design set is
chosen, almost any design variable value can be optimized, or any appropriately weighted
combination of them. This ability is one of the prime benefits that Paper Airplane gives
the user over manual design.! '

Summary of Rules

The two major rules to remember when choosing a design set are:
Rule 1: Keep the design set simple.

Rule 2: Keep the design set focused.

3.1.2 Steps for Choosing the Design Set

Although there are only two major rules, there are seven major steps to follow for
choosing the design set. These steps are designed to help you think out the design problem
thoroughly enough so that you can choose the proper design set.

Step Number 1

The first step is to decide what your level of expertise is in the field of the design

problem you want to solve. In this regard, you can be either an expert, an intermediate,
or a novice.

1This should not be taken that Paper Airplane can perform optimization. That ability is, unfortunately,
still to be incorporated.
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If you are an expert, choosing the proper design set would be a matter of probing
your own mind. If you are an intermediate, choosing the proper design set would be
a matter of consulting those experts in the field and/or consulting texts and technical
papers written by them. If you are a novice, however, choosing the proper design set
would be a matter of getting an expert or an intermediate in the field to choose the proper
design set for you, or of taking a course on the subject to raise your level of expertise. (A
current research project is the creation of a Paper Airplane “Librarian” to help users —
even novices — choose the proper design set out of the Paper Airplane Library of design
variables and design functions, which now exists in a limited capacity.)

Step Number 2

Assuming that you are either an expert or an intermediate, the second step is to
clearly state the design goal in terms of key design parameters (both requirements and
unknowns). These design parameters will become your initial set of design variables.

Step Number 3

The third step is to decide how much precision and detail you want in the solution
to your design problem. Usually, the higher the precision, the more complex the design
functions have to be provide it, and the longer it will take to find the solution.

Following the conventions of engineering procedure, it is usually best to first find a
“quick and dirty” solution to put you in the vicinity of the precise one you are looking
for, and then to close in on the precise one in a series of steps. In design terms, the first
process is called “conceptual design,” and the others are called “preliminary design,”
“advanced preliminary design,” and “final design.” It is recommended to the user that
your first design set be at a conceptual design level so that you do not accidentally leave
out an important design principle.

Step Number 4

The fourth step is to find the key functional relationships among the initial set of
design variables. These relationships will become your initial set of design functions and
can consist of engineering, scientific, and mathematical relationships as simple as the
equation F = ma to as complex as a computational fluid dynamics program. This all
depends on the level of precision and detail you chose in Step 3.

Be careful, however, for Paper Airplane is very naive about engineering, scientific,
and complex mathematical principles, so do not leave out fundamental relationships just
because they seem obvious to you. To Paper Airplane, a design function is merely a black
box with values going in and values coming out, and what happens inside the black box
is a mystery.

Once you have completed Step 4, you will then have formed an initial design set. The
next procedure requires you to iterate on Steps 5 and 6 until you decide that your design
set will yield the degree of precision and detail you desire.
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Step Numbers 5 and 6

The fifth step is to add to the design set new design variables which were introduced
by being associated with design functions previously added, while the sixth step is to
add to the design set new design functions to further relate the increased set of design
variables.

I you get trapped in this cycle, it will probably be because you will add a design
function to define a new design variable, then be forced to add the new design variables
associated with this new design function, and then be forced to add new design functions
to define these new design variables. The only way to get out of such a trap is to stop
defining design variables and just plan on making some of them assumed constants. Mak-
ing assumptions is a standard engineering and scientific practice. It is the assumptions
that define the degree of precision and thereby the level of design.

For a conceptual design set, therefore, many assumptions will have to be made to
keep the design set simple and focused. Once you ended the cycle of Steps 5 and 6, you
will then have a complete design set — but is it a proper one?

Step Number 7

The seventh step is to review the entire design set in light of the two major rules. If
your design set breaks Rule 1, you can simplify the design set by merging design functions
that belong together. For example, the lift and drag coefficient equations “DF-6” and
“DF-7" could have been merged into one aerodynamics function. (This will be done in
Tutorial Number 2.) If your design set breaks Rule 2, you can correct this by throwing
out all design functions and design variables that do not keep the design set focused.

After you have completed Step 7, you should then have a proper design set that is
both simple and focused. You are then ready to write this information into a source file.

Summary of Steps

The seven major steps to follow when choosing a design set are:
Step 1: Decide your level of expertise in the field.
Step 2: State the design problem in terms of key design variables.
Step 3: Decide the level of precision and detail you require.
Step 4: Find the key design functions relating the design variables.
Step 5: Add any necessary design variables to the design set.
Step 6: Add any necessary design functions to the design set.

Step 7: Review entire design set in light of the two major rules.
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3.1.3 The Initial AM410-Laser Design Set

As an example of how a design engineer chooses a design set, this section will follow
the author’s reasoning for choosing the 7 design functions and 17 design variables making
up the LASER design set.

In the beginning, there is the idea. In this case, The idea was for an executive
transport aircraft that would be more spacious on the inside, yet still fly as far and as
fast as other existing executive transport aircraft. The idea is then composed into a list of
design requirements. In the business world, the list of design requirements for an aircraft
is almost as thick as the final document on its design! Since the author’s design problem
existed in the academic world, the list of design requirements was substantially smaller
— only one page. The following list of requirements is quoted from the final paper on
the AM410-Laser [6]:

Mission Description

Despite the advances in computer technology, tele-conferencing is not go-
ing to replace person-to-person meetings. Long distance may be the “next
best thing to being there”, but “being there” is still [the] best. Therefore,
when tele-conferencing just won’t do, executives are going to need to get to a
meeting quickly. [And] because executives like to travel in style, standard-size
business jets with cramped compartments are becoming less wanted. Thus,
a high-speed medium-size executive transport is now required to take execu-
tives in style across the miles. Specific requirements are listed below.

Mission Requirements

Payload: Crew of two, eight passengers, plus baggage

Speed: Cruise at Mach 0.85 at minimum [altitude] of 35000 feet
Range: 3000 miles (with full payload and 45 minute reserve fuel)
Take-off roll: 4000 feet

Landing roll: 2500 feet

Aircraft should use [composite technology] where currently applicable (no
creating new technology for this aircraft) to decrease aircraft weight and in-
crease fuel efficiency. Aircraft speed should not be lowered for the sake of
better fuel economy, though cruise altitude may be raised. [The aircraft must
use the Garrett Airesearch TFE731-3B-100 turbofan engine.]?

Immediately from this list of requirements come several design variables. The design
set knowns include Payload Weight, Cruise Mach Number, Range, Take-off Roll, Landing
Roll, and everything about the engines, such as Engine Weight and Thrust Specific Fuel
Consumption. The design set unknowns include Aspect Ratio, Wing Reference Area, and

3This design requirement was left out by accident, mainly because it was the only turbofan engine the
class had information on.
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other geometric characteristics; Lift-to-Drag Ratio, Oswald Efficiency, and other aerody-
namics characteristics; Gross Take-off Weight, Empty Weight Fraction, and other weight
characteristics; Range, Landing Velocity, and other performance characteristics; Cen-
ter of Gravity, Mean Aerodynamic Chord, and other stability and control characteristics;
Chair Pitch, Window Height, and other interior characteristics; Fuselage Thickness, Wing
Loading, and other structural characteristics; and many more characteristics, including
avionics, electrical systems, flight service, landing systems, maintenance, and operation
costs.

As you can plainly see from the different sizes of the lists above, there are far more
unknowns than knowns, enough to overwhelm a team of design engineers, let alone one.
This is where the expertise is needed to find the proper design set, to separate out a
small group of knowns and unknowns from literally hundreds, and to find an equally
small group of equations and/or codes to relate them. For the field of aircraft design,
much of that expertise has been documented into two very useful books, Nicolai [12] and
Torenbeek [15], and as well as others. Only you know if the same is true for the field of
your design problem.

The 7 design functions and 17 design variables contained in the initial AM{10-Laser
design set were chosen to give the design engineer a general feeling for the weights and
aerodynamics of the aircraft. The Bréguet Range Equation (BRE) is a relationship
between the weight, engine, aerodynamic, and performance characteristics of the aircraft.
Since the required performance and engine characteristics (Range, Cruise Velocity, and
Thrust Specific Fuel Consumption) were given, the BRE was an obvious choice for a
design function. This equation introduced some unknowns: Lift-to-Drag Ratio, Gross
Take-off Weight, and Minimum Landing Weight. Each of these design variables could
be evaluated by adding three more design functions, which are forms of their definitions
rather than observed relationships, such as the BRE. These design functions added more
unknowns to the design set: Lift and Drag Coefficients, Fuel Weight, Empty Weight
Fraction, and Time Available on Fuel Reserves. The latter two values could be considered
temporary knowns since there values are similar for all executive transport aircraft. The
aerodynamic coefficients required design function definitions, which then added more
unknowns to the design set: Aspect Ratio, Wing Reference Area, Oswald Efficiency,
Zero-Lift Drag Coefficient, and Cruise Weight, all of which could be considered temporary
knowns, with the exception of Cruise Weight, which required one more design function
definition. Fuel Weight could be solved for by using the Gross Take-off Weight equation
since the other design variables it involves, Payload Weight and now Empty Weight
Fraction, are knowns; thus eliminating the need to add another design function for Fuel
Weight. These design variables and design functions form the initial A M{10-Laser design
set.

Even in this small design set, important relationships exist between design variables,
such as “the higher the Lift-to-Drag Ratio the lower the Gross Take-off Weight”. It is this
relationship and others that allow a few knowns to be seeded into a garden of unknowns,
to take root and spread, and, finally, be harvested as a complete design. But just as a bad
seed will not yield a good harvest, a poor initial design set will not yield a good design.
Keep the design set simple and focused, especially if you are designing a revolutionary
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product or are using new technology. Paper Airplane will allow you to exercise design
sets much faster than you could via a hand calculator or computer input/output files,
thus you will have more time to think about the engineering aspects of your design so
that you can produce a better product. And a better product is the goal of every design
engineer.

3.2 Preparing the Design Set

Once you have chosen your design set, you need to prepare it for use with Paper
Airplane. A Paper Airplane design set consists of a group of design functions which
relate a group of design variables. It also consists of another group of functions called
auxiliary functions which do not relate any design variables, but can be called by any
design functions. This section discusses the rules and restrictions of these three groups
according to the current version of Paper Airplane.

3.2.1 Design Variables

Design variables must be scalar quantities. Complex numbers, vectors, and arrays
are not possible in their original forms. It is possible, however, to separate a complex
number, vector, or array into its scalar elements and make these design variables. A
design function could receive the individual elements, then would reassemble them back
into their original form so it could perform its high-level math operations. This alternative
is recommended for only those quantities that could be thought of as scalars, such as the
components of a velocity vector, and not for those quantities that are best left tabularized,
such as the points in a “Lift Coefficient versus Angle of Attack” plot. Tabular information
is better served by auxiliary functions, which are explained later in this section.

3.2.2 Design Functions

Design functions must be written in COMMON LISP, whether they are single equa-
tions or complex functions. A way to avoid writing in COMMON LISP is to write all of
your design functions, in the language of your own choosing, into separate external codes
in, compile and link them, and call them from Paper Airplane using Paper Airplane’s
External Code Interface (see Appendix C). This is recommended only for those design
functions that are already written as external codes and for those that require frequent
use of vector and array operations and/or complex mathematical functions, such as in-
tegration and differentiation. It is not recommended for those design functions that can
be written as simple equations, groups of simple equations, or simple logical functions.
These simpler design functions can easily be written in COMMON LISP using the help
available in Appendix A.

All inputs to and outputs from a design function must be design variables, thus they
must be scalar quantities. Input variable values should not be changed, for only the final
values of the output variables will be returned to Paper Airplane, not the final values of
the input variables. The only way an input variable value could be modified is to have the
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same input variable be also an output variable. This cannot be done, however, because
Paper Airplane would have no idea how to solve such a design function (it would always
be over-constrained or under-constrained).

In the case where an input variable value must be modified, a new design variable
should be added to the design set to become the output variable, and a new design
function should be added to the design set to equate the value of the output variable to
the value of the input variable. The steps for such a procedure are as follows:

1. Add another design variable to the design set with the same name as the design
variable you wish to copy — except add the prefix “OLD-” to it. For example, if

your design variable’s name was “VAR,” the added design variable would be named
“OLD-VAR.”

2. Make “OLD-VAR” the input variable to the design function that is doing the modi-
fication and “VAR” the output variable.

3. Create a new design function with “VAR” as the input variable and as the body of
the function, and “OLD-VAR” as the output variable.

4. All other design functions should reference “VAR” and not “OLD-VAR.”

5. Both “OLD-VAR” and “VAR” must be unknowns, thus their states must be G. If you
have an initial guess for the design variable, it should be given to “OLD-VAR.”

Design functions that require extra variables to hold values of intermediate steps
should declare them internally as local variables, while those that require extra variables
to hold constants or tables of reference values should declare them externally as global
variables. More will be said about local and global variables in the next section.

Design functions that return only tables of values and no scalar values should be
written as auxiliary functions instead and called upon by other design functions that do
return scalar values. An alternative to this approach is to add a design variable to act as
a flag to signal the rest of the design set when a table has been produced. The value of
the flag would be unimportant since Paper Airplane would only check its state; therefore
you could assign the flag to any value you wished, such as the table size or dimensions.

3.2.3 Auxiliary Functions

This is not to belittle the importance of auxiliary functions, however. Auxiliary func-
tions are very useful for performing generic sub-tasks that one or more design functions
have need of. Such sub-tasks include table look-ups, external code executions, and high-
level. mathematics operations, which include complex number and matrix operations,
numerical integration, and numerical differentiation. Most scalar mathematics functions,
such as trigonometric functions, are already available in COMMON LISP.

Auxiliary functions cannot operate on design variables directly. If an auxiliary func-
tion needs the value of certain design variables, it must be passed those values from
the design function into dummy arguments in an argument list. Like design functions,
auxiliary functions must be written in COMMON LISP.
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Table look-ups and external code executions are required so often in engineering
that they have been incorporated into special Paper Airplane-internal auxiliary functions
called utility functions. Utility functions can be called from any design function and even
from any auxiliary function. (Any auxiliary function can be called from another auxiliary
function.)

The main table look-up function is called simply “table-lookup” and the main Ex-
ternal Code Interface function is called simply “run-program.” “table-lookup” is an
n-dimensional table lock-up function that calls itself recursively. For slightly more effi-
cient processing, there is also a one-dimensional table look-up function called “1d-table-
lookup,” and a two-dimensional table look-up function called “2d-table-lookup.” Ap-
pendix C instructs the user how to use all of these utility functions.

The next section instructs the user how to write design variables, design functions,
and auxiliary functions into a source file.

3.3 Creating the Source File

Once you have a proper design set, the next step is to encode this information into a
source file. This section will describe the Basic Format of the source file, then describe
each of its major components: Design Variables, Auxiliary Functions, Design Functions,
and Design Sets.

3.3.1 Basic Format

Figure 3.1 shows the basic format of the source file. The solid boxes surround source
file requirements to produce a Paper Airplane design set; the dashed boxes surround
source file options. Like a PASCAL program, all variables must be declared before they
can be used, thus global variables and design variables must precede auxiliary functions,
design functions, and design sets. Auxiliary functions must precede the design functions
that call them; however, it is easier to remember that all auxiliary functions should be
declared before any design functions. Design sets must be declared last. Because of this
grouping structure, a large source file can be easily separated into smaller modules, such
as one for global and design variables, one for auxiliary and design functions, and one for
design sets. You must load the modules into Paper Airplane in the stated order, however,
for a design set to be assembled properly.

It is a good idea to create a header out of comments® to specify the name of the
design product, the current design level, and the name of the design set. Figure 3.2
shows the author’s convention for specifying the header in the source file. Also shown is
the declaration of global variables.

A global variable declaration is the one piece of code written ezactly the way it is
written in COMMON LISP. The declaration format is as follows:

(defvar global-name global-value) ; global-units

3A comment is any line in the source file starting with a semicolon.
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Figure 3.1: Basic format of the source file.
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;3:; -*- mode:pa ; package:pa; readtable:cl; base:10 -*- ;;;;

R R R R R R R R R R R R A R R R R R R R R R
HH AN410-Laser Executive Transport Aircraft HH
g a i

HH design experiment using Paper Airplane HH
HY and a HE

;; running example for the Paper Airplane User’s Manual ;;
HH Conceptual Design Level HH
HE Tutorial Design Set -- Number 1 HA

oooooo R R R R N N R R N I N N N R N I B N S N A ]
2989983233 H 0PSSO P I DD II SN INIIS NI NIINIIDINIONS

tiiiisssssissssissssss GLOBAL VARIABLES ;:;:iissisisisiisiis

(defvar *AIR_DENSITY* 0.000738) ; slugs £t-3
(defvar *PI-D#* 3.14159265) H

Figure 3.2: Header and constant declaration in the source file.
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where

global-name is the name of the global variable, such as “*AIR_DENSITY#*”. The asterisks
around the name are COMMON LISP requirements to identify any global variable.

global-value is the value of the global variable, such as “0.000738”.

global-units are the units of the global variable corresponding to the value, such as
“slugs £t-3”. If the global variable is dimensionless, just leave a blank.

3.3.2 Design Variable Declaration

Following the declaration of global variables should come the declaration of your
design variables (as shown in Figure 3.3. The declaration format is as follows:

(pa-defvar dv-name
:category dv-cat-list

[ :TeX-name dv-tex-symbol |
:order-of-magnitude dv-def-value
lower-value dv-lower-value
:upper-value dv-upper-value
:dimensions dv-dimensions
:units dv-def-units

[ :documentation dv-description | )

where

dv-name is the name of the design variable seen in tableaux and tables, such as “RANGE”.

dv-cat-list is the list of the names of the library category and optional sub-categories
you wish to place the design variable under, surrounded by parentheses.

dv-tex-symbol is the IATEX representation of the design variable name seen in hardcopy
output like Table 2.2, such as “"$R$"”. The IATEX name is a string, thus it must
be surrounded by double quotes. If your system does not support IATEX, do not
worry, the IATEX name is optional to the design variable declaration (note the
thin square brackets). See Appendix B for instructions on how to represent design

“ variables using IATEX.

dv-def-value is the default value (order of magnitude) of the design variable seen when

you first load your source file into a design set. The numerical value is only
required, not the units.

dv-lower-value is the suggested lower limit to the value of the design variable seen in

information screens like Figure 2.6. The numerical value is only required, not the
units.
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(pa-defvar LIFT-TO-DRAG_RATIO
:category (AERODYNAMICS)
:TeX-name "$°L/_D$"
:order-of-magnitude 15
:lower-value 10
:upper-value 20
:dimensions ""
:documentation "The Lift-to-Drag Ratio of the aircraft at Cruise.")

(pa-defvar RANGE
:category (PERFORMANCE CRUISE)
:TeX-name "$R$"
:order-of-magnitude 3000
:lower-value 3000
:upper—value 3000
:dimensions "1"
:units "mi"
:documentation "The Range of the aircraft.")

(pa-defvar WING_REFERENCE_AREA
:category (AERODYNAMICS)

Figure 3.3: Design variable declaration in the source file.
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dv-upper-value is the suggested upper limit to the value of the design variable seen in
information screens like Figure 2.6. The numerical value is only required, not the
units.

dv-dimensions is the dimensions of the design variable seen in information screens like
Figure 2.6, such as “"1"”. Notice that dimensionless design variables, such as
Lift-to-Drag Ratio, have dimensions of “""”  a null string. Higher-order dimen-
sions are represented by number corresponding to their order, such as “*12"” for
Wing Reference Area. The dimensions of Air Density would be “"m 1-3"". The
dimensions is a string, thus it must be surrounded by double quotes.

dv-units are the units corresponding to the default and limiting values you provide, such
as “*sm"” for Range. The units are always checked by Paper Airplane to make
sure that they agree with the design variable’s dimensions. The units are a string,
thus they must be surrounded by double quotes.

dv-description is a description or definition of the design variable seen in information
screens like Figure 2.6, such as “"The Range of the aircraft"”. The descrip-
tion is a string, thus it must be surrounded by double quotes. The description is
optional to the design variable declaration, but is recommended.

When choosing the default and limiting values of a design variable, you should consider
how each of those values would affect your design. As you know from the tutorial, Paper
Airplane does not stop processing if a value goes beyond those bounds; it merely prints
a warning message — as it should, since the limits are design limits, not physical ones.*
Design variables whose values are requirements, such as Range, should have their limiting
values be the same value as its order of magnitude.

3.3.3 Auxiliary Function Declaration

Following the declaration of design variables should come the declaration of any aux-
iliary functions you may have. The declaration format, which is almost ezactly the same
for LISP defuns, is as follows:

(paux-defun af-name
:category af-cat-list
:lambda-list af-arg-list
function-body af-body

[ :documentation af-description | )

where

af-name is the name of the auxiliary function.

“Paper Airplane does not search beyond those bounds when it is looking for a solution, however; during
iteration those bounds are treated as physical.
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af-cat-list is the list of the names of the library category and optional sub-categories you
wish to place the auxiliary function under, surrounded by parentheses.

af-arg-list is the list of arguments passed to the auxiliary function, surrounded by paren-
theses. If no arguments are to be passed; type empty parentheses “()” instead.

af-body is the function body of the auxiliary function, which is written exactly as it would
be in a COMMON LISP defun. Please remember that the body cannot reference
design variables directly. See Appendix A for a discussion of LISP programming.

af-description is a description or definition of the auxiliary function. The description is
a string, thus it must be surrounded by double quotes. The description is optional
to the auxiliary function declaration, but is recommended.

3.3.4 Design Function Declaration

Following the declaration of auxiliary functions should come the declaration of your
design functions (as shown in Figure 3.4). The declaration format is as follows:

(pa-defun df-name
:category df-cat-list
:computed-variables df-output-list
:input-variables df-input-list
:function-body df-body

[ :TeX-name df-tex-symbol |
[ :documentation df-description | )
where

df-name is the name of the design function seen in information screens like Figure 2.6,
such as “DF-56". If you prefer to use a more meaningful design function name, such
as “Lift-to-Drag_Ratio_Equation”, you can use the description option for an
explanation of what the function does.

df-cat-list is the list of the names of the library category and optional sub-categories you
wish to place the design function under, surrounded by parentheses.

df-output-list is the list of names and units of all the design variables (the order is
- not important) whose values are computed by the design function, surrounded by
parenthesis. Each pair of name and units is surrounded by parentheses as well.
- The units can be any units you need to write the design function the simplest, as
long as they agree with the design variable’s dimensions; Paper Airplane will take

care of all units conversions.

df-input-list is the list of names and units of all the design variables (the order is not
important) whose values are required by the design function, surrounded by paren-
thesis. Each pair of name and units is surrounded by parentheses as well. The
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(pa-defun DF-5

:category (AERODYNAMICS)

:computed-variables ((LIFT-TO-DRAG_RATIO ""))

:input-variables ((LIFT_COEFFICIENT "*)
(DRAG_COEFFICIENT ""))

:function-body (/ LIFT_COEFFICIENT DRAG_COEFFICIENT)

:TeX-name "DF-5"

:documentation "Lift-to-Drag Ratio Equation.")

(pa-defun DF-6
:category (PERFORMANCE CRUISE)
:computed-variables ((LIFT_COEFFICIENT ""))
:input-variables ((CRUISE_WEIGHT "1b")
(FUEL_WEIGHT "1b")
(CRUISE_VELOCITY "ft s-1")
(WING_REFERENCE_AREA "£42"))
:function-body (/ CRUISE_WEIGHT
(= 0.5 *RHO* CRUISE_VELOCITY CRUISE_VELOCITY
WING_REFERENCE_AREA))
:TeX-name "$C_L {3 = {3 {w_{cr}
\\over {1/2 \\rho V_{Cr}"2 S_{ref}}}$"
:documentation "Lift Coefficient Equation.")

Figure 3.4: Design function declaration in the source file.
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units can be any units you need to write the design function the simplest, as long
as they agree with the design variable’s dimensions; Paper Airplane will take care
of all units conversions.

df-body is the function body of the design function, which is written exactly as it would
be in a COMMON LISP defun. The body should relate only the design variables
that are contained in the input list, not the output list. See Appendix A for a
discussion of LISP programming.

df-tex-symbol is the IATEX representation of the design function name seen in hardcopy
output like Table 2.2, such as the equation for Lift Coefficient. The IATEX form
is a string, thus it must be surrounded by double quotes. If your system does not
support IATEX, do not worry, the IATEX form is optional to the design function
declaration (note the thin square brackets). See Appendix B for instructions on
how to represent design variables using IATEX.

df-description is a description or definition of the design function, such as “"Lift-to-
Drag Ratio Equation."”. The description is a string, thus it must be surrounded
by double quotes. The description is optional to the design function declaration,
but is recommended.

Design function declarations, as you can see, are much more complicated than aux-
iliary function declarations. For example, you need to specify the output of a design
function; whereas you do not with an auxiliary function. Also, you need to specify the
units of each input and output variable of the design function; whereas you do not with
an auxiliary function. This is not bad, however; it is actually good, since anyone looking
at the declaration knows immediately what kind of values are required and expected from
the design function. And the format itself is not very different from the argument list —
it is an argument list, and the arguments just happen to be pairs of design variable name
and units.

3.3.5 Design Set Declaration

Following the declaration of design functions should come the last item, the declara-
tion of your design sets (as showu in Figure 3.5). The declaration format is as follows:

(pa-defset ds-name
:design-variables dv-list
:auxiliary-functions af-list
:design-functions df-list
‘tableaux tab-list )

where

ds-name is the name of the design set, such as “LASER”.

dv-list is the list of the names of the design variables you wish to place in the design set,
surrounded by parentheses.
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(pa-defset laser
:design-variables
(ASPECT_RATIO LIFT_COEFFICIENT DRAG_COEFFICIENT LIFT-TO-DRAG_RATIO
GROSS_TAKE-OFF _WEIGHT PAYLOAD_WEIGHT FUEL_WEIGHT
ZERO-LIFT_DRAG_COEFF CRUISE_WEIGHT CRUISE_VELOCITY
range TSFC OSWALD_EFFICIENCY MIN_LANDING_WEIGHT
EMPTY_WEIGHT_FRACTION WING_REFERENCE_AREA
TIME_ON_RESERVES)
:design-functions (DF-1 DF-2 DF-3 DF-4 DF-5 DF-6 DF-7)
:tableaux
((aerodynamics
WING_REFERENCE_AREA ASPECT_RATIO OSWALD_EFFICIENCY -
LIFT-TO-DRAG_RATIO LIFT_COEFFICIENT DRAG_COEFFICIENT .
ZERO-LIFT_DRAG_COEFF)
(cruise
RANGE CRUISE_VELOCITY TSFC LIFT-TO-DRAG_RATIO :
GROSS_TAKE-OFF_WEIGHT MIN_LANDING_WEIGHT TIME_ON_RESERVES)
(weights
GROSS_TAKE-OFF_WEIGHT PAYLOAD_WEIGHT FUEL_WEIGHT
MIN_LANDING _WEIGHT CRUISE_WEIGHT EMPTY_WEIGHT_FRACTION)))

Figure 3.5: Design set declaration in the source file.
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af-list is the list of the names of the auxiliary functions you wish to place in the design
set, surrounded by parentheses.

df-list is the list of the names of the design functions you wish to place in the design set,
surrounded by parentheses.

tab-list is the list of the tableaux declarations you wish to define, surrounded by paren-
theses. Each tableau declaration consist of a list with the name of the tableau
followed by the names of the design variables to put in it, surrounded by paren-
theses.

You know enough to create a source file, or at least to edit one, which is what you
will do in the next section.
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3.4 Tutorial Number 2

Now that you have been given the declaration formats for all the objects in the source
file, you need to learn them; and the best way to do so is by editing a source file, and
creating those objects yourself. In this section, you will edit the source files — note plural
— belonging to the second tutorial design set LASER-2. You will be asked to complete
the revision that was started by the author (purposely left unfinished) in order for the
LASER-2 design set to be exercised in the next chapter.

In this tutorial, you will be required to use an EMACS editor. Because learning a
new editor is always difficult, special Paper Airplane-defined editor functions have been
added to help the user create design variable, auxiliary function, design function, and
design set declarations easily and quickly.

3.4.1 Editing the Tutorial Source File

The actual “EXAMPLE2.S0U” source file is write-protected, so you will have to make
your own copy of it and put it in your home directory. Then start up NIL and enter the
EMACS editor using the following procedure:

$ copy pa$disk:[examples]example2.sou sys$login:*.*
$ nil

* .
(ed sys$login:example2.sou)

You have now entered the EMACS editor and the screen should appear as shown
in Figure 3.6. The color-inverted line near the bottom of the screen is the “mode line”
and is used to identify the EMACS editor (“STEVE”), the editor mode (“(PA)”), the
file editing buffer (“EXAMPLE2.S0U[=]SYS$LOGIN:WILBUR: : (1)), and the status of the
keypad functions (“(F---)"). Help on the keypad functions is available by pressing the

key on the keypad.

The special editor functions for building Paper Airplane declarations are chosen by
using a Meta-P (ESC|{ P | prefix, which becomes the prompt “verbPA-". Interactive help
in building declarations is available by following the prefix with a lowercase letter,
or, if you prefer a more manual help, declaration skeletons are available by following the
Meta-F prefix with a uppercase letter. The letters are as follows:

Vv — interactive design variable declaration function.
a — interactive auxiliary function declaration function.
f — interactive design function declaration function.

s — interactive design set declaration function.
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. . | F = FORW |B = to BEG| K = KILL | N = MARK |
| PA-MODE HELP WINDOV | | or |E = to END| or | ¢ = COPY |
‘ * | B = BACK |- = either| - = MOVE | - = MOVE |

INTERACTIVE EDITOR FUNCTIONS | I l | SWITCH |
I CHAR | WORD | LINE | to OTHER |
Meta-P v -- Design Variable | | | | BUFFER |
Meta-P £ -- Design Function + + e e
Meta-P a -- Auxiliary Function | | | | RETURN |
Meta-P s -- Design Set | SCREEN | BUFFER | REGION | to |
: I | I | LISP |

STRUCTURAL EDITOR FUNCTIONS : + + ————t
| I | | |
Meta-P V -- Design Variable | S-EXPR | DEFUN | COMMENT | !
Meta-P F -- Design Function | | | | EVALUATE |
Meta-P A -- Auxiliary Function - + : LISP |
Meta-P S -- Design Set | read this | RETURN | FORM |
| = HELP FILE | to VNS | ' I

STEVE (Fundamental) PAMODE.HLP[PAMODE]PAS$DISK:WILBUR:: (1) (F---)

Figure 3.7: EMACS keypad help screen.
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V — skeletal design variable declaration function.
A — skeletal auxiliary function declaration function.
F — skeletal design function declaration function.

S — skeletal design set declaration function.



& V
g

Chapter 4

Exercising the Design Set

This chapter is not ready yet; however, you can go back to Chapter 1 for most of the
information you will need to exercise any design set. For more exercise, you can load the
source files EX2DVARS.SOU, EX2DFUNS.SOU, and EX2DSET.SOU — in that order
— into a clean library and create the LASER-2 design set. This design set includes a
design function that calls the external code RANGE and a design function that returns
more than one output value.

4-1
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Appendix A
The Basics of COMMON LISP

This appendix instructs the user in the basics of COMMON LISP programming re-
quired to form the bodies of design functions and auxiliary functions.

Until this appendix is ready, the author refers the user to Guy Steele’s text on COM-
MON LISP [14].

A-1
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Appendix B
The Basics of LATEX

This appendix instructs the user in the basics of IATEX, a document preparation sys-
tem that can be used to create professional-quality tables of mathematical equations and
their symbols.

Until this appendix is ready, the author refers the user to Leslie Lamport’s text on
IATEX (9].



= Y
s

Appendix C

Utility Functions

This appendix instructs the user how to use the Paper Airplane Utility Functions.
The first section describes the usage of the table-lookup functions, and the second section
describes the usage of the external code interface.

C.1 Table-lookup Functions
C.1.1 General Table Look-up Function

The format for using the general table look-up function is shown below:

(table-lookup
:dimensions dim
sindices indice-list
:indice-form x-var-list
:values yvalues
:value-form y-var
:lookup-indices index-list )

where

dim is the number of dimensions of the values.
indice-list is the list of indice-lists, one per dimension.
x-var-list is the list of variation formats of the indices.

yvalues are the values for each grouping of indices. A matrix form reduced to lists of
lists.

y-var is the variation format of the values.

index-list is the list of indices, one per dimension.

C-1
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Variation formats allow interpolation to be performed with greater precision by fitting
the data to the curves approximating their true shapes. Variation formats can best be
understood by rationalizing how the output variable varies with each input variable. For
example, an output variable z could vary exponentially with an input variable z and
geometrically with another input variable y. In this case the variation of z would be
“LINEAR”; that of z would be “EXPONENTIAL”; and that of y would be “GEOMETRIC.”

Although the variation of the output variable would normally be “LINEAR,” there is
possibility of strange relationships such as the square root of z could vary logarithmically
with 2. This would require that the variation of z be “GEOMETRIC” while the variation of
z would be “LOGARITHMIC.”

The choices for variable variation are ‘LINEAR, "EXPONENTIAL, 'GEOMETRIC, and
'LOGARITHMIC. The single quote is required when the names appear on there own.
When they are part of a list, the list must be quoted.

An example follows:

(defun test (index)
(table-lookup
:dimensions 3
:indices *((0 4 26) (23 45) (123 4 5))
:xform ’'(linear geometric linear)
:yform ’'linear
:values
*(((2 468 10) (369 12 16) (4 8 12 16 20) (5 10 16 20 25))
((6 8 10 12 14) (7 10 13 16 19) (8 12 16 20 24) (9 14 19 24 29))
((27 29 31 33 36) (28 31 34 37 40) (29 33 37 41 45) (30 365 40 45 50)))

:lookup-indices index))
C.1.2 One-dimensional Table Look-up Function

The format for using the one dimensional table look-up function is shown below:

(1d-table-lookup
:x-indices x-tab
:x-variation x-var
:y-values y-tab
:y-variation y-var
:x-index x-val )

where

x-tab is the list of indices.

X-var is the variation format of the indices.
y-tab is the list of values.

y-var is the variation format of the values.
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x-val is the the value of the index.
An example follows:

(defvar *ALT* ’®(80000.0 82021.0 85000.0 90000.0 95000.0 100000.0
110000.0 120000.0 130000.0 140000.0 150000.0))

(defvar *RHO* *(0.04410 0.04002 0.03428 0.02665 0.02067 0.016170
0.010040 0.006344 0.004076 0.002658 0.0017591))

(pa-defun CRUISE-DENSITY-FUNCTION

:category (aerodynamics)

:computed-variable (CRUISE_AIR_DENSITY "kg m-3")

:input-variables ((CRUISE_ALTITUDE "ft"))

:function-body (1d-table-lookup :x-indices *ALT*
:x-variation ‘exponential
:y-values *RHO*
:x-index CRUISE_ALTITUDE)

:TeX-name "")

C.1.3 Two-dimensional Table Look-up Function

The format for using the two-dimensional table look-up function is shown below:

(2d-table-lookup

:s-indices s-tab
:s-variation s-var
:t-indices t-tab
‘t-variation t-var
:z-map z-map
:z-variation z-var
:s-index s-val/
it-index t-val )

where
s-tab is the list of indices in the first dimension.
s-var is the variation format of the first indices.
t-tab is the list of indices in the second dimension.
t-var is the variation format of the second indices.
z-rhép is the list of list of values.
Z-var is the variation format of the values.
s-val is the the value of the first index.

t-val is the the value of the second index.
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C.1.4 Family of Curves Look-up Function

The curves look-up function follows a different format for two-dimensional table look-
up processing. The format is shown below:

(curves-lookup
:plot-values p-tab
:p-variation p-var
:x-indices x-tablist
:x-variation x-var
:y-values y-tablist
:y-variation y-var
:p-index p-val/
:x-index x-val )

where
p-tab is the list of indices to the curves.
p-var is the variation format of the curves.

x-tablist is the list of lists of z-locations of each point, one list per curve. This way, each
curve can have a different number of points.

X-var is the variation format of the z indices.

y-tablist is the list of lists of y-locations of each point, one list per curve. This way, each
curve can have a different number of points.

y-var is the variation format of the y values.
p-val is the the value of the index between the curves.

x-val is the the value of the index between the points.

C.2 External Code Interface

The format for using the general table look-up function is shown below:

(run-program
:program-name prog-name
:program-directory prog-dir
file-directory file-dir
:preprocessor preprocessor
:postprocessor postprocessor
:sys$input-file sys-infile
:sys$output-file sys-outfile
:sys$error-file sys-errfile
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:monitor-file mon-file
:average-run-time runtime
:overtime-allowance overtime
:verbose verbose )

where
prog-name is the name of program as a symbol (i.e., quoted).

prog-dir is the directory location of the program executable. This information should be
a string, and therefore surrounded by double quotes.

file-dir is the directory location for the input and output files, which defaults to the
program directory if it is not specified. This information is also a string. For
Paper Airplane applications, this should be a null string (i.e., “ "" ).

preprocessor is the name of the COMMON LISP defun that will prepare the input files to
be read by the external code. This name, like the program name, is a symbol. The
default is the program name followed by “-preprocessor”. For Paper Airplane
use, the preprocessor should be NIL (off) since it expects to handle global variables
rather than design variables. The preprocessor should be called before the call to
run the program.

postprocessor is the name of the COMMON LISP defun that will process the output
files to written by the external code. This name, like the program name, is a
symbol. The default is the program name followed by “-postprocessor”. For
Paper Airplane use, the postprocessor should be NIL (off) since it expects to
handle global variables rather than design variables. The postprocessor should be
called after the call to run the program.

sys-infile is the name of the file to be used as SYSSINPUT to the program. The name
is a string. The default is the program name followed by “.in”.

sys-outfile is the name of the file to be used as SYSSOUTPUT from the program. The
name is a string. The default is the program name followed by “.out”.

sys-errfile is the name of the file to be used as SYSSERROR from the program. The
name is a string. The default is the program name followed by “.err”.

mon-file is the name of the file to monitored to find out when the program has ter-
minated. The name is a string. The default is whatever you provide for the
" SYS$OUTPUT file.

runtime is the average expected run time for the code, in seconds. The monitor “sleeps”
for 80/the program has terminated. The default is 10 seconds.

overtime is the allowable extra time the monitor should continue to wait for the program
to terminate past the given run time, in percent. The default is 20/
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verbose is a flag to have the function report what it is doing or not. For Paper Airplane
use, this flag should be NIL (off).

Typical forms for a preprocessor and a postprocessor are shown below.

(DEFUN program-preprocessor ()
(LET ((INFILE (OPEN "program input file name" °'0UT)))
(UNWIND-PROTECT
(PROGN
(FORMAT INFILE "data form" data-values)

(FORMAT INFILE "data form" data-values))
(CLOSE INFILE))))

(DEFUN program-postprocessor ()
(LET ((symboll valuel) (symbol2 value2) ... (symbolN valueN))
(WITH-OPEN-FILE (OUTFILE "program output file name")
(SETQ symboll (readline OUTFILE))
(SETQ symboll (readline OUTFILE))

(SETQ symbolN (readline OUTFILE)))
(VALUES symboll symbol2 ... symbolN)))

An example follows:

(pa-defun PERFORMANCE-PROGRAM
:category (performance overall)
:computed-variables ((RANGE "sm")
(TIME_OF_FLIGHT "s"))

:input-variables ((CRUISE_MACH "")
(CRUISE_ALTITUDE "m")
(CLIMB_ANGLE "deg")
(CLIMB_ACCELERATION "g")
(WING_REFERENCE_AREA "m2")
(INLET_CAPTURE_AREA "m2")
(MAXIMUM_LIFT_COEFF "")
(VEHICLE_GROSS_WEIGHT "kg")
(FUEL_WEIGHT "kg")
(FUEL_RESERVES "kg"))

:function-body

(progn

(pert-preprocessor CRUISE_MACH CRUISE_ALTITUDE CLIMB_ANGLE
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CLIMB_ACCELERATION WING_REFERENCE_AREA
INLET_CAPTURE_AREA MAXIMUM_LIFT_COEFF
VEHICLE_GROSS_WEIGHT FUEL_WEIGHT
FUEL_RESERVES *FUEL-TO-AIR_RATIO*)

(run-program :program-name 'pert
:program-directory "sys$user: [ftl.rml.nasp.perf]"
:file-directory ne
:preprocessor nil :postprocessor nil

:average-run-time 100 :overtime-allowance 50)

(pert-postprocessor))

:TeX-name "")
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Appendix D

Dimensions and Units

This appendix lists all the dimensions and units that are pre-defined inside of Paper
Airplane. It also instructs the user how to define new units and even new dimensions.

D.1 Dimensions

Below is a list of all dimensions pre-defined inside of Paper Airplane.

Pre-defined Derived Dimensions

Name Definition Derivation
b4 force t-2m 1l
F force t-2m1l
P pressure t-2 m 1-1
E energy t-2 m 1+2
p power t-3 m 1+2
Q charge It
\'f voltage I-1 t-3 m 1+2
R resistance I-2 t-3 m 1+2
Z impedance I-2 t-3 m 1+2
G conductance I+2 t+3 m-1 1-2
c capacitance I+2 t+4 m-1 1-2
L inductance I-2 t-2 m 142
M magnetic fux I-1 t-2 m 142
B magnetic inductance I-1 t-2 m

D-1
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Pre-defined Canonical Dimensions

D.2 Units

Dimension Definition Base Unit

1 length m

m mass kg

t time s

T temperature K

A angle rad

I current A

c currency 3

a amount of substance mol

LI luminous intensity cd

Below is a list of all units pre-defined inside of Paper Airplane.

Pre-defined Units of Length

Unit Name Symbol Plurul Definition

Dimensions

1
pm

mm
cm
in
1t
yd
m

ir

knm
mi
SM
NM
Mm
Re
AU

1y

Ang

mil

fath

kit

par

Mpar

f
pm
A
nm
pm
mil
mm
cm
in
ft
yd
m
fath
fr
kft
km
mi
SM
NM
Mm
Rg
AU
ly
par
Mpar

fermis
picometers
angstroms
nanometers
micrometers
mils
millimeters
centimeters
inches

feet

yards

meters
fathoms
furlongs
kilofeet
kilometers
miles
statute miles
nautical miles
megameters
earth radii
astronomical units
light years
parsecs
megaparsecs
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Pre-defined Units of Mass

Unit Name Symbol Plurul Definition = Dimensions
me me electron-masses m
AMU AMU atomic mass units m
P8 P8 picograms m
ng ng nanograms n
ug T4 micrograms n
ng mg milligrams n
g g grams m
ozn OZm ounces-mass n
1bm by, pounds-mass n
kg kg kilograms n
sl sl slugs m
t t metric tons m
Me Mg earth-masses n
Ms Mg solar-masses n
Pre-defined Units of Time and Frequency
Unit Name Symbol Plurul Definition Dimensions
P8 ps picoseconds t
ns ns nanoseconds t
us us microseconds t
ns ms milliseconds t
8 s seconds t
min min minutes t
hr hr hours t
d d days t
wk wk weeks t
fn fn fortnights t
yr yr years t
dec dec decades t
cen cen centuries t
millen millen  millennia t
a— * —
Hz Hz hertz t-1
kHz kHz kilohertz t-1
MHz MHz megahertz t-1
GHz GHz gigahertz t-1
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Pre-defined Units of Angle and Angular Motion

Unit Name Symbol Plurul Definition Dimensions
mdeg mdeg  millidegrees A

mrad mrad milliradians A

deg deg degrees A

rad rad radians A

rev rev revolutions A

n—n— * ——
rpm rpm revolutions-per-minute A t-1

Pre-defined Units of Area and Volume

Unit Name Symbol Plurul Definition Dimensions
acre acre acres 1+2
— Y —
ul ul microliters 1+3
ml ml milliliters 1+3
cc cc cubic-centimeters 1+3
pt pt pints 143
qt qt quarts 1+3
1 1 liters 1+3
gal gal gallons 1+3

Pre-defined Units of Velocity and Acceleration

Unit Name Symbol Plurul Definition Dimensions
1ps fps feet-per-second  t-1 1
mph mph miles-per-hour t-11
kt kt knots t-11
c c light-speeds t-11
— * —
g's g’s g’s t-2 1

D-4
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Pre-defined Units of Force and Weight

Unit Name Symbol Plurul Definition Dimensions

dyn dyn dynes t-2m 1

oz oz ounces t-2m 1l

ozf ozZ¢ ounces-force t-2m 1l

N N newtons t-2m 1

1b b pounds t-2m 1

1bt Ib¢ pounds-force t-2m 1l

kgt kge kilograms-force t-2 m 1

kN kN kilonewtons t-2m 1l

ton ton U.S. tons t-2m 1

kton kton kilotons t-2m 1l

Mton Mton megatons t-2m1l

Pre-defined Units of Pressure

Unit Name Symbol Plurul Definition Dimensions
ubar ubar microbars t-2 m 1-1
Pa Pa pascals t-2 m 1-1
pst psf pounds-per-square-foot t-2 m 1-1
mbar mbar millibars t-2 m 1-1
kPa kPA kilopascals t-2 m 1-1
psi psi pounds-per-square-inch t-2 m 1-1
bar bar bars t-2 m 1-1
atm atm atmospheres t-2 m 1-1
MPa MPa megapascals t-2 m 1-1
ksi ksi kilopounds-per-square-inch t-2 m 1-1
kbar kbar kilobars t-2 m 1-1
Mbar Mbar megabars t-2 m 1-1
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Pre-defined Units of Energy, Heat, and Work

Unit Name Symbol Plurul Definition Dimensions
eV eV electron volts t-2 m 1+2
keV keV kilo-electron volts t-2 m 1+2
MeV MeV mega~electron volts  t-2 m 1+2
erg erg ergs t-2 m 1+2
nJ mJ millijoules t-2 m 1+2
J J joules t-2 m 1+2
cal cal calories t-2 m 1+2
kJ kJ kilojoules t-2 m 1+2
Btu Btu British thermal units t-2 m 1+2
kcal keal kilocalories t-2 m 1+2
kwh kwh kilowatt-hours t-2 m 1+2
INT TNT tons of TNT t-2 m 1+2
kTNT kTNT  kilotons of TNT t-2 m 1+2
MINT MTNT megatons of TNT t-2 m 1+2
Pre-defined Units of Power
Unit Name Symbol Plurul Definition Dimensions
nW mW millawatts t-3 m 1+2
w w watts t-3 m 1+2
hp hp horsepower t-3 m 1+2
kW kW kilowatts t-3 m 1+2
MW MW megawatts t-3 m 1+2
GW GW gigawatts t-3 m 1+2
Pre-defined Units of Temperature
Unit Name Symbol Plurul Definition Dimensions
K X kelvin T
R R degrees-Rankine T
deg-C < degrees-Centigrade T
deg-F ¥ degrees-Fahrenheit T
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Pre-defined Units of Charge, Current, and Voltage

Unit Name Symbol Plurul Definition Dimensions

e
nC

Q

E-BE

oV
v

kV
MV

e
mC

mV

kv
MV

electron-charges
millicoulombs
coulombs

— * —
microamperes
milliamperes
amperes
kiloamperes

— o —
millivolts
volts
kilovolts
megavolts

It
It
It

L T o B o B |

I-1 t-3 m 1+2
I-1 t-3 m 1+2
I-1 t-3 m 1+2
I-1 t-3 m 1+2

Pre-defined Units of Resistance and Conductance

Unit Name Symbol Plurul Definition Dimensions

ohm
kohm
Mohm

s
mho

Q
kQ
MQ

S
U

ohms
kilohms
megohms
——— * —
siemens

mhos

I-2 t-3 m 1+2
I-2 t-3 m 1+2
I-2 t-3 m 1+2

I+2 t+3 m-1 1-

I+2 t+3 m~1 1-

2
2

Pre-defined Units of Capacitance and Inductance

Unit Name Symbol Plurul Definition Dimensions

pF pF picofarads I+2 t+4 m-1 1-2
nF nF nanofarads I+2 t+4 m-1 1-2
uF uF microfarads I+2 t+4 m-1 1-2
nF mF millifarads I+2 t+4 m-1 1-2
F F farads I+2 t+4 m-1 1-2

— o —

uH pH microhenrys I-2 t-2 m 1+2
mH mH millihenrys I-2 t-2 m 142
H H henrys I-2 t-2 m 1+2
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Pre-defined Units of Magnetic Inductance and Flux

Unit Name Symbol Plurul Definition Dimensions
uG uG microgauss I-1 t-2 m
nG mG milligauss I-1 t-2 m
G G gauss I-1 t-2 m
kG kG kilogauss I-1 t-2 n
T T teslas I-1 t-2 m
— o —
Wb Wb webers I-1 t-2 m 1+2

Miscellaneous Pre-defined Units

Unit Name Symbol Plurul Definition Dimensions

ct ct cents c

$ $ dollars c

M3 MS$ megabucks c
c— * ——

cd cd candelas LI
— g —

mol mol moles a

gn-mol gm-mol gram-moles a

1b-mol Ib-mol  pound-moles a

| kg-mol kg-mol kilogram-moles a

Note: The user can be insured that all conversions are done with the highest precision
possible. Indeed, most conversion factors are exact by derivation or “exact” by way of
conventional and international definitions. Only units with physical derivations (such as
electron-masses) are not exact, and this is only because there is scientific uncertainty in
their measurement.

D.3 Defining New Dimensions and Units

Paper Airplane provides the user with an easy way to define new units and even new
dimensions. It also provides the user with a way to define aliases for existing unit names.
Like design variable and design function definitions, units and dimensions definitions
must be put into a source file; however, it is highly recommended that these definitions

be put into a separate source file. At the top of the source file should be put the following
heading:

;s -*- Mode:Common-Lisp; Package:PDUP; Readtable:CL: Base:10 -*- o

If you really want to put all definitions in one source file, you can do so by proceeding
the function call with “pdup:” (i.e., change “defunit” to “pdup:defunit”).
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D.3.1 Defining New Dimensions

Defining a new dimension is done using the following format:
(defdimension dim-name dim-def dim-deriv )
where
dim-name is the symbolic name of the dimension, such as “"F"”,
dim-def is the definition of the dimension, such as “*force"”.
dim-deriv is the derivation of the dimension, such as “"m 1 t-2"”.

Note that all arguments are strings because case is very important; therefore, they all
must be surrounded by double quotes.

One exception to the above is the case where a new dimension cannot be derived
from the others. In this case, dim-deriv should be exactly “:canonical-dimension” with
no double quotes around it.

Some examples of the pre-defined dimensions are shown below:

(defdimension "t" "time" :canonical-dimension)
(defdimension "I" “current" :canonical-dimension)
(defdimension "Q" "charge" "I t")

D.3.2 Defining New Units
Defining a new unit is done using the following format:
(defunit unit-name unit-def-s unit-def-p unit-dims unit-derv )
where
unit-name is the symbolic name of the unit, such as “"km"”.
unit-def-s is the singular definition of the unit, such as “"kilometer"”.
unit-def-p is the plural definition of the unit, such as “"kilometers"”.
unit-dims are the dimensions of the unit, such as “"1"”.
unit-deriv is the derivation of the dimension, such as “(1000.0 "n")”.

Note that, with the exception of the unit derivation, all arguments are strings because
case is very important; therefore, they all must be surrounded by double quotes.

If the symbolic name of the unit usually involves Greek or other mathematical sym-
bols, as is the case for micrometers, the unit-name can be separated into a list as follows:

( unit-print-name unit- TeX-name )

where
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unit-print-name is the strictly ASCII name to appear on screen.
unit- TeX-name is the IATEX-formatted symbol to appear in design point tables.

For example, the unit-name of micrometers is “("un" "{\\mu}n")”.

If the derivation of a unit does not require a numerical factor, as is the case for
miles-per-hour, the derivation does not need to be a list. For example, the derivation of
miles-per-hour is simply the string “"mi hr-1"”.

When a new canonical dimension is defined, a new unit should accompany it as the
“base unit” of that dimension. To accomplish this, the derivation of that unit should not
be a string but exactly “internal-unit”.

Some examples of the pre-defined units are shown below:

(defunit "kg" "kilogram" "kilograms" "m" :intermal-unit)
(defunit "mg" "milligram" "milligrams" "m" (1.0e-6 "kg"))
(defunit ("ug" "{\\mul}g") "microgram" "micrograms" "m" (1.0e-9 "kg"))
(defunit "kt" "knot" "knots" "1 t-1" "NM hr-i")
(defunit "TNT" “"ton of TNT" "tons of TNT" "E" (4.2e+9 "J"))
(defunit ("deg-F" "{"\\circ\\!}F")
"degree-Fahrenheit" "degrees-Fahrenheit"
"T" (1.0 "R") (£(x)(- x 469.688)) (£(x)(+ x 459.688)))

The last unit, for degrees-Fahrenheit, was also listed to show how the derivation
can also incorporate functions as well as factors. The derivation is “(1.0 "R")” but
is followed by two COMMON-LISP functions: the first to convert degrees-Rankine to
degrees-Fahrenheit, and the second to convert degrees-Fahrenheit to degrees-Rankine.
D.3.3 Aliasing Existing Unit Names

Aliasing an existing unit name is done using the following format:

(alias-unit unit-name unit-alias )

where
unit-name is the actual symbolic name of the existing unit, such as “*km"”.
unit-alias is the alternative symbolic name for the existing unit, such as “*KM"”.

Please note that aliasing a unit name does not change the name of that unit, but
merely allows that unit to be referenced by the specified alias.
Some examples of the aliasing unit names are shown below.

(alias-unit "km" "KM")
(alias-unit "t" "MI")
(alias-unit "Btu" "BTU")
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Appendix E

Guide to Menu System

This appendix serves as a guide to the Paper Airplane menu system. In addition
to the main menu, Paper Airplane contains several sub-menus. The following sections
describes each menu and each of their choices.

E.1 Main Menu

[ 1] Enter tableau mode

[ 2] Process design set (timed)
[ 3] Processing Debugger Menu

[ 4] Library Menu

[ 6] Design Set Editor Menu

[ 6] System Menun

[ 7] VAX/VMS utilities

[ 8] Operator Menu

[ 9] List active design sets
[10] Switch current design set
[11] Describe a design variable
[12] List all design variables
[13] List incompatible variables
[14] Display processing agenda
[15] List all design functiomns
[16] Show performance function
[17] List all defined tableaux
[18] List tableaux using a variable
[19] Describe design point

[20] Restore old design point
[21] Save current design point
[22] Print design point table
[23] Load a source file
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[ 9]
{10]
[11]
[12]

Enter

PAPER

Enter tableau mode
Process design set (timed)
Processing Debugger Menu
Library Menu

Design Set Editor Memu
System Menu

VAX/VMS utilities
Operator Menu

List active design sets
Switch current design set
Describe a design variable
List all design variables

command number:

AIRP

[13]
[14]
[15]
[16]
[17]
[18]
[19]
[20]
[21]
[22]
[23]
[24]

LANE

List incompatible variables
Display processing agenda
List all design functions
Show performance function
List all defined tableaux
List tableau using a variable
Describe design point
Restore old design point
Save current design point
Print design point table
Load a source file

Exit. PAPER AIRPLANE to LISP

Figure E.1: Paper Airplane Main Menu.

E-2
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[24] Exit PAPER AIRPLANE to LISP

E.2 Processor Debug Menu

[ 1] Enter tableau mode

[ 2] Process design set (timed)

[ 3] Process design set (traced)

[ 4] Build new agenda

[ 6] Describe current agenda

[ 6] Examine current agenda

[ 7] List all design variables

[ 8] Describe a design variable

[ 9] Examine a design variable

[10] List incompatible design variables
[11] Display a d.v.'s incompatibilities
[12] Display a d.v.'s calculation

[13] List all design functions

[14] Describe a design function

[16] Exercise a design function

[16] Return to top-level menu

- E.3 Library Menu

List defined categories

Describe all categories

Describe a category

List library contents

List category contents

] Lookup design variable definition

[ 7] Lookup design function definition

[ 8] Lookup auxiliary function definition
[ 9] Lookup design variable substring
[10] Lookup design function substring
[11] Lookup auxiliary function substring
[12] Delete design variable definition
[13] Delete design function definition
[14] Delete auxiliary function definition
[16] Return to top-level menu

L B o T e DO e BN o B s |
D OB W N -
b hd b fmd  hed

E.4 Design Set Editor Menu
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PROCESS DEBUG

[ 1] Enter tableau mode

[ 2] Process design set (timed)

[ 3] Process design set (traced)

[ 4] Build nev agenda

[ 5] Describe current agenda

[ 6] Examine current agenda

[ 7] List all design variables

[ 8] Describe a design variable

[ 9] Examine a design variable

[10] List incompatible design variables
(11] Display a d.v.’'s incompatibilities
[12] Display a d.v.’s calculation

[13] List all design functions

[14] Describe a design function

[15] Exercise a design function

[16] Return to top-level menu

Enter command number:

Figure E.2: Paper Airplane Processor Debug Menu.
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[1]
[ 2]
[ 3]
[ 4]
[ 5]
[ 6]
[7]
[ 8]
[ 9]
[10]
[11]
[12]
[13]
[14]
[15]

Enter command number:

LIBRARY MENU

List defined categories

Describe all categories

Describe a category

List library contents

List category contents

Lookup design variable definition
Lookup design function definition
Lookup auxiliary function definition
Lookup design variable substring
Lookup design function substring
Lookup auxiliary function substring
Delete design variable definition
Delete design function definition
Delete auxiliary function definition
Return to top~level menu

Figure E.3: Paper Airplane Library Menu.
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Enter

DESIGN-SET

List all design varibles
Describe a design variable
Examine a design variable
Display/change 0.0.M.
Display/change LOWER VALUE
Display/change UPPER VALUE
Display/change UNITS

Add discrete variable values
Delete discrete variable values
List all design functions

command number:

[11]
[12]
[13]
[14]
[15]
[16]
[17]
[18]
[19]
[20]

EDITOR

Describe a design function
Delete a design variable
Delete a design function
Define a new tableau

List all defined tableaux
List active design sets
Switch current design set
Rename a design set

Link design sets

Return to top-level menu

Figure E.4: Paper Airplane Design Set Editor Menu.
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[ 1]
[ 2]
[ 3]
[ 4]
[ 6]
[ 6]
[71
[ 8]
[ 9]
[10]
[11]
[12]
[13]
[14]
[15]
[16]
[17]
[18]
[19]
[20]

List all design variables
Describe a design variable
Examine a design variable
Display/change 0.0.M.
Display/change LOWER VALUE
Display/change UPPER VALUE
Display/change UNITS

Add discrete variable values
Delete discrete variable values
List all design functions
Describe a design function
Delete a design variable
Delete a design function
Define a new tableaun

List all defined tableaux
List active design sets
Switch current design set
Rename a design set

Link design sets

Return to top-level menu

E.5 System Menu

[1]
[ 2]
[ 3]
[ 4]
[ 8]
[ el
[ 7l
[ 8]
[ 9]
[10]
[11]

Review announcements

List all defined units

List all defined dimensions
Enable/disable error reporting
Switch value display format
Display/set epsilon parameter
Define the default device/directory
Purge current design set
Delete active design sets
Purge library

Return to top-level menu

E.6 | Operator Menu

[ 1]
[ 2]
[ 3]
[ 4]
[ 8]

Examine the DESIGN-LIST
Examine the TOP-LEVEL-0BJECT
Enable PA Drafting program
Toggle automatic/manual mode
Toggle verbose loop-processing

E-7T
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SYSTEM MNENU

Review announcements

List all defined units

List all defined dimensions
Enable/disable error reporting
Switch value display format
Display/set epsilon parameter
Define the default device/directory
Purge current design set

[ 9] Delete active design sets

(10] Purge library

[11] Return to top-level memu

(e N e N e N o Nan Nan N an N o )

O~ Ol b W N
ok b hed bd bt Md bd b

Enter command number:

Figure E.5: Paper Airplane System Menu.
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OPERATOR MENU

[ 1] Examine the DESIGN-LIST

[ 2] Examine the TOP-LEVEL-OBJECT

[ 3] Enable PA Drafting program

[ 4] Toggle automatic/manual mode

[ Toggle verbose loop-processing
[ Show system users

[ GAMES menu

) Return to top-level menu

0 ~O0n
et bd St bd

Enter command number:

Figure E.6: Paper Airplane Operator Menu.




APPENDIX E. GUIDE TO MENU SYSTEM E-10

[ 6] Show system users
[ 7] GAMES menu

[ 8] Return to top-level menu
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Glossary

agenda: is the common name for the computational agenda.

agenda building: is the process of determining how design functions will be used to find
a solution to a chosen design path of knowns and unknowns. Agenda building
does not involve any numerical methods since it does use the values of the design
variables, only their states.

agenda entry: is an entry into the computational agenda consisting of a perfectly con-
strained design function and the unknowns to be solved for using it.

base variable: is the official designation of an I-state design variable, commonly referred
to as a “known”. '

branch: is one of two independent sequences of perfectly constrained design functions for
computing the value of the loop variable to solve a loop.

C: is the letter assigned to the state of a design variable whose value has been com-
puted by Paper Airplane via processing.

C-state design variable: is a design variable whose value has been computed by Paper
Airplane.

CEMISS: is a Computer-based Engineering Model Information Sharing System.

computational agenda: is the actual path, or sequence of design functions, to be evaluated
to find the values of the unknowns once given the initialized values for the knowns
and the guess values for the unknowns. The computational agenda is also called
the computational path. The computational agenda consists of a forced path and
loops.

computational path: is another name for the computational agenda.

Computed-value state: This indicates a design variable that had been given a trial value
by the user, and was later given a known value by Paper Airplane. A design
variable obtains state C only when the user processes the design set; and then
only if Paper Airplane can find a solution which satisfies all the design functions
in the user’s design set.

GLO-1
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computer program: is an external piece of code usually not written in COMMON LISP,
such as a FORTRAN or PASCAL program.

derived variable: is the official designation of a G-state design variable, commonly referred
to as an “unknown”.

design function: is a relationship between design variables. A design function can range in
complexity from a simple algebraic equation to a very large and complex computer
program.

design path: is the selection of certain design variables as knowns and the rest as un-
knowns; thereby setting up some implied path, or sequence of design functions,
for Paper Airplane to follow once values are provided for the design variables.

design point: is the values and states of all the design variables in a design set at any
stage of the design process.

design set: is a set of certain design functions and the design variables those functions
relate towards the goal of solving a particular design problem.

design variable: is a scalar parameter, such as Vehicle Length or Vehicle Weight, whose
value uniquely determine part of the configuration of an aircraft, spacecraft, or
any other system. A design variable has a number of attributes associated with

it, such as its value, its dimensions, its order of magnitude, and the limits of its
value.

engineering mode: is a sub-model (reduced model) of a mathematical model describing
the structure and properties of an existing or proposed product.

external code interface: from one program to another allows both programs to share in-
formation without the need for a human to manipulate input and output files.

final design point: is the numerical solution to the initial design point of a particular
design path. Specifically it is the states and values of the design variables after
processing has been completed.

final path: is a sequence of perfectly constrained design functions whose unknowns can
be solved for once a loop has been solved.

flavor: is a powerful LISP abstraction that allows for information storage and retrieval
and data communications, all in a hierarchical structure.

floating: is the act of changing the state of a design variable to G, thereby setting the

- value of the design variable as guessed at and marking the design variable as an
unknown.

forced path: is a sequence of perfectly constrained design functions, each of which can
be solved individually, although sequentially. The path is called “forced” since
there is no alternative but to solve the design functions in this sequence in order
to compute the values of their unknowns.
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forcing variable: is the design variable whose value is converged upon during the iteration
of a loop. The forcing variable is usually the design variable most common to all
the design functions involved.

forward computation: is a one-time single-function evaluation that computes the values
of the output unknowns of a single design function by executing the function once
using the values of the input knowns.

freezing: is the act of changing the state of a design variable to I, thereby setting the
value of the design variable as initialized and marking the design variable as a
known.

function: is an internal piece of code written in COMMON LISP.

G: is the letter assigned to the state of a design variable whose value has been guessed
at by the user via floating.

G-state design variable: is a design variable whose value has been guessed at by the user.

Guessed-value state: This indicates a design variable that has been given a trial value by
the user. A design variable obtains state G whenever the user floats it. G-state
design variables are officially designated as “derived variables” and are commonly
referred to simply as “unknowns”.

I: is the letter assigned to the state of a design variable whose value has been initial-
ized by the user via freezing.

1/0: Input and output. The data passed to and from a computer program.
I-state design variable: is a design variable whose value has been initialized by-the user.

initial design point: is the initial setting of the values of design variables according a
particular design path. This consists of initialized values for the chosen knowns
and guess values for the chosen unknowns.

initial path: is a sequence of perfectly constrained design functions whose computed un-
knowns are required by both branches of a loop to solve that loop.

Initialized-value state: This indicates a design variable that has been given a known value

by the user. A design variable obtains state I whenever the user changes its value,

_or when the user freezes it. I-state design variables are officially designated as
“base variables” and are commonly referred to simply as “knowns”.

instance variable: is a parameter that is an element of the structure of a flavor.

known: is the common name for an I-state design variable, officially designated as a “base
variable”.

loading: is a COMMON LISP term for reading and evaluating LISP code from a file into
main memory.
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loop: is a sequence of design functions, each of which computes values required by other
design functions in a closed loop. Loops are solved by guessing the value of a
forcing variable to compute two independent values of a loop variable. When the
two values converge, the values of all the unknowns involved can be found.

loop computation: is an iterative multiple-function evaluation that computes the values
of all the unknowns of a set of design functions by guessing values of a chosen
forcing variable until two independent values of a chosen loop variable converge.

loop variable: is the design variable whose two independently computed values determine
the convergence of a loop.

method: is a function that is specifically associated with a flavor.

MIMO: Multiple-Input Multiple-Output. Loosely, a multiple-input multiple-output de-
sign function.

MIMO Design Set: is the design set used to test the MIMO design function solving ca-
pability enhancement to Paper Airplane. Several MISO design functions from the
MISO Design Set were merged to form MIMO design functions.

MISO: Multiple-Input Single-Output. . Loosely, a multiple-input single-output design
function.

MISO Design Set: is the design set that serves as the foundation of all other design
sets, except for the NASP Design Set. The MISO Design Set contains 17 design
variables and 7 design functions and is used for the conceptual design of aircraft.

mixin: is a flavor that is an element of the structure of another flavor.

NASP Design Set: is the design set used to test the final version of the enhanced Paper
Airplane. The NASP Design Set is comprised of 12 design variables and 9 design
functions, including MISO and MIMO design functions and design functions call-
ing external codes. The NASP Design Set is used for the preliminary design of a
national aerospaceplane.

NIL: the New Implementation of LISP, a dialect of COMMON LISP, and the program-
. ming language in which Paper Airplane is written.

overconstrained: problem is one in which the number of unknowns is less than the number
of values computed by all the design functions (i.e., the number of user-specified
knowns is greater than that required). This can lead to design variables receiving
two or more incompatible values.

Paper Airplane: is the name of the code development at the Massachusetts Institute of
Technology to solve systems of linear and/or non-linear functions.
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perfectly constrained: problem is one in which the number of unknowns equals the num-
ber of values computed by all the design functions (i.e., the number of user-
specified knowns is the same as that required). This usually leads to design
variables whose values can be exactly determined.

postprocessor: reads output values from the file(s) an external code normally writes to
and returns them to the system.

preliminary entries: is the initial sequence of perfectly constrained design functions cre-
ated while trying to construct a closed loop.

preprocessor: takes input values from the system and writes them out to the file(s) an
external code normally reads from.

processing: is the act of instructing Paper Airplane to attempt to compute the values of
all the unknowns of a design set.

reverse computation: is an iterative single-function evaluation that computes the values
of all the unknowns of a single design function by guessing values of the unknown
input variables until values of the known output variables converge with their
user-specified values.

source file: is a computer file containing the information on all of the design variables
and design functions to be loaded internally into a Paper Airplane design set.

state: is the common name' for va.rie;.ble state.
TAV Design Set: is the former name of the NASP Design Set.

underconstrained: problem is one in which the number of unknowns is greater than the
number of values computed by all the design functions (i.e., the number of user-
specified knowns is less than that required). This can lead to design variables
whose values cannot be exactly determined.

unknown: is the common name for a G-state design variable, officially designated as a
“derived variable”.

variable state: is the condition of the value of a design variable. Variable states come
-in the following three varieties, which are assigned to design variables according
to their initial letter: Initialized-value state, Guessed-value state, and Computed-

- value state.

variable tableau: is a spreadsheet of information on the design set arranged on a computer
screen. This information includes a list of design variables and their current values,
units, and states.

XCODE: is an external code.
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XCODE Design Set: is the design set used to test the external code interface capability
enhancement to Paper Airplane. One design function from the MISO Design Set
was modified to call a FORTRAN program to compute its value.
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