SIMULATOR EVALUATION OF MANUALLY FLOWN CURVED INSTRUMENT APPROACHES

Dennis Sager

DEPARTMENT OF AERONAUTICS
 \&
 ASTRONAUTICS

FLIGHT TRANSPORTATION LABORATORY

Cambridge, Mass. 02139

FTL Report R73-1

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
 FLIGHT TRANS PORTATION LABORATORY

FTL Report R-73-1
January 1973

SIMULATOR EVALUATION OF
 MANUALLY FLOWN CURVED INSTRUMENT
 APPROACHES

Dennis Sager

SIMUTATOR EVALUATION OF MANUALLY FLOWN CURVED INSTRUMENT APPROACHES

DENNIS SAGER

SUBMITTED TO THE DEPARTMENT OF AERONAUTICS AND ASTRONAUTICS ON JANUARY 4, 1973 IN PARTIAL FULFILLMENT OF THE REOUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE.

Abstract

Pilot performance in flying horizontally curved instrument approaches was analyzed by having nine test subjects fly curved approaches in a fixed-base simulator. Approaches were flown without an autopilot and without a flight director. Evaluations were based on deviation measurements made at a number of points along the curved approach path and on subject questionnaires. Results indicate that pilots can fly curved approaches, though less accurately than straight-in approaches; that a moderate wind does not affect curve flying performance; and that there is no performance difference between 60° and 90° turns. A tradeoff of curved path parameters and a paper analysis of wind compensation were also made.

$\begin{array}{ll}\text { Thesis Supervisor: Robert W. Simpson } \\ \text { Title: } & \text { Professor of Aeronautics and Astronautics }\end{array}$

ACKNOWLEDGEMENTS

There is a large number of people without whose aid this project could not have been completed. Foremost among them is my thesis supervisor, Professor Robert Simpson. Many of the ideas for the curved approach experimental program are his.

I wish to thank Mark Connelly and David Melanson for their aid with the aircraft simulator and Robert Fitch for programming the simulation computer. Professors Renwick Curry and Amedeo Odoni provided valuable aid in experimental setup and statistical analysis. Giselle Mazarredo and Sue Casterlin provided typing assistance.

The management and pilots of Eastern Air Lines, and especially Captain Steve Stiles, provided invaluable assistance to the curved approach test program. Of course, the program itself could never have been conducted without the voluntary contribution of time and ideas by the test subjects listed below: Captain Richard Dion Eastern Air Lines Steve Dodge Captain Charles Hodgson

Eastern Air Lines Professor Walter Hollister
M.I.T.

Jack Howell Eastern Air Lines
William Kelly Eastern Air Lines
Captain R.P. Kliegle Eastern Air Lines
Captain Ed Schweitzer American Airlines
Joseph Tymczyszyn M.I.T.
Finally, thanks must go out to the National Aeronautics and Space Administration and to my wife Jeanni, the former for supporting the research through NASA Grant NGL 22-009-0640, "Joint University Research Program for Air Transportation Needs". and the latter for supporting me.

TABLE OF CONTENTS

Chapter No.

I Introduction
Page No.

II Description of Simulation 9
III
IV Experimental Program
38
V
VI

Appendices

A
Subject Questionnaire
95
B Results for Each Case over All Subjects 101

References
122

ACRONYMS

CI	Course Indicator
CRT	Cathode Ray Tube
deg	degrees
DME	Distance Measuring Equipment
FAA	Federal Aviation Administration
ft	feet
HSI	Horizontal Situation Indicator
ILS	Instrument Landing System
km	kilometers
LGS	Landing Guidance System
m	meters
min	minutes
MIT	Massachusetts Institute of Technology
MLS	Microwave Landing System
RTCA	Radio Technical Commission for Aeronautics
s	seconds

1. Introduction

The introduction of the Microwave Landing System (MLS) (also known as the Landing Guidance System (LGS)) around 1980 will add new dimensions to aircraft instrument approaches. The precise position information provided by the MLS will enable aircraft to perform both vertically and horizontally curved approaches in instrument meteorological conditions. It is anticipated that most of these "more sophisticated" curved approaches will be flown using an autopilot or a flight director. However, in the cases of malfunctioning equipment or aircraft equipped with neither an autopilot, nor a flight director, there is a question as to whether the pilot will be able to manually fly a curved MLS approach. This is especially true in the presence of a wind shear. This report presents an evaluation of pilot capability to manually fly a horizontally curved MLS approach, with and without a wind shear, and a brief look at providing wind compensation in the curved approach path.

1.1 Description of the MLS

The Microwave Landing System is in the development stage. Precise details of its operations are not yet determined. However, the Radio Technical Commission for Aeronautics (RTCA) in its Special Committee 117 report (Reference l) does provide a fairly detailed specification. Though a doppler system has not been ruled out, the MLS will likely be composed of three parts: a scanning beam in azimuth, a scanning beam in elevation, and a precision Distance Measuring Equipment (DME). Because the MLS will operate at microwave frequencies and because of the scanning nature of the signal, the azimuth and elevation information will
be more precise than that provided by the current Instrument Landing System (ILS). Using azimuth, elevation, and DME information, a precise determination of an aircraft's position with respect to the touchdown point can be made. This gives the MLS the capability to provide guidance for an infinite variety of approach paths, the paths themselves being generated on board the aircraft. The MLS coverage zone as presently planned is a wedge extending from the touchdown point outward 60° either side of the extended runway center line. Any curved path within this 120° region (and within the MLS range of 60 kilometers (km)) can be synthesized on board the aircraft.

More detailed descriptions of MLS hardware may be found in the RTCA report (Reference 1) and in References 2 and 3. A description of some possible uses of the MLS is provided in Reference 4.

It is anticipated that the MLS will be operational in the late 1970's. The Federal Aviation Administration (FAA), as described in Reference 5, envisions that 300 U.S. airports will be MLS equipped by 1982.

1.2 Test Objectives

This series of simulated curved MLS approaches was conducted to determine how easily horizontally curved approaches could be manually flown. (The vertical path corresponded to a constant descent rate.) More specifically, a comparison was made between flying straight-in and curved instrument approaches. This comparison was made with a no wind condition simulated. Curved approaches were flown using the same simulated Collins FD-109 instrument package (without flight director) as might be used on a conventional ILS approach. Minor modifications were made, but the basic concept was the same - needles to

Abstract

indicate elevation (glide slope) and azimuth (localizer) errors. Additional measurements were made comparing curved approaches with and without a wind shear, providing an indication of the deleterious effect of wind on curved approaches. And a concept of compensating the curved ground path for wind was examined but not experimentally tested. Pilots, in theory, would need only fly a constant air velocity (constant air speed and descent rate) to properly complete the wind compensated approach. The nominal path in wind compensated approaches would be biased so that the wind would blow the aircraft to the proper position at the proper heading for landing.

This experimentation assumed that,operationally, there would be some flexibility in the ground tracks for MLS approach paths for a given runway to permit path adjustments for approach speed and bank angle.

2. Description of Simulation

Data for this curved approach study was obtained by measuring the performance of pilots in flying curved paths in a fixedbase simulator. This section provides a description of the simulator, the pilot subjects, and the test cases.

2.1 The Simulator

A Boeing 707 was simulated using a motionless cockpit shell donated by Boeing, an Adage AGT-30 digital computer, and interfacing electronics and displays assembled by the Massachusetts Institute of Technology (MIT) Electronic Systems Laboratory. The simulator utilized is the same simulator used for Traffic Situation Display experimentation described in References 6 and 7.

Test cases containing the simulated aircraft's initial position and the nominal approach path were loaded into the Adage computer. The computer used the initial conditions and and pilot control inputs to propagate the aircraft's attitude, velocity, and position. This position information was in turn utilized by the computer to drive aircraft displays and to make position error measurements used in the curved approach evaluation.

Most 707 instruments were represented by "paste-ons", but the basic flight instruments were actively simulated by the computer through a masked Cathode Ray Tube (CRT) display. The CRT display represented a Collins FD-109 package (normally not found on a 707) consisting of altimeter, vertical velocity indicator, attitude director indicator, airspeed indicator, radio-magnetic indicator, and horizontal situation indicator (HSI). Additionally, there was a set of marker lights controlled by the computer and a set of engine pressure ratio gages.

No flight director displays were provided.
Pilot input devices included landing gear lever, heading memory knob, throttles, rudder petals, and a "Control Wheel Steering" control wheel. Control Wheel Steering is an option on some transport aircraft which uses onboard electronics to hold the attitude input by the pilot (rate command/attitude hold). Turns made using Control Wheel Steering are coordinated and do not require rudder input.

A modification to the "normal" FD-109 package was made for curved approach testing. The course set arrow and window were automatically controlled by the computer to correspond to the current aircraft position along the nominal approach path.

The specific dynamics of the simulator correspond to a Boeing 707-123B with a mass of about 75,000 kilograms.

The simulator was programmed in Adage assembly language by Robert Fitch of MIT. The Adage computer has a 16384 word, 30 bit memory and a machine cycle time of 2 microseconds. 2.2 Pilot Subjects

Six airline pilots and three general aviation pilots served as test subjects in the curved approach evaluation. All subjects volunteered their time to participate in this experimental program. A listing of the subject names and companies is given in the Acknowledgements.

The ages of the subjects ranged from 25 to 45 . The experience level ranged from 1400 hours to 20000 hours. No attempt was made to statistically correlate performance with age or experience. However, Figures 2-1 and 2-2 show a comparison of mean crosstrack errors for each subject over all test cases. These figures show the error measured at 122 meters (m) (400 feet (ft))

Figure 2-1 Mean Magnitude of Crosstrack Error at 122 m Altitude (End of Turn) over All Cases for Each Subject

Figure 2-2 Mean Magnitude of Crosstrack Error at 30.5 m Altitude over All Cases for Each Subject
and at 30.5 m (100 ft). Subjects 1 through 6 were airline pilots while subjects 7 through 9 were general aviation pilots. A brief description of the background of each subject follows:

Subject	Age	Hours	Position or Rating
1	mid $40^{\prime \prime} \mathrm{s}$	15000	airline captain
2	about 30	3000	airline second officer
3	about 30	1500	airline second officer
4	mid 40's	20000	airline captain
5	about 40	7000	airline captain
6	about 40	14000	airline captain
7	about 40	3000	commercial/instrument
8	mid 20's	2000	air transport rating
9	mid 20's	1400	commercial/instrument

Note that the subject numbers do not correspond to the alphabetical listing of subjects in the Acknowledgements.

2.3 Test Cases

The test cases used to evaluate curved approaches were all initiated with the aircraft 1 minute from nominal intersection of the curved approach path. For the 60 degree turn and no turn cases, the no wind flight time from path intersection to touchdown was a nominal 3 minutes, making a total case time of 4 minutes. Because of MLS coverage geometry considerations, the time from path intersection to touchdown for 90 degree (deg) turn cases was 2 minutes 28 seconds, making a total case time of about $3 \frac{1}{2}$ minutes.

Cases were constructed with both left and righ turns, with no turns, and with and without wind. Turn amounts were 60° and 90°. When wind was incorporated, the wind was a linear shear in direction and speed. The wind at 0 m was from 050° at

5m/second (s) (10 knots). At 600 m (1969 ft) the wind was from 020° at $10 \mathrm{~m} / \mathrm{s}$ (19 knots). A more detailed description of the approach paths is given in Section 3. Curved approach evaluations were based on how closely pilots conformed to the nominal curved paths. A further discussion of data analysis is presented in Section 4.

All test cases were initiated with full flaps and landing gear down and with the aircraft at its final approach speed of 67 m 's (130 knots). In addition, all aircraft were on a heading such that they would intersect the nominal approach path at an angle of 15 degrees.

The blue Outer Marker light flashed to signal the point of descent initiation (Descent Marker) and was flashed again to signal the point of turn initiation (Turn Marker). After limited pre-test experimentation, it was decided to flash the Descent and Turn Marker lights (blue marker light) for a total of 6 seconds, commencing 4 seconds before the actual point of desired descent or turn initiation. The orange Middle Marker and the white Inner Marker lights operated as in normal approaches. All marker light flashing was based on actual aircraft position rather than on the nominal time parameters.

All testing was performed with a single pilot only and with no simulation of air traffic control conversations or commands. No additional pilot workload in the form of a landing checklist was added.

3. Curved Approach Paths

This section describes the curved approach paths that were flown. Presented are the basic geometry of the approach path, the concept of wind compensation, MLS coverage, curve parameter tradeoffs, and the constancy of the time of turn initiation. These paths were generated by using a PL / I computer program on an International Business Machines 370 to propagate an approaching aircraft's trajectory backwards from touchdown, taking into consideration approach speed, descent rate, turning rate, and wind shear. Figure 3-1 shows an example of this computer output.
3.1 path Geometry

The curved approach paths consisted of a straight line preturn segment, a curved segment, and a straight line final segment. Figures 3-2 and 3-3 show the approach geometry. Figure 3-4 shows the paths for a 60° and a 90° turn.

Vertically, an approaching aircraft maintained a constant no wind descent rate. In the case of non-wind compensated approaches, this corresponded to a constant glide slope. The descent rate used in testing was $4 \mathrm{~m} / \mathrm{s}$ ($787 \mathrm{ft} /$ minute (min)) which corresponded to a glide slope of 3.42°.

The horizontal path was constructed from touchdown backwards. The final approach segment length was determined by the distance required for the aircraft to descend from the end of turn altitude to touchdown at the specified descent rate. As will be discussed later in this section, the altitude at the end of the approach turn was a tradeoff parameter. A value of 122 m (400 ft) was chosen for this testing. This yielded a final approach segment length of 2039 m , this segment beginning about 30 seconds before touchdown.

Figure 3-1 Sample Curved Approach Path Generation Output
CURVED LGS APPROACH
PAGE 3
DESECENT RATE $=4.00 \mathrm{M} / \mathrm{S}(787 \mathrm{FT} / \mathrm{MIN}) \quad$ APPROACH SPEED $=67.0 \mathrm{M} / \mathrm{S}$ (130 KNOTS)
BANK ANGLE $=10.0$ DFG \quad APPROACH TURN $=90 \mathrm{DEG}$ RIGHT
NO WINC TURN RADIUS $=2596 \mathrm{M}(1.40 \mathrm{~N}$ MI)
DISTANCE FROM TUUCHDOWN TO LOCALIZER $=3500 \mathrm{M}(11483 \mathrm{FT})$

Figure 3-3 Curved Path Geometry - Vertical

Figure 3-4 Straight-in, 60°, and 90° Turn Approaches

The curved segment was constructed to end at the end of turn point and to begin at a point determined by the selected bank angle, approach speed, and turn heading change. With the approach speed of $67 \mathrm{~m} / \mathrm{s}$ and a bank angle of 10°, a 60° heading change (with no wind) took 41 seconds and covered a curved path distance of 2714 m . A 90° heading change required 61 seconds over a curved path distance of 4070 m .

These curved segments were generated assuming an instantaneous transition to and from a 10° bank angle. Actually, aircraft dynamics can introduce a delay on the order of a second in achieving the proper centrifugal acceleration. Pilot response lag and passenger comfort considerations can introduce additional delays. Reference 8 looks at this problem in detail. However, with the Turn Marker flashing 4 seconds before the time for an instantaneous turn, pilots were able to compensate for the aircraft dynamics by beginning their turn early. Similarly, simply by looking at their deviation and desired (runway) heading, pilots were able to roll out of the curved segment with no problem.

The preturn segment was simply a straight line from the point of turn initiation to the MLS acquisition limit. The heading of this segment differed from the runway heading by the desired heading change. The Descent Marker was located on this segment. Until reaching the Descent Marker, the glide slope needle remained centered with the aircraft in level flight at the nominal altitude for initiation of the approach. For testing, 610 m (2001 ft) was selected as the initial altitude for straight-in and 60° turn approaches. For 90° turn approaches 580 m (1903 ft) was chosen.

3.2 Wind Compensation

A method for compensating for wind shear was investigated on paper but was not tested. In this "paper" investigation, approach paths were biased such that a pilot would need only fly a constant heading, airspeed, and descent rate to remain on the desired approach path. The geometrical shape of the path was distorted so that a pilot flying constant air derived guantities (airspeed, heading, descent rate) would be blown to the proper geographic points. Thus the curved segment in a wind compensated approach was not an arc of a circle, but was a distorted curve. The initial approach segment was a straight line to the Descent Marker at which point a slight distortion from wind was introduced. The final approach segment (from 122 m altitude to touchdown) was not wind compensated. This segment required that the pilot himself compensate for crosswind. For all wind studies a wind shear with two points and linear interpolation was used. The wind used was from 050° at $5 \mathrm{~m} / \mathrm{s}$ (10 knots) at 0 m and from 020° at $10 \mathrm{~m} / \mathrm{s}$ (19 knots) at 600 m (1969 ft). Figures 3-5 and 3-6 show 60° and 90° right turns with and without wind compensation. The approaches shown are to a runway with a heading of 035°. In the 60° turn case, for example, both initial approach segments have the aircraft heading at 335°. However, the wind compensated path is moved such that an aircraft on that path maintaining a heading of 335° will be blown to the same point that an aircraft on the no-wind path will reach in the absence of wind by maintaining that same heading of 335°. It must be noted that accurate wind compensation assumes precise knowledge of the wind shear.

Again, it must be emphasized that no wind compensated cases were actually flown. The generation of the wind

Figure 3-5 60° No Wind and Wind Compensated Approaches

- 23 -

Figure 3-6 90° No Wind and Wind Compensated Approaches
compensated paths, however, did demonstrate two points. First, with the moderate wind shear used, the geographic position difference between no wind and wind compensated paths is small. Thus, a wind compensated path would be no less useful than a no wind path for noise reduction or aircraft merging purposes. Second, in cases where the aircraft is landing into the wind (the usual case), wind compensation aggravates the problem of having part of the approach path outside of the MLS coverage limit. The question of MLS coverage is further discussed in Section 3.3.

The effects of the headwind and icrosswind components are shown in Figures 3-7 and 3-8 which show the effect of wind direction on wind compensated 60° and 90° turns. Figure 3-8 shows the effect especially well. The wind compensated path for a landing headwind begins closer to the touchdown point than the no-wind path. The crosswind and no-wind paths have a similar preturn segment. However the wind compensated path for a crosswind that is a preturn tail wind is on the inside of the no-wind path. When the crosswind is a preturn headwind, the wind compensated path is on the outside of the no-wind path. 3.3 MLS Coverage

References 1,2 , and 3 describe a number of planned MLS configurations. For the curved approach testing, a maximum capability system was assumed, providing a range of 60 km . There are several possible MLS equipment location configurations. For the testing, it was assumed that the azimuth scanning beam was located beyond the end of the runway at the location of today's IIS localizer (3500 m from touchdown). The elevation scanning beam and the DME were assumed to be located at the touchdown point. Localizer needle sensitivity was the same as

Figure 3-7 Variation in Wind Compensated Paths with Wind Direction -60 Turn

Figure 3-8 Variation in Wind Compensated Paths with Wind Direction-90Turn
if the curved path were straightened out along the runway centerline. Full scale deflection represented an angular displacement of 2.5° as measured from the azimuth scanning beam, 3500 m beyond the touchdown point. The glide slope needle functioned in the same manner. Full scale displacement represented a 0.7° displacement from touchdown measured along the arc of the curve. For displacements exceeding full scale but within the MLS coverage region, full scale deflection was indicated. Thus, the localizer and glide slope functioned with the same sensitivity as today's ILS.

Although the azimuth scanning beam was located beyond the end of the runway, the 120° arc of coverage was measured from the touchdown point in conformance to the specifications in Reference 1. This limited the MLS coverage area and forced the altitude of approach initiation to be 580 m instead of 610 m for 90° heading changes so that the point of descent initiation would be within the MLS coverage envelope. This is discussed more fully in Section 3.4. The MLS equipment configuration used in this study is shown in Figure 3-9.

3.4 Curve Parameter Tradeoff

There are a number of parameters affecting the ease of flying and the geometry of curved approaches. Some of these parameters are approach speed, bank angle, amount of turn, altitude at the end of the turn, initial altitude, and descent rate. The significance of the interrelated parameters is discussed below.

3.4.1 Approach Speed

Obviously, approach speed is not a parameter that can be varied to alter curved approach paths. However, approach speed does affect the curved path. It interacts with descent rate to

Figure 3-9 MLS Equipment Configuration
determine the effective descent angle of the path and it determines the length of time required to complete the segments of the approach. These points are obvious. The approach speed also is involved in the determination of the radius of curvature of the curved segment. The radius of curvature is given by the formula

$$
\begin{equation*}
r=\frac{v^{2}}{g \operatorname{TAN} \phi} \tag{3-1}
\end{equation*}
$$

where
$r=$ radius of curvature
$\mathrm{v}=$ approach speed
$\phi=$ bank angle
$g=$ local acceleration of gravity
Note that the radius of curvature depends on the square of the approach speed. As the approach speed increases, the path length of the curved segment increases rapidly. or, looking at it in another way, attempting to fly a path designed for an approach speed of $67 \mathrm{~m} / \mathrm{s}$ (130 knots) and 10° bank at a slightly high approach speed of $72 \mathrm{~m} / \mathrm{s}$ (140 knots) would require a bank angle of 11.5°.

Approach paths for $50 \mathrm{~m} / \mathrm{s}(97$ knots) and $67 \mathrm{~m} / \mathrm{s}$ (130 knots) are contrasted for 60° and 90° turns in Figures $3-10$ and $3-11$, respectively. It can be seen from Figure 3-ll that the slower approach speeds can aggravate problems with MLS coverage. In the example shown, the Descent Marker for the $50 \mathrm{~m} / \mathrm{s}$ case is outside of the MIS $\pm 60^{\circ}$ coverage limit.

3.4.2 Bank Angle

As pointed out in Section 3.4.1, the bank angle is a factor in the determination of the curved approach path. The nominal bank angle for an approach can be varied within limits. However, too steep a bank angle and the aircraft may stall.

$-30-$

Figure 3-10 Variation in Approach Path with Approach Speed-60Turn

Figure 3-11 Variation in Approach Path with Approach Speed -90 ${ }^{\circ}$ Turn

Too shallow a bank, and curved approach flexibility is lost because the approach doesn't "curve" enough. Figure 3-12 shows approach paths for $5^{\circ}, 10^{\circ}, 15^{\circ}$, and 20° of bank.

A bank angle of 10° was selected to generate paths for curved approach testing. This selection of 10° bank appears to be an optimum choice. As can be seen from Figure 3-12, 10° bank does generate a sufficient path curve to provide the benefits of a curved approach. On the other hand, 10° is not too steep. When flying 10° curves in testing, pilots at times had to double their nominal 10° bank angle to 20° to make course corrections. This temporary bank of 20° is acceptable. However, if a nominal bank angle of 20°, for example, were to be flown, a similar temporary doubling of nominal bank angle to 40° for course corrections would be unacceptable. At approach speed, and low altitude, a 40° bank angle would not be acceptable from the standpoint of safety and passenger acceptability.

In addition, the curve tightening effect of large bank angles can cause problems with MLS coverage.

3.4.3 Amount of Turn

The amount of turn is a factor in both curved approach flexibility and MLS coverage considerations. The greater the amount of turn that is possible, the more useful is the curved approach concept. On the other hand, as has been previously demonstrated, turns in excess of 60° exit the MLS coverage wedge. There is also the obvious consideration that the greater the amount of curve, the greater the curved path distance that the pilot must fly. Testing was conducted on 60° and 90° turns.

3.4.4 Altitude at the End of Turn

An end of turn altitude of 122 m (400 ft) was selected for testing. This may not have been an optimum choice (as will be discussed in later sections). The lower the end of turn alti-

Figure 3-12 Effect of Bank Angle on Approach Path
tude, the greater the effect of the curved approach. Obviously, if the end of turn altitude were, for example, raised to 600 m , the approach would not be unlike a conventional IIS approach. However, as the end of turn altitude is lowered, three problems can occur. First, by lowering the end of turn, the length of the straight final segment is reduced. This aggravates MLS 60° coverage limit problems. This is illustrated in Figure 3-13. Second, a lower end of turn means the pilot has less time to determine the optimum crab angle for landing. And finally, safety considerations preclude flying with steep bank angles and trying to roll out of a turn on the runway heading at too low an altitude, especially in instrument meteorological conditions.
3.4.5 Initial Altitude and Descent Rate

The lower the initial altitude and the greater the descent rate, the shorter is the path distance from the Descent Marker to touchdown. This reduction in path distance can permit turns greater than 60° by allowing the Descent Marker to be within the MLS 60° coverage limit. However, the descent rate and initial altitude are usually set or at least constrained by basic approach standards and by local conditions. Generally these parameters cannot be modified greatly to permit increased flexibility in curved path generation. It must also be noted that pushing descent initiation too close to touchdown may deteriorate curved path flying performance by not leaving enough time between the Descent Marker and the Turn Marker for the pilot to stabilize his descent rate.

In testing, a descent rate of $4 \mathrm{~m} / \mathrm{s}$ ($787 \mathrm{ft} / \mathrm{min}$) was used. At $67 \mathrm{~m} / \mathrm{s}$ approach speed, this corresponded to a glide slope angle of 3.42°, slightly steeper than today's ILS. An initial

Figure 3-13 Variation in Approach Path with Altitude at End of Turn - 90° Turn
altitude of $610 \mathrm{~m}(2001 \mathrm{ft})$ was used for 60° turns and comparison straight-in approaches. An initial altitude of 580 m (1903 ft) was selected for 90° turns, the lower altitude alleviating MLS 60° coverage limit problems.

3.5 Time of Turn Initiation

For a given turn amount, bank angle, and altitude of the end of turn, the time from turn initiation to touchdown does not vary significantly with approach speed. For example, the time from the Turn Marker to touchdown for a 45° turn at 10° bank with an end of turn altitude of 122 m is $1: 04$ at $50 \mathrm{~m} / \mathrm{s}$ (97 knots) and $1: 06$ at $101 \mathrm{~m} / \mathrm{s}$ (196 knots). This phenomenon is illustrated by Table 3-1. The increase in turn radius of higher speed paths is counteracted by the faster travel along the paths at the higher approach speeds. This phenomenon, while having little effect on manually flying curved approaches, might be useful in the development of an algorithm for sequencing arriving aircraft with different approach speeds, flying curved approach paths.

Table 3-1

(in seconds)							
Bank Angle (deg)	Distance from End of Turn to Touchdown (m)	Amount of Turn (deg)			$\begin{aligned} & \mathrm{ch} s \\ & (\mathrm{~s}) \end{aligned}$		
			33	50	67	84	101
10	1020	60	51	51	56	63	71
10	2039	45	77	64	61	62	66
10	2039	60	82	71	71	75	81
10	2039	90	92	86	91	101	112
15	2039	60	75	61	57	58	60

4. Experimental Program

Data for the analysis of curved approaches was collected in an experimental program utilizing nine pilots as simulator test subjects. The pilots were trained in one session and performance data was collected in a second session. The subjects then completed a questionnaire after the second session. Section 4 describes the subject training, the administration of the test cases, and special curve flying techniques.

4.1 Training

Subject pilots were trained to fly the simulator and to fly curved approaches in a three hour training session. The session began with a briefing from a checklist. The briefing provided a general description of the MLS. Briefing topics also included simulator flying technique and instrument presentation, detailed curved approach case descriptions, and specific curved approach flying techniques.

A non-curved approach training case was then run. The subject pilots flew the simulator through a takeoff and landing. Flying around the pattern and performing a conventional approach gave the subjects a feel for the simulator and for the aircraft dynamics. After completing the simulator training run, all pilots flew all ten curved approach test cases (including two straight-in approaches) in a fixed order for training. Coaching and suggestions were given during the training runs. Printed results were discussed after each training case. This completed the training session.

Before data was collected in the second (data collection) session, two curved approach cases were repeated by the pilot as refresher training for the simulator and for flying curves. The same two refresher training cases were flown by each pilot,
and the cases provided a sample of most conditions found in the test cases (e.g., wind, no wind, left and right turns).

It must be emphasized that the amount of training was dictated by practicality, and not by a demonstration that additional training would yield little additional proficiency. The results of the comparison between straight-in and curved approaches must be considered in light of this fact. Data on curved approaches was collected after each pilot had flown only ten curved instrument approaches. This is an obvious unfair comparison with straight-in approaches, of which each pilot has flown hundreds or even thousands. However, since neither the time, nor the resources, nor the pilot volunteers were available for an extensive, prolonged curved approach training program, the comparison must be made based on insufficient curved approach training. While subject pilots did feel that they improved their curved approach flying skills even as data collection progressed, they all seemed to have had an understanding of the basic techniques before any data acquisition runs were made. Figures 4-1 and 4-2 illustrate the training effect. These graphs show the crosstrack error at the end of turn (122 m) for given cases (60° no wind and 90° with wind) as a function of the case sequence in the data collection program. The training effect is variable, with the training being more prominent for the 60° turns. Figures $4-1$ and 4-2 include a least square curve fit of this possible training effect. These figures, while indicative of a training effect, cannot be considered conclusive.

4.2 Test Case Conduct

Data collection cases were run in the second session after the two refresher training runs cited in Section 4.1.

Figure 4-1 Training Effect for 60° No Wind Turns

- 41 -

Figure 4-2 Training Effect for 90° Turns with Wind

All subjects flew all ten test cases. The ten cases were as follows:

STRTN-N	straight-in, no wind
STRTN-W	straight-in, wind
C60RN-N	60° right turn, no wind
C60RN-W	60° right turn, wind
C60LN-N	60° left turn, no wind
C60LN-W	60° left turn, wind
C90RN-N	90° right turn, no wind
C90RN-W	90° right turn, wind
C90LN-N	90° left turn, no wind
C90LN-W	90° left turn, wind

Data collection experimental programs were prepared in which the ten cases were ordered using a random number table. These randomly ordered experimental programs were assigned to subjects, again by a random number table. Pilot subjects flew the data collection cases alone and without assistance. Before each case was run, the subject received an oral briefing noting such items as the turn direction and amount and the wind. A case rundown, as shown in Figure 4-3, was also provided. A modified Jeppesen Approach Chart showing the appropriate curved approach path was given to the pilot. This chart was available throughout the run. The case initial position was noted on the chart by an "X". An example chart for a 60° left turn is shown in Figure 4-4.

At the termination of each case, a printout was made of 31 error measurements. A sample printout is shown in Figure 4-5. This printout shows crosstrack and altitude errors at the end of turn (122 m), at $30.5 \mathrm{~m}(100 \mathrm{ft})$, along the segment from the Descent Marker to the end of turn, and along the

INITIAL CONDITIONS:

Figure 4-3 Sample Case Briefing Sheet

Figure 4-4 Approach Chart for 60° Left Turn
(modification and use with permission of Jeppesen \& Co.)

Figure 4-5 Example Computer Output from Curved Approach
Test Case

	CPOSSTRACK EFROR		
	IIEAL	MEAS: MAG.	STD. DEV.
	(H) (DEG)	(M) (DEG)	(M) (DEG)
DESCEIT larker to erid tupa	$-\varnothing 004-00.02$	001120.06	001300.06
EI:D TUPN (POINT)	$-0002-00.01$		
EI. TURR TO 100 FEET	-0016-00.18	001600.18	000600.06
100 FEET (DOINT)	000000.00		
	ALTITUDE ERROR		
	NEAN	MEAT: MAG.	STD. DEV.
	(ii) (DEG)	(M) (DEG)	(N) (DEG)
descerit mapker to erid tuph	-0000-00.00	200320.03	200300.00
END TURN (POIT.T)	-0000-80.00		
END TUPA TO 100 FEET	000400.28	0004	000200.25
100 FEET (POINT)	000200.32		

segment from the end of turn to 30.5 m . Error measurements are shown in both degrees (angular deviation from nominal along path) and meters (absolute off path error). This data was punched onto cards and later processed by computer, as will be described in Section 5.
4.3 Curved Approach Flying Technique

Subject pilots flew curved instrument approaches using conventional ILS type deviation displays. No flight director was provided. The HSI was modified, however, to have the Course Indicator (CI) needle point in the direction of the current nominal heading along the curved path. Thus pilots had to be taught how to use this deviation and nominal heading information to fly a curved path. This section presents the suggested technique.

On flying a conventional straight-in approach, the pilot assumes a heading and corrects deviations by working in heading increments off of his nominal heading. Flying curved approaches is a two step procedure. The CI indicates the current nominal (as opposed to flight director command) heading for that point of the curve corresponding to the aircraft's position. The pilot assumes a nominal 10° bank angle and corrects differences between current and nominal heading by working in bank angle increments about the 10° nominal. Further, the pilot must correct crosstrack deviations by purposefully maintaining a heading difference (lead or lag) until the deviation is reduced.

If $\Delta \psi$ is the difference between the actual heading and the nominal heading and $\Delta \phi$ is the difference between the actual bank angle and the nominal bank angle, then

$$
\begin{align*}
& \stackrel{\bullet}{\Delta \psi}=\frac{\mathbf{g}}{\mathrm{v}} \operatorname{TAN}(\Delta \phi) \quad(4-1) \\
& \text { or } \\
& \Delta \psi=\int \frac{g}{v} \operatorname{TAN}(\Delta \phi) d t \\
& \text { (4-2) } \\
& \text { Similarly, the crosstrack error } \Delta x \text { can be related to } \Delta \psi \text { by } \\
& \dot{\Delta} \mathrm{x}=\mathrm{v} \operatorname{SIN}(\Delta \psi) \tag{4-3}\\
& \text { Since } \Delta \psi \text { is generally fairly small (less than } 10^{\circ} \text {), equation } \\
& \text { 4-3 can be written as } \\
& \Delta x=v \Delta \psi \tag{4-4}\\
& \text { or } \\
& \Delta x=\int v \Delta \psi d t \tag{4-5}\\
& \text { Combining equations 4-2 and 4-5, the crosstrack error is re- } \\
& \text { lated to bank angle by } \\
& \Delta x=\int v\left(\int \frac{g}{v} \operatorname{TAN}(\Delta \phi) d t\right) d t \tag{4-6}\\
& \text { or, assuming } g \text { and } v \text { constant, } \\
& \Delta x=g \iint \operatorname{TAN}(\Delta \phi) d t \tag{4-7}\\
& \text { Putting this in more practical terms, the pilots were told 1) } \\
& \text { not to let the difference between their actual and the nominal } \\
& \text { headings to become too large, and 2) to remember that, because } \\
& \text { of the double integration effect, the deviation needle would } \\
& \text { seem to correct itself very slowly when a bank angle increment } \\
& \text { was applied, but that the needle would seem to all of a sudden } \\
& \text { rapidly swing across the HSI. In conjunction with point } 2 \text {, } \\
& \text { pilots were reminded that a bank angle increment would not be- } \\
& \text { gin to produce a deviation correction, no matter how large the } \\
& \text { bank angle increment, until the current heading lead had changed } \\
& \text { to a lag or vice versa. Wind creates a special flying problem } \\
& \text { on curved approaches since the wind generally blows parallel to } \\
& \text { the runway. On a } 90^{\circ} \text { turn a pilot faces a strong crosswind at } \\
& \text { the beginning of the turn, but ends the turn with practically } \\
& \text { no crosswind. At the beginning of the turn, the pilot may have }
\end{align*}
$$

a significant crab angle which causes his current heading to lead the nominal heading. The pilot needs this lead at the beginning of the turn, even if there is no deviation. However, by the end of the turn, the pilot does not require a lead or crab angle, as the wind is then effectively a headwind. Thus, the pilot must develop the capability of gradually dumping his initial crab angle during the turn.

5. Results

Curved approach performance and acceptability were analyzed in two ways. Pilot opinion was collected by questionnaires and discussions for a subjective analysis. More objective results were obtained by computer statistical processing of individual test case error printouts. This section briefly describes the analysis of this data and presents the results. Conclusions are presented in Section 6.
5.1 Subjective Results

Subjective results are based on discussions with pilots and on questionnaires completed at the end of the data collection session. The questionnaire is shown in Appendix A. The subjective results reflect pilot opinion of the desirability and safety of this type of curved approach implementation. The pilot opinions were based on safety, operational, and ease of flying considerations. The following are some of the questionnaire and discussion results.

1. Curved versus conventional approaches:

	Curved much harder	Curved little harder	About the same
Total	2	6	$\frac{1}{1}$
Airline	1	5	0
General Aviation	1	1	1

One airline pilot, who felt that flying curves was a little harder in simulation, felt that in actual flight curved approaches would be no harder.
2. Effect of wind on curves:

	Much harder with wind	Little harder with	No difference
Total	2	$\frac{6}{2}$	
Airline	2	3	1
General Aviation	0	3	1

The same airline pilot referenced in l. felt that wind would have no effect in an actual flight.
3. Difference of wind effect on curved and straight-in approaches:

	Affect curved more	About the same
Total	5	$\frac{4}{4}$
Airline	3	3
General Aviation	2	1

4. Need for End of Turn marker light:

	$\frac{\text { Yes }}{}$	No	Don't know
	7	1	1
Airline	5	1	0
General Aviation	2	0	1

5. 60° versus 90° turns:

	60°	
easier		
Total	$\frac{\text { The }}{}$	same
Airline	2	4
General Aviation	3	0

6. Willingness to fly curved approaches in instrument meteorological conditions:

	$\frac{\text { Yes }}{}$	$\frac{\text { No }}{0}$	$\frac{\text { know }}{l}$	$\frac{\text { Conditional }}{3}$
Total	5	3	0	0
Airline	3	0	1	3
General Aviation	2		0	
Conditions given included changes in procedures and manda-				

7. Desired change in altitude of end of turn from 122 m (400 ft):

	$\frac{\text { Yes }}{2}$	$\frac{\text { No }}{6}$	$\frac{\text { Conditional }}{1}$
Total	2	3	1
Airline	2	3	0

Suggested changes included raising the end of turn altitude to $183 \mathrm{~m}(600 \mathrm{ft})$ and using the MLS to funnel traffic to the Outer Marker for a conventional approach. The conditional suggestion was to base the end of turn altitude on aircraft size and type.
8. Desired change in bank angle from 10° :

	$\frac{\text { Yes }}{}$	$\frac{\text { No }}{9}$
Total	0	9
Airline	0	6
General Aviation	0	3

9. Willingness to fly curves with modifications suggested by

pilot:	Yes	No	Don't know	No answer
	7	0	1	1
Total	5	0	0	1
Airline	2	0	1	0

10. Willingness to fly curves if runway visible before end of turn:

	Yes	No	Don't know
Total	7	0	2
Airline	5	0	1
General Aviation	2	0	1

Additional questions were raised concerning possible safety hazards from vertigo or operation of aircraft at moderately large bank angles at low altitude.

5.2 Numerical Results

Numerical results of curved approach testing were compiled by the computer analysis of test case error printouts. Two analysis routines were employed. One tabulated the mean, standard deviation, and maximum and minimum magnitudes of the 31 case output quantities for specified subjects and cases. It is important to distinguish the difference between the mean and standard deviation of data from various subjects and the measurement of the mean and standard deviation of errors along a path segment in a given run. The former are statistical measures of a collection of data points from a number of runs. The latter are single quantities output at the end of each test run in printouts such as Figure 4-5. Thus, for example, there can be a measure of the mean of the standard deviations of the crosstrack error from the Descent Marker to the end of turn.

Appendix B contains the mean and standard deviations for the collection of all subjects for each individual case. The case names found in the printout are defined in Section 4.2. The signs on the computer printout results indicate the following:

CROSSTRACK ERROR

+ left deviation (fly right)
- right deviation (fly left)

ALTITUDE ERROR

+ low deviation (fly up)
- high deviation (fly down)

The second program performed a student's test to compute the level of significance of differences in the means of two sets of test cases. The output level indicates the probability that the two groups of cases shown in the printout are different. Thus a level of 0.99 indicates a high probability that the two groups are different. A level near 0.00 indicates a high probability that the two groups are the same.

The remainder of Section 5.2 will present statistical data from curved approach testing.

5.2.1 Curved versus Straight-in Approaches

Pilots were able to $f l y$ curved approaches, though not as accurately as they could fly straight-in approaches. Figures 5-1 through 5-4 show crosstrack and altitude errors for straightin and curved approaches. Note that 18 straight-in and 72 curved cases are compared. Errors for the straight-in approaches are lower. Table 5-1 compares mean magnitude of crosstrack errors between straight-in and curved approaches. (The standard error is the standard deviation divided by the square root of the number of cases.) It must be emphasized that the "95\% level" numbers (95% probability of the magnitude being less than or equal to that number) in Table 5-1 are raw estimates based on a limited number of data points. The error distributions at 122 m and 30.5 m altitudes for curved and straight-in approaches are shown in histograms in Figures 5-5 through 5-12.

Figure 5-1 Crosstrack Errors for Straight-in Approaches PAGE 1

18 DIINTS PFF ITEM / DATA ACQUISITION

2C.ASFS:
STRTN-N STRTN-W:

9 SUBJECTS:

1	2	3	4	5	6	7	8	9

METERS
DEGREES
MEAN DEV MAX MAG MIN MAG MEAN STO DEV MAX MAG MIN MAG

CROSSTRACK ERPOR

DFSCENT MARKER TO ENO TURN											
	SEGMENT	MEAN	-10.4	17.4	44	0	-0.043	0.082	0.21	0.00	g
	SFGMENT	mean magnitude	23.3	9.6	44	8	0.092	0.052	0.21	0.03	1
	SEgment	StANDARD DEVIATION	18.0	5.7	26	8	0.095	0.039	0.18	0.03	
FNT	OF TURN		-2.7	15.4	42	0	-0.032	0.149	0.42	0.00	
END	IF TURN 1	(MAGNITUDE)	10.6	11.4	42	0	0.099	0.116	0.42	0.00	
ENO THRN TO 30.5M											
	SEGMENT	MEAN	-4.7	11.1	24	1	-0.046	0.119	0.28	0.00	
	SEGMENT	MEAN MAGNitunf.	10.6	6.6	24	2	0.106	0.079	0.28	0.00	
	SFGMENT	Standard deviation	6.1	3.5	17	1	0.078	0.046	0.21	0.00	
30.5 M			-0.8	13.2	32	0	-0.010	0.183	0.45	0.00	
30.5M (MAGNITUDE)			9.1	9.6	32	0	0.124	J. 135	0.45	0.00	

Figure 5-2 Altitude Errors for Straight-in Approaches
PAGE 2

18 peINTS PER JTEM / DATA ASQUISITIJN

2 CASES:
STRTN-N STRTN-W

3 SUBJECTS:

1	2	3	4	5	6	7	8	9

METFRS
DEGREES
MEAN STD DEV MAX MAG MIN MAG MEAN STD DEV MAX MAG MIN MAG

ALTITUDF FQRCR								
DFSCENT MARKER IT FND T.JRN								
SEGMENT MFAN	1.3	6.4	18	0	0.007	0.042	0.12	0.00
Segment mean magnitune	6.7	3.9	18	2	0.038	0.030	0.12	0.00
SEgmf vt standard deviation	7.9	8.1	39	1	0.017	0.023	0.09	0.00
END GE TUQN	-1.1	2.5	6	0	-0.029	0.072	0.17	0.00
END OF TURN (MAGNITUDE)	1.9	2.3	6	0	0.059	0.050	0.17	0.00
END THRN TO 30.5M								
SEgMfNT MEAN	-0.6	2.)	6	\bigcirc	-0.016	0.101	0.31	0.00
sfgment mean magvitude	1.3	1.9	6	0				
SFGMENT STANDARD REVIATIDN	0.7	1.0	4	0	0.047	0.073	0.28	0.00
3). 5 M	-0.3	1.5	5	0	-0.041	0.208	0.67	0.00
30.5M (MAGNITUNE)	0.7	1.3	5	0	0.128	0.169	0.67	0.00

Figure 5-3 Crosstrack Errors for Curved Approaches
PAGF 1

72 POINTS PEP ITEM / DATA ACQUISITION

8 CASES:
CGJRN-N CGJLN-N CGOLN-W CSORN-W CGOLN-N CGORN-N CGOLN-W CGORN-W

9 SUBJECTS:
$\begin{array}{lllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9\end{array}$
METERS
DEGREES MEAN STO DEV MAX MAG MIN MAG MEAN STO DEV MAX MAG MIN MAG

CROSSTRACK ERRIR

Figure 5-4 Altitude Errors for Curved Approuches
PAGE 2
72 POINTS PER ITEM / DATA ACQUISITION

8 CASES:
CGJRN-N CGOLN-N CGOLN-W CGORN-W CGOLN-N CGORN-N CGOLN-W CGORN-W

9 SUBJFCTS:
$\begin{array}{lllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9\end{array}$

	METERS						DEGREES			
	ME AN	Sto dev	MAX	MAG	MIN	MAG,	MEAN	Sto dev	MAX MAG	MIN MAG
ALTITUDE ERROR										
DESCFNT MARKER TO END TURN										
SFGMENT MEAV	-1.8	4.6		15		0	-0.015	0.040	0.12	0.00
Sfgment mean magvitune	6.0	3.0		15		1	0.347	0.035	3.15	0.00
SEgMENT Standard deviation	5.8	3.0		16		1	0.015	0.024	0.09	0.00
END OF TURN	-1.2	5.0		20		0	-0.036	0.166	0.68	0.00
END OF TURN (MAGNITUDE)	3.2	4.1		20		0	0.111	0.129	0.68	0.00
END TURN TO 30.5M										
SFGMENT MEAN	-3.4	3.3		14)	-0.022	0.181	0.87	0.00
Sfgment mean magnitude	1.8	2.3		14		0				
Sfgment standard deviation	1.0	1.2		6		J	J.783	0.148	0.84	0.03
30.5M	-0.5	2.1		11		0	-0.076	0.282	1.31	0.00
30.5M (MAGNITUNF)	0.9	2.0		11		0	0.163	0.242	1.31	0.00

Figure 5-5 Histogram of Crosstrack Errors at End of Turn for All Curves-in Meters

Figure 5-7 Histogram of Magnitudes of Crosstrack Error at End of Turn for All Curves - in Meters

Figure 5-8 Histogram of Magnitudes of Crosstrack
Error at 122 m Altitude for All Straight-ins -in Meters

Figure 5-9 Histogram of Crosstrack Errors af 30.5 m Altitude for All Curves - in Meters

Figure 5-10 Histogram of Crosstrack Errors at 30.5 m Altitude for All Straight-ins -in Meters

Figure 5-II Histogram of Magnitudes of Crosstrack Error at 30.5 m Altitude for All Curves - in Meters

- 66 -

Figure 5-12 Histogram of Magnitudes of Crosstrack Error at 30.5 m Altitude for All Straight - ins - in Meters

Comparing the curved and straight-in numbers shows a definite difference in performance from the Descent Marker to the End of Turn and at the End of Turn (122 m altitude) point. The difference at the 30.5 m altitude is questionable. The mean of the mean magnitudes from the Descent Marker to the End of Turn is nearly twice as large for the curved approaches as for the straight-ins. At the end of turn point this ratio of means is increased to 3.0 . By 30.5 m , however, the ratio is only 1.7 . Snedecor's F tests show probabilities of difference in the standard deviations of the means of crosstrack error of the curved and straight-in distributions exceeding 99.9\% from the Descent Marker to the End of Turn and at the End of Turn point. However, the F test difference at the 30.5 m altitude point shows a probability of difference between 90% and 95%, not quite large enough to statistically verify a difference.

5.2.2 The Effect of Wind

Wind does not have a significant effect on pilot performance in flying curved approaches. Wind cases do have a larger mean magnitude and standard deviation of crosstrack error from the Descent Marker to the End of Turn. However, by the End of Turn point this difference disappears. In fact, the mean magnitudes of crosstrack error at the End of Turn and at 30.5 m altitude are slightly less for wind cases than for no wind cases. While not proving statistically that there is no difference between wind and no wind cases, the t test results in Figure 5-13 and the means in Figures 5-14 through 5-17 indicate this. The key points of this comparison are shown in Table 5-2.

The significance of the differences in the means of the segment mean magnitude and standard deviation of crosstrack error from the Descent Marker to the End of Turn do show that before

Figure 5-13 \dagger Test Comparision of Wind and No Wind Curves

36 pInNtS ffrr item 135 degrfes of freenom $/$ oata acquisition

9 SUPJECTS
$\begin{array}{lllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 3 & 9\end{array}$
4 CASES PER GRNUP:

croup 1	gPQup 2
C.6) ${ }^{\text {a }}$ - N	C6OLN-W
CSORN-N	C6JRN-W
CGOLN-N	C9OLN-W
CGORN-N	C90RN-W

	crosstrack error				altitude error				
	METERS		dFGrees		meters		degrees		
	T Stat	levfl	¢ stat	Level	¢ stat	Level	T Stat	level	
descfut markfr in fni turn									¢
sfgment meav	0.319	0.248	0.571	0.423	3.505	0.999	2.614	0.987	
sfgment mean maguitudf	2.627	0.987	2.143	0.961	0.642	0.475	0.625	0.464	
cegment staviard deviation	2.348	0.975	1.840	0.926	0.420	0.323	0.197	0.155	
Ent of turn	1.535	0.866	1.565	3.873	1.413	0.833	1.211	0.766	
fnt ja turv (magnitume,	-0.667	0.491	-0.716	0.521	-0.434	0.333	-0.180	0.142	
FNT TURN TO 30.5M									
Segment mpan	0.943	0.648	0.940	0.646	0.879	0.615	0.824	0.584	
segment mean magnitude	-0.706	0.515	-0.726	0.527	-1.221	0.770			
sfgment standard deviation	-0.671	0.493	-0.178	0.140	-1.208	0.765	-1.060	0.704	
30.5M	1.430	0.838	1.486.	0.854	1.354	0.815	1.712	0.904	
3).5M (MAGNITUDE)	-3.421	0.324	-0.414	0.318	-1.171	0.750	-1.110	0.725	

Figure 5-14 Crosstrack Errors for Curves with No Wind
PAGE 1

```
36 POINTS PFR ITEM / DATA ACOUISITION
```

4 CASFS:
CSOLN-N CGORN-N GOJLN-N CODRN-N
3 SUBJECTS:
METERS
DEGREES
MEAN STD DEV MAX MAG MIN MAG MEAN STD DEV MAX MAG MIN MAG

CROSSTRACK FRROR

Figure 5-15 Altitude Errors for Curves with No Wind
PAGE 2

```
36 POINTS PER ITEM / DATA ACQUISITION
```

4 CASES:
CGOLN-N CGORN-N CGOLN-N CGORN-N

9 SUBJECTS:

1	2	3	4	5	6	7	8	9

METERS DEGREES
YEAN STD DEV MAX MAG MIN MAG MEAN STD DEV MAX MAG MINMAG

ALTITUDE ERROR

DESCENT MARKER TI END TURN										
	SFGMFNT	MEAN	-3.2	4.3	15	\bigcirc	-0.023	0.035	0.12	0.00
	SFGMFNT	mean magnitude	5.9	3.2	15	1	0.045	0.033	0.12	0.00
	SEGMENT	Stavoard deviation	5.7	2.9	12	1	0.014	0.023	0.09	0.00
END	OF TURN		-2.0	5.1	20	0	-0.059	0.159	0.57	0.01
END	DF TURN I	(MAGNITUDE)	3.4	4.3	20	0	0.114	0.125	0.57	0.01
END	TURN TO 30.5M								.	
	SEGMENT	mean	-0.8	3.7	12	0	-0.039	0.193	0.59	0.00
	SFGMENT	mean magnitude	2.2	3.1	12	\bigcirc				
	SEGMENT	Stavoard oeviation	1.2	1.4	6	0	0.098	0.151	0.56	0.00
30.5			-0.9	2.3	10	0	-0.132	0.303	1.31	0.00
30.5	SM IMAGNIT	TUDE)	1.2	2.1	10	0	0.196	0.266	1.31	0.00

Figure 5-16 Crosstrack Errors for Curves with Wind

PAGE 1

36 POINTS PER ITEM / DATA ACQUISITION

4 CASES:
C6JLN-W CGORN-W C9OLN-W C9ORN-W

9 SURJECTS:
$\begin{array}{lllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9\end{array}$
METERS
DEGREES MEAN STO DEV MAX MAG MIN MAG MEAN STD DEV MAX MAG MIN MAG

CROSSTRACK ERROR

DESCENT MARKER TO END TURN										
	SEGMENT	meav	-2.5	46.9	158	0	-0.007	0.240	0.87	0.00
	SEGMENT	mean magnitude	47.2	32.6	172	14	3.256	0.179	0.96	0.06
	SEGMENT	Stavdard deviation	39.5	17.7	76	9	0.270	0.153	0.71	0.09
ENO	Tf TURN		12.5	36.8	105	3	0.136	0.388	1.18	0.03
END	DF TURN	(MAGNITUDE)	30.0	24.7	105	3	0.314	0.266	1.18	0.03
END TUPN TO 30.5M										
	SFGMENT	MEAN	5.7	21.7	68)	0.367	0.248	0.81	0.00
	SFGMFNT	mean magnitude	19.3	14.0	68	4	0.219	0.167	0.81	0.03
	Stgment	Stantard deviation	11.0	7.7	41	3	J. 139	0.085	0.46	0.03
30.5M			0.8	17.3	35	1	0.015	0.242	0.50	0.00
30.5M (MAGNITUDE)			14.5	9.5	35	1	0.200	0.138	0.50	0.00

Figure 5-17 Altitude Errors for Curves with Wind
PAGE 2

36 POINTS PEP ITEM / DATA ACQUISITION

4 CASES:
CGOLN-W CGORN-W CGOLN-W CGクRN-W

9 SUBJECTS:
$\begin{array}{lllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9\end{array}$
METERS
DEAN STD DEV MAX MAG MIN MAG MEAN STD DEV MAX MAG MIN MAG

DESCENT MARKER TO END TURN										
	SEGMENT	MEAN	-0.5	4.8	12	0	-0.006	0.043	0.12	0.00
	SEGMENT	meav magi itude	6.2	2.9	14	2	0.049	0.036	0.15	0.00
	SEgMENT	Stantard deviation	5.9	3.1	16	1	0.015	0.025	0.09	0.00
END	If TURN		-0.4	4.8	17	0	-0.013	0.170	0.68	0.00
END	OF TURN 1	(MAGNITUDE)	2.9	3.8	17	\bigcirc). 108	0.132	0.68	0.00
END TURN TO 30.5M										
	SFGMENT	MEAN	-0.1	2.7	14	0	-0.005	0.167	0.87	0.00
	SEGMENT	mean magnitude	1.4	2.4	14	0				
	SEGMENT	Stavdard deviation	0.9	1.0	4	0	0.061	0.142	0.84	0.00
30.5M			-0.2	1.9	11	0	-0.019	0.246	1.28	0.00
30.5M (MAGNITUDE)			0.6	1.8	11	0	0.130	0.209	1.28	0.00

Table 5-2

Wind/No Wind Comparison
Crosstrack Error for Curves - in Meters
$\left.\begin{array}{l|c|c|c}\text { point or segment } & \text { mean } & \begin{array}{l}\text { standard } \\ \text { error }\end{array} & \begin{array}{l}\text { ratio of } \\ \text { means }\end{array} \\ \begin{array}{ll}\text { t test } \\ \text { signifi- } \\ \text { cance }\end{array} \\ \hline \text { Magnitude from Descent }\end{array}\right)$
the End of Turn point, the size of the error is likely to be larger with wind and the variation in error size is also likely to be larger in each wind approach as compared to no wind approaches.
5.2.3 Comparison between 60° and 90° Turns

The only effect in increasing the turn amount from 60° to 90° was to increase the mean of the segment mean magnitude and standard deviation from the Descent Marker to the End of Turn. It was statistically demonstrated that there was no difference between 60° and 90° turns at the End of Turn point. The results also fail to prove a difference at 30.5 m . The t test results are given in Figure 5-18. Mean printouts are shown in Figures 5-19 through 5-22. The 60° versus 90° comparison is summarized in Table 5-3.
5.2.4 Left and Right Turn Comparison

A surprising and difficult to explain difference between left and right turn performance was found. This difference is of little physical significance and shows up only at the 30.5 m level where the mean magnitude of crosstrack error for left turns is less than that for right turns. No difference in turn performance could be found during the turn or at the End of Turn point, other than the fact that the mean of the segment standard deviations from the Descent Marker to the End of Turn was slightly, but statistically significantly, higher for left turns. These results are summarized in Table 5-4.

This difference between left and right turns at 30.5 m is probably a fluke, or results, perhaps, from some simulator bias. It is not a wind effect. The crosswind component on landing is only $1.3 \mathrm{~m} / \mathrm{s}$. Further, this effect is demonstrated for both wind and no wind cases. Figures 5-23 through 5-25 show test

Figure 5-18 † Test Comparision of 60° and 90° Curves
36 POINTS PER ITEM / 35 DEGREES OF FREEDOM / DATA ACQUISITION

9 SUBJECTS:
$\begin{array}{lllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9\end{array}$

4 CASES PER GROUP:

GROUP 1	GROUP 2
CGOLN-N	C9OLN-V
C6JRN-N	C9ORN-N
C6OLN-W	C9OLN-W
C6ORN-W	CGORN-W

Figure 5-19 Crosstrack Errors for 60° Curves
PAGE 1

36 PIINTS PED ITEM / DATA AEQUISITION

4 CASES:
C6 JLN-N CGOLN-W CGORN-N CGORN-W

9 SUBJECTS:

1	2	3	4	5	6	7	8	9

METERS
mean sto dev max mag min mag MEAN STD DEV MAX MAG MIN MAG

CROSSTRACK ERROR

Figure 5-20 Altitude Errors for 60° Curves

PAGE 2

36 POINTS PEP ITEM / DATA ACQUISITIDN

4 CASES:
CGOLN-N CGOLN-W CGORN-N CGORN-W

9 SUBJFCTS:

1	2	3	4	5	6	7	8	9

METERS
DEGREES
MEAN STD DEV MAX MAG MIN MAG MEAN STD DEV MAX MAG MIN MAG

ALTITUDE ERROR

Figure 5-21 Crosstrack Errors for 90° Curves
PAGE 1

36 POINTS PER ITFM / DATA ACQUISITION

4 CASES:
CGOLN-N C.9OLN-W C9ORN-N C9ORN-W

9 SUBJFCTS:
METERS \quad degrees
mean Std dFV max.mag min mag mean sto dev max mag min mag

CROSSTRACK ERROR

DESCENT MARKER TO END TURN									1 ∞
SEGMFNT MFAV	-0.1	46.5	158	0	-0.000	0.257	0.87	0.00	
Sfgment mean magvitude	48.4	32.2	172	14	0.279	0.179	0.96	0.06	
SEGMENT STAVDARD DEVIATION	42.9	17.2	76	14	0.302	0.158	0.71	0.09	
END OF TURN	9.3	45.2	15)	\bigcirc	0.102	0.537	1.70	0.00	
END OF TURN (MAGNITUSE)	31.9	33.2	150	0	0.355	0.376	1.70	0.00	
END TUKN TO 30.5M									
SFGMENT MEAN	5.9	28.2	95	0	0.068	0.339	1.18	0.00	
segment mean magnitude	21.4	20.0	95	4	0.247	0.248	1.18	0.03	
SEGMENT STANDARD DEVIATION	9.6	7.3	38	3	0.120	0.079	0.43	0.03	
30.5M	1.6	21.3	71	0	0.024	0.299	1.00	0.00	
30.5M (MAGNITUDE)	16.4	13.6	71)	0.2 .29	0.194	1.00	0.00	

Figure 5-22 Altitude Errors for 90° Curves
PAGE 2
36 PIINTS PEO ITEM / DATA ACQUISITIDN

4 CASFS:
C.)LN-PS CGOLN-W CGORN-N CGORN-W

9 SUBJECTS:

	METEQS				DEGREES						
	ME AN	STD DFV	MAX	MAG	MIN	MAG	MEAN	Sto dev	MAX MAG	MIN MAG	
ALTITUNE ERFOR											
											1
dESCENT MARKFR TO [ND TJRN											\checkmark
SFGMENT MFAV	-2.2	4.5		12		0	-0.014	0.043	0.12	0.00	1
segment mean magnitude	6.9	3.0		14		2	0.361	0.035	0.15	0.00	
Sfgment stavdard deviation	6.7	3.2		16		1	0.015	0.026	0.09	0.00	
FND OF TIJRN	-0.3	4.3		17		0	-0.009	0.172	0.68	0.00	
FNO AF TURN (magmitude)	2.7	3.4		17		0	0.115	0.129	0.68	0.00	
END TUPN TO 30.5M											
SEGMFNT MFAN	3.0	3.2		14		0	-0.006	0.201	0.87	0.00	
SFGMFNT MEAN MAGNITUDF	1.7	2.8		14		0					
SEgment standard deviation	0.8	1.3		5		0	0.091	0.163	0.84	0.00	
30.5M	-0.2	2.0		11		0	-0.016	0.249	1.28	0.00	
30.5M (MAGNITHDE)	0.7	1.9		11		0	0.128	0.214	1.28	0.00	

Table 5-3
$\frac{60^{\circ} \text { versus } 90^{\circ} \text { Turn Comparison }}{\text { Crosstrack Errors - in Meters }}$

- 81 -

Table 5-4

Left versus Right Turn Comparison Crosstrack Error - in Meters

Figure 5-23 \dagger Test Comparision of All Left and Right Turns 36 DOINTS PER ITEM / 35 DEGREES OF FRFEDOM / DATA ACQUISITION

9 SURJECTS
$\begin{array}{lllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9\end{array}$
4 CASES PER GRCUP:

GROUP 1	GPDIJP 2
C6OLN-N	CGORN-V
C6OLN-W	CGORN-W
CGOLN-N	CGORN-V

$\begin{array}{ll}\text { C6OLN-N } & \text { CGORN-W } \\ \text { CGOLN-N } & \text { CGORN-V }\end{array}$
C9JLN-W C9ORN-W

			CROSSTRACK ERROR				ALTITUDE ERROR			
			METERS		degrees		METERS		DEGREES	
			T STAT	LEVEL	T STAT	LEVEL	T STAT	Level	I Stat	Level
DESCENT MAPKEQ TO END TURN										
	SEGMENT	MEAN	2.884	0.993	2.734	0.990	1.134	0.735	1.076	0.711
	SEGMENT	MEAN MAGVITUDE	2.213	0.168	0.758	3.346	-1.352	0.815	-1.624	0.887
	SEGMENT	Standard deviation	-2.915	0.994	-1.405	0.831	-0.977	0.665	-1.190	0.758
END	OF TURN		1.846	0.926	1.873	0.930	0.129	0.102	0.470	0.359
END	OF TURN	(magnitude)	-0.131	0.104	-0.166	0.131	0.151	0.119	-0.132	0.104
END TURN TO 30.5M										
	SEGMENT	MFAV	3.443	0.339	0.334	0.260	0.146	0.115	0.552	0.415
	SEGMENT	mean magvitude	0.107	0.085	0.089	0.070	0.416	0.320		
	SEGMENT	stavdard deviation	1.333	0.799	1.172	3.751	0.380	0.294	3.340	0.264
30.5M			-1.347	0.813	-1.331	0.808	0.066	0.052	-0.410	0.316
30.5M (MAGNITUDE)			2.248	0.969	2.281	0.971	-0.334	0.259	-0.439	0.336

Figure 5-24 \dagger Test Comparision of Left and Right Turns with No Wind 18 POINTS PER ITEM / 17 DEGREES CF FREEDOM / DATA ACQUISITION

9 SUBJECTS:
$\begin{array}{lllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9\end{array}$

2 CASES PER GROUP:

GROUP 1	GROUP 2
CGOLN-N	CGORN-N
C9OLN-N	C9ORN-N

Figure 5-25 t Test Comparision of Left and Right Turns with Wind 18 DIINTS PEP ITEM / 17 DEGREES OF FREEDOM / DATA ACQUISITION

9 SURJFCTS:
$\begin{array}{lllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9\end{array}$

2 CASFS PFR GROUP:
GRCUP 1 GROUP 2
CGJLN-W CGORN-W
C9OLN-W C9ORN-W

	CROSSTRACK ERPOR				ALTITUDE ERROR				
	METERS		DEGREES		METERS		Degrees		
	T Stat	LEVEL							
DESCFVT MAQKER TO ENT TURN									1
SFGMFNT MFAV	2.722	0.986	2.089	0.948	1.693	0.891	1.508	0.850	$\stackrel{\infty}{\sim}$
Segment mean magnitudf	-0.454	0.344	-0.439	0.334	-0.797	0.564	-1.197	0.752	1
SFGMFNT STANDARD DEVIATION	-2.19)	0.957	-1.037).686	-0.569	0.423	-1.166	0.740	
END OF TURN	-0.052	0.041	-0.027	0.021	0.677	0.492	0.852	0.594	
END JF TURN (MAGNITUDE)	-3.226	0.176	-0.222). 173	-1.351	0.836	-1.639	0.880	
END TURN TO 30.5 M									
Sfgment mean	-0.812	0.572	-0.875	0.606	0.807	0.569	0.975	0.657	
segment mean magnitude	-0.431	0.328	-0.404	0.308	-0.814	0.573			
SEgMENT Standard deviation	1.280	0.782	1.021	0.679	-0.156	0.122	-0.798	0.564	
3). 5 M	-1.384	0.816	-1.375	0.813	0.587	0.435	0.111	0.087	
30.5M (MAGNITUDE)	1.013	0.675	1.042	0.688	-1.528	0.855	-1.753	0.902	

results for all left versus right turns and for left versus right turns without and with wind. Figures 5-26 through 5-29 show the means for all left and right turns.

5.2.5 Inside versus outside of Curve

When flying curved approaches, subjects tended to have deviations which were on the outside of the curved path rather than on the inside. Referring back to Figures 5-26 and 5-28, it can be seen that the average of the mean signed crosstrack deviations for the segment from the Descent Marker to the End of Turn is -18.1 m for left turns and +10.7 m for right turns. In both cases, the sign of the deviation indicates that the subjects were on the outside of the curve. Combining these two figures, an average value of 14.4 m outside the curve can be computed for the mean deviation along the segment from the Descent Marker to the End of Turn. The t test result in Figure 5-23 shows a 99\% likelihood of difference between the signed means along this segment for left and right turns, again illustrating the tendency to be on the outside of the turn. Wind could be a contributing factor to this tendency. The wind has a significant component blowing from the inside to the outside of the curve. Figures 5-24 and 5-25 show test results which are statistically conclusive (99% level) for wind cases, but are not (78% level) for no wind cases.

5.2.6 Altitude Performance

Although the computer printouts in Section 5 contain statistical data on altitude errors in flying curved approaches, these errors were not discussed in the previous portions of Section 5. Flying horizontally curved paths did not have a physically significant effect on the vertical profile performance. For example, the mean magnitude of altitude error at

Figure 5-26 Crosstrack Errors for Left Turns
PAGE 1

36 points pep item / data acquisition

4 CASES:
CGOLN-N CGOLN-W CGOLN-N C9OLN-W

9 SUBJECTS:

$$
\begin{array}{lllllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9
\end{array}
$$

meters
degrees
mean std nev yax mag min mag mean std dev max mag min mag

CRDSSTRACK FRROF

DESCENT MAPMKFR TO END TURN

SEgmfnt meav	-18.1	31.5	152	2	-0. 391	0.173	0.75	0.00
segment mean magvitude	40.0	25.4	152	9	0.225	0.143	0.75	0.03
Sfgment standard deviation	39.6	17.7	75	11	0.257	0.143	0.71	0.06
end of turn	-4.2	44.7	150	3	-0.046	0.481	1.70	0.03
end of turn (magnitumei	32.4	31.1	150	3	0.343	0.339	1.70	0.03
End turn to 30.5m								
Sfgment mean	1.8	25.1	72	3	0.025	0.289	0.87	0.03
Segment mean magnitude	21.0	15.5	72	4	0.235	0.187	0.87	0.03
segment standard deviation	10.2	8.4	42	2	0.125	0.093	0.46	0.03
30.5M	1.1	15.3	34	0	0.017	0.212	0.48	0.00
30.5M (MAGNITUDE)	12.0	9.5	34	0	0.164	0.136	0.48	0.00

Figure 5-27 Altitude Errors for Left Turns
page 2

36 POINTS PER ITEM / DATA ACQUISITION

4 CASES:
CGOLN-N CGOLN-W CGOLN-N CGOLN-W

9 SURJECTS:

1	2	3	4	5	6	7	8	9

METERS
DEGREES
MEAN MEV MAX MAG MIN MAG MEAN STD DEV MAX MAG MINMAG

ALT ITUDE ERROR

DFSCENT MARKER TO END TURN										
	SEGMENT	MFAN	-2.4	4.8	15	\bigcirc	-0. 019	0.341	0.12	0.00
	SFGMENT	mean magvitude	6.4	3.1	15	2	0.052	0.032	0.15	0.00
	SEGMENT	Standard deviation	6.1	3.0	12	1	0.017	0.026	3.39	0.00
END	OF TUPN		-1.3	4.8	17	0	-0.045	0.169	0.68	0.01
END	OF TURN	(MAGNITUDE)	3.1	3.9	17	0	0.113	0.133	0.68	0.01
END TURN TO 3J.5M										
	SFGMENT	MFAV	-0.5	3.4	14	0	-0.034	0.188	0.87	0.00
	SFGMENT	mean magnitudf	1.6	3.3	14	\bigcirc				
	SFGMENT	stavdard neviation	1.0	1.0	3	0	0.074	0.162	0.84	0.00
$33.5 \mathrm{M}$			-0.6	2.3	11	0	-0.064	0.298	1.28	0.00
30.5M (MAGNITJDE)			0.9	2.1	11	0	0.174	0.250	1.28	0.00

Figure 5-28 Crosstrack Errors for Right Turns
PAGE 1
36 POINTS PER ITEM / DATA ACQUISITION

4 CASES:
CGORN-N CGORN-W CGORN-N CGORN-W

9 SUBJECTS:

1	2	3	4	5	6	7	8	9

METERS
DEGREES
MEAN DEV MAX MAG MIN MAG MEAN STD DEV MAX MAG MIN MAG

RROSSTRACK FRROR

DESC	CFNT MAPKE	ER. T' FND TUQN									∞
	SEGMENT	MEAN	10.7	37.3	158	\bigcirc	0.056	0.202	0.87	0.00	1
	SEGMENT	mfav magvitude	40.6	26.2	172	19	0.226	0.151	0.96	0.09	
	SEGMENT	StAndard deviation	31.7	14.8	76	9	0.229	0.141	0.68	0.09	
END	OF TURN		15.8	38.4	107	0	0.173	0.411	1.20	0.00	
FNO	OF TURN I	(MAGNITUDE)	31.7	26.8	107	0	0.334	0.296	1.20	0.00	
END	TURN TO 3	30.5M									
	SEGMENT	MFAN	4.7	23.7	95	0	0.051	0.282	1.18	0.00	
	SEGMENT	mean magnitude	21.4	18.0	95	4	0.239	0.223	1.18	0.03	
	SEGMENT	Standard deviation	13.4	11.1	49	3	0.157	0.126	0.56	0.03	
30.5			-5.6	22.8	71	1	-0.077	0.321	1.00	0.00	
33.5	5M (MAGNIT	TUDE)	18.3	14.8	71	1	0.254	0.210	1.00	0.00	

Figure 5-29 Altitude Errors for Right Turns
dage 2
36 points per item $/$ data acquisition
4 CASES:
CGORN-N CGORN-W CGORN-N CGORN-W
9 SUBJECTS:

1	2	3	4	5	6	7	8	9

meters
degrees
yean sto dev max mag min mag mean sto dev max mag min mag

altitude errgr								
descent marker to end turn								
segment mean	-1.3	4.3	12	0	-0.010	0.038	0.12	0.00
segment mean magnitude	5.6	2.9	14	1	0.042	0.036	0.15	0.00
segment standard deviation	5.5	2.9	16	2	0.012	0.022	0.09	0.00
END OF TURN	-1.2	5.2	23	0	-0.027	0.163	0.57	0.00
END OF TURN (MAgnitude)	3.2	4.2	20	0	0.109	0.124	0.57	0.00
END TURN TO 30.5M								
segment mean	-0.4	3.2	12	0	-0.011	0.173	0.56	0.00
Segment mean magnitude	1.9	2.6	12	0				
Sfgment staniard deviation	1.1	1.4	6	0	0.085	0.132	0.53	0.00
30.5M	-0.5	2.0	10	0	-0.087	0.264	1.31	0.00
30.5M (Magnitude)	0.8	1.9	10	\bigcirc	0.152	0.233	1.31	0.00

30.5 m was 0.7 m (with standard error of 0.3 m) for straight-in cases and 0.9 m (with standard error of 0.2 m) for curved cases. At other points the differences were as large as a couple of meters, but, in the practical physical sense, altitude flying differences were not significant in the various comparisons.

6. Conclusions

This section summarizes the key findings in Section 5 and presents conclusions and recommendations on flying curved approaches. These conclusions must be evaluated in light of the limited experimental program. Before curved approach procedures are standardized, a more extensive experimental program involving more subjects and actual flight testing will obviously be required. The following are the conclusions and recommendations from this limited curved approach test program:

1. Pilots can fly curved instrument approaches with a conventional ILS display modified to show the current nominal heading on the curve. However, crosstrack errors are increased. These errors are on the order of twice or three times as large at the end of the turn as the errors at the same altitude for a straight-in approach. After the end of the turn, the difference in crosstrack errors between curved and straight-in approaches diminishes.
2. Vertical profile (altitude) performance is not deteriorated to any physically significant extent when flying horizontally curved approaches.
3. Pilot acceptance of curved approaches may not correspond with acceptable pilot performance in flying curved paths. Some pilots who flew the simulator well expressed reservations about flying curves in real aircraft. While no pilot expressed an outright unwillingness to fly actual curved approaches, some said they would fly curved approaches only when
certain conditions were met. It should be noted that other pilots expressed no reservations at all about flying curved approaches.
4. Pilot performance will improve with more extensive training. Not only will mean errors be decreased, but the "tails" of the error distribution will be notably decreased. A number of the large errors resulted when pilots, because of their lack of experience in flying curved approaches, initially reacted to a building deviation with the wrong control action. These momentary "wrong way" reactions will disappear as pilots "get the feel" of flying curved approaches.
5. Wind, at least at a moderate velocity, does not adversely affect performance in flying curved approaches. The wind compensation described in Section 3.2 is apparently not required. Most test subjects felt that wind made flying curves more difficult, and errors in the turn were higher with wind. However, the errors at the end of the turn were no different with and without wind.
6. There was no major difference in performance between 60° and 90° turns. As with the wind,'no wind comparison, differences which occurred in the turn disappeared by the end of the turn. This is especially significant in light of the MLS acquisition delays with 90° turns encountered in the test cases. Apparently,
moderate "disturbances" at the initiation of the approach can be overcome. About half of the pilots felt 60° turns were easier.
7. When pilots have a crosstrack deviation in a turn, the deviation is more likely to be on the outside of the curved path than the inside.
8. There is probably no difference between performances on the left and right turns. The statistical difference at 30.5 m altitude noted in Section 5 is probably just chance. However, in future testing, the possibility of difference, though remote, should be considered.
9. A flight director would probably enhance curved approach performance and would increase pilot confidence. Though conventional ILS displays seem adequate, alternate presentations should be investigated.
10. Curved path parameters as presented in these test cases seem acceptable. There is universal accept ance of the 10° nominal bank angle, though this could possibly be increased to 15°. Increasing the 122 m (400 ft) end of turn altitude to 152 m (500 ft) or even 183 m (600 ft) would increase the likelihood of pilot acceptance and might enhance safety.
11. Operational and safety aspects of flying curved
approaches, such as a low altitude engine failure in a steep bank, must be investigated in addition to pilot performance.

- 95 -

APPENDIX A

SUBJECT QUESTIONNAIRE

LGS Curved Approach Questionnaire

Please answer the following questions. Feel free to add any comments or explanations when desired and to inquire about any question whose meaning is unclear. Thank you.

1. How do you compare curved approaches with conventional ILS approaches?
\qquad Curved much harder
\qquad Curved a little harder
\qquad About the same
\qquad Curved easier
2. How does a wind shear affect the ease of flying a curved approach?
\qquad Much harder with wind than with no wind
\qquad A little harder with wind
About the same with or without wind
3. How do you compare the disturbing effect of wind on a curved approach with the disturbing effect of wind on a straight-in approach?
Wind affects curved more
About the same
Wind affects straight-in more
4. After training, do you feel that pilots will require a marker light to emphasize the end of turn?
Yes
No
Don't know
5. Do you find a difference in ease of flying between a 60° turn and a 90° turn?
60° easier
About the same
90° easier
6. With more training, do you think that you would be willing to fly curved approaches (as simulated in this testing) in instrument meteorological conditions?
\qquad
_ Don't know
7. Would you like to see a change (from 400 feet) in the altitude at the end of the turn?
\qquad) No
8. Would you like to see a change in the nominal turn bank angle from 10° ?

Yes (If so, to what? \qquad) No
-100 -
9. With these changes would you be willing to fly curved approaches in instrument meteorological conditions?
\qquad
\qquad
\qquad Don't know
10. Would you be willing to fly curved approaches if the weather conditions were such that the runway would be visible before the end of turn?

A PPENDIX B

page 1

9 POINTS PER ITEM / DATA ACQUISITIJN

1 CASES:
STRTN-N

9 SUBJECTS:

		123	4	56		8	9							
						M ET	ERS					DEGRE		
				MEAN	Sto	D DEV	max	MAG	MIN	Mag	MEAN	STD DEV	MAX MAG	MIN MAG
CROSSTRAC	CK ERROR													
DESC	CENT MARKER	ER TO END TURN												
	SFGMENT	MFAN		-8.8		19.8		44		0	-0.037	0.091	0.21	0.00
	SEGMENT	mean magnitude		21.4		10.7		44		9	0.097	0.060	0.21	0.03
	SEGMENT	Stavdard deviation		17.3		5.3		25		8	0.097	0.046	0.18	0.03
END	OF TURN			-6. 3		15.9		42		0	-3. 062	0.156	0.42	0.00
END	OF TURN	(MAGNITUDE)		10.9		13.0		42		0	0.102	0.133	0.42	0.00
END	TURN TO 30	30.5M												
	SEGMENT	MEAN		-8.7		6.7		22		3	-0.087	0.065	0.21	0.03
	SEGMENT	me $A N$ magnitude		10.2		5.5		2.4		5	0.101	0.063	0.25	0.03
	SEGMENT	STANDARD DEVIATION		6.7		4.1		17		3	0.083	0.046	0.21	0.06
30.5				-5.3		13.2		32		0	-0.074	0.182	0.45	0.00
30.5	$5 M$ (MAGNIT	TUDE)		10.2		9.9		32		0	0.139	0.139	0.45	0.00

```
PAGE 2
9 POINTS PER ITEM / DATA ACQUISITION
l CASES:
    STRTN-N
9 SURJECTS:
    1
```


METERS

mean std dev yax mag min mag mean sto dev max mag min mag

ALTITUDE FRPCR

PAGE 1

9 POINTS PER ITEM / DATA ACQUISITION

1 CASES:
STRTN-W

9 SUBJECTS:
METERS
MEEGREES
STD DEV MAX MAG MIN MAG MEAN STO DEV MAX MAG MIN MAG

CROSSTRACK ERROR								
descent marker tin end turn								
SEGMENT MEAN	-12.0	14.5	37	2	-0.050	0.071	0.18	0.00
SEgment mean magnitude	20.2	8.4	37	8	0.087	0.043	0.18	0.03
SEGMFNT STANDARD DEVIATION	18.7	6.0	26	9	0.093	0.030	0.12	0.03
END DF TURN	0.6	14.1	32	0	-0.002	0.136	0.32	0.00
END OF TURN (MAGNitude)	13.3	9.6	32	0	0.096	0.097	0.32	0.00
END TUPN TO 30.5M								
SEGMENT MEAN	-0.8	13.0	24	1	-9.006	0.144	0.28	0.00
SEgment mean magnitude	10.9	7.5	24	2	0.111	0.093	0.28	0.00
SEGMENT Standard deviation	5.6	2.8	9	1	0.073	0.045	0.12	0.00
30.5M	3.8	11.7	27	0	0.054	0.160	0.37	0.00
30.5M (MAGNITUDE)	8.0	9.3	27	0	0.110	0.129	0.37	0.00

PAGE 2

```
9 POINTS PER ITEM / DATA ACQUISITION
1 CASES
    STRTN-W
9 SUBJECTS:
\begin{tabular}{lllllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9
\end{tabular}
```

METERS DEGREES
MEAN STD DEV MAX MAG MIN MAG MEAN STD DEV MAX MAG MIN MAG

DESCENT MARKER TO END TURN

	SEGMENT	MEAN	5.6	5.7	18	0	0.033	0.039	0.12	0.00
	SFGMENT	mean magnitude	7.9	4.6	18	2	0.047	0.035	0.12	0.00
	SEGMENT	Standard deviation	6.7	3.3	12	1	0.029	0.028	0.09	0.00
END	OF TURN		-1.0	2.7	5	0	-0.029	0.078	0.15	0.00
END	OF TURN	(magnitude)	2.3	1.7	5	0	0.071	0.342	0.15	0.00
END	TURN TO	30.5 M								
	SEGMENT	MFAN	-0.3	1.1	3	0	0.010	0.060	0.12	0.00
	SEGMENT	mean magnitude	1.0	0.9	3	0				
	SEGMENT	Standard deviation	0.8	0.6	2	0	0.030	0.028	0.09	0.00
30.5M			0.1	1.3	3	0	0.009	0.189	0.39	0.01
30.5M (MAGNITUDE)			0.8	1.0	3	0	0.149	0.117	0.39	0.01

```
    PAGE 1
    9 POINTS PEO ITFM / DATA ACQUISITION
    1 CASES:
    CGORN-N
    9 SUBJECTS:
        1
METERS
MEAN SEGES
STD DEV MAX MAG MIN MAG MEAN STD DEV MAX MAG MIN MAG
```

CROSSTRACK EPRIR

PAGE 2

9 POINTS PER ITEM / DATA ACQUISITION

1 CASES:
C. 6 PR $N-V$

9 SURJECTS:

1	2	3	4	5	6	7	8	9

METERS
DEGREES
MEAN STD DEV MAX MAG MIN MAG MEAN STD DEV MAX MAG MIN MAG

ALT ITUNE EPRCR

-0.027	0.030	0.09	0.00
0.027	0.030	0.09	0.00
0.013	0.021	0.06	0.00
-0.126	0.186	0.57	0.01
0.150	0.167	0.57	0.01
	0.183	0.56	0.00
-0.123	0.169	0.53	0.00
-0.324	0.397	1.31	0.01
0.324	0.397	1.31	0.01

PAGF 1

9 POINTS PER ITEM / DATA ACQUISITION

1 CASES:
C6ORN-W

9 SUBJECTS:

1	2	3	4	5	6	7	8	9

METERS \quad DEGREES
MEAN STD DEV MAX MAG MIN MAG MEAN STD DEV MAX MAG MIN MAG

CROSSTRACK ERROR

DESCENT MARKER TO END TURN									
SEGMENT MEAV	8.0	23.8	40	5	0.027	0.114	0.21	0.00	∞
segment mean magnitude	32.2	15.7	72	19	0.171	0.391	0.40	0.09	
SEGMENT StANDARD DEVIATION	22.6	7.6	35	9	0.174	0.100	0.43	0.09	
END OF TURN	6.1	37.9	71	4	0.061	0.382	0.73	0.03	
END OF TURN (MAGNitude)	30.8	22.9	71	4	0.306	0.237	0.73	0.03	
END TURN TO 30.5M									
SEGMENT MEAN	-4.3	9.3	19	0	-0.350	0.091	0.21	0.00	
Sfgment mean magnitude	16.4	9.6	38	6	0.176	0.111	0.43	0.06	
SEGMENT Standard deviation	14.4	11.9	41	3	0.166	0.133	0.46	0.06	
30.5M	-6.9	15.3	33	6	-0.091	0.212	0.46	0.07	
30.5M (MAGNITUDE)	14.2	8.9	33	6	0.193	0.126	0.46	0.07	

```
    PAGE 2
    9 POINTS PER ITEM / DATA ACQUISITION
1 CASES:
    C6ORN-W
9 SUBJFCTS:
    1
METERS
DEGREES
MEAN STD DEV MAX MAG MIN MAG MEAN STD DEV MAX MAG MIN MAG
```

ALTITUDE ERROR

DESCENT MARKER TO END TURN

	SEGMENT	MEAV	1.7	2.7	6	0	0.007	0.024	0.06	0.00	$\stackrel{\rightharpoonup}{\circ}$
	SEGMENT	mean magnitude	4.2	1.3	6	2	0.020	0.020	0.06	0.00	1
	SEGMENT	STANDARD DEVIATION	4.2	1.6	8	2	0.037	0.012	0.03	0.00	
END	Of turn		-1.1	5.1	15	0	-0.031	0.143	0.42	0.00	
ENO	OF TURN	(magnitude)	2.9	4.4	15	0	0.392	0.122	0.42	0.00	
END	TURN TO 30.5M										
	SFGMENT	MEAN	-0.1	1.5	4	0	0.007	0.060	0.12	0.00	
	SEGMENT	mean magnit tude	0.9	1.3	4	0					
	SFGMENT	Standard deviation	0.8	1.2	4	0	0.030	0.032	0.09	0.00	
30.5			3.3	0.3	0	0	-3.010	0.070	0.12	0.00	
30.5	SM (MAGNIT	tudes	0.0	0.0	0	0	0.059	0.040	0.12	0.00	

PAGE 1

9 PIINNTS PFR ITFM / DATA ACDUISITION

1 CASES:
C6OLN-N

9 SUBJECTS:

1	2	3	4	5	6	7	8	9

METERS
DEGREES
MEAN STD DEV MAX MAG MIN MAG MEAN STD DEV MAX MAG MIN MAG

CROSSTRACK ERROP									
DESCENT MAQKER TI END TURN									1
SFGMENT MEAN	-11.t	8.4	21	2	-0.070	0.047	0.12	0.00	$\stackrel{\square}{\square}$
SEGMENT MEAN MAGNITUDE	24.0	9.3	42	9	0.131	0.069	0.28	0.03	1
SEGMFNT STANDARO DEVIATION	27.7	15.4	64	11	0.182	0.118	3.46	0.06	
FND JF TURN	-16.0	38.1	109	6	-0.160	0.384	1.10	0.06	
ENO OF TURN (MAGNITUDF)	28.2	30.1	109	6	0.282	0.305	1.10	0.06	
FND TUPN TH 30.5M									
SFGMENT MEAN	-1.8	18.3	35	3	-0.002	0.201	0.40	0.03	
SFGment mean magnitude	18.6	11.4	35	5	0.198	0.131	0.40	0.03	
SFGMENT Standard deviation	10.9	11.3	42	2	0.124	0.123	0.46	0.03	
3). 5 M	-2.1	13.2	26	1	-0.028	0.177	0.35	0.01	
30.5M (MAGNITUNE)	10.6	8.2	26	1	0.141	0.110	0.35	0.01	

```
PAGE 2
g POINTS PER ITEM / DATA ACQUISITION
1 CASES:
C6OLN-N
9 SURJECTS:
1
METERS DEGREES
MEAN STD DEV YAX MAG MIN MAG MEAN STD DEV MAX MAG MIN MAG
```

ALTITUDE ERROR

DESCENT MARKFR TO END TURN

	SEGMENT	MEAN	-3.8	4.6	15	0	-0.033	0.037	0.12	0.00
	SEGMENT	mean magvitude	6.0	3.9	15	2	0.040	0.035	0.12	0.00
	SEGMENT	Standard deviation	6.1	2.8	10	2	0.017	0.029	0.09	0.00
END	DF TURN		-2.7	5.4	16	1	-0.077	0.155	0.46	0.03
END	OF TURN	(MAGNITUDE)	3.8	4.7	16	1	0.112	0.132	0.46	0.03
END	TURN TO	3). 5 M								
	SFGMENT	MEAN	-0.9	4.5	12	0	-0.054	0.214	0.59	0.00
	SEGMENT	mean magnitude	2.8	3.7	12	0				
	SEGMENT	Standard dfviation	1.6	1.2	3	0	0.109	0.171	0.56	0.00
30.5M			-1.6	2.1	6	0	-0.220	0.296	0.82	0.04
30.5M (MAGNITUDE)			1.6	2.1	6	0	0.260	0.261	0.82	0.04

```
PAGE 1
9 POINTS PFR ITEM / DATA ACQUISITION
1 CASES:
    C6OLN-W
9 SURJECTS:
```

 \(\begin{array}{lllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9\end{array}\)
 METERS
DEGREES
MEAN STD DEV MAX MAG MIN MAG MEAN STO DEV MAX MAG MIN MAG

CROSSTRACK ERROR								
descent marker to end turn								
SEGMENT MEAN	-18.8	23.7	59	2	-0.069	0.131	0.28	0.00
segment mean magvitude	39.6	12.1	60	18	0.208	0.060	0.28	0.09
SEgment standard deviation	38.4	10.9	54	20	0.229	0.075	0.34	0.09
END OF TURN	8.8	42.6	76	6	0.089	0.432	0.78	0.06
END OF TURN (MAGNitude)	36.3	23.9	76	6	0.367	0.245	0.78	0.06
END TURN TO 30.5M								
SEGMENT MEAN	5.2	29.0	55	4	0.071	0.321	0.65	0.03
segmfnt mean magnitude	24.9	16.3	55	8	0.270	0.193	0.65	0.06
SEGMENT Standard deviation	10.6	3.5	17	6	0.133	0.040	0.21	0.09
30.5M	2.0	13.9	30	1	0.031	0.193	0.43	0.00
30.5M (MAGNITUDE)	11.6	8.0	30	1	0.156	0.118	0.43	0.00

PAGE 2

9 PDINTS PFR ITEM / DATA ACQUISITION

1 CASES:
C6OLN-W

9 SUBJFCTS:
$\begin{array}{lllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9\end{array}$

	METERS				DEGREFS						
	MEAN	STD DEV	MAX	MAG	MIN	MAG	MEAN	Sto dev	max mag	MIN MAG	
ALTITUDE ERROR											
descent marker th end turn											
SEGMENT MEAN	-0.8	5.5		11		0	-0.010	0.040	0.06	0.00	$\stackrel{\sim}{\sim}$
SEGMENT MEAN MAGNITUDE	6.3	2.4		11		3	0.047	0.015	0.06	0.03	1
SEGMENT Standard deviation	4.8	2.3		9		1	0.020	0.020	0.06	0.00	
END OF TURN	-3.6	3.3		8		\bigcirc	-0.319	0.098	0.21	0.03	
END OF TURN (MAGNITUDE)	2.6	2.2		8		0	0.083	0.055	0.21	0.03	
END TURN TO 30.5M											
SEGMENT MEAN	0.3	0.9		2		0	0.017	0.053	0.12	0.00	
SEGMENT MEAN MAGNitude	0.9	1.1		3		0					
SEgment stavdard deviation	1.1	0.7		3		0	0.020	0.032	0.09	0.00	
30.5M	0.1	0.9		2		0	0.011	0.167	0.25	0.00	
30.5M (MAGNITUDE)	3.6	3.7		2		\bigcirc	0.149	0.077	0.25	0.00	

PAGE 1
9 POINTS PER ITEM / DATA ACQUISITION
1 CASES:
CGORN-N

9 SUBJFCTS:

1	2	3	4	5	6	7	8	9

METERS
MEGREES
MEAN DEV MAX MAG MIN MAG MEAN STD DEV MAX MAG MIN MAG

CROSSTRACK ERROR

DESCENT MARKER TO END TURN

	SEGMENT	MEAN	7.1	25.9	40	5	0.064	0.167	0.31	0.03
	SFGMENT	mfan magnitune	37.0	12.1	61	19	0.228	0.099	0.43	0.09
	SEGMENT	standard neviation	32.2	11.7	52	17). 247	0.131	0.53	0.09
END	OF TURN		27.4	38.4	107	0	0.311	0.429	1.20	0.00
END	Of TURN I	(MAGNITUDE)	34.8	31.9	137	\bigcirc	0.389	0.360	1.20	0.00
END	TURN TO 3	30.5M								
	SEGMENT	MEAN	10.4	33.9	95	0	0.128	0.413	1.18	0.00
	SFGMENT	MEAN MAGNITUDE	23.9	26.6	95	4	0.277	0.337	1.18	0.03
	SEGMENT	STANDARD DEVIATIDN	8.3	3.8	15	4	0.100	0.040	0.15	0.03
30.5			0.9	29.1	71	1	3.016	0.405	1.00	0.00
30.5	M IMAGNIT	TUDE)	22.4	18.5	71	1	0.309	0.263	1.00	0.00

PAGE 2

9 PIINTS PFR ITFM / DATA ACRUISITION

1 CASES:
COORN-N

9 SUBJFCTS:
$\begin{array}{lllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9\end{array}$

METERS
yean sti dev max mag min mag

DEGREES
MEAN STD DEV MAX MAG MIN MAG

ALTITUNE EDRCR

DFSCENT MAKKER TO END TURN												
	SFGMENT	MFAN		-3.1	3.6	10	\bigcirc	-3.020	0.032	0.39	0.00	π
	SEGMENT	MEAV MAG	ItUDE	6.4	2.5	10	2	0.053	0.027	0.09	0.00	
	SEGMENT	STANIARD	deviation	6.3	2.4	9	3	0.010	0.020	0.06	0.00	
END	OF TURN			-0.2	4.2	8	0	-0.006	0.167	0.31	0.01	
EnN	dF turn i	imagnituo		3.1	2.9	8	0	0.128	0.107	0.31	0.01	
END TURN TO 3J. 5 M												
	Sfgment	MFAN		0.6	3.8	9	0	0.030	0.231	0.53	0.00	
	SEGMENT	MEAN MAG	Itude	2.6	2.8	9)					
	SEGMENT	STANDARD	deviation	1.1	1.5	5	0	0.140	0.159	0.50	0.00	
30.5M				0.1	1.2	2	0	0.003	0.174	0.31	0.03	
3).5M (MAGNITUDE)				0.8	0.9	2	0	0.141	0.101	0.31	0.03	

PAGE 1

```
9 pOINTS PER ITEM / DATA ACQUISITION
1 CASES:
    C9ORN-W
9 SUBJECTS:
1
```

METERS mean std dev yax mag min mag

MEAN起

DFGREES
STD DEV MAX MAG MIN MAG

CROSSTRACK ERROR

DESCENT MARKER TO END TURN
SFGMENT MEAN
SEGMENT MEAN MAGNITUDE
segment staviard deviation

END OF TURN
END DF TIJRN (MAGNITUDE)

END TURN TO 30.5M
SEGMENT MEAN
SEGMENT MEAN MAGNitude
SFgMFNT standard deviation

SfgMFNT STANDARD DEVIATION
30.5M
3). 5M (MAGNITUDE)

34.6	50.9	158	0
60.2	41.9	172	32
47.4	14.6	76	30
18.2	38.1	105	3
27.8	31.8	105	3

0.158	0.295	0.87	0.30
0.330	0.236	0.96	0.18
0.343	0.165	0.68	0.18
0.208	0.425	1.18	0.03
0.308	0.360	1.18	0.03

9.6	25.4	68	0	0.113	0.299	0.81	0.00
21.9	18.1	68	4	0.239	0.219	0.81	0.03
10.6	6.0	21	4	0.139	0.075	0.28	0.03
0.9	20.4	35	4	0.014	0.299	0.50	0.04
17.6	10.4	35	4	0.248	0.151	0.50	0.04

PAGE 2

9 POINTS PER ITEM / DATA ACQUISITION

1 CASES:
C9ORN-W
a SUBJECTS:

1	2	3	4	5	6	7	8	9

METERS
yEAR STO DEV MAX MAG MIN MAG MEAN STD DEV MAX MAG MIN MAG

ALTITUDE ERRCR

DESCENT MARKER TO END TURN

SEGMFNT MEAN

-0.7	5.4	12	0
7.6	3.4	14	3
7.1	3.9	16	3
1.2	1.9	4	0
1.7	1.6	4	0

0.000	0.051	0.12	0.00
0.067	0.042	0.15	0.03
0.017	0.029	0.09	0.00
0.053	0.079	0.17	0.00
0.076	0.058	0.17	0.00
0.044	0.111	0.28	0.00
0.058	0.082	0.25	0.00
-0.019	0.107	0.21	0.01
0.086	0.067	0.21	0.01

SEGMENT MEAN MAGVITUDE
SEGMENT STANDARD DFVIATION

END DF TURN
END DF TURN (MAGVITUDE)

END TURN TO 30.5 M
SEGMENT MFAN
SFGMENT MEAN MAGNITUDE

SEGMENT STANDARD DEVIATION
30.5 M
30.5M (MAGNITUDF)

0.8	1.5	4	0

PAGE 1

```
9 POINTS PED ITFM / DATA ACQUISITIJN
1 CASES:
C9OLN-N
9 SURJFCTS:
1
```

METERS
MFA's STE DEV YAX YAG MIN MAG MEAN

DEGREES
STD DEV MAX MAG MIN MAG

CROSSTPACK FPROR

	SFGMENT	MEAV		-8.1	24.4	57	4	-0.079	0.174	0.43	0.03
	SEGMENT	MEAN MAG	Itune.	39.7	15.9	61	21	0.244	0.119	0.43	0.12
	SEGMENT	StAVDAPD	deviation	42.4	15.8	73	26	0.282	0.137	0.56	0.18
END	OF TURN			-26.6	53.7	159	3	-0.299	0.605	1.70	0.03
END	רF TURN ((MAGVITU0		40.1	44.4	150	3	0.448	0.505	1.70	0.03
FND TUPN TO 30.5 M											
	SEGMENT	MEAN		-8.3	30.7	72	3	-0.101	0.368	0.87	0.03
	SEGMENT	MEAN MAG	itune	23.8	21.5	72	4	0.280	0.265	0.87	0.03
	SEGMFNT	Stannard	deviatinn	10.9	13.5	38	3	0.124	0.120	0.43	0.03
30.54				-2.7	15.7	34	0	-0.041	0.222	0.48	0.00
30.5M (MAGNITUDE)				11.1	11.4	34	0	0.154	0.164	0.48	0.00

PAGF 2
9 PIINTS PFP ITEM / DATA ACQUISITION

1 C.ASFS:
(9) LN-N

9 SIJBJECTS:

1	2	3	4	5	6	7	8	9

METERS
DEGREES
MEAN STD DEV MAX MAG MIN MAG MEAN STD DEV MAX MAG MIN MAG

ALTITUDE ERROR

Page 1

9 POINTS PFR ITFM / DATA ACQUISITION

1 CASES:
C.OOLN-W

9 SUBJECTS:
$\begin{array}{lllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8\end{array}$

METERS
MEAN STD DEV MAX MAG MIN MAG ean sto dev max mag min mag

CROSSTRACK ERROR

	SEGMENT	MEAN	-33.8	48.4	152	5	-0.144	0.249	0.75	0.03
	SEGMENT	mean magnitude	56.8	39.5	152	14	3.316	0.293	0.75	0.06
	SEGMENT	Stavoard deviation	49.7	20.1	75	14	0.334	0.174	0.71	0.09
END	OF TURN		17.0	24.4	54	6	0.188	0.272	0.60	0.06
END	DF TURN I	(MAgNitude)	25.)	16.2	54	6	0.277	0.181	0.60	0.06
END TURN TO 30.54										
	SFGMENT	MEAV	11.9	13.3	34	6	0.132	0.156	0.40	0.06
	SEGMENT	mean magvitude	16.8	8.0	34	6	0.192	0.095	0.40	0.06
	SEGMENT	Standard deviation	8.6	5.3	22	4	0.118	0.055	0.25	0.06
30.5M			7.3	16.0	31	3	0.106	0.222	0.43	0.04
30.5M (MAGNIT JDE)			14.7	9.7	31	3	0.203	2. 138	0.43	0.04

```
    PAGE 2
1 CASES:
    C9OLN-W
9 SUBJECTS:
1
meters degrees
MEAN STD DEV MAX mAG min mag mean StD dev max mag min mag
```

```
9 POINTS PER ITEM / DATA ACQUISITION
```

```
9 POINTS PER ITEM / DATA ACQUISITION
```

ALTITUDE ERROR
DESCENT MARKER TI END TURN
SEGMENT MEAN
SEGMENT MEAN MAGVITUDE

END OF TURN
END MF TURN (MAGNitude)

END TURN TO 30.5M
SEGMENT mean
SEGMENt mfan magnitude
ENT STANDARD DEVIATION
30.5M
30.5M (MAGNITUDE)

REFERENCES

1. A New Guidance System for Approach and Landing, Volume 1 , Radio Technical Commission for Aeronautics, December 1970.
2. National Plan for Development of the Microwave Landing System, Federal Aviation Administration, Department of Defense, National Aeronautics and Space Administration, July 1971.
3. Klass, Philip, J., "Microwave Landing Study Complete", Aviation Week and Space Technology, 19 October 1970.
4. Cherry, George W., Mackinnon, Duncan, and DeWolf, Barton, \underline{A} New Approach and Landing System: Help for Our Trouble Terminal Areas, R-654, Charles Stark Draper Laboratory, Massachusetts Institute of Technology, March 1970.
5. "FAA to Propose Use of Microwave ILS", Aviation Week and Space Technology, 10 July 1972.
6. Imrich, Thomas, Concept Development and Evaluation of Airborne Traffic Displays, Massachusetts Institute of Technology Flight Transportation Laboratory, Report R7l-2, June 1971.
7. Howell, Jack, Simulator Evaluation of Pilot-Derived Assurance from an Airborne Traffic Situation Display, Massachusetts Institute of Technology, Federal Aviation Administration Report No. FAA-EM-72-3, February 1972.
8. Cherry, George W., De Wołf, Barton, and Mackinnon, Duncan, Increasing Airport Capacity and Terminal Area Safety by Means of the Scanning Beam Instrument Landing System, E-2516, Charles Stark Draper Laboratory, Massachusetts Institute of Technology, July 1970.
