
FLIGHT TRANSPORTATION LABORATORY REPORT R87-8

A FLEXIBLE SCHEDULING ENVIRONMENT USING
DYNAMIC EXCEPTION HANDLING

by

Peter H. Appel

May, 1987

FLIGHT TRANSPORTATION LABORATORY REPORT R87-8

A FLEXIBLE SCHEDULING ENVIRONMENT USING DYNAMIC
EXCEPTION HANDLING

by

PETER H. APPEL

ABSTRACT

A generalized environment which facilities the development of various types of
schedules has been developed. This environment includes an extensive user
interface in which a graphics terminal and a mouse is used to display and ma-
nipulate schedules. A common data structure is used for representing schedules;
this data structure is flexible enough to allow for the different amounts of infor-
mation required by different scheduling problems.

In developing algorithms to be used in conjunction with this scheduling en-
vironment, an attempt has been made to address the situation that has faced
automated airline scheduling systems in the past - that there are such a large
number of pieces of information specific to each scheduling situation that it is
hard to incorporate this "knowledge" into a deterministic algorithm. The so-
lution that is proposed can be called dynamic exception handling. This system
will allow an individual to communicate these specific piece of information to
the automated system in a way that will allow the special cases to be handled
with a minimum los of efficiency.

Acknowledgements

While I have been doing this research, many people have provided advice,
encouragement, and inspiration. I would like to take this opportunity to thank
a few of them. First, I would like to thank Professors Robert Simpson and
Dennis Mathaisel, who taught me a great deal about airline scheduling and
gave me many ideas for my research. I would like to thank Lyman Hazelton
for many enlightening conversations about Artificial Intelligence and countless
other topics. Dr. John Pararas and Mark Kolb always seemed to be there when
I had a question about the implementation of my system, and I thank them for
their patience.

I am grateful to Dr. Kenneth Sealy of the London School of Econmics, who
introduced me to many topics within the field of transportation in general and
the airline industry in particular, encouraging further work in the field that has
led me to many fascinating pursuits. Finally, I would like to thank my parents,
who always believed in me.

Contents

1 Introduction

2 The Representation Of Transportation Schedules
2.1 Reasons For Generalization Of The Problem
2.2 A Generalized Data Structure For Transportation Scheduling

3 An Interactive Graphics Scheduling Environment
3.1 The Time Chart Display .

3.1.1 Link Operations .
3.1.2 Schedule Display Modes
3.1.3 Data File Input and Output
3.1.4 The Algorithm Interface

3.2 The Station Display .

4 Dynamic Exception Handling
4.1 Exceptions In The Scheduling Process . . .
4.2 A Model For Exception Representation . . .
4.3 The Rule Base

4.3.1 The Structure of Prolog Predicates .
4.3.2 Exception Handler Predicates

4.4 An Aircraft Rotation Scheduling Algorithm
Dynamic Exception Handling
4.4.1 A Description Of The Algorithm
4.4.2 Examples Of The Rotation Assignmc

Which Incorporates
..

nt Process

5 Incorporation Of Other Scheduling Algorithms
5.1 Reducta: A Fleet Reduction Algorithm
5.2 Gate Scheduling .
5.3 Other Scheduling Problems
5.4 Conclusions .

8
8
9

12
14
17
19
25
26
27

32
32
34
38
39
41

42
44
50

61
61
76
84
86

. .

Chapter 1

Introduction

Scheduling problems - whether they involve aircraft rotations, airline crews, or

other items in transportation and other fields, have many characteristics in com-

mon. When developing computer software to solve these problems we can take

advantage of these similarities. Ideally, the developer of scheduling algorithms

should be able to work in an environment in which those characteristics common

to many scheduling problems serve as a basis and in which there are sufficient

tools and sufficient flexibility to develop a wide variety of scheduling systems.

Within the field of airline scheduling, there have been several types of ap-

proaches to the problems of optimizing aircraft schedules. Ideally, there would

be a "black box" which - when fed in information about demand for service,

characteristics of routes and of aircraft, and other relevant factors - would pro-

duce the optimal schedule, maximizing some factor such as total profit from

the service. However, no such system has been developed, because of the num-

ber of barriers facing its development. Some of these problems are discussed

by Etschmaier and Mathaisel [3] One problem is that it is hard to express the

objectives or an airline in purely monetary terms - there are often many other

goals that must be addressed. In addition, the constraints to the scheduling

process are also hard to define - factors that deal with interactions between

people (such as in regulatory agencies) are hard to quantify. Perhaps one of the

greatest barriers to a large automated system which encompasses all constraints

and objectives of the scheduling process is that all of these details are continually

changing. Whereas it might theoretically be possible to create a process which

incorporated a very large number of details about how a schedule should be con-

structed, the process of maintaining the day-to-day accuracy of this information

might prove more complicated than the development of the system itself.

From within the fields of operations research and network analysis there

have emerged several tools which can perform schedule optimizations given a

limited, definable set of constraints. These include the application of network

flow algorithms such as the out-of-kilter algorithm to a set of arcs representing

flight segments constrained by a set of costs, representing factors such as revenue

on a flight. Other heuristic algorithms have been developed with the goal of

reducing the number of aircraft required to serve a given schedule. However,

no model currently in place is able to consider every possible constraint and

objective of the scheduling process.

The fact that a computer cannot, thus far, solve the entire scheduling prob-

lem certainly does not preclude it it from assisting in the process. In its manual

form, scheduling is a time-consuming, tedious process. A typical manual schedul-

ing situation might involve large wall charts on which slips of paper representing

flight segments are placed horizontally on the chart, and then continually ma-

nipulated to try to conform to the numerous constraints to the process - some

documented in reference books and others stored in the minds of the humans

who have been preparing the schedules for years. Changes to the schedule can

create an extensive amount of work if they, as is typical, affect a large number

of flight segments.

The response to this situation has been the development of interactive tools

on computer workstations to simulate and automate the manual scheduling pro-

cess. Deckwitz [21 has developed software on graphics-oriented workstations, in

which flight segments are represented graphically on the display and can be ma-

nipulated with a mouse. Once a system was developed in which aircraft flight

schedules could be developed, represented, and manipulated, further steps were

taken to incorporate optimization algorithms into this process. Van Cotthem

[6] developed a system in which the out-of-kilter algorithm is incorporated into

the interactive scheduling workstation; this system was designed to be used at

the rescheduling stage.

At this point, it is worthwhile to determine - based on the scheduling systems

that have been developed in the past - what characteristics a future scheduling

system should possess. Two important characteristics seem apparent. First,

a system should have the the flexibility to handle a large group of scheduling

problems. In the airline situation, the scheduling process has several distinct

phases and there are several resources to be assigned; a scheduling system which

was oriented toward use in many of these situations would be desirable. Second,

the system should address the problem of how to deal with those constraints and

objectives which are difficult to define in standard mathematical programming

or mathematical optimization formulations.

Chapter 2

The Representation Of
Transportation Schedules

2.1 Reasons For Generalization Of The Prob-
lem

Several pieces of software have been developed which solve various schedule

optimization problems; much of the code in these programs has been devoted to

schedule representation as opposed to schedule optimization. In order to incor-

porate an optimization algorithm into a scheduling process, it is first necessary

to define the appropriate data structures containing information and constraints

which serve as input to the algorithm. One then must develop schedule manipu-

lation software (or modify existing software) which will manipulate data in this

form. Finally, the schedule manipulation software must be interfaced with the

algorithm to be incorporated.

The existence of this large amount of overhead hinders the development

of, and experimentation with, schedule optimization algorithms. Ideally, the

schedule representation component of the software could be generalized and

in turn easily interfaced with prototypes of schedule optimization algorithms.

This would require a common data structure which would be used to represent

various different types of structure. A generalized data structure to represent

transportation scheduling systems is presented herein.

2.2 A Generalized Data Structure For Trans-
portation Scheduling

In examining the different types of scheduling problems we seek to solve,

we observe that they all involve scheduling similar objects, and we shall call the

object that we are scheduling an event. Events possess certain basic components.

They occur at a particular time and at a particular location. The third basic

component is the type of event, such as an aircraft arrival or the start of a college

class.

Beyond the basic pieces of information that define an event, there can be a

variable number of auxiliary attributes which provide further information about

the event. These attributes might include information about how much the

event can be shifted in time, directives to the scheduling process about how

other events can be scheduled relative to it, and any other information that

might be relevant to the scheduling situation. Because the number of attributes

can vary depending upon the scheduling problem being solved (and, within

one scheduling situation, depending upon the particular event), it is useful to

represent the set of attributes as a list of variable length.

The event data structure can be represented as shown in figure 2.1.

Event

Time Type Location Attributes

Figure 2.1: The Event Data Structure

The representation of this data structure in the Prolog language is as follows:

event (Time ,Type .LocationAttributes)

where Time is simply a numeric representation of the time, Location is a charac-

ter string representation of the location (for example an airport station name),

and Attributes is a list, containing a set of pairs of the form

[AttributeName , Attribute.Value]

In the field of transportation scheduling, at which this generalized data struc-

ture is aimed, events usually occur in pairs. For example, the pair could be the

departure and arrival of an aircraft or the beginning and the end of a crew

overnight stay. For this reason, we develop the second major basic data struc-

ture, called a link. Links contain two events; from the point of view of network

theory, a link can be thought of as an arc between the two event nodes. In the

aircraft flight scheduling example, a link can be thought of as a flight segment.

Links can contain attributes which may include directives to the scheduling pro-

cess. For example, if the two events were an aircraft departure at one station

and its arrival at another, the attributes might include the type of aircraft,

constraints on passengers or crew or aircraft types, or any other information

involving a flight. Attributes can also be used to store the assignments of re-

sources, such as aircraft, to the link. The Prolog language representation of a

link is:

link(Eventl. Event2. Attributes)

where Eventi and Event2 are instantiations of the event data structure as de-

scribed above, and Attributes is a list of the same form as the event attribute

list.

Once we have defined these two data structures which we believe can be

adapted to scheduling problems in many applications, as we develop algorithms

we can develop appropriate ways of grouping the events and links together to

optimize the algorithm. However, these two data structures will provide the

core on which the scheduling environment, graphical output, user input, and

development of algorithms will be based. A large set of scheduling algorithms

can be thought of as taking a set of links as input, performing some operations

upon the set of links - such as assigning resources to them or modifying the

time at which they are scheduled - and returning a new, modified set of links

in the same format.

Chapter 3

An Interactive Graphics
Scheduling Environment

The data structure that has been described serves as an effective framework

for representing events to be scheduled by automated processes. However, it is

equally important to have a system which allows these candidates for scheduling

to be created and manipulated by a user. The reasons for this are twofold: first,

it is necessary to create a set of links as input to an automated scheduling

algorithm, and second, it is often important to have an environment in which

schedules can be manually manipulated.

As described earlier, a link is represented as a triplet containing two events

and a set of attributes. The two events must be instantiated, but the set of

attributes has an arbitrary length that could be zero. All the event information

that is necessary for the scheduling algorithm fits into this triplet, and therefore

it would be quite possible for a scheduler to submit all this data in textual format.

One could, for example, submit requests to an aircraft scheduling problem for

the following three flights out of station BOS:

link(event(0900.D,bos, []) ,event(1000,Ajfk. []) [[pax,85]]).

link(event(1000,D.bos, [) ,event(1200,Aord, []). [[pax,54]]).

link(event(1100,D.bos, []) ,event(1300,Amia, []) . [[pax,70]]).

which are flights to JFK, ORD, and MIA with no event attributes but each

containing a link attribute called paz which describes the expected number of

passengers on the flight. The input data file for the flight links on which a

scheduling algorithm will be run will contain a list of objects of this format, with

varying types of attribute lists depending on the amount of specific information

is to be submitted to the scheduling process.

The challenge for the designer of a graphics oriented system is to provide an

environment in which links as described above can be created and manipulated

in a way that is much easier and more illustrative of the scheduling situation

than a textual list of links. Previous scheduling workstations have addressed this

problem using the mouse-based graphics environment of the Apple Lisa micro-

computer. Building upon the previous graphics-based scheduling environments,

an environment has been developed on the TI Explorer which is a prototype of

a flexible system adaptable to many different scheduling problems.

In transportation scheduling, there are two basic pieces of information most

crucial to the scheduling of events: time and location. In some situations, it is

most useful to look at events from the point of view of what time they occur

and in others it is most useful to look at them from the point of view of where

they occur. For this reason, the interactive scheduling environment has two

main scheduling displays: the Time Chart Display and the Station Display. The

Time Chart Display shows all events to be scheduled on one large time chart,

with location information relegated to the role of auxillary pieces of information

associated with the graphic depiction of the event. The station display groups

events together by location and is therefore useful for isolating the repercussions

of the schedule as a whole at individual locations.

3.1 The Time Chart Display

In the time chart display, links are represented as horizontal bars along a

metered time chart. While the horizontal positioning of the bars is based on the

time at which the events occur, the vertical positioning could relate to a number

of different factors, depending on the scheduling application involved.

Using the mouse, a user can access pop-up menus which allow any change

to be made to the scheduling display. If the mouse button is pressed when the

mouse is on a link object, the pop-up menu with options involving an individual

link appears. If the mouse button is pressed at any other point on the time

chart display, the main time chart options menu appears.

The main pop-up menu on a blank time chart display is shown in figure

3.1. The first option on this menu allows for the creation of a link object; upon

selection of this option a window appears (figure 3.2) which allows the user to

describe the time and location information about a link. Once this minimal

information has been filled in, the graphic link object appears. No attribute

information is necessary for the initial creation of a link. Using the mouse, the

user can move the link object to the appropriate location in the schedule, and

an attribute whose value represents the vertical position the link appears on the

display is set to the appropriate value.

6 7 6 ~ 16 17 18 15 20 21 22 2~ 24

Tinechart Display

Figure 3.1: Time Chart Display With Main Menu

16 17 i8 19 29 21 22 23 24

6 7 8 IS 16 17 1 B 19 28 21 22 2~ 24

r1echart Disolay

Figure 3.2: Link Creation

6 7 8 I5 16 17 19 19 20 21 22 23 24

6 7 1 9 10 1
I I I | |

17 18 19 20 21

1B01

Linechart Display

Figure 3.3: Link Options Menu

3.1.1 Link Operations

Once a link object has been created, it can be manipulated with any one of

the five options on the link menu (figure 3.3). The Delete option can be used

to remove the link from the display, the Move option can be used to change the

horizontal (time) position of the link and/or the link's vertical position. When a

link is moved to a new position, the values for time and the vertical positioning

attribute are updated to their appropriate new values.

The Modify option allows the user to change any piece of information about

a link. Selecting the Modify option brings up a window in which the basic

information about a link - the time and location information about the link's

two events - can be changed. This windew also includes the options of modifying

22 23 24

6 7 8 9 1 11 12 13 14 15

I I I I I I A I I I 16 1
16

LIk trI u e0
l ine: 4

Modify Attributes:

Doe I 5 tart Event ry End Event 13 Link13

Tiechert Disolay

7 18 Ii 29 21 22 23 24

Figure 3.4: Attribute List Editing

either of the attribute lists associated with the link's events or modifying the

attribute list associated with the link as a whole. If modification of an attribute

list is selected, a window appears in which the attribute list is shown and the

user can extend it or adjust it in a quick and flexible manner (figure 3.4).

The Copy option allows the user to make a copy of a link object and then use

the mouse to move it to a new position on the display. Since, in transportation

scheduling, many items to be scheduled are simply identical versions of each

other placed at varying locations in a time frame, it is useful to be able to define

a link - giving its location, duration, and any set of attributes - and be able to

transfer all this information to another link whose only difference might be that

its start and end events occur at a different time.

23 2419 20 21 227 18

10 11 2 13 14 15 16 1

|

7 1

bet uptisplay rharameters

rinary Display Attribute: line
Secondary Display Attribute: MIL

Display Mode: SLM RESIDUAL COMBINATION

Display End Point Labels?: Yen No
Attribute Used For Label: FlightMun

Restricted Access Mode?: Yes No
Exit Ma

B 19 20 21 22 23 24

1 1 1

Tinechart Display

Figure 3.5: Display Parameters Menu

3.1.2 Schedule Display Modes

Within the timechart display, there is a set of parameters, called Display

Parameters, which govern how the various attributes of the links are used to

display them on the screen. Through the use of the Display Parameters menu

(figure 3.5), the user can set up the graphical display in a way that provides

flexibility in viewing and manipulating the data.

The first parameter that can be set is the Display Mode. There are three

display modes: main, residual, and combination. Through the use of these three

modes, appropriates displays can be set up for development of schedules, viewing

of assignments made by the schedules, and viewing of those items which could

not be displayed.

6 7 8

When in the Main Display Mode, the vertical position of a link is based on

the value of a given link attribute, called the Primary Display Attribute. In

the system's most basic form, when the user is simply creating links and using

the mouse to position them on the display, this attribute represents only the

physical position of the link on the display, and in the default case it is called

line. This attribute is the first attribute to be created in a given link, as it

is automatically placed into the attribute list when the link is placed on the

display. For example, if the user creates a new link and uses the mouse to place

it on the top line of the display, the attribute list for that link becomes:

[[line , 1]]

which is the list whose only element is the pair [line , 1].

If the user runs a scheduling algorithm which assigns a value to a certain

attribute for each link (or or a given set of links), the main display mode can

be used to show the schedule of assigned links. For example, if the algorithm is

an aircraft rotation scheduling algorithm which assigns to a given set of links a

rotation number associated with attribute rotation, the main display mode can

be used to show which links are assigned to which aircraft rotations. Each line

of the display will contain all the links assigned to a given resource, and a set

of labels in the left margin will display the name of the corresponding resource

(in this case, vehicle) to which the links on that line have been assigned.

As an example, figure 3.6 shows a time chart display on which nine links have

been entered. This display uses the default set of parameters, which calls for the

main display mode with the primary attribute set to be line. We now consider

the case in which there are two aircraft available, and we attempt to assign these

6 7 8 9 le 11 12 13 14 15 16 17 18 i9 2e 21 22 23 24

323sa B05

B IS EmrJFk

mun

Timechart Display

Figure 3.6: Main Display Mode; Primary Display Attribute Is line

re

6 7 8 9 10 11

JF:, 03N BOS 02 MJF K

Set Up D
Prinary
Secondar

Display

Display
Attribut

Restrict

Display

12 13 14

*3 OSf
1O 05 M1

5 16

ORD

17 18 19 z

*4=IJFIt

5 80

ispIag arneters

Display Attribute: rotation
y Display Attribute:

Mode: MANd RESIDUAL COMBINATION

End Point Labels?: yen No
e Used For Label: FlightNun

ed Access Mode?: Yes N

Figure 3.7: Main Display Mode; Primary Display Is rotation

links to appropriate aircraft. When the assignments have been made, we wish to

see which links have been assigned to which aircraft. Thus, we set the primary

display attribute to be rotation, and display the links in the main display mode.

The results are shown in figure 3.7.

However, in addition to the display of the assignments that have been made,

another important result of the run of the scheduling procedure is this set of

links that have not been assigned to any resource. To look at this set of links,

we make use of the Residual Display Mode. This mode uses the values of two

attributes: in addition to the primary display attribute, a Secondary Display

Attribute is now assigned. The primary display attribute again contains the

value indicating the position at which the link is to be displayed. However, the

23 24

A/C 1

A/C 2

Tinechart

mmi

Figure 3.8: Residual Display Mode; Primary Display Attribute Is line and Sec-
ondary Display Attribute Is rotation

link is only displayed if there has been no assignment made for the secondary

display attribute on that link. For example, if we wish to look at the "rejection

list" for a rotation scheduling process - the set of links to which no rotation was

assigned - we set the primary display attribute to be line and the secondary

display attribute to be rotation. The time chart will then display all links for

which no rotation has been assigned, and the vertical position will be determined

based on the value of line. In nine-flight example, the list of unassigned flights

is shown using the residual display mode in figure 3.8.

The third display mode is the Combination Di8play Mode. This mode can

be used to see both the list of assigned links and the rejection list on the same

6 7 8 9 1e 11 12 13 14 15 16 17 18 19 2e 21 22 23 24

Set Up bisplay Paraneters
Primary Display Attribute: line
Secondary Display Rttribute: rotation

Display Mode: MAIN W 1s)UAL COMBINATION

Display End Point Labels?: Yes No
Attribute Used For Label: FlightNun

Restricted Access Mode?: Yes N

Exit

)EN r 805

JFK " 0S

Tinechart Display

6 7

p/C I JF

A/C 2

Tinechart Display

a 9

:210 BO

I

F1 I(

19 11 12 13 14

gPMJFk I 0398S
80S 0=5

1s 16 17 18 19

04M JFK

ORD ME

Primary Display~ Attribute: rotation
Secondary Display~ Attribute: line

Dis4lay Mods: MAIN RESIOUAL COMMAU

Display End Point Labels?! Yes No
RttribUte Used For Label: Flightliuf

Restricted Access Mode?: Yes Me

Exit E3

N

Figure 3.9: All Links Are Displayed Using Combination Display Mode

display. For each link, if there is a value for the primary display attribute, it

is displayed with its vertical position determined by the value of that attribute,

and if there is no value for the primary display attribute but there is a value for

the secondary attribute, it is displayed in another shading with the position de-

termined by the value of the secondary attribute. Using this mode, the schedule

can be set up such that the links are developed in one section of the screen, and

after the assignments have been made all links that have been scheduled move

to the other section of the screen and are shaded differently. The user is then

able to manipulate those links on the "rejection list", possibily inserting them

into the schedule. An example of the combination display mode in which all of

the links in our previous example are displayed is shown in figure 3.9.

2e

BC S

22 23 24

U 7 --- 71BOS

irk d,92'-';OS

In addition to setting the display mode which indicates how attribute values

affect positioning and shading of links, this menu can be used to control labeling

of links. Normally, a link is displayed as a horizontal bar on the display. There

is a display parameters which allows the user to decide whether to display labels

on the end points of the link (for a flight link from whose start event is at

location BOS and whose end event is at location LAX, it is useful to display

these labels, but for a ground link whose start and end locations are the same,

it might be more useful and less cluttered simply to display the bar). Another

display parameter contains the name of an attribute whose value is used to label

the bar. It may be useful in some cases, for example, to label flight bars with

the flight number, while it might be useful in other cases to label flight bars with

the name of the crew that has been assigned to that flight.

The display parameters menu also includes the option of selecting Restricted

Access Mode. In certain situations in which schedules are manipulated, it is

required that the basic information about times and locations be held constant,

while certain attributes, such as resource assignments, are variable. If this is

this case, the system can be put into Restricted Access Mode, in which - for

any link - only the attribute lists can be modified. By modifying attributes, the

user can change the resource assignments or exception calls for individual links.

However, by changing the attribute lists alone the user is unable to change a

link's time or location in the schedule.

3.1.3 Data File Input and Output

The next two options on the main time chart menu allow the user to save

schedules to files and retrieve them from files. Schedules are saved in a form

which is simply the textual representation of the data structure described earlier.

The structures which are stored in the data file are thus readily available for use

as data to applications in Lisp, Prolog, or any other programming language. In

addition, enhancements can be made to the schedules while they are in this data

file; as long as the structure of the data remains intact, these enhancements will

be preserved when the data is read back in to the interactive environment.

The Save and Retrieve facilities, when used in conjunction with the three

available display modes, allow for easy separation of distinct pieces of a schedule.

When the Save command is executed, the links which are stored in the data file

are only those which are directed to be displayed on the screen by the given

display mode. For example, if a rotation number has been assigned to a subset

of the links in the system, and the display mode has been set to the main mode

with rotation as the primary attribute, the links to be stored in the data file

after a subsequent Save command would only be those links to which a rotation

had been assigned. Thus, a data file containing only the links which are to be

served can be kept separate from another data file which might contain only the

links which were denied service. Combined with the facility allowing the user

to clear the schedule, these options allow for quick manipulation of subsets of

links.

3.1.4 The Algorithm Interface

The next option available on the main menu is to run an algorithm. This

option provides the link between the graphics scheduling environment and an

extendable set of algorithms, which can be written in any language. The logic

of this interface is as follows. We begin with a set of links that are shown via the

graphics display. When a scheduling algorithm is selected and run, it takes as

input this set of links and changes some attributes of those links (for example,

to assign a new r6tation number to each link). Therefore, running the algorithm

results in the creation of a new, albeit similar, set of links. When the execution

of the algorithm is complete, the user is given the option of either displaying the

resulting set of links on the screen or storing them away to a file.

Because of the straightforward nature of this interface, any piece of software

which can take as input a set of links and produce as output another set of links

can easily be incorporated into this scheduling system. The algorithms that are

implemented, which will be described later, are written in Prolog and in Lisp,

but they could be written in any language available on the workstation as long

as they conform to this structure.

3.2 The Station Display

In transportation scheduling problems it is quite useful to see the schedule

from the dual points of view of location and time. With this in mind, the station

display of the interactive environment has been developed. In the station display,

a location (or station) is represented as a vertical bar from the top to the bottom

of the display, with a label which shows the name of the station at the top of

the bar. There can be several stations displayed on the screen at one time. The

vertical axis in the station display represents the time of day, starting with the

earliest times at the top of the chart and continuing to the latest times at the

bottom.

Each link, as we recall, consists of two events - a start event and an end

event. In a small scale example, it might be useful to represent the link as a

line from the station bar of the start event at the vertical position of the start

time to the station bar of the end event at the vertical position of the end time.

Figure 3.10: A Single Link On The Station Display

In a large, diverse schedule, however, these lines would significantly clutter up

the display and would make it so that only a small number of stations and links

could be displayed on the screen. We can modify this system to represent a

link as two short line segments, one corresponding to each of the link's events.

A line segment emanating from the right side of a station bar can represent a

start event (in the airline flight case, a departure) and a line segment emanating

from the left side of a station bar can represent an end event, each of which has

a vertical position corresponding to the appropriate time of day. An example

of the station display in which there is a single link departing from Boston and

arriving at New York's JFK airport appears in figure 3.10. When the station

display appears on the screen, there are three cursor locations at which the mouse

button can be depressed to bring up a menu of possible operations. These areas

8TV 30S JFc MIR SFO -RX

-6

7

-8

19

I

12

13

14

16

17

18

19

-21

-22

-23

StationDila

Figure 3.11: Link Creation In The Station Display

are: on one of the station bars, on an existing link event object, or somewhere

else on the display.

Pressing the mouse button while the cursor is on a station directs the system

to add a link either arriving at or departing from that station. In the station

display, the assumption is made that all links created while a given set of station

bars are on the screen are links between two of the displayed stations. Thus,

when a user chooses to add either a departure from or.arrival at a given station,

a menu appears in which the other station can be selected from a list of currently

displayed stations. Using this facility, a set of links between a subset of stations

can quickly and easily be created. Figure 3.11 illustrates the facility for creating

a link in the station display.

BTV JFk 11R SFO LAX

7

16

-17 -Ending Location: btv bas)1k mia srn tax
Duration:

23

Station Displan

When a link is created, it is displayed as two separate event objects. To

perform an operation on this link, either one of its component line segments can

be selected by the mouse. When this occurs, the Link Options pop-up menu

appears, with analogous options to the Link Options of the time chart display.

However, since this display consists of separate objects representing each of the

two component events, it is useful to be able to modify each event separately.

This feature is implemented as the "Slide Event" option; when this option is

selected, one individual event object can be moved up or down on the schedule

without affecting the other component event of its link.

If the mouse button is depressed when the cursor is somewhere other than on

a station bar or on a link event object, the main station display menu appears,

as shown in figure 3.12. The same main options are available on the station

display are are available on the time chart display; saving the schedule from

this point creates a data file of the exact same format as saving a schedule in

the time chart display, and once saved the schedule can be retrieved on either

display. After running an algorithm, seeing its results on the station display is

sometimes more appropriate than seeing the results on the timechart display;

while algorithms whose results involve assigning links to resources, such as air-

craft rotation scheduling algorithms, might be more appropriately displayed on

the time chart display where one horizontal line can represent a given resource,

when running algorithms whose results involve the positioning of events at given

stations, it is more illustrative of the results to show them on the station display.

Figure 3.12: Main Station Display Menu

31

Chapter 4

Dynamic Exception Handling

4.1 Exceptions In The Scheduling Process

Certain deterministic computer-based algorithms have been able to create

schedules which bring the usage of resources such as fleets and crews close to

an optimal level, but in many cases the algorithms are not able to account for

pieces of information crucial to the scheduling process that a human "expert"

would be aware of. The result of this is that the schedules that are produced

by some computer algorithms, while adequate for the most part, contain pieces

that are unacceptable for one reason or another.

The challenge is to incorporate these "exceptions" into the otherwise auto-

mated scheduling process. Existing computer-based scheduling systems, while

often based on a particular underlying scheduling algorithm, are able to take into

account constraints on the scheduling process by incorporating "flags", which

signify information which can alter the course of a scheduling process.

For example, we can consider a set of executive jets which for which a daily

schedule is prepared to accommodate a set of requests for point-to-point service.

An automated scheduling algorithm which sets out to solve this problem will

have a particular goal (such as to maximize the number of requests that are

served) and a certain amount of supporting information (such as priorities for

each of the requests) that control the order in which requests are served and

provides a basis for comparing the "value" of possible schedules. Through an

algorithm which attempts to reach the given goal while making use of the sup-

porting information, a schedule can be produced which assigns as many requests

as possible to the available resources. For this schedule to be workable, it often

must meet certain very specific criteria. For example, a certain executive of

particularly high priority might want to be the only passenger on each of his or

her flights. Therefore there must be a "flag" on this executive's request, called

"no other passengers allowed" that indicates that when this request is assigned

to a vehicle, no other requests can be assigned to that vehicle, even if there are

several empty seats available. It might also be possible that the executive prefers

a particular aircraft in the fleet and would always like to fly on that vehicle if

possible. So there might be a "preferred vehicle" flag. Each time the schedul-

ing process is considering making a particular assignment of link to a resource,

these flags would have to be checked to make sure all of these requirements, or

as many as possible of the preferences, are being met.

Another example of an exception involves maintenance scheduling. There

might be a requirement that a certain aircraft return to the base at a certain time

of day in order to be serviced. Thus, even if the optimization process dictated

that an aircraft be used for service to one point, the maintenance exception

might dictate that it be flown to another point.

In actuality, the potential exists for there to be a very large number of these

flags. In other words, although the process of assigning links to resources can

be based on a general algorithm, there can be a very large number of exceptions

to the process. A computer program written to handle this set of exceptions

would have to check for the existence of each of these flags when making as-

signments, and there would have to be appropriate code to deal with each case.

The scheduling program would grow in size and complexity as more and more

exceptions are uncovered.

It is because of the existence of a very large number of exceptions in many

scheduling problems that in many cases the process of scheduling, whether for

executive jets or for college classrooms or any other resource, cannot be ad-

equately represented on a computer. It is therefore performed by a human

expert, someone who has done the scheduling for years and keeps tracks of all

of the idiosyncrasies of and exceptions to the scheduling process.

4.2 A Model For Exception Representation

A solution to this problem involves dividing the job of the automated schedul-

ing system into two basic components: first, the standard algorithm which, given

a goal and a sets of resources to assign, has a process for optimally scheduling

those resources, and second, the set of exceptions or arbitrary constraints that

must be taken into consideration when preparing the schedule. The first piece,
the algorithm, is a fixed piece of computer code, written to solve a restricted

scheduling problem. The second piece, the set of exceptions, should be dynamic.

If the set of exceptions must be hard-wired into the code of the algorithm, it

becomes much more difficult for the automated scheduling system to readily

adapt to changing situations. If the set of exceptions can be quickly and eas-

ily modified and augmented by those experts doing the scheduling, the system

becomes more useful for larger set of possible situations.

To visualize how these exceptions will actually be incorporated into a de-

terministic optimization algorithm, it is useful to think of the decision making

process as divided into two parts: "generate" and "test". A given restricted

problem might have a finite set of feasible solutions. A deterministic algorithm

such as FIFO (first-in-first-out) or LIFO (last-in-first-out) performs the task of

determining which of these feasible solutions, or pieces of a solution, is "best",

based on a restricted set of guidelines. This determination is the "generate"

step.

However, a given solution which is generated by a restricted set of guidelines

might be, for some reason, unacceptable. In other words, the simple guidelines

that led to the solution might not have taken into account factors which were

significant to the result. It is for this reason that the "test" step exists. During

this step of the process, the feasible solutions which were generated by the given

set of guidelines are checked for their legitimacy.

The Prolog language serves as a useful environment for developing scheduling

algorithms which incorporate both of these components. Prolog code is in the

form of a set of rules in a database. These rules can consist of a sequential series

of instructions, and therefore serve as a program analogous to code written in a

language such as Lisp, C, or FORTRAN. Thus, a Prolog program can be written

to implement a given scheduling algorithm. However, these rules can also be

added, modified, and removed at or before execution time, and it is through this

capability that the dynamic set of exceptions can be implemented.

The handling of the exceptions is an important part of the decision making

process of the algorithm. The link between the exception handler and the rest

of the interactive environment is implemented in such a way as to make the

creation and adjustment of exceptions a basic operation in designing a schedule.

An exception reference is a form of an attribute. As discussed earlier, attribute

lists can come as components of links or they can be components of individual

events. Likewise, exceptions can relate to individual events or to links as a whole.

An example of an exception relating to an event is minimum ground time. After

a particular arrival event, there might be a requirement that the vehicle stay on

the ground for two hours before the next departure event. An example of a link

exception is the requirement that one particular link~ be assigned to the same

aircraft as a certain other link.

The implementation of exceptions is in the form of a connection between the

data in the attribute lists of links and events and rules in the Prolog database.

When a particular link (e.g. request for service) has an exception associated

with it, there is an item in the attribute list with the name of the exception

as its name and a parameter to that exception as its value. For example, the

name of the exception might be. "Required Connection" and the value might

be a flight number, and this exception would imply that the link to which it is

attached must be connected on the next leg to a certain other leg with the given

flight number.

When an exception is named in the attribute list of one or more links or

events, it is necessary to define a simple Prolog rule which handles that ex-

ception. These exceptions take the form of "logical predicates" based on a

comparison between either two events or two links. For example, the predicate

to handle the "Minimum Ground Time" exception, an event exception, would

take as arguments the amount of time that the flight must be on the ground

and the links involved in the connection. It would succeed if the time difference

between the two events involved was greater than the parameter, the specified

minimum ground time.

Exceptions fall into two categories: binding exceptions, called constraints,

and non-binding exceptions, called suggestions. Constraints are exceptions which

require a certain predicate to succeed before a scheduling decision can be made.

For example, if the minimum ground time exception is identified as a constraint,

the scheduling procedure would not allow an assignment to be made between two

links which did not have the requisite intervening ground time. The search al-

gorithm in the scheduling process would go on to try to find another assignment

that could be made in place of that one.

To assign a constraint to a particular event or link, an item is added to the

attribute list identified by a "c-" and followed by the name of the rule to be

called. For example, if a minimum ground time of 30 is to be a constraint, the

attribute name might be:

c -mingtime

and the attribute value would be 30. There would then be a predicate in the

database called "min..gtime" which would succeed if and only if this ground time

condition is satisfied, as described above.

The other type of exception is a non-binding exception called a suggestion.

When an exception of this sort is placed on a link, the flow of the scheduling

process is not altered. The placement of this exception directs the scheduling

system to alert the user when the condition noted in the exception is reached.

For example, following a given flight link, there might be a suggestion that the

aircraft stay on the ground for 45 minutes before the next departure, but this

might not be an absolute requirement. To enter this non-binding exception into

the scheduling process, the user would add an attribute to the arrival event of

the flight link with the name

a-min.gtime

and the value of 45 minutes. This indicates a suggestion which is tied to the

min-gtime rule in the Prolog rule base. If the ground time condition is violated

in the course of the resource assignment, this fact is recorded, and stored on the

attribute list of the appropriate link or event as an attribute called an "Alert".

When the execution of the algorithm is complete, the set of alerts that have

been triggered during the scheduling process are highlighted on the interactive

scheduling display, and the user is then able to take any appropriate corrective

action.

4.3 The Rule Base

A rule, as defined in conjunction with the exception handler, can be thought

of as a Boolean function which returns true or false ("succeeds" or "fails")

depending on the values of its parameters. We shall define two types of rules:

event rules and link rules. Event rules pertain to two events, such as the arrival

event for one link and the departure event for another, and succeed or fail based

on certain criteria involving those two events. Link rules operate in a similar

manner except they can examine the entire link.

4.3.1 The Structure of Prolog Predicates

It is first worthwhile to explain the format of a Prolog predicate. A simple

Prolog predicate is a logical statement upon which other logical statements can

be based. For example, we might wish to state that an airplane is a type of

vehicle. A Prolog predicate representing this fact might be written as follows.

vehicle (airplane).

which might indicate that there is a class of objects called vehicle and one such

object is called an airplane. We might wish to make further statements, such

as:

vehicle(hot.air.balloon).

vehicle (car).

vehicle(bicycle).

vehicle(helicopter).

hasan.engine(car).

hasanengine (airplane).

has-anengine (helicopter).

We now have created two categories, called vehicle - which is the class con-

taining objects which are vehicles, and has-an-engine - which is the class con-

taining objects which have engines. We have also defined some objects which fall

into those categories. We might also wish to assert that there are some objects

which can fly or be flown. To do this, we can make the assertions:

can-fly(helicopter).

can..fly(airplane).

can.fly (hot-air-balloon).

In all of the above Prolog statements, we have made explicit statements unre-

lated to any other logical inferences. Now, if we want to use these statements

to make other logical inferences, we can use conditional Prolog predicates. For

example, the following is a predicate defining an engine powered aircraft.

engine.powered-aircraft (Object) : -

vehicle (Object) ,

hasan.engine (Object).

can-fly(Object).

The above statement says that a given object is an engine powered aircraft

if that object is a vehicle, has an engine, and can fly. The ":-" in the above lines

represents the "if" statement. We can think of engine.powered. aircraft as a rule,

and "Object" as the parameter to the rule, the value of which will determine

whether or not the rule succeeds. A rule can have any number of parameters,

and can call any number of other rules to determine whether or not it succeeds.

Parameters do not need need to be instantiated (contain values) when the rule

is called; the value of the parameter will be provided during execution. For

example, calling the rule

engine-powered-aircraft (Object).

will succeed, and define Object to be a particular value such that the logical

statement that Object is an aircraft will hold true.

4.3.2 Exception Handler Predicates

A rule to be used in conjunction with the exception handler is a Prolog

predicate with three parameters. In an event rule, two of the parameters are

events; in a link rule, two of the parameters are links. The other parameter in

an exception handler rule is a value which is used to evaluate the rule.

As an example, consider the rule to determine whether the minimum ground

time between an arrival and a subsequent departure has been met. This rule

can be defined as follows:

min-gtime(MinEventA. EventD)

event-time(EventA.TimeA),

event-time(EventD.TimeD),

time-difference(TimeD.TimeA,GTime),

GTime >= Min.

In this case, Min refers to the number of minutes that an aircraft is required

to be on the ground, EventA refers to an arrival event, and EventD refers to

a departure event. The event-time function, when passed an event in the first

parameter, returns the time at which the event occured in the second parame-

ter. The time.difference function, when given two times, returns the number of

minutes between them. The last line indicates that the entire rule will succeed

if the ground time, as determined in the previous lines of the rule, is equal to

or exceeds the specified minimum. If this is not true, this particular test will

fail. Link rules are defined in a similar way, except the data provided to them

includes everything about two entire links instead of just two particular events.

4.4 An Aircraft Rotation Scheduling Algorithm
Which Incorporates Dynamic Exception Han-
dling

The selection of aircraft rotations is an interesting problem in which to

demonstrate the use of dynamic exception handling. ~Given a set of flight seg-

ments, we are faced with - for each station involved - a set of flights which

arrive at that station and a set of flights which depart from that station. For

each departing flight, we wish to determine which aircraft should be used; the

flights that arrived and became "ready" to use prior to that flight and have not

yet departed will provide a set of aircraft from which to choose.

The situation facing the rotation scheduling algorithm for a given station is

pictured in figure 4.1. In this case, there are three arrivals into the station and

three departures from it. The rotation scheduling process must generate a set of

"turns" - matchings between incoming flights and outgoing flights. After each

arrival, the number of aircraft available at the station is indicated. Between any

pair of zeros (times in which there are no aircraft available at the station), there

will be a "cluster" of positive numbers. Within this cluster, there are a finite

number, NP, of ways to create a "turn pattern". This finite number is given to

be the product of all the positive numbers; in this example NP = 1 * 2 * 2 = 4.

There are a number of different strategies for determining which cluster of

matchings should be made. The LIFO (Last-In-First-Out) strategy, in which de-

partures would be matched with the last incoming arrival, would lead to longer

BOS

J7n 1
PP 2

'"' ,R2
F D2

Vrwe

Figure 4.1: Arrivals And Departure At Station BOS

ground times for the aircraft which might be desirable for maintenance and ser-

vicing. The FIFO (First-In-First-Out) strategy would lead to more uniformly

distributed ground stays. In practice, there are many factors which dictate

which solutions are better than others. So, while FIFO might generally lead to

a reasonable solution, there are several factors that could make a given solution

more desirable than another. These factors might include maintenance schedul-

ing requirements, crew scheduling constraints, or any arbitrary reason that a

given incoming flight should be matched with a given outgoing flight.

4.4.1 A Description Of The Algorithm

A First-In-First-Out rotation scheduling algorithm has been developed and

interfaced with the interactive scheduling environment. An system of dynamic

exception handling has been incorporated into this implementation. A descrip-

tion of this implementation follows.

Organization Of The Data

There are three sets of data that serve as the input to the aircraft rotation

scheduling algorithm. First, there is a set of links, as generated in the interactive

scheduling environment. Second, there is a set of available aircraft to which to

assign to the links. Third, there is the name of the attribute which will - in each

link - contain the tail number of the vehicle to which the link will be assigned.

The first step in the rotation generation process is to organize the data into a

set of arrival and departure lists for each station. The program iterates through

the list of links. When each link is processed, a pointer to the link is inserted

on two separate ordered binary trees - the tree representing the departure list

at station from which the link departs, and the tree representing the arrival list

at the station at which the link arrives. When each link has been processed, the

ordered binary trees are converted to sequential arrival and departure lists.

Generation Of Turns

When all arrival and departure lists have been created, a set of turns can be

determined for each station. At this point we are concerned only with matching

incoming links to outgoing links, not with assigning those links to vehicles. We

begin the process of assigning turns for a station by examining the arrival and

departure lists. If either the departure list is empty or the arrival list is empty,

we stop because all possible assignments have been made. Otherwise, we select

the first link on the arrival list and the first link on the departure list and attempt

to make a turn. These two links become our "candidates" for a match.

The Testing Process: Consultation Of The Rule Base

We have generated a possible matching; it is now necessary to test to see

if the matching is legal. This testing process involves checking each associated

constraint to see if any violations exist. If at any point in this process a reason is

found that the matching cannot be made, this process "fails" and the generation

of another turn can be attempted.

The testing process begins with the "default" set of tests. This is the set of

rules to which all turns must conform. These might include a set of "default

event rules" and a set of "default link rules". An example of a default event rule

might be that for any turn to be valid, the departure event must occur at least

thirty minutes after the arrival event. If this were the only default rule, then

the default predicate would be listed as follows:

default-event-rules(EventA.EventD) :-

mingtime(30,EventA.EventD).

This indicates that, given arrival event EventA and departure event EventD,

default-event..rules will succeed if the minimum ground time rule succeeds given

those two events and a value of 30. The default-link..rul8 predicate would be

referenced after default.event-rules, and is defined similarly.

Once the default rules for a given turn have been satisfied, the next step in

the testing process is to check for exceptions. The first exceptions that are sought

are any exceptions that might be tied to the arrival and departure events. A

function called make.constraints.and..suggestions.Jist8 is applied to the attribute

list of each event, producing the list of exceptions associated with each event.

These exceptions are then examined in the following order:

1. Check constraints in the Arrival Event

2. Check constraints in the Departure Event

3. Check suggestions in Arrival Event

4. Check suggestions in the Departure Event

The list of constraints in the arrival event, we recall, are the list of those

attributes of the arrival event which were preceded by the symbol c-. Following

this symbol is the name of the rule to be called, and in the value field of the

attribute is the value with which to call the rule. In check-event-constraints, we

convert each constraint entry in the attribute list to a reference to a Prolog rule,

calls it with the associated value, and only succeed if each rule that is specified

is satisfied. For example, if one of the constraints on the arrival event's attribute

list specified that following the arrival, the aircraft must remain on the ground

for 120 minutes, and the constraint was listed as follows:

[c-mingtime . 120)

then one of the predicates which must be satisfied for the test as a whole to

succeed would be the call to

mingtime (120,EventA , EventD).

As specified in steps (1) and (2) above, the check.event.constraints rule is called

for the attribute lists of both the arrival event and the departure event; any rule

listed in either event's attribute list is called with reference to both events.

If any of the above constraints have not been satisfied, the attempted match

of the two links will fail, and the testing process will halt. If everything has been

satisfied at this point, a check is made for non-binding constraints (suggestions).

At this point check..event.suggestions is called. Because suggestions are non-

binding, this call will always succeed; the only action that will be taken during

its execution would be to generate "alerts" and add them to the appropriate

attribute list.

The check-event-suggestiors step is similar in structure to its constraint-

checking counterpart, check-event-constraints. The difference lies in the course

of action taken when the rule specified in the attribute list is not satisfied.

When the constraint rule was not satisfied, the entire process failed and was

terminated. When a suggestion rule is not satisfied, an "Alert" is generated.

The attribute list in which the suggestion was specified is augmented with a

new attribute. The name field of this new attribute is set to be "Alert" and the

value field is set to be the name of the rule which was not satisfied. For example,

if the initial attribute list contained the suggestion

[a-min.gtime , 120]

and subsequently the predicate

mingtime(120,EventA,EventD)

was not satisfied, then a new attribute would be generated, as follows:

[Alert , min.gtime]

This is an attribute whose name is "Alert" and whose value is min.gtime.

When the four steps have been taken to check the event attributes of the

two candidates for a match, the same four steps are then taken to check the link

attributes. The difference is that the information that is used by the exception-

handler mechanism now refers to the link as a whole. For example, if there

is a constraint on the link which is incoming to the station which indicates

that it cannot be matched with an outgoing link headed for destination X, the

information required by the exception handler involves not only the departure

event of the outgoing link, but also its subsequent arrival event. Once again,

if any constraint called specified by a link attribute fails, the entire process is

terminated. If a suggestion made in one of the two link's attribute lists is not

satisfied, the alert which is generated is placed on the attribute list of the link

which contained the suggestion.

Once the testing process is complete, one of two results has been reached:

either the match has succeeded or it has failed. If the match succeeded, both

the incoming link and the outgoing link involved in the turn are removed from

the event list, and the process continues with the next events on the lists. If

the match failed, further matches are attempted with subsequent events at the

station.

Assignment of Vehicles

When all possible turns have been made at a given station, the process

resumes at another station. When every station has been processed, each link

on the event lists will contain - on its attribute list - an entry for the rotation

number. This will not be an actual tail number, but rather a pointer to an

uninstantiated value. In other words, all that is known is which links are assigned

to the same rotation as which other links. The next step is to assign tail numbers

to the rotations.

The list of links is traversed in order of time, with the link whose departure

event occurs at the earliest time processed first. A tail number from an aircraft

available at the station from which this link departs is assigned to that link;

this assignment in turn instantiates the rotation number attribute of all links

which have been assigned to the same vehicle. We then turn to the next link. If

the rotation attribute for this link has already been instantiated, no assignment

is made; otherwise, the instantiation is made as before. The process continues

until the rotation number attribute for each link has been instantiated. At this

point, the rotation assignment process is complete.

4.4.2 Examples Of The Rotation Assignment Process

As an example of aircraft rotation scheduling, let us consider a small example

in which we wish to assign six flight legs to appropriate aircraft. We assume

that there is a set of aircraft available at various stations around the system,

and that we wish to minimize the number of those aircraft which are actually

used. The time chart representation of the six flight legs we shall consider is

shown in figure 4.2. Examining the station display representation of these six

flight legs, in figure 4.3, we quickly see that the issue at hand involves generating

"turns" for station BOS. There are three flights coming in to the station, and

three flights departing from it. To minimize the number of aircraft used, we

wish to match incoming flights to BOS to corresponding outgoing flights from

BOS.

The standard First-In-First-Out scheduling rule would dictate the following

matching:

1. Match the first flight into BOS (flight #1 from BTV) to the first flight out

(flight #4 to JFK).

2. Match the second flight into BOS (flight #2 from JFK) to the second flight

out (flight #5 to SFO).

3. Match the third flight into BOS (flight #3 from MIA) to the third flight

out (flight #6 to MIA).

6 7 8 9 13 21 12 13 14 15 16 17 18 19 20 21 22 23 24

BT 1S BOS

JFK NIM SOS

MIR I 3 05

BOS ll*JFK

is S WSF

DO =4 IIR

ToIchart Dlspleas

Figure 4.2: Time Chart Representation Of Six Links To Be Assigned To Aircraft

3T 305 JFk SF0 LR
-6

7

11 ark--?

12

13 -srD-s

14

15

-16 005-5*

17

18

20

21

22

23

Station Display
L

Figure 4.3: Station Display Representation Of Six Links To Be Assigned To

Aircraft

52

6 7 8 9 13 11 12 13 14 13 16 17 13 19 23 21 22 23 .24

P/C I JrK me= BOS B S Sr
P/C 2

A/C 3

P/C 4

A/C S

A/C 6 By) 1S 8OS BOS 14 JFK
A/C 7

P/C a

A/C 9

R/C 19 MiP I a3l S 0! fNmiP

Tiechart Display

Figure 4.4: Vehicle Assignments Made By FIFO

Running the FIFO algorithm within the interactive environment, and then as-

signing the resulting flight sequences to aircraft selected from the ten available

aircraft, produces the aircraft assignment display shown in figure 4.4.

Suppose, now, that there was some reason that flight #1, from BTV to BOS,

should stay on the ground at BOS for much longer than the default minimum

ground time of 30 minutes. This requirement could, for example, involve a

maintenance operation that must be performed at BOS. Regardless of the reason

for this requirement, it is an exception to the scheduling process. To indicate

that this exception exists, we press the mouse button with the cursor on flight

#2, and pull up the Modify menu. From this menu, we select the option to

modify the End Event Attributes (indicating that following the arrival event,

6 7 e 9 ie 11 12 13 14 15 16 17 13 29 23 21 22 23 24

terein mustt beacranaouto ie o eapetrehorbfr h
folloing departure evn cus. hnw eec h ad otow a

Start Tino: tool
End Tin*: I11

E nd tven attriutes

disp-ly afte hsadto ssoni iue45

one llo r.in t p e pe a ioru
M1A9 M3 0S

890S *MJFKC

B S
SFJ

t eenar t Displaw

Figure 4.5: An Exception Is Placed On Flight #2

there must be a certain amount of time, for example three hours, before the

following departure event occurs). When we select the "add" option, we can

enter the attribute e-min-gtime with a value of 180 minutes. The attribute list

display after this addition is shown in figure 4.5.

Following the placement of this exception, we again run the algorithm. The

first candidate for matching is the pair of the first arrival (fiight #1 from BTV)

with the first departure (flight #4 to JFK). This match succeeds, and the turn

is created. The next candidate for matching is the pair #2 from JFK and #5

to SFO. When the arrival event for flight #2 is checked against the departure

event for flight #5, the minimum ground exception rule associated with flight

#2's arrival event is triggered. The predicate is referenced, and because there is

6 7 8

s57 I ,g as

10 11 12

JFX 1 BOS

os 1h 4IJr F

MIR 3 40oS 4S

Tinechart D1splay

- - - - - .,. '~ ~'1 2A

Figure 4.6: Vehicle Assignments With Exception On Flight #2's Arrival Event

not a ground time of 180 minutes between the arrival event and the departure

event, the predicate fails. Thus, this match cannot be made.

The process continues with the same arrival and the next departure on the

list, flight #6 to MIA. Once again, the exception handler is triggered, but this

time the predicate succeeds, because there is an ample amount of ground time

between flight #2's arrival event and flight #6's departure event. This match

goes on to succeed, and the third arrival, flight #3, is then legally matched with

the remaining departure, flight #5. The vehicle assignment display resulting

from this execution is shown in figure 4.6

Another example of an exception is a disallowed destination. For a given

link, there might be a rule that states that the link may not be connected to a

512 24

C 1 4 1 1 1

8 9 16 11 12 13 14 is 16 17 283 119 2 2
I 1 1

modify R Link

Starting Location: btv
Ending Location: bos
Start 1ne: B19

Link Atributes
LINE: 14
F1ightNuM: I

c-IsaIoueddattfaton: *Jf ke-lteE--- Ae e[3 F~r t

i i ; Fr i

7Iinchart Displaw

End 11e:

S 2 23 24

Figure 4.7: Placement Of A Link Exception On Flight #1

flight leg which is headed for a particular destination. This exception is a link

exception as opposed to an event exception, because the information required

for evaluating the exception involves more than merely the arrival and departure

events. The placement of this link constraint, on flight #1, is shown in figure

4.7. This exception states that flight #1 cannot be connected to a link which

arrives at station JFK.

Following the placement of this exception, the algorithm is again executed.

When the first turn pair - flight #1 and flight #4 - is examined, the link

exception is triggered on the link for flight #1. The predicate is not satisfied

and thus the match fails, and the next departure, #5, is legally paired with

arrival #1. The second arrival cannot be matched with flight #4 because flight

I

1s 11 12

JFt R S05

SOS 1'MM JFk

"I P 3I

BC

30S

14 15 16 17

80 - MIA
-I=

28 29 28 21

T1stSchArt Display

Figure 4.8: Vehicle Assignments With Link Constraint On Flight #1

#4 departs before flight #2 arrives, and thus the default minimum ground time

rule fails. Thus, flight #2 is matched with the next unassigned departure, flight

#6. The remaining unassigned departure cannot be assigned to the remaining

unassigned arrival, so no more assignments are made, and one more aircraft is

required to serve these flight legs than in the previous example. The vehicle

assignments are shown in Figure 4.8

We now consider non-binding constraints, called suggestions. It is possible

that some of the exceptions, such as the previous one, merely reflect desirable

situations but in - in certain cases - do not necessarily have to be adhered to.

It might, however, be important to at least know exactly when these exceptions

are violated. For example, in the previous case, the disallowed destination might

7 8

8 sIa' OS

20 21

SsesaPm

Figure 4.9: A Link Suggestion Is Placed On Flight #1

not be a binding constraint. It therefore can be stated as a suggestion, as shown

in figure 4.9. When the algorithm is executed with the link exception on flight

#1 stated as a suggestion instead of as a constraint, the assignments are made

as they were in an unconstrained environment. However, during the matching of

flight #1 with flight #4, the suggestion exception is triggered, and an "Alert" is

placed on the link in which the exception was included, flight #1. Following the

execution of the algorithm, the Alert on flight #1 is indicated with a pointer,

as shown in figure 4.10.

Once a optimization program has been executed, there may be a number

of alerts that are highlighted with a pointer. To examine the reason for the

placement of an Alert, the user simply uses the attribute editing feature to look

6 7 9 10 11 12 13 14 15 16 17 13 19 20 21 22 23 24

A/C I JFk OS 85 (SF

R/C 2

A/C 3

R/C 4

A/C S

A/C 6 8T /3I'0 OS BOS 100JFK

P/C 7

R/C 8

A/C 9

A/C 10 MIR 1000310 30S B0 80 E l0 R

Tlpwchart Disolay

Figure 4.10: An Alert Is Indicated On Flight #1

Figure 4.11: Attribute List For Flight #1 Contains An Alert

at the appropriate attribute list. In this example, the attribute list for flight #1

is brought up, and shown in figure 4.11.

60

6 7 8 9 le 1 1 1? 13 14 15 16 17 is 19 20 21 2? 23 24

A/C I Jlk eI BOS B 0 8 Sri

A/C 2

A/C 3

A/C 4

A/C S

A/C 6 87 j i 805 Bos 'irJFk
A/C 7

A/C B

A/C 9

A/C s - i . 05 80 ,liAR

hooit AM L ink

Starting Location: btv
Encing Location: boo
Start Tine: 018
End iine: 992

I P'OdIfW Attribute,:flodify attributes
nLnM n Rta ir or nl uan neinS

LINE: 14
Fligt~un:

S-dialllowed~dest Ination: *jfk'
rotation: 6
Alert: |1dsalloweddestinat ionI
Done A Rdd Delete [I Abort [

lnechart Diple

Chapter 5

Incorporation Of Other
Scheduling Algorithms

5.1 Reducta: A Fleet Reduction Algorithm

The type of algorithm described so far involves assigning resources, in this

case aircraft, to links which represent requested flight segments. There, the po-

sition of each link in the schedule is fixed, and the only thing that the automated

system does is to add elements to the attribute list. We now turn to a type of

algorithm in which the schedule is not fixed and is the goal of the algorithm

to optimize the schedule, by shifting flight segments in the schedule to improve

aircraft utilization.

An automated system for optimizing fleet utilization has been interfaced

with the interactive scheduling environment; this system is based on a series of

fleet size reduction algorithms that were developed at the Flight Transportation

Laboratory at M.I.T [4] The original program, called REDUCTA, was written

in Fortran and operated on batch data. Through the use of the interactive

scheduling environment with variable length attribute lists, the implementation

of the fleet size reduction algorithm allows a great deal more flexibility in setting

constraints on individual flight segments and the graphics displays allows the

user to clearly see what modifications have been made in the schedule to improve

vehicle usage. The algorithm is written in Prolog; as this language is more

commonly used for symbolic and artificial intelligence types of applications, it

is interesting to see the issues involved with using Prolog for developing a more

numerical heuristic algorithm.

The fleet reduction problem takes as input a set of service requests, and for

each, a range of departure times. The goal is to minimize the number of aircraft

required to serve the set of requests. As each service consists of an origin location

and a destination location, this set of service requests translates into a set of

arrival and departure events at each station. These arrival and departure lists

are shown graphically in the Station Display. If, for each arrival event, there is

a certain minimum ground time after which the aircraft used for that flight can

be used for a subsequent departure, we can compute a "ready time" for each

arrival event, which is the actual time that the vehicle arrived adjusted forward

by the minimum ground time. Likewise, we can create a set of ready times for

departure events. We can define NA to be the number of aircraft on the ground

after each event, with NA increasing by one after each arrival and NA decreasing

by one after each departure. The number of vehicles which "overnight" at each

station can be called NAC.

Figure 5.1 shows a sequence of arrival and departure events at station BOS,

and the two tabular columns to its right show the value of NA after each event

with two possible values of NAC. The first goal is to find the minimal value

for NAC such that there are always zero or more aircraft at the station. Once

this is done, the algorithm finds those events at which the NA value is zero,

NA1

(NAC=100)

6

7

8

11

12

13

14

15

16

17

18

19

20

21

22

23

c

r-

r-

2-
J-

805
P

R

5

V

LI

100

99

99

99

10099

100
990

100
99

9 U

99

100

101
100

r9

100

101

100

NA2

(NAC=2)

2

1

0

1

0

1

2

1

2

1

2
1

0

1

3

2

3

2

Figure 5.1: Aircraft Available Following Events At BOS

and attempts to increase those NA values by interchanging arrival events with

departure events. If all of the "zero events" are eliminated, the value of NAC

for the station is decreased, and the number of aircraft required by the schedule

as a whole is therefore reduced. This process continues, iterating through each

station, until all possible zero events are eliminated. Much of the processing

involved in the execution of this algorithm involves verifying that shifts can be

made in the schedule. Each arrival and departure event is linked to some other

event at another station, and thus before a given event is shifted, it must be

verified that the number of required aircraft will be not be increased at another

station.

The Prolog language implementation of the fleet reduction algorithm within

the interactive scheduling environment makes use of a set of dynamic attributes

in addition to the time and location information inherent to a link. These

attributes define the time window and ground time associated with the service

requests. Associated with the Reducta code is a rule base which define default

time windows and ground times; if there are no specific values for these attributes

associated with the links, the defaults are used.

The following link is an example of a flight which can move up or down by

20 minutes, and which must remain on the ground 45 minutes after it lands.

link(event(1000.d,bos. [).

event(1100a.Jfk. [c-min.gtime.45]).

[[timewindowup.20] , timewindowdown,20]]).

Two two link attribute time uindow.up and timewindow.down indicate the amount

of time that the link can shift up and down, and the arrival event attribute

c-min-gtime contains the amount of time that the aircraft must remain on the

ground after landing.

The Prolog program reducta takes a list of links and processes through several

steps to produce a new chain with the updated departure and arrival times.

The first step is the initialization step which converts the links as defined in

the interactive environment into a set of event lists which can be used by the

Reducta algorithm. Next, the set of event lists are evaluated to discover how

many aircraft are required at each station, and subsequently, how many are

required in the schedule as a whole. When the number of required aircraft is

determined, the iterate-remoting-zeros step is executed, attempting, for each

station, to remove the "zero events" in order to reduce the number of aircraft at

that station. Following this step is a re-computation of the number of required

aircraft, and if the number of aircraft has been reduced in the previous step, the

"zero-removal" repeats.

The first major issue that evolved in the implementation of this algorithm

involved the choice of a data structure in which to store the ordered event lists.

Whereas in a resource assignment problem, the times and locations of events are

fixed and therefore the order in which they are stored in the data structure can

be a constant, in the Reducta situation the order of events will continually be

changing. Therefore, to store events in a linear list, as in the aircraft rotation

assignment algorithm, would be inefficient because the list would have to be

reconstructed rather frequently. Random access arrays are not implemented

in standard Prolog because individual pieces of information cannot be changed

once they are instantiated.

An efficient data structure for representing ordered event lists in which the

order of events might be frequently changed is a fully balanced binary tree. This

binary tree can simulate an array; each node is labeled by an index number. In

the Reducta algorithm, any change of the order of events involves swapping two

adjacent events in the event list (i.e., sliding an arrival before a departure). In

a balanced binary tree, these two event will likely be in the same sub-tree; in

a large number of cases they will be be children of the same parent node. To

create a new tree in which the order of these two events has been swapped, we

need only to replace the sub-tree which contained these two events. The pointer

to the rest of the original tree can be carried over to the new tree.

Once a set of event lists has been created in which the number of aircraft

available after each event has been determined, the remove-station-zeros step

attempts, for each station, to shift the appropriate events to remove the "zero

departures". The procedure which does this represents the heart of this algo-

rithm, and is outlined here.

The first step taken by remove-stationzeros is to determine, for each event

occuring at the given station, the "shift limits" for that event. If the event is

an arrival, the amount by which the link can be shifted upwards is constrained

by the top of its time window, with the provision that the the link's departure

event (at some other station) cannot be shifted before some arrival event so as

to create a zero departure. In other words, no shift can be made at one station

which increases the number of aircraft required at another station. The amount

by which a departure can be shifted downwards is limited by a similar criteria.

The amount by which a link can be shifted downwards is constrained by the

end of its time window, with the provision that the link's arrival event at a

downstream station is not shifted past some other departure event to create a

06

zero departure.

Once the "shift limits" have been determined, the next program iterates

through the zero departures, attempting to remove each one. The ways in which

a zero departure can be removed including the following types of shifts:

1. Shift a later arrival ahead of the zero departure

2. Shift the zero departure past a subsequent arrival

3. Shift a later arrival up as much as possible and shift the zero departure

past it.

These steps are attempted in the order shown; it is preferable to move flights

earlier in the schedule than later. This allows a greater amount of flexibility in

using aircraft later in the day. When a particular shift is selected for a link, the

link is bubbled up or down (as appropriate) through the ordered event lists at

the current station and at the other affected station. While the event is moving

through the list, the values for NA (number of aircraft required after each event)

must continually be updated so they are accurate for the next iteration.

These three types of schedule modifications are illustrated in the following

examples. In each of them, we are examining station JFK in an attempt to

reduce NAC, the number of aircraft required in the morning at that station,

from one to zero. The time window for each link is set at thirty minutes up or

down, and the minimum ground time is set at twenty minutes.

In figure 5.2, the arrival at JFK from BOS occurs just after the departure to

Miami, and thus two aircraft are required for these two flights. However, because

there are no limitations on shifts other than the thirty-minute time windows, the

Figure 5.2: Two Aircraft Are Required For Events At JFK

68

5W 90 SOS !11k SF0LP

16

15

12

1?

24

215

22

23

Sation Display

Figure 5.3: Shift In Arrival From BOS Reduces Aircraft Requirement

arrival from Boston can be shifted to twenty minutes before the departure for

Miami, and as shown in figure 5.3, there is one less aircraft required at station

JFK. In Figure 5.4, a similar situation occurs, except that the flight from Boston

is limited in its upward shift because, at Boston, the departure is constrained to

be twenty minutes after the arrival from BTV. Thus, shift type 2 is executed,

shifting the departure for MIA twenty minutes past the arrival from Boston, to

achieve the timetable shown in figure 5.5.

A third situation is shown in figure 5.6 , in which the arrival from Boston

69

OrV 805 jFk M1 F1 SF0 LAY

7

8

12

13

14

16

17

19

21

22

23

St ation Disolay

Figure 5.4: Arrival At JFK From BOS Is Constrained In Upward Shift

70

6 8V SOS M I A sro LP)(

- B

16

- 7

113

2 e0

21

12-18

23

Statlon Displag

STV SOS sro M F FOL l

6 -

e -

is- 00-

16

12

is-

171

19

20
-21

-22

-23

IStation DISPlay

Figure 5.5: Shift In Departure To MIA Reduces Aircraft Requirement

71

Figure 5.6: A Single Shift Will Not Reduce Required Aircraft

72

6 BTV BOS JFK MIR sro LRX

7

8

118

12

23
jr% -3

14
iss-

2925

21

22
2?

23

Station DIsplaV

Figure 5.7: Arrival and Departure Events At JFK are Shifted

initially is one half-hour past the departure for Miami. In order for the arrival

to end up twenty minutes before the departure, both the arrival and departure

must be shifted. The arrival is shifted up as far is it can, to the top of its

time window, and the departure is shifted down the remaining required amount

(figure 5.7).

When one zero is eliminated, the procedure of removing zeros at the station

continues from the next zero departure. If all zero departures in a station are

eliminated, the number of aircraft required at the station decreases by one. If

73

T7V SOS JFIPI 570FO

7

a

10

12

13

14 RI-

17

19

20

21

22

-23
H

Station Disolay-

no more zeros can be eliminated at the station, the procedure backtracks to

the state prior to commencement of remove-station-zeros for that station. The

algorithm then attempts the same process at another station.

When all stations have been examined, the iteration is complete. If the

procedure has been successful in reducing the number of aircraft required in the

schedule as a whole, another iteration is attempted. This process continues until

no improvements in fleet utilization can be made.

The time window, as used in the Reducta algorithm, could reflect the period

of time during the day in which a particular demand exists for the flight. During

peak hours, the time window for a particular demand level might be small, while

during other hours time windows might be larger. For this reason, time windows

can be dynamically altered for individual links. There is a default time window

size which can be set in the rule base, but if the attributes timewindow...up or

timewindow..down are set for an individual flight, this will override the default.

A similar situation exists for minimum ground times. The minimum ground

times can be set in the same way as they are set in the implementation of the

fleet assignment algorithm.

5.1.1 Example Of The Reducta Process

As example of the Reducta process, consider the schedule shown in figure

5.8. In its current form, twelve aircraft are required to "overnight" at the six

stations shown when there is a minimum ground time requirement of twenty

minutes before departure. When we run the Reducta algorithm, one iteration

through each of the six stations makes appropriate shifts to reduce the aircraft

requirement to 8 aircraft, as shown in figure 5.9. The resulting schedule is much

6eTV BOS JFk MIR SFD LAY

7 L0- --- - -

- 9 -- 5-- -,1-

10 - VO,.,s li.--

- 711 as- - _ .3 In-I, - -r-

13

... sr -s15 jrsiw liv. rn-i

IS n- -00-i' Maw-

16 - -- i

17 ala-n

19

21 L-- L , ,r-- -

22 Disla

23 PI:-

Station 019olayj

Figure 5.8: Schedule Requiring Twelve Aircraft To Be Available

-. , "M'- -- SCD- 17

-8 - 4 Sra-s - .. os-a0

o5-3- -ase-
-I-

s-asa

Jrr-ar..

12

13

14

15 rar-a

16o Dis-la

16

is4 sva
19

21 LPN-$t

-2?

23 jk3

12- aircraft required initlalI
6- aircraft rewquired of ter iteration.

Figure 5.9: Reducta Reduces Aircraft Requirement To Eight

closer to a situation of alternating arrivals and departures, which is the sequence

which would optimize fleet utilization.

5.2 Gate Scheduling

We now turn to the problem of assigning airport gates. The input to this

problem consists of a set of links which represent the time that a vehicle spends

on the ground, and our goal is to assign a gate for each of these "ground links".

As with our previous examples, we are assigning resources to links which consist

of two events and a set of attributes. However, while in the flight scheduling

examples the link consisted of a departure event followed by an arrival event, in

the gate scheduling example, a link consists of an arrival event following by a

76

departure event. Both of these events will occur at the same location.

The first step in the gate assignment process is to prepare the input to the

problem - the set of ground links. If there are two adjacent flight links which

will be assigned to the same aircraft, for in which the first link arrives at a

given airport and the second link departs from that same airport, we can use

the arrival event of the first link and the departure event of the second link to

form a new link, called a ground link.

As an example, let us consider the two flight links displayed in figure 5.10.

The first flight arrives in station DEN at 11:00 A.M. The second flight departs

from DEN two hours later, at 1:00 P.M. The time between 11:00 and 1:00 is

our ground time; during this time the vehicle will be occupying an aircraft gate.

In order to schedule the assignment of this gate resource, we create a ground

link consisting of the first flight's arrival event and the second flight's departure

event. To create this ground link, we specify the name of the attribute which

"binds the links together"; in other words, the resource that the two links have in

common such that they share the same ground link. In this case that attribute is

rotation, referring to the aircraft rotation number to which each link is assigned.

The ground link created from the above two links is shown in figure 5.11.

To illustrate the airport gate scheduling problem, consider the set of links

shown in figure 5.12. Each line consists of a flight itinerary; on each itinerary

there is a flight arriving and departing from station SLC, which is the "hub". To

examine the gate activity at station SLC, we convert each pair of links arriving

at and departing from SLC into ground links, producing the thirteen ground

links shown in figure 5.13.

Given a set of gates and a set of ground links, there could be a number

6 7 8 9 s0 11 12 13 14 15 16 17 1B 19 20 21 22 23 24

A/C I 8 S DEN DEN LOR

A/C 2

nrat Ground Links For Rich Station?: DEN

Attribute Binding Links Together: rotation

xILt Q 0 1
- I - I - I - I - I - I - I - I - I -

Figure 5.10: Two Flight Links Which Are Assigned To Vehicle #1

ripmchart Displag

eN 11 12 13 14 I5 16 17 Is 19 2
DEN - DEN

21 22 23 24
I I I 1

Tinwchart Disolay

Figure 5.11: Ground Link Created From Previous Two Flight Links

I

A/C I

R/C 2

6 7 8 10 11 12 13 4

MSP 1 9

BC i0 SL C =PsM IIIII SNR

BDSO SLC m

P ,s t1 " S M BUR

NR 0 4? SL C 11111111 M ST.

IUR

)CR I o On4 11113111IISLIf

I UP M 500 SL C m 50 OMR am "&0s

Generate Ground Links Fa
Attribute Binding Links

Exit '

SL

SNR
"

PDK

STL
14M

6 17 18 1

435

SLSL

Pym

3IinP X

CtR

t Display

Figure 5.12: Flights Centered Around A Hub At SLC

20 21 22

UZ

M

18MIS S

23 24

80

OS

9

B

me

c
43'-

M
L

I
IIIIIS,

MS4A

T inechar

ruhich station?: SIC
Together: line

Figure 5.13: Ground Links At Station SLC

81

of objectives when assigning the gates to the links. One objective might be to

minimize the amount of times that gate assignments need to be rescheduled

due to delays; in order to achieve this objective we might wish to maximize the

amount of time between any two usages of a gate. Another objective could be to

minimize the number of gates that are used; this would provide a quite different

schedule than that produced by the previous case.

The gate scheduling algorithm implemented within this system is based on

the rule stating that each incoming aircraft is assigned to the gate which has

been available for the longest amount of time. This rule serves to cut down on

the disruption in the schedule due to delays; it also serves to maximize the usage

of gates.

As an example of the gate assignment process, we consider the assignment of

the thirteen ground links at station SLC to a set of six available gates. Using the

stated objective, the algorithm produces the assignments shown in figure 5.14.

Each ground link now contains a link attribute called gate, which indicates the

gate to which the ground link has been assigned.

It is likely that there will be other factors which would serve to alter the

flow of the gate scheduling process. First, the vehicle type might affect the

assignment of a vehicle to a gate - for example, certain gates might only be

able to handle narrow body aircraft. Second, there might be a desire to assign

certain ground links to gates which are near the gates which handle certain other

ground links so as to ease connections. Through the use of data contained the

the ground link attribute lists, this and other information can be incorporated

into the gate scheduling process. Any information that is relevant to the gate

assignment process can be passed along from the flight scheduling process; the

7 8 9 10 11 12 23 14 1±N Jh"
IE 1 0 - 1

!Set Up Display Parameters

1riarV Dieclay ttribute: gate
SecondarV Display Attribute: line

Displ1ay Mode: ass M3DUAL COM4ATION

Display End Point Label*?: Yes e
Rttribute Used For Label: Flightmu

Restricted Accese ofde?: Yed No

Exit 0

5 16 17 18 19 20 21

M-

IN nNIN

=' 16M

22 23 24

TInechart Displaw

Figure 5.14: Ground Links Assigned To Gates At Station SLC

83

Gate I

Gate 2

Gat e 3

Got e 4

Get e 5S

Gate 6

attribute list of a ground link includes all information contained in the attribute

lists of the two component flight links.

5.3 Other Scheduling Problems

The implementations of the gate scheduling process along with the fleet re-

duction vehicle assignment algorithms serve to demonstrate the flexibility of the

interactive scheduling environment for dealing with a wide variety of transporta-

tion scheduling problems. Two of these algorithms - aircraft rotation scheduling

and gate scheduling - fall into the category of resource assignment. That is,

given a set of links and given a set of available resources, we wish to assign the

resources to the links.

The resource assignment problem comes up in many areas of transporta-

tion scheduling, particularly in aircraft scheduling. The generalized interactive

scheduling environment, which allows for a dynamic set of attributes (for ex-

ample, resources) to be associated with a link, is well suited to many of these

resource assignment problems. One very important resource allocation problem

is the crew scheduling problem. Given a set of links that have been assigned

to aircraft, we wish to assign crews to the links while following a detailed set

of constraints. There are limits on such factors as the number of hours that a

crew member can fly in a given day or a given month, and these time constraints

are usually much more limiting than the constraints on the vehicle assignment

process.

The interactive scheduling display can be used to display crew assignments

in much the same way in which it used to show aircraft assignments and gate

assignments. A crucial aspect of the generalized scheduling system is that all

resource allocation information pertaining to a link can be stored along with

the link, but to solve any individual scheduling problem, only the pieces of

information required for that individual problem need to be used in the algorithm

and plotted on the display.

The environment could also be used for real-time operations, such as to

handle rescheduling of flights if aircraft suddenly became unavailable. In this

case, we would be dealing with more than just the "scheduled" time for each

flight; we would also be dealing with estimated and actual times of departure and

arrival. The link attributes, in this case, could indicate the amount of estimated

and actual delays with reference to the scheduled departure and arrival times for

the link; in addition they could include other information about what actually

occured on a flight, such as the number of passengers on board.

5.4 Conclusions

The interactive scheduling environment presented herein attempts to address

several problems facing transportation schedulers. The prototype that has been

developed illustrates a number of points relating to the role of computer graphics

and artificial intelligence in the field of scheduling.

We first address the fact that schedulers are often attempting to solve many

different scheduling problems which - while they involve different resources,

time frames, constraints and objectives - have a great deal in common in their

structure. The generalized system for representing schedules shows that many

of these different problems can be solved within the same framework and using

the same user interfaces. For example, the same display that is used to show

the assignment of aircraft rotations to flights is used to show the assignment

of arriving flights to airport gates. The underlying data structure allows the

developer of optimization algorithms for these and other problems to quickly

adapt the system to whichever problem is being addressed. Thus, the overhead

of preparing input and analyzing output for many different pieces of software to

solve several related scheduling problems can be significantly reduced.

We then address the fact that many of constraints and objectives of schedule

development are hard to quantify. A system of exception represention and han-

dling is presented; this system allows a deterministic scheduling algorithm to

be enhanced with additional rules which improve the solution. The framework

of incorporating a dynamic rule base with a hard-wired algorithm allows for a

great deal of flexibility in the specification and adjustment of those rules which

are important to the scheduling process. This system allows scheduling software

to take advantage of efficient algorithms from within the fields of network anal-

ysis and operations research while not giving up the ability to take advantage

of hard-to-quantify information. Because the exception-handling rules are only

evaluated in the small number of cases in which they are referenced, the process

only loses a minimal amount of efficiency. If certain "exceptions" appear in a

large number of cases, the process does become less efficient and it becomes

worthwhile to incorporate the exception into the "basic" algorithm.

A flexible rule base, such as that developed in Prolog for the exception han-

dlers presented herein, can be a very powerful tool in developing expert systems

to solve scheduling problems. The system that is presented has been developed

in the Lisp and Prolog languages. These languages are especially well suited to

problems which are not rigidly structured and make use of a flexible rule base. It

is possible that future expert systems might move further away from traditional

scheduling optimization algorithms than the Dynamic Exception Handling ap-

proach developed here. The system herein is not driven by the knowledge in the

rule base, it is driven by a traditional deterministic algorithm and enhanced - in

certain specific cases - by the dynamic exception rules. Developing a large rule

base which could simulate the complete decision-making process of an expert

scheduler would be a lofty, but extremely worthwhile, goal.

Regardless of structure of the computerized decision making process, it is

important to have an environment which allows a human to easily develop and

manipulate schedules. The generalized system of using attributes of pieces of

the schedule to determine the way the schedule is displayed makes the system

adaptable to a number of different situations. The mouse-driven graphics sys-

tems presented incorporates many features which make this process easier. The

system of pop-up windows and menus which allow the user to quickly pinpoint

and alter individual pieces of the schedule is an important component of this

flexible system; computer operating systems which include dedicated graphic

window manipulation systems are becoming prevalent and therefore it is be-

coming possible to develop environments such as this one on many different

types of computers.

Bibliography

[1] Clocksin, W.F. and C.S. Mellish. Programming in Prolog. New York:

Springer-Verlag, 1981.

[2] Deckwitz, Thomas A. "Interactive Dynamic Aircraft Scheduling." MIT

Flight Transportation Laboratory Report R84-5, June 1984.

[3] Etschmaier, Maximilian M. and Dennis F.X. Mathaisel. "Aircraft Schedul-

ing: The State Of The Art." Proc XXIV. AGIFORS Symposium, Stras-

bourg, France, 1984.

[4] Simpson, Robert W. "Computerized Schedule Construction for a VTOL

Airbus Transportation System." J. Aircraft, Vol. 5, No. 3, May-June 1968,

pp. 299-305.

[5] Simpson, Robert W. and Dennis F.X. Mathaisel "Automation of Airlift

Scheduling for the Upgraded Command and Control System of Military

Airlift Command." MIT Flight Transportation Laboratory, June 1984.

[6] Van Cotthem, Jan. "Interactive Dynamic Aircraft Scheduling and Fleet

Routing with the Out-Of-Kilter Algorithm." MIT Flight Transportation

Laboratory Report R84-5, June 1984.

